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Statistics of extinction and survival in Lotka-Volterra systems
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We analyze purely competitive many-species Lotka-Volterra systems with random interaction matrices,
focusing the attention on statistical properties of their asymptotic states. Generic features of the evolution are
outlined from a semiquantitative analysis of the phase-space structure and extensive numerical simulations are
performed to study the statistics of the extinctions. We find that the number of surviving species depends
strongly on the statistical properties of the interaction matrix and that the probability of survival is weakly
correlated to specific initial conditionS1063-651X%98)03204-§

PACS numbe(s): 87.10+e, 82.20.Mj, 02.40.Vh

I. INTRODUCTION necessarily similar. In fact, in an ecological system of several
coevolving species, mutual interactions can be of different
Systems of interacting biological species evolve throughtypes(competition, symbiosis, or parasitignwithin a given
the long, slow, and intricate process of natural seledtidn  species, instead, it is expected that the interaction is mainly
Usually, the result of this process is so complex that thecompetitive, as in logistic mode[$].
dynamics of such webs of coevolving species can be suc- Itis well known that, in a system where many individuals
cessfully represented, within relatively short time scales, byompete for a resource, the dynamics leads to the extinction
means of a dynamical system with stochastic elemi@jtsA  of some of them and to the survival of others. This is indeed
standard mathematical model for the joint evolutionMf @ basic fact of evolution in the Darwinian sense. Though the
biological species with spatially homogeneous densitiegeneralized Lotka-Volterra modél) has been explored in
ni(t) (i=1,2, ... M) is the generalized Lotka-Volterra sys- detail[3,7], it seems that a full characterization, either deter-
tem|[3] ministic or statistical, of the conditions under which a popu-
" lation becomes extinguished or survives in the competition
. i process has not been achieved. In this paper we aim at ana-
r‘i(t):ni(t){ri_ Zl Kijni(t)} (i=12,...M). (1) |yzing this particular problem from a statistical viewpoint.
: We consider a large number of coevolving species or
For large values oM, it is reasonable, as a phenomenologi- genotypes, each of them consisting of a population of iden-
cal approach, to choose the parameterand Kij at random tical individuals with densityn;(t). These populations are
from given probability distributions. Within this type of rep- Supposed to evolve according to the Lotka-Volterra model
resentation, the dynamics of coevolving species can be chafl), subject to purely competitive interactions, i.e., with
acterized by statistical properties over different realizationsg<i;=0 for any pairi,j. Since we aim at analyzing the statis-
of parameter sets. tical properties of the dynamics, these coefficients will be
There are two biological systems that can potentially in-drawn at random from a given distribution and will remain
volve a large number of coevolving populations. The firstquenched from the initial time.
one is an ecological system in which each population corre- For simplicity, we taker;=1 V i [2], indicating that in
sponds to a different biological species, as usually interthe absence of competition the dynamics of all the popula-
preted in the theory of population dynamies5]. The other tions are identical. We are thus implicitly identifying these
situation is a system in which each population represents gopulations with the genotypes accessible to a given species.
genotype accessible to a given spedigs In this situation, ~Within this condition, that it is not essential to our interest
the number of populations can be sensibly larger than in thend could in fact be easily relaxed, E@) reduces to
case of interacting species. Although in both cases coevolu- M
tion is presumably well described by Ed,), the probability - .
distributions to be assigned to the random parametgrs ni(t)_ni(t){l_jzl Kijn;(t)
which represent the interaction between populations, are not
All the coefficientsk;; will be chosen at random from the
same distributiorp(«), such thatp(x)=0 for «<0.
*Present address: Max-Planck-Institut Rhysik Komplexer Sys- In the next section we outline the behavior of the dynami-
teme, Nahnitzer Strasse 38, D-01187 Dresden, Germany. cal system(2) in phase space, showing that its evolution
'Permanent address: Consejo Nacional de Investigacionggroceeds along a series of “pseudoextinctions,” in which
Cientficas y Tenicas, Centro Atmico Bariloche, 8400 Bariloche, some of the densities;(t) can attain very low levels during
Argentina. long periods but, eventually, they recover significative val-

(i=1,2,...M). 2
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ues. A threshold for these pseudoextinctions, which becomthe linearized problem should follow a semicircular distribu-
consequently true extinctions, is suggested by the biologicaion [8]. A typical equilibrium point is thus linearly unstable
context of the problem. This threshold is introduced in ourand it has approximately the same number of positive and
numerical study of Eq(2) in Sec. Ill, where we focus the negative eigenvalues. Correspondingly, the number of un-
attention on the statistics of extinct and surviving genotypestable and stable invariant manifolds for each equilibrium is
and try to characterize their long-time behavior in terms ofmore or less the same. Since the mathematical structure of
their inital conditions. Our results are discussed in Sec. IV. system (2) prevents both the divergence of orbits and
changes of sign in the densitirgt), the invariant manifolds

Il. PHASE-SPACE STRUCTURE of positive equilibria are necessarily bounded and mutually

connected, defining homoclinic and heteroclinic orbits. Most

The evolution of the dynamical systef@) can be de- g .
scribed in terms of a semi):quantitativg ang))/sis of the corre9f these orbits lie on the surface of the volume that contains
e positive equilibria, where some of the densities are ex-

sponding phase-space topology, which is determined by th 1 Lt
fixed points of Eq.(2) and the associated invariant mani- actly equal to zero. . . .
In summary, the portion of théM-dimensional phase

folds. The equation for the fix-point coordinate$ reads space of systen2) meaningful to our problem is populated
by a large set of fixed points, of the order of (3f2)n
ny ( 1—2_ Kijnj*) =0 (i=1,2,...M) (3 number, most of them having positive and negative eigenval-

! ues, i.e., being unstable. They are confined to a volume of
order 1M! and typically are found on the surface of such
volume. These equilibria are highly interconnected through
invariant manifolds that lie also on that surface and connect
stable and unstable eigenvectors. The number of those mani-
folds should be of ordeM (3/2)M.

With these elements in hand, the evolution along a typical
phase-space trajectory of the dynamical syst@mncan be
outlined as follows. From a generic initial condition, the or-
bit should soon approach one of the stable manifolds and the
system will be driven towards the corresponding equilib-
rium. It will spend some time in the vicinity of this equilib-

and has, generically,"2 solutions. In fact, each solution to
this equation can be characterized by the nunibéiof non-
zero coordinatesMl’ =0, ... M); let us call such a solution
anM' equilibrium For a given choice of the coefficients;
the number of differentM’ equilibria is C(M,M")
=M!/M'I(M—-M")!. Therefore, disregarding pathological
choices of «j;, the total number of fixed points is
Su'C(M,M")=2M,

Since n stands for a density, meaningful equilibria
among the ¥ fixed points are those with non-negative co-

ordinates. In the Appendix it is proved that, for randem,  yi,m put if this fixed point is not stabl@.e., if it has at least
the probability that all the nonzero coordinates of Mri  ne nstable manifold, which, as we have argued, is the typi-
equilibrium (M’ +0) are positive is cal casgthe orbit will finally leave that neighborhood, just to
P(M') =21 M’ be drawn along one of the unstable manifolds of this first
(M7)=2 ' (4) equilibrium point towards another equilibrium, which is ex-
We stress that it is essential to this result thgt>0 V i,j, ?elgtethrc]) ha\r/1e lm turn some.ﬁtable atnqt scl)fme gntshtable rtnanl—
i.e., that the system is purely competitive. For laige the olds. The whoie process will repeat 1tsett an € system
A ; . . . will wander in phase space, typically visiting the neighbor-
ngmber of equilibrium points W'th. non-negative coordmateshoods of a large number of unstable fixed points, until it
will therefore be approximately given by eventually finds a stable equilibrium. This is reminiscent of
3\ M the complex behavior of Boolean evolution models on ran-
(—) (5 dom landscape$9], which, in contrast to Lotka-Volterra
2 models, are discretén space and timeand stochastic.
L . . . We stress that, in wandering from one equilibrium to an-
It is interesting to note that, ik;> kmin ¥ 1,], all the non- other, the orbit is expected to approach more and more the
negative equilibria will be confined to a certain voluMen — gcessive invariant manifolds that drive the dynamics of the
phase space sincgn; <1/’fﬁ,\}|in' This volume shrinks rap- gystem[10]. This implies, in particular, that the system will
idly for growing M, asV= «,;,/M!, and the density of equi-  spend longer and longer periods in the immediate vicinity of
librium points, most of which are situated on the surface ofthose equilibria. Since typically the equilibria have some null
V, where some of the coordinates vanish, grows correspon@upordinates, the corresponding densities will approach a van-
ingly. ishing state but, as the system escapes from each unstable
The stability properties of the fixed points of systé®  equilibrium point, they can eventually recover appreciable
can be fully analyzed in some very special cases only. Foyajues. As the evolution proceeds, a given density can there-
instance, as could be expected for this logisticlike dynamicajore practically vanish during a rather long time, but can then
system, the 0 equilibriumn{" =0 V i) can be proved to be increase and become again significant in the whole dynam-
always unstable. Moreover, for a random choice of positiveics. We shall return to these pseudoextinctions in the follow-

> 2tMemM)~2
M'#0

«ij, 1 equilibria are stable with probability equal M~.  ing section to discuss their relevance in the numerical study
Finally, theM equilibrium (n#0 V i) is stable if«;; isa  of the system and its biological interpretation.
symmetric matrix. Finally, it is worthwhile to remark that the existence of a

Though we cannot give a detailed characterization of thestable equilibrium point, able to definitively attract an orbit,
stability of all of theM' equilibria, it can be argued that, for is in principle not guaranteed. Moreover, even if one or sev-
a random system and for lar&’ andM, the eigenvalues of eral stable points do exist, it is not ensured that their basins
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FIG. 1. Time evolution of the density of some selected popula-  FIG. 2. Time evolution of the total density. Full line, the system
tions, from a system consisting of 20 populations. Both axes argvithout a density threshold; dashed line, the same system with a
logarithmic to emphasize how some of the populations, after bedensity threshold. Note the logarithmic scale in the time axis.
coming almost extinct, grow again to significative values. Inset: the
same curves in a log-linear plot. species or a genotype confined to certain spatial dofai

. . . volume V, cannot be smaller tha¥,*, unless it vanishes.
of attraction cover the whole space of initial conditions. Thej, 5 description in terms of densities, it is therefore necessary
system could thus perform a chaotic orbit or become trappeg fix a threshold12], below which the only value accessible

in a limit cycle[10,11]. to the density is effectively zero. In addition to this biologi-
cal argument for introducing a density threshold, we must
ll. NUMERICAL ANALYSIS stress that in our numerical calculations this element is also

, o ... necessary to avoid spurious effects of finite computer preci-
We have performed an extensive numerical investigation .

of system(2). Each realization consists of the numerical in- " " the results. A threshofip thus has been introduced

tegration of the equations, after a random choice of the in_as an additional parameter in the numerical calculations, in

teraction matrix and the initial conditions. In all the results such a way that if a density attains a value lower thait is

: : - automatically set to zero.
presented here, the interaction coefficiegtshave been ran- : . L
domly chosen from a uniform distribution in the interval . From _the analytical viewpoint, it can be _a_rgued that the
[ro— Ak, o+ Ar], With Ax=ro, but we have tested that introduction of a threshold changes the stability of almost all
0 RO ’ R0

other probability distributions, always defined fer-0, pro- :Efegolggﬂlggﬁ.c?t?lcljgahly r;ggﬁlggge’ \L’J\'I“gﬁleu ?T‘j’ fg:g\]/si%t 2
duce essentially the same results. Similarly, the initial densi- : . ppre q 9
table manifold just to leave it along an unstable one, with a

ties have been uniformly distributed at random in the interva hreshold the system can instead be “captured” by the equi-

[ONmax. A proper rescaling of densities and time makes ItIibrium point if the orbit crosses the threshold. What was an

possible to fix, without gengrahty lossﬁ“’:.l gndn'male. unstable equilibrium becomes, in effective terms, a stable
The only parameter to vary in these distributions is therefore

Ak. In the following we describe the dynamical behavior of
Eq. (2) as drawn from our numerical calculations.

In order to illustrate the different behavior of systems
with and without density threshold, we have chosen to ana-
o ) lyze the evolution of the total density

A. Pseudoextinctions and density threshold

In Fig. 1 we show the evolution of several typical densi- N(t)z% n (1) ®)
ties in a system ol =20 genotypes foA k=0.5. Note that, =
to ease the appreciation of certain details, both the time and
the density axes are logarithmic. In the inset the same curvezs a global characterization of the phase-space dynamics.
are shown in a semilogarithmic plot, with a logarithmic time Figure 2 displays the evolution ¢i(t) for two systems of
axis. The phenomenon of pseudoextinctions is clearly seen ih00 species. In both cases the interaction is defined by
some of the curves. We have checked that, in some realizaxx=1. One of the curves corresponds to the system without
tions, one or more densities can temporarily attain values aa thresholdin addition to that imposed by the smallest rep-
small asn~10 !¢ and then grow to levels of the order of resentable number in the compytefhe other one corre-
their initial values. The verification that pseudoextinctions dosponds to the same system, with the same initial conditions
occur, as predicted, in Sec. I, from our analysis of the phaseand interaction matrix, with a threshoig=10"°. Note that
space structure, points the attention to another factor, whicthe time scale is again logarithmic. It can be seen that, in this
is not present in the model as described by @y.but has to  realization, the orbit of the first system follows the qualita-
be necessarily taken into account in a system where the variive behavior described in Sec. Il. It passes near some equi-
ables are actually discrete. In fact, the population density of déibria, whereN(t) remains practically constant, spending ex-
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FIG. 3. Dlstngutlton choghe nt:_mt;er of ?urthoré(s)\mllzqach FIG. 4. Probability of survival of a single speciPg as a func-
curve corrésponds 1o reafizations ot systems a5 fion of its initial densityn,. The two curves correspond to 2000

shown in the legend. Inset: the position of the maximum of the _. .. ; :
s . . . realizations of a symmetric and an asymmetric system.
distribution S as a function of the widthAx of the distribution y y Y

p(x). profile of the curves in Fig. 3. In fact, the probability that an

initial condition approaches aryl’ equilibrium depends not

nly on their number for a giveM' but also on the size of
Reir basins of attraction, about which our phase-space analy-
sis provides no information.

ponentially longer and longer times in their neighborhood.
When a threshold is present, the system is always attracted
one of the new “stable” equilibria. In the case of Fig. 2, the
system is captured d@t=100 by an equilibrium point that,
although being unstable in the first case, acts now as a stable _ .
fixed point for this orbit. C. Characterization of survivors
A very natural question arises now, yet not easy to an-
B. Statistics of survivals swer: Which populations survive? Are they characterized by
i , ) , . some particular initial condition, by some peculiarity in the
According to our simulations, the main feature in thejnteraction with the remaining populations? In the study of a
long-time dynamics of systei2), with or without a thresh- 5 ecological system, it would be desirable to give an an-
old, is that it evolves to a situation in which most of the gyer 1o these questions in terms of quantities accessible from
densities vanish, at finite timesiig#0 or asymptotically if  gpservations. It is thus reasonable to consider, since they are
no=0. This behavior can be identified with the extinction of yropaply the easiest to measure, the initial densities and their
the corresponding genotypes. In any case, for a large systerg,tia| time derivatives. In addition to being accessible, these
a variable number of surviving populations is found at longquantities characterize the initial interactive scenario: Ac-
tlme's.' In Fig. 3 we show t.he distribution of the number of cording to Eq.(2), the density measures the effects of each
surviving populations for different values afk. Each curve  popylation on itself, while its first time derivative accounts
was constructed from the results of 2000 realizations in ggr the influence of the remaining species.

system withM =100 andno=10"°. The final time in each We have found that an answer based on deterministic ar-
realization was chosen so that a stationary state had begyments cannot be given to such questions. According to the
reached, which was checked to be a solution to 8. statistics collected from the simulations, we conclude that

The distribution of the number of surviving populations is gnly a weak correlation exists between survival and the ini-
generally a bell-shaped curve, its width and maximum detja| conditions. This correlation can be evidenced by calcu-
pending on the probability distributiop(«). It can be seen |ating the distribution of final densities as a function of the
in Fig. 3 that forAx small enough the curve is relatively jnjtial one, thus providing a probabilistic answer to those
broad and that wider interactions reduce the overall stabilityjyestions. In Figs. 4 and 5 we shdfull lines) the distribu-
of the system, leading to a shift of the curve towards a sitution of survivors as functions of initial values, for general
ation where fewer species survive. The correlation betweeasymmetric systems«{;# ;). Figure 4 shows that the
the maximum of the distribution of survivors and the width probability of survival is almost uniform in the whole range
of p(«) is shown in the inset, in a log-log plot. Observe thatof injtial densities, with a slighty higher probability of sur-
for the smallest value x=0.02 the maximum of the distri- yjyal for the largest ones. In Fig. 5 an associated distribution
bution coincides with the total number of species in the sysis shown: the number of survivors as a function of the initial
tem. derivative of the density. Here an enhancement of the prob-

It is worthwhile to note that the probability of having a apility of surviving is seen around a relatively largend
non-negativeM’ equilibiumP(M’)=21"M'C(M,M") (cf.  negative value of the initial time derivative.

Sec. |) is also a bell-shaped curve as a functiorMf. This We have also found that this correlation between the final
fact, however, should be considered only as indicative of thetate and the initial condition is stronger in symmetric sys-
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0.8 - - known to be of limited validity. The number of surviving
species, those that finally reach equilibrium, is characterized
< by a bell-shaped distribution whose width and maximum de-
06 | F | . | pend on the distribution of interactions.
) L‘ asymmetric In addition to competition, a population of genotypes is
also subject to changes that arise from random mutations and
recombination during the reproduction of the organi$ir®.
The description of such a system would require a modifica-
} tion of the model, whose behavior cannot be predicted
/ ‘—1_1 priori. Mutations can be easily taken into account by allow-
symmetric — ing a different interaction, namely, random transitions be-
0.2} T tween the genotypdd.4]. The analysis of this system is the
subject of work in progress.
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tems (kjj= «ji). In Figs. 4 and 5 the same functions are

shown as dashed lines for symmetric systems. In this case APPENDIX

there is an enhancement in the probability of survival for

those species that start with a higher initial population. Al- Theorem Let {«;;} be anM XM random matrix, whose
though considering a purely symmetric interaction matrix iscoefficients are drawn from the same probability distribution
irrelevant from a biological point of view, these results sug-p(«), with p(«)=0 for k<0. Then the probability that the
gest that the statistical correlation between initial and finalolution to the set of linear equations

states and, in particular, between initial conditions and sur-

M
vival probability can depend in a rather strong manner on _ L
additional constraints in the interaction matrix. 121 ain=1, (1=1.2,... M) (AD)
IV. CONCLUSIONS has positive components,>0 V i=12,...M s
:217M

We have analyzed a dynamical system that represents the
evolution of many species coupled by Lotka-Volterra inter-
actions. The study has been restricted to systems where t
interaction is purely competitive. This dynamical system de-
scribes, in principle, two different biological systems. The
first is an idealized ecological system of interacting species.
To represent more realistic ecological systems, the connec-

tivity of the model should be built correspondingly, typi- The symmetry of this expression with respect to the coeffi-

cally, with several levels of preys and predators. cientsk;; makes it clear that; /n,>0 with probability 1/2,
On the other hand, the model can also describe the systeRegpectively of the form op(«x). Now, sincex; >0 V i, ]

of genotypes present in, or accessible to, a single species f"n, andn, have the same sign and satisfy]EAl) with

population. Within a single species, the number of compety; —» they must be positive. Therefore=1/2.

ing genotypes can be much larger than the number of com- For M>2, we take any pair of equations from Eé1),

peting species in an ecological niche. Of course, not all Ogay thekth and thelth. and rewrite them as
them strive. The surviving genotypes are finally expressed in -’ ’

the living population. This is precisely the problem we have
addressed in this paper. KN+ kg =1— 2 KijNj s

We have found that the evolution of the system follows 17k
complicated orbits in phase space. These orbits drive the
system from the neighborhood of one of the many equilibria KN+ ey Ny=1— Z Ki;h; - (A3)
to another, regardless of their stability. Systems with a finite i#kl
population threshold, which may represent more accuratel}ll_ . )
real biological systems, eventually fall into a stable equilib- This can also be put in the form
rium situation. As time elapses, a variable number of popu-
lations become extinct through the interaction with the oth-
ers. In general, more than one species survive, in contrast
with the “principle of competitive exclusion’[5] (which is KN k=1, (Ad)

Proof. For M=1, n;=1/k44, Which is always positive
P=1). ForM =2, the system can be explicity solved and in
Qrticular we get

N1 _ Ko~ K2 (A2)
Ny Ky~ Kz

’ ’ _
Kkknk+ Kk|n| = 1,
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with k= k! (1= k¢jn;) and analogous expressions componentsn, and n; of the solution to Eq(A1l) is then

for kg, K, andxy . statistically independent of the values of the other compo-
Note that for fixed, arbitrary values of; (j#k,l), the  nents.

functional form of the primed coefficents in terms of the  To ensure the positivity of all the components it is suffi-

original ones is the same. The probability distributions forcient to consideM — 1 ratiosn, /n;, for instancen, /n, with

Krk» Kus Kl @nd k|, are therefore identical. Hence, as al=2,3,... M. According to the above results, the probabil-

consequence of the previous result kbr=2, the probability ity that all these ratios are positive is (1¥2)*. Now, since

thatn,/n, is positive equals 1/2. This holds irrespectively of ;;>0 V i,j, if all the n; have the same sign and satisfy Eq.

the distribution for the primed coefficients, i.e., irrespectively(Al), they must be positive. ThereforeP=(1/2)M 1

of the values ofn; (j#k,1). The relative sign of any two =2'"M.
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