PHYSICAL REVIEW E VOLUME 57, NUMBER 4 APRIL 1998

Phase-ordering kinetics of cemetery organization in ants
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The clustering of dead bodies by ants is simulated, using a cellular automaton model, the rules of which are
carefully derived from experiments. Starting from a random spatial distribution of corpses, a cemetery orga-
nizes itself into clusters of corpses. The dynamics of clustering can be compared to the phase-ordering kinetics
of a bidimensional idealized magnetic system with a scalar conserved order parameter. In particular, scaling
relations are found for the structure factor and the dynamics of cluster growth, which can be compared with
those predicted by the theory of phase-ordering kinetics. Observed exponents are consistent with those ex-
pected in early stage phase-ordering kineti6d.063-651X98)03104-3

PACS numbes): 87.10+e, 05.70.Fh, 64.60.Cn

A phase-ordering phenomenon is observed after a tenf12], collective hunting13-15, etc. In such examples, it is
perature quench from a homogeneous phase into a two-phasgeresting to draw a parallel between the behavior of the
region[1]. Conserved fields are particularly interesting, be-biological system and the behavior of a corresponding physi-
cause interfaces cannot move independently and their dyal system, the properties of which are well known. Such
namics is nonlocal. In the diluted case, when one of theroperties may include, for example, scaling exponents at
phases occupies only a negligible volume fraction, the theorphase transitions or dynamic scaling laws.
of Lifschitz and SlyozoV{2] predicts, among other things, An ordering phenomenon is observed in some species of
that the characteristic siZ&(t)) of the minority phase clus- ants when corpses of dead ants are spread in the colony’s
ters grows at late times a&® in space dimensiod>2 fora  two-dimensional foraging area: ants pick up dead bodies or
conserved scalar field. This result has been argued to extemitad items and deposit them some time later; picking up
to d=2 [3,4], with possible logarithmic corrections, and to occurs with high(respectively, loy probability when items
cases where none of the phases’ volume fractions is infiniare isolatedrespectively, surrounded by many other it¢ms
tesimal[1]. Corberi, Coniglio, and Zannetfb] showed, by and, conversely, deposition occurs preferentially in regions
means of numerical simulation of a Ginzburg-Landau equawith a high density of items. This behavior at the level of
tion, that the early stage of coarsening may be characterizeddividual ants leads to the formation of macroscopic clus-
by (R(t))t* for a conserved scalar order parameter. Theers. Figure a) shows 4000 corpses randomly located in a
structure factorS(k) is also predicted to exhibit late stage two-dimensional experimental arena used to study clustering
scaling (or more complicated “multiscaling)’ behavior in the antPheidole pallidula and Fig. 1b) shows clusters of
[1,6]: S(k)ock? for k<kp,, andS(k)=k~2 for k>k,, (Porod dead bodies that have appeared after 68 h. Because ants tend
tail, indicating the existence of sharp interfacasherek,,is  to perform random walks before and after picking up or de-
the peak wave vector. Castellano and Zanéitshowed that  positing an item, this clustering process is slow. The scalar
the observation of this behavior depends on the initial flucield is the spatial density of dead items, which is obviously
tuations of the order parameter: when initial fluctuations areglobally conserved by the reorganization performed by the
strong, thek* behavior takes a long time to build upk}/is  ants; this reorganization is similar to a spin exchange dynam-
expected to vary as$*®, but 1k,<t** is often observed ics.

[7,8]; when initial fluctuations are strong, the exponent 1/3 or We use a two-state mobile cellular automaton model,
1/4 for 1k, is approached from beloyé]. carefully derived from experiments, which is a modified ver-

In the present paper, we study a model of cemetery orgasion of a model previously introduced by Deneuboatgl.
nization in ant§9] that appears to exhibit many of the prop- [9]. A siter; containing a dead body item at tirhgan item
erties of the phase-ordering kinetics of an idealized twoimay be a part of a corpse, such as the thorax or the abdomen
dimensional magnetic system with a scalar conserved field.16]) is represented bys(r;,t)=1, and an empty site by
Our approach is “behavioral” by nature, that is, we simulateS(r;,t)=0. Each agent, representing an ant, performs a ran-
the observed behavior of ants and do not try to build adom walk on the lattice, and, if unloaded, picks up an item
“physical” model of it with an explicit Hamiltonian. This located at a given site with some probability. When loaded,
peculiar system can be seen as a model experimental systéhe agent continues to perform a random walk until it decides
for studying phase ordering outside the domain of physicsto drop it at an empty site. LeX;(t) be the site occupied by
There exist numerous examples of many-body phenomena #genti at timet, andY; the state of agernit at timet: Y;
the animal kingdom, including aggregation, flockifid] or =0 if the agent is unloaded, anj=1 if the agent is carry-
schooling[11], the formation of living chains or bridges ing an item. The probability of dropping an item was studied
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though the probability of picking up an item was not pre-
i YT cisely measured in Chiien’s experiments[16], it was
o AIRIE T i reported 9,16] that it is low when the item is surrounded by
‘ Lot TN other items, and substantially higher when the item is iso-
lated. The following procedure has been implemented: the
picking-up probabilityP, is given by a threshold function

0.1 \?

0.1+f

@

Pp

if S(X;)=1[P,=0 if S(X;)=0], wheref is the fraction of
the neighboring sites oK; occupied by an item. Because

there are eight neighboring sites in our simulatiohs;an

" = & take its value inf0,,%,..., 5,1}. New experiments seem to

s confirm Eq.(2) [17].
& s It must be emphasized that a very large arena was neces-
» g sary in Deneubourgt al.'s [9] experiments to obtain “bulk”
E . clusters: in effect, ants are attracted toward the edges of the
experimental arena if these are too close to the nest, resulting
s ES in clusters almost exclusively along the edges. Any hetero-
geneity in the environment serves as an aggregating device.
(b) The simulations reported below correspond to the case of a
] very large arena. Because very large arenas require an enor-
FIG. 1. (a) 4000 dead bodies are randomly placed on an experiyqys number of freshly dead individuals, these experiments
mental 50<50-cn? arena wherePhe@oIe palllldulaworkers are ould not be done more than once, and only three pictures of
8%:;"&;32 tﬁzriicrfacce)zffchtciicfr?gc::tjm dbte)'”g Odf the qrdefr ho he arena were taken at three different times by Deneubourg
) - pied by dead items is of the gy o [9], which is obviously insufficient to make reliable
order of 0.025. Modified from Ref9]. (b) Experimental arena after L :
68 h. Modified from Ref[9]. statistics. The behavior of ants, ho_vvever, has_peen re_cor_ded
for smaller arenas, and the respective probabilities of picking
up and depositing a dead body could be computed. Our
simulations use these experimentally determined parameters,
and generalize them to very large arenas. A square grid of

where p is a fitting parameter. But ants cannot precisely“r?tehar syze(;__ =§OO 'j used fgft.‘he hﬁolrggo(;ta\rlo stlrrru][atlons,
evaluate the size of a cluster:; a local mechanism is require Ith periodic boundary conditions,= items(the frac-

to allow them to perform this evaluation. Observation of thellon of the surface occupied by dead items is 0.025, which

clustering process suggests that the size of a cluster is evalfd" be conS|dere_d as a relatively diluted sys)temdN=5_

ated through a temporal integration: as a loaded ant walks opgents. At each time step, every agent moves to an adjacent
a cluster, she is hampered in her walk because the item shegge' E_ach agent perfqrms a random W.a.".( anq picks up or
carrying tends to cling to other items, requiring an effort on 1ep03|ts Items accorzd'”g to the pro_bab|I|t|e_s given l:_)y Egs.
the part of the ant, who gives up her item in an empty slot(,) and (2)..E§ecausd_ Zgnot necess_arlly all differeptattice

after some time. It is very likely that deposition takes placeSites are visited everl/N=28000 time steps by all agents,

when the temporally integrated effort becomes large. In or!V€ define by convention a Monte Carlo stgCS) as cor-
sponding to 8000 time steps. Obviously, it takes more time

der to reproduce this feature, each agent is endowed with ; . o )
short-term memory, where the states of the kasencoun- or all sites to be visited, as agents are performing random

tered sites are storem is adjusted so that actual cluster size walks, WhiCh’ again, makes the phasg—ordering process very
in the simulations corresponds roughly to the numibesf SI.OW' Figure 2 shows.a pattern obtalr)ed_ after 5000 MCS’s
memorized occupied sitéherem=30). Then, the perceived with this model. We find a good qualitative agreement be-

cluster sizen is used to define the probability of depositing vaiggtietﬁ;fegmgngagaqg Ss'rgﬂagggcsrpi‘.tﬂ gftt:,im?ev;gﬂ_'
an item in the vicinity of the cluster, indi W Ve a plausi Ipt P

enon, especially given the few ingredients needed to specify

experimentally by Chiteen [16] in the antLasius niger the
probability that an ant drops an item next toracluster can
be approximated byy(n)e<cl1—(1—p)", for n up to 30,

> S(rj,Hek
J

= (1D the model.

Palm=0-11=(1=p) @ The average cluster sizgR(t)), the maximum cluster
if S(X;)=0 [P4q=0 if S(X;)=1], with p=0.01. Note that sizeR(t), and the normalized structure factor, defined by
P4=0 whenn=0, which is consistent with the fact that an 5
ant extremely rarely deposits an item where it would be iso- S(k,t)= nl< > @)
lated. The picking up behavior is more easily modeled, as it ' '
seems to rely more on the direct perception of the neighbor-
hood of an item: an item surrounded by many other items isvhere k= (k, ,ky)=(2#/L)[m; — (L/2),m,—(L/2)] (my,m;
likely to be entangled with them, requiring a larger effort to =0,1,;--, L), have been measure8(k=|k|,t) is obtained
pick up than an isolated item. The required effort is an in-by spherical averaging over tlik, k+ 5k) shell ink space.
creasing function of the number of neighboring items. Al-The first momenk,(t) of the structure factor, defined by
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FIG. 2. Configuration obtained from simulatidsee text after
5000 MCS withN=5 agentsn= 1000 items are initially randomly FIG. 4. Double logarithmic plot o8(k,t) (averaged over five
placed in the 208200 simulated arena. The fraction of the surface gsimylations as a function ok at differentt (in MCS). A k3 Porod

occupied by dead items is 0.025. tail can be observed fde> k., after some time, but nk* behavior

is observed fok<k,, within simulation time.

> ks(k,t) exponenti being approached from below, which, again,

ky(t)= k—, (4)  would be consistent with a system with strong initial order
2 S(k.t) parameter fluctuations].

R ' In conclusion, we have introduced a plausible model for

the clustering of dead bodies by ants, the dynamic scaling
properties of which seem to be consistent with predictions
can be calculated more accurately than the peak wave vect@iom theories, or other simulations, of phase-ordering kinet-
Km(t), and is expected to have similar temporal propertiegcs. The slowness of the clustering process may explain why
[7]. Figure 3 shows a double logarithmic plot @(t)) and  our observations are consistent with other results obtained in
Rm(t) as a function oft: the behavior of botfR(t)) and  the early stageof phase ordering5]. That our results seem
Rm(t) is consistent with a growth proportional %, as  to be similar to those obtained with strong initial order pa-
would be expected in early stage order{®d. The ; expo-  rameter fluctuations is more difficult to explain. There are a
nent is approached from below. Figure 4 shows a doubléew features of the model that might contribute to these ob-
logarithmic plot of S(k,t) as a function ofk for different  servations. For example, our agents perform random walks,
values oft: whereas &2 tail can be observed fdk>k,,  which are obviously correlated. Moreover, time is ill defined,
after some time, n&* behavior is observed fde< k,,, within because “spin” exchanges take variable amounts of time: a
simulation time. Such a behavior would be consistent withaden agent may perform a random walk for a varying num-
the early stage ordering of a system with strong initial ordeiber of time steps before unloading its item. Finally, in ex-
parameter fluctuationg6]. Finally, Fig. 5 shows a double periments, the number of ants participating in the clustering
logarithmic plot of 1k,(t) as a function oft, the temporal process may fluctuate, making it in principle more difficult to
growth of which is consistent with &{(t)t*4 with the  compare time varying quantities with predictions, but simu-
lations with a fluctuating number of agents generate the same
100
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FIG. 3. Double logarithmic plot ofR(t)) andR,,(t) as a func- FIG. 5. Double logarithmic plot of kj(t) as a function of (in

tion t (in MCS), consistent with &** growth at late times. The MCS), the temporal growth of which is consistent withkj(t)
exponents is approached from below. «t¥ with the exponent being approached from below.
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scaling properties. It should therefore be possible to test theomplex than clustering them: this process is similar to cell
predictions in future experiments. sorting, and actually requires that some kind of “differential
In a related problem, Glazier and co-work§gt$] applied adhesion” be implemented ir_1 t_he behavior of_individual
a modified version of the large-Potts model to the descrip- &Nts. The most relevant description of larval sorting by ants
tion of the rearrangement of biological cells through differ-Would not be the larg& Potts model, but rather a simple
ential adhesion. Some ant speciegy., Leptothorax unifas- €Xtension of the model presented in this paper, where differ-

ciatus[9,19)) do not only cluster dead bodies, but also Sortential adhesion would be reflected in differential probabili-
’ ' ties of depositing items depending on the number of items

Fheir brood: larvae are gathered into' a large cluster contair‘BeIOnging to each category encountered in the recent past
ing all the brood, with small larvae in the center and Iarge[g]

larvae in the periphery. Although larval sorting and dead

body clustering certainly rely on different physicochemical E.B. was supported by the Santa Fe Institute. This work
mechanisms, the behavioral dynamics at the level of indiwas supported in part by a grant from the GiGroupe
vidual ants appears to be quite similar. Sorting larvae intal’Intérét Scientifique Sciences de la Cognition to E.B. and
several categories according to their sizes is, however, moi@.T.
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