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Phase-ordering kinetics of cemetery organization in ants
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The clustering of dead bodies by ants is simulated, using a cellular automaton model, the rules of which are
carefully derived from experiments. Starting from a random spatial distribution of corpses, a cemetery orga-
nizes itself into clusters of corpses. The dynamics of clustering can be compared to the phase-ordering kinetics
of a bidimensional idealized magnetic system with a scalar conserved order parameter. In particular, scaling
relations are found for the structure factor and the dynamics of cluster growth, which can be compared with
those predicted by the theory of phase-ordering kinetics. Observed exponents are consistent with those ex-
pected in early stage phase-ordering kinetics.@S1063-651X~98!03104-3#

PACS number~s!: 87.10.1e, 05.70.Fh, 64.60.Cn
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A phase-ordering phenomenon is observed after a t
perature quench from a homogeneous phase into a two-p
region @1#. Conserved fields are particularly interesting, b
cause interfaces cannot move independently and their
namics is nonlocal. In the diluted case, when one of
phases occupies only a negligible volume fraction, the the
of Lifschitz and Slyozov@2# predicts, among other things
that the characteristic size^R(t)& of the minority phase clus
ters grows at late times ast1/3 in space dimensiond.2 for a
conserved scalar field. This result has been argued to ex
to d52 @3,4#, with possible logarithmic corrections, and
cases where none of the phases’ volume fractions is in
tesimal@1#. Corberi, Coniglio, and Zannetti@5# showed, by
means of numerical simulation of a Ginzburg-Landau eq
tion, that the early stage of coarsening may be character
by ^R(t)&}t1/4 for a conserved scalar order parameter. T
structure factorS(k) is also predicted to exhibit late stag
scaling ~or more complicated ‘‘multiscaling’’! behavior
@1,6#: S(k)}k4 for k,km , andS(k)}k23 for k.km ~Porod
tail, indicating the existence of sharp interfaces!, wherekm is
the peak wave vector. Castellano and Zanetti@6# showed that
the observation of this behavior depends on the initial fl
tuations of the order parameter: when initial fluctuations
strong, thek4 behavior takes a long time to build up. 1/km is
expected to vary ast1/3, but 1/km}t1/4 is often observed
@7,8#; when initial fluctuations are strong, the exponent 1/3
1/4 for 1/km is approached from below@6#.

In the present paper, we study a model of cemetery o
nization in ants@9# that appears to exhibit many of the pro
erties of the phase-ordering kinetics of an idealized tw
dimensional magnetic system with a scalar conserved fi
Our approach is ‘‘behavioral’’ by nature, that is, we simula
the observed behavior of ants and do not try to build
‘‘physical’’ model of it with an explicit Hamiltonian. This
peculiar system can be seen as a model experimental sy
for studying phase ordering outside the domain of phys
There exist numerous examples of many-body phenomen
the animal kingdom, including aggregation, flocking@10# or
schooling @11#, the formation of living chains or bridge
571063-651X/98/57~4!/4568~4!/$15.00
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@12#, collective hunting@13–15#, etc. In such examples, it is
interesting to draw a parallel between the behavior of
biological system and the behavior of a corresponding ph
cal system, the properties of which are well known. Su
properties may include, for example, scaling exponents
phase transitions or dynamic scaling laws.

An ordering phenomenon is observed in some specie
ants when corpses of dead ants are spread in the colo
two-dimensional foraging area: ants pick up dead bodies
dead items and deposit them some time later; picking
occurs with high~respectively, low! probability when items
are isolated~respectively, surrounded by many other item!,
and, conversely, deposition occurs preferentially in regio
with a high density of items. This behavior at the level
individual ants leads to the formation of macroscopic clu
ters. Figure 1~a! shows 4000 corpses randomly located in
two-dimensional experimental arena used to study cluste
in the antPheidole pallidula, and Fig. 1~b! shows clusters of
dead bodies that have appeared after 68 h. Because ants
to perform random walks before and after picking up or d
positing an item, this clustering process is slow. The sca
field is the spatial density of dead items, which is obviou
globally conserved by the reorganization performed by
ants; this reorganization is similar to a spin exchange dyn
ics.

We use a two-state mobile cellular automaton mod
carefully derived from experiments, which is a modified ve
sion of a model previously introduced by Deneubourget al.
@9#. A site r j containing a dead body item at timet ~an item
may be a part of a corpse, such as the thorax or the abdo
@16#! is represented byS(r j ,t)51, and an empty site by
S(r j ,t)50. Each agent, representing an ant, performs a r
dom walk on the lattice, and, if unloaded, picks up an ite
located at a given site with some probability. When load
the agent continues to perform a random walk until it decid
to drop it at an empty site. LetXi(t) be the site occupied by
agenti at time t, and Yi the state of agenti at time t: Yi
50 if the agent is unloaded, andYi51 if the agent is carry-
ing an item. The probability of dropping an item was studi
4568 © 1998 The American Physical Society
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57 4569PHASE-ORDERING KINETICS OF CEMETERY . . .
experimentally by Chre´tien @16# in the antLasius niger: the
probability that an ant drops an item next to ann cluster can
be approximated bypd(n)}12(12p)n, for n up to 30,
where p is a fitting parameter. But ants cannot precise
evaluate the size of a cluster: a local mechanism is requ
to allow them to perform this evaluation. Observation of t
clustering process suggests that the size of a cluster is e
ated through a temporal integration: as a loaded ant walk
a cluster, she is hampered in her walk because the item s
carrying tends to cling to other items, requiring an effort
the part of the ant, who gives up her item in an empty s
after some time. It is very likely that deposition takes pla
when the temporally integrated effort becomes large. In
der to reproduce this feature, each agent is endowed w
short-term memory, where the states of the lastm encoun-
tered sites are stored.m is adjusted so that actual cluster si
in the simulations corresponds roughly to the numbern̄ of
memorized occupied sites~herem530!. Then, the perceived
cluster sizen̄ is used to define the probability of depositin
an item in the vicinity of the cluster,

Pd~ n̄!50.7@12~12p! n̄#, ~1!

if S(Xi)50 @Pd50 if S(Xi)51#, with p50.01. Note that
Pd50 whenn̄50, which is consistent with the fact that a
ant extremely rarely deposits an item where it would be i
lated. The picking up behavior is more easily modeled, a
seems to rely more on the direct perception of the neighb
hood of an item: an item surrounded by many other item
likely to be entangled with them, requiring a larger effort
pick up than an isolated item. The required effort is an
creasing function of the number of neighboring items. A

FIG. 1. ~a! 4000 dead bodies are randomly placed on an exp
mental 50350-cm2 arena wherePheidole pallidulaworkers are
present. The surface of a dead item being of the order
0.015 625 cm2, the surface fraction occupied by dead items is of
order of 0.025. Modified from Ref.@9#. ~b! Experimental arena afte
68 h. Modified from Ref.@9#.
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though the probability of picking up an item was not pr
cisely measured in Chre´tien’s experiments@16#, it was
reported@9,16# that it is low when the item is surrounded b
other items, and substantially higher when the item is i
lated. The following procedure has been implemented:
picking-up probabilityPp is given by a threshold function

Pp5S 0.1

0.11 f D
2

~2!

if S(Xi)51 @Pp50 if S(Xi)50#, where f is the fraction of
the neighboring sites ofXi occupied by an item. Becaus
there are eight neighboring sites in our simulations,f can

take its value in$0,1
8 , 1

4 ,..., 7
8 ,1%. New experiments seem t

confirm Eq.~2! @17#.
It must be emphasized that a very large arena was ne

sary in Deneubourget al.’s @9# experiments to obtain ‘‘bulk’’
clusters: in effect, ants are attracted toward the edges of
experimental arena if these are too close to the nest, resu
in clusters almost exclusively along the edges. Any hete
geneity in the environment serves as an aggregating dev
The simulations reported below correspond to the case
very large arena. Because very large arenas require an e
mous number of freshly dead individuals, these experime
could not be done more than once, and only three picture
the arena were taken at three different times by Deneubo
et al. @9#, which is obviously insufficient to make reliabl
statistics. The behavior of ants, however, has been reco
for smaller arenas, and the respective probabilities of pick
up and depositing a dead body could be computed.
simulations use these experimentally determined parame
and generalize them to very large arenas. A square grid
linear sizeL5200 is used for the Monte Carlo simulation
with periodic boundary conditions,n51000 items~the frac-
tion of the surface occupied by dead items is 0.025, wh
can be considered as a relatively diluted system!, andN55
agents. At each time step, every agent moves to an adja
site. Each agent performs a random walk and picks up
deposits items according to the probabilities given by E
~1! and ~2!. BecauseL2 ~not necessarily all different! lattice
sites are visited everyL2/N58000 time steps by all agents
we define by convention a Monte Carlo step~MCS! as cor-
responding to 8000 time steps. Obviously, it takes more t
for all sites to be visited, as agents are performing rand
walks, which, again, makes the phase-ordering process
slow. Figure 2 shows a pattern obtained after 5000 MC
with this model. We find a good qualitative agreement b
tween the experimental and simulated spatial patterns, w
indicates that we have a plausible description of the phen
enon, especially given the few ingredients needed to spe
the model.

The average cluster sizêR(t)&, the maximum cluster
sizeRm(t), and the normalized structure factor, defined b

S~k,t !5n21K U(
j

S~r j ,t !eik•r jU2L , ~3!

where k5(kx ,ky!5~2p/L)@m12(L/2),m22(L/2)] (m1 ,m2
50,1,•••, L), have been measured.S(k5uku,t) is obtained
by spherical averaging over the~k, k1dk! shell in k space.
The first momentk1(t) of the structure factor, defined by

i-
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k1~ t !5

(
k

kS~k,t !

(
k

S~k,t !

, ~4!

can be calculated more accurately than the peak wave ve
km(t), and is expected to have similar temporal propert
@7#. Figure 3 shows a double logarithmic plot of^R(t)& and
Rm(t) as a function oft: the behavior of botĥ R(t)& and
Rm(t) is consistent with a growth proportional tot1/4, as
would be expected in early stage ordering@5#. The 1

4 expo-
nent is approached from below. Figure 4 shows a dou
logarithmic plot of S(k,t) as a function ofk for different
values oft: whereas ak23 tail can be observed fork.km
after some time, nok4 behavior is observed fork,km within
simulation time. Such a behavior would be consistent w
the early stage ordering of a system with strong initial or
parameter fluctuations@6#. Finally, Fig. 5 shows a double
logarithmic plot of 1/k1(t) as a function oft, the temporal
growth of which is consistent with 1/k1(t)}t1/4, with the

FIG. 2. Configuration obtained from simulation~see text! after
5000 MCS withN55 agents.n51000 items are initially randomly
placed in the 2003200 simulated arena. The fraction of the surfa
occupied by dead items is 0.025.

FIG. 3. Double logarithmic plot of̂R(t)& andRm(t) as a func-
tion t ~in MCS!, consistent with at1/4 growth at late times. The
exponent14 is approached from below.
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exponent 1
4 being approached from below, which, agai

would be consistent with a system with strong initial ord
parameter fluctuations@6#.

In conclusion, we have introduced a plausible model
the clustering of dead bodies by ants, the dynamic sca
properties of which seem to be consistent with predictio
from theories, or other simulations, of phase-ordering kin
ics. The slowness of the clustering process may explain w
our observations are consistent with other results obtaine
the early stageof phase ordering@5#. That our results seem
to be similar to those obtained with strong initial order p
rameter fluctuations is more difficult to explain. There are
few features of the model that might contribute to these
servations. For example, our agents perform random wa
which are obviously correlated. Moreover, time is ill define
because ‘‘spin’’ exchanges take variable amounts of time
laden agent may perform a random walk for a varying nu
ber of time steps before unloading its item. Finally, in e
periments, the number of ants participating in the cluster
process may fluctuate, making it in principle more difficult
compare time varying quantities with predictions, but sim
lations with a fluctuating number of agents generate the s

FIG. 4. Double logarithmic plot ofS(k,t) ~averaged over five
simulations! as a function ofk at differentt ~in MCS!. A k23 Porod
tail can be observed fork.km after some time, but nok4 behavior
is observed fork,km within simulation time.

FIG. 5. Double logarithmic plot of 1/k1(t) as a function oft ~in
MCS!, the temporal growth of which is consistent with 1/k1(t)
}t1/4, with the exponent14 being approached from below.
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scaling properties. It should therefore be possible to test
predictions in future experiments.

In a related problem, Glazier and co-workers@18# applied
a modified version of the large-Q Potts model to the descrip
tion of the rearrangement of biological cells through diffe
ential adhesion. Some ant species~e.g.,Leptothorax unifas-
ciatus @9,19#! do not only cluster dead bodies, but also s
their brood: larvae are gathered into a large cluster cont
ing all the brood, with small larvae in the center and lar
larvae in the periphery. Although larval sorting and de
body clustering certainly rely on different physicochemic
mechanisms, the behavioral dynamics at the level of in
vidual ants appears to be quite similar. Sorting larvae i
several categories according to their sizes is, however, m
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complex than clustering them: this process is similar to c
sorting, and actually requires that some kind of ‘‘different
adhesion’’ be implemented in the behavior of individu
ants. The most relevant description of larval sorting by a
would not be the large-Q Potts model, but rather a simpl
extension of the model presented in this paper, where dif
ential adhesion would be reflected in differential probab
ties of depositing items depending on the number of ite
belonging to each category encountered in the recent
@9#.
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