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Fractional Brownian motion as a nonstationary process:
An alternative paradigm for DNA sequences
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The long-range correlations in DNA sequences are currently interpreted as an example ofstationaryfrac-
tional Brownian motion~FBM!. First we show that the dynamics of a dichotomous stationary process with
long-range correlations such as that used to model DNA sequences should correspond to Le´vy statistics and not
to FBM. To explain why, in spite of this, the statistical analysis of the data seems to be compatible with FBM,
we notice that an initial Gaussian condition, generated by a process foreign to the mechanism establishing the
long-range correlations and consequently implying a departure from the stationary condition, is maintained
approximately unchanged for very long times. This is so because due to the nature itself of the long-range
correlation process, it takes virtually an infinite time for the system to reach the genuine stationary state. Then
we discuss a possible generator of initial Gaussian conditions, based on a folding mechanism of the nucleic
acid in the cell nucleus. The model adopted is compatible with the known biological and physical constraints,
namely, it is shown to be consistent with the information of current biological literature on folding as well as
with the statistical analyses of DNA sequences.
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I. INTRODUCTION

One of the most successful models of the statistics
DNA sequences has been the DNA walk. A DNA sequen
is a chain of sites, each occupied by either a purine o
pyrimidine. If we read the sequence in order and we reg
the site number as a ‘‘discrete time’’ this symbolic sequen
can be regarded as a dichotomous time series. Thus one
imagine a random walker whose dispacementx at the j th
step increases by11 if the DNA site is occupied by a purin
or decreases by the same amount if the site is occupied
pyrimidine. In spite of its success in modeling the long-ran
correlations observed in DNA sequences@1–5#, as indicated
by the power-law increase in the variance and the inve
power-law spectrum@2–5#, the problem of the correct statis
tical interpretation of the DNA walk is still unsolved and
attracting the attention of an increasing number of investi
tors.

A subject of intense debate is the question of the existe
of long-range correlations in exons, that part of the seque
that codes for proteins. However, problems also arise at
level of the theoretical analysis of the data; in particul
most of the analytical methods assume that the data are
tionary, which in the DNA context actually means spatia
homogeneous. This means that if the long-range correlat
reflect some internal ‘‘rules,’’ these rules apply to the who
DNA sequence with no dependence at all from the spec
position in the sequence. In addition, it is very often assum
that the statistics of the random-walk landscape variabl
Gaussian. In addition to its biological implications, this que
tion of the statistics of the process with long-range corre
tions has implications for other fundamental phenome
such as anomalous diffusion. In particular, one could equ
571063-651X/98/57~4!/4558~10!/$15.00
f
e
a

rd
e
can

a
e

e

-

ce
ce
e

,
ta-

ns

c
d
is
-
-
a
-

lently describe the scaling property of such processes u
fractional Brownian motion~FBM! or alternatively using
Lévy stable processes. Although these two processes s
strikingly common characteristics, such as the power-l
growth of the second moment and the fractal dimension
the trajectories@6#, they are fundamentally different in na
ture.

Different initial conditions can be realized by assigning
different sites of the DNA chain the role of departure po
of the walker. This means that having available sufficien
long sequences, it is possible to realize a condition equ
lent to that ordinarily adopted in statistical mechanic
namely, the observation of a large number of trajector
This makes it possible to average over trajectories with
ferent initial conditions and thus evaluate the second mom
of the distancex traveled by the DNA random walker in
time t:

^x2&;t2H, ~1!

with H.1/2. For this reason the overwhelming majority
researchers working on the statistics of DNA sequen
agree that the conventional theory of Brownian motion c
not be considered as a proper paradigm to interpret the
perimental data, since in that caseH51/2.

Which is the proper physical paradigm behind the DN
sequences then? As mentioned earlier, the current litera
in the field essentially affords the following two proposa
~a! the physical paradigm of thea-stable Lévy processes@5#
and~b! the physical paradigm of the FBM@7#. We think that
the two proposed paradigms conflict with one another, a
the main aim of this paper is to settle the problems posed
this conflict. We shall develop a model resulting in nons
tionary properties for the DNA sequence. These nonstat
4558 © 1998 The American Physical Society
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57 4559FRACTIONAL BROWNIAN MOTION AS A . . .
ary properties are realized through a shuffling procedure
can be interpreted as the influence of the geometrical fold
of the macromolecule in the nucleus. The procedure will
discussed in detail in Sec. III.

A. The physical paradigm of thea-stable Lévy processes

Let us discuss the former paradigm first. In a recent pa
Buldyrev et al. @8#, to interpret the long-range correlation
noncoding DNA, have adopted a generalization of the Le´vy
walk proposed in an earlier paper by Araujioet al. @9#. In-
stead of takingl j steps in the same directions as occurs i
classic Lévy walk, the walker takes each ofl j steps in ran-
dom directions, with a fixed bias probability

P15
11e j

2
~2!

to go up and

P25
12e j

2
~3!

to go down, wheree j gets the value1e or 2e randomly.
Throughout this paper we shall be referring to this mode
a generalized Le´vy walk ~GLW!.

It is interesting to point out that Allegriniet al. @5# have
used a model, called a copying mistake map~CMM!, which
is totally equivalent to the GLW. Let us discuss this aspec
detail. The CMM assumes that the DNA sequence res
from the random joint action of two different prescription
one responsible for the long-range correlations and the o
of a totally ‘‘random’’ nature, implying no correlations at al
The probability of running the sequence with the prescript
generating correlations ispc and the probability of running
the sequence with the random law is 12pc .

The CMM is equivalent to the GLW. The equivalenc
between the two models is made evident by noticing tha
the CMM is adopted the probabilities of going up and do
are

P15
11pc

2
~4!

and

P25
11pc

2
, ~5!

respectively, thereby implying thate is identified withpc .
The corresponding equation of motion is easily written

using the results of some recent papers@10,11#. Let us con-
sider the simplest equation generating diffusion

ẋ~ t !5j~ t !, ~6!

wherex is the diffusing variable andj the source of fluctua-
tion, supposed to be a dichotomous variable with the val
j511 andj521. In the case of the DNA sequence th
dichotomous property is dictated by the way it defines
DNA walk. The continuous time representation~6! becomes
at
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natural when the sequences studied are long enough. Le
also make the assumption that a stationary, single-time a
correlation function

Fj~ t !5
^j~0!j~ t !&

^j2&
~7!

exists and has the asymptotic property

lim
t→`

Fj~ t !}
1

tb , ~8!

with

0,b,1. ~9!

Note that this is the simplest analytical expression break
the integrability condition, which in turn is responsible fo
the generation of ordinary Brownian motion. Let us integra
Eq. ~6! and use the resulting expression to evaluate the
ond moment ofx. It is straightforward to show@11# that the
stationary assumption and the property~8! yield Eq.~1! with

H512
b

2
. ~10!

The second moment does not exhaust all the statis
properties of this process. The important result of@10# is that
a complete statistical description of this diffusion process
given by the equation of motion for the probability dens
r(x,t)

]r~x,t !

]t
5^j2&E

0

t

dt8Fj~ t2t8!
]2

]x2 r~x,t8!. ~11!

This equation is exact and rests on the assumption that
fluctuation processj is stationary and dichotomous. The la
ter property is obviously fulfilled by the DNA sequences.

It is thus evident that both models, the GLW model a
the CMM model, are described by Eq.~11!. On the other
hand, if we adopt the GLW model, we see that for the wh
process characterized by a fixed value ofe j , e, the variable

j̃ [j2e ~12!

behaves like ordinary white noise with no bias. If we ta
into account that also the biase, on a much larger time scale
undergoes a fluctuation process, we get

j~ t ![ j̃ ~ t !1e~ t !. ~13!

This means that the fluctuationj(t) is the sum of a quickly
fluctuating process, with no correlationj̃ (t) and a process
with long-time fluctuationse(t) characterized by the auto
correlation functionFe(t), with the long-time property

lim
t→`

Fe~ t !}
1

tb . ~14!

Thus the autocorrelation functionFj(t) determining the sta-
tistical properties of the process through Eq.~11! reads
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Fj~ t !5~12e2!F j̃ ~ t !1e2Fe~ t !, ~15!

whereF j̃ (t) denotes the autocorrelation function of the fa
contribution to the fluctuationj. Of course, if the CMM in-
terpretation is adopted, this prescription must be rewritten

Fj~ t !5~12pc
2!F j̃ ~ t !1pc

2Fe~ t !. ~16!

This means that if the dynamics of the DNA sequence
determined by the joint action of a random prescription an
prescription generating correlations, and the statist
weight of the latter,pc , is small, then the statistical effect o
the correlation function ofj is still smaller. This property
was overlooked in Ref.@5#.

Note that to realize an artificial sequence mimicking a r
DNA sequence in@5# a deterministic mapping similar to tha
of Geisel, Heldstap, and Thomas@12# was used. The Geisel
Heldstap-Thomas~GHT! map will be used here, according t
the prescriptions of Sec. III. However, in no way does t
adoption of this map imply the assumption that the DN
sequence might be generated by a deterministic rule. Th
so because, as indicated by Eq.~11!, the statistical properties
of the sequence are only determined by the correlation fu
tion Fj(t) and, once its decay properties are fixed, th
statistical properties too are fixed, whatever the dynam
nature of the process driving the motion ofFj(t) might be.
We note furthermore that, in principle, a slow motion wi
the same inverse power law as Eq.~8! can be generated by
random model. For instance, the random activation ene
model@13# can result in slow motion with the same negati
power as Eq.~8!. The numerical calculations carried out
@10# are based on a random generator of the inverse po
law behavior~8!. In conclusion, the adoption of either a ra
dom or a deterministic generator to produce a given s
motion does not imply that the DNA dynamics is interpret
as either random or a deterministic process. We limit o
selves to saying that Eq.~15! is a mixture of short- and a
long-range correlation fluctuations.

Note that ife51 and only the long-range contribution t
the correlation functionFj(t) is present, Eq.~11! is proven
@10# to generate as a diffusion distribution a truncated Le´vy
process, namely, a distribution with a central part given b
genuine Le´vy distribution, and thus with tails with an invers
power law with the powerb12. These tails are truncated b
ballistic peaks, which reflect the fact than no trajectories
exist traveling faster than those with velocity equal touju
51. This kind of diffusion process implies a significant d
viation from Gaussian statistics.

B. The physical paradigm of FBM

The assumption that a process with the same long-ra
correlation, and consequently with the sameH.1/2 as those
discussed above, is Gaussian implies immediately that
corresponding statistical equation of motion reads

]r~x,t !

]t
5^j2&F E

0

t

dt8Fj~ t8!G ]2

]x2 r~x,t !. ~17!

This is so essentially for the following reasons. First of a
we note that the second moment obeys the same equatio
motion as that of the second moment generated by Eq.~11!.
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This means, therefore, that Eq.~17! with the same autocor
relation function Fj(t) as Eq. ~11! leads to the same
asymptotic expression~1! and to the same coefficientH. On
the other hand, it is easy to prove@11# that the solution to Eq.
~17! is given by a Gaussian distribution with a width propo
tional to second moment and, consequently, obeying the t
asymptotic prescription~1!.

C. The search for a different physical paradigm

All researchers in this field of investigation admit the e
istence of long-range correlations in the DNA sequenc
This, according to Ref.@10#, would imply a strong deviation
from Gaussian statistics, while the investigation of Arneo
et al. @14# yields as an important conclusion that the DN
statistics are essentially Gaussian.

On the other hand, the CMM model does not seem to
totally satisfactory. There are two reasons why this mo
has to be refined. First, the ‘‘copying mistake’’ rate predict
by the model illustrated in@5# is very high and it is not clear
if it is compatible with what is known from biology. Second
the stationary assumption is questionable from a biolog
point of view. In fact, it states that the correlation betwe
two nucleotides depends only on their distance along
primary string and does not depend on the position of
nucleotides. This is very strange because we imagine tha
origin of the long-range correlation itself is a consequence
the tertiary structure of the DNA polymer@15# or, in other
words, of its self-similar folding structure. It is expected th
the short-range statistical and correlation properties, nam
the local properties of a given region of the folded DN
molecule, might depend on the region considered and m
vary with moving from one region of the folded molecule
another. We propose a folding model that, although sc
matic, contains the essential ingredient of a self-similar h
archical structure responsible for a sort of short-range r
domizing process. This model causes the breakdown of
stationary assumption, implying, therefore, that the parad
of the FBM can be adopted provided, at the same time,
stationary assumption is rejected.

The outline of the paper is as follows. In Sec. II we illu
trate the time evolution of initial Gaussian conditions due
a dynamics driven by a long-range correlated dichotom
process and we see that the statistics remain Gaussia
extended times. We shall refer to this behavior as visco
or a viscous dependence on the initial Gaussian condition
Sec. III we illustrate the folding model for the DNA mol
ecule, we show how to generate through it a proper
quence, and we discuss the statistics of this sequence. In
IV we discuss why in our opinion this model can be appli
to DNA statistics and in Sec. V, finally, we make some co
cluding remarks.

II. VISCOSITY OF GAUSSIAN INITIAL CONDITIONS

In this section we discuss the diffusion effects produc
by a theoretical model with a dichotomous random walk
moving as a traditional random walker fromt,0 to t50 and
as a dynamical generator of Le´vy diffusion from t50 on.
This is equivalent to studying the anomalous diffusion p
cess with an initial condition given by the Gaussian distrib
tion
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P~x,0!5
e2x2/2s2

A2ps2
, ~18!

wheres2 is the variance of the initial distribution. The an
lytic calculation of the diffusion process initiated by this co
dition can be easily accomplished. An analytic expression
the Green’s function is now available@10# and it is given by
the inverse Fourier transform of the stationary characteri
function

G~x,t !5S 1

2p E
2`

1`

dk eikxe2bukuatD u~ t2uxu!

1
Fj~ t !

2
d~ t2uxu!, ~19!

where

a511b, ~20!

with b fulfilling condition ~9!. The parameterb in Eq. ~19!
depends only onb and on the short-time properties of th
correlation function~7!. If we choose an inverse–power-la
generator with the short-time structure

Fj~ t !5
A

~A1/b1t !b , ~21!

it is shown@10# that

b5
pb~b11!AWb11

2 sinS p~b11!

2 DG~b12!

. ~22!

Note that due to Eq.~20! the asymptotic property~8! be-
comes

lim
t→`

Fj~ t !}
1

ta21 . ~23!

The probability distributionP(x,t) is obtained from the
space convolution integral between Eqs.~18! and ~19!. We
replace the Heaviside step function on the right-hand s
~rhs! of Eq. ~19! with 1. Then the first term on the rhs of Eq
~19! becomes ana-stable Lévy process and thus become
responsible for the distorsion of the initial Gaussian sh
and for the birth of long tails. The second term on the rhs
Eq. ~19! produces two peaks that correspond to the ini
Gaussian distribution shifted backward and forward by
quantity^j2&t. The amplitude of these two duplicates of th
initial distribution decays as the correlation function~21!.

All this is illustrated by Fig. 1. We see from Fig. 1 that th
Lévy nature of the central part of the distribution becom
evident only after the transition from the one-mode to
three-mode shape. We can estimate this time as that ne
sary for the ballistic peak to travel a distance comparable
the half-width of the initial Gaussian distribution. This tim
can therefore be made arbitrarily large by increasing
width of the initial Gaussian distribution.
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III. THE BETHE LATTICE

The main result of Sec. II is that the FBM can be appro
mately realized provided the system is not forced to ful
the stationary condition. This is so because the decouplin
statistics, assumed to be Gaussian, from dynamics can
be realized in a nonstationary regime. The initial Gauss
condition assumed in Sec. II can be the result of uncorrela
fluctuations acting at times preceding the observation tim
namely, for t,0. For timest.0 the diffusion process is
determined by a dichotomous fluctuation with long-ran
correlation and, consequently, according to@10# should be-
come a truncated Le´vy process. However, the viscosity o
the initial condition results in an approximated realization
the FBM for an extended period of time.

The purpose of this section is to build a model realizi
conditions similar to these as well as effects similar to
joint action of a dichotomous fluctuation, with long-rang
correlations and a short-range random process. This m
that the model has to account for both the same statis
properties as those simulated by the CMM and the GL
model and the Gaussian character of the resulting statis
Note that the CMM~and of course the equivalent GLW
model as well! would depart from the Gaussian statistics
the long-time limit. The Gaussian character of the model
this section is expected to be much more viscous. We s
see that both effects, correlations and Gaussian statistics
be reproduced by a shuffling of the sequence according
certain geometrical prescriptions. We shall see in Sec.
that these prescriptions are based on plausible assump
on the folding of the DNA macromolecule.

We imagine a two-dimensional array of sites, each o
carrying a value of either11 or 21. These sites can be use
to generate an ordered sequence by making a given trajec
visit them one after the other. The procedure defines a
quencej i , wherej i is the value of thei th site visited by the
trajectory. Notice that different trajectories define differe
numerical sequences.

FIG. 1. From Gauss to Le´vy. The numerical convolution be
tween the initial condition~18! with s550, and the Green’s func
tion ~19! with a51.5, at different times. The initial Gaussian re
resents the result of an earlier diffusion process generated b
dichotomous but totally uncorrelated fluctuation. The subsequ
time evolution, responsible for the birth of ballistic peaks, is p
sued by the stochastic generator of@10#. The parameterA of Eq.
~21! is obtained by fitting the experimental results with Eq.~21! and
turns out to be.0.5.
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4562 57ALLEGRINI, BUIATTI, GRIGOLINI, AND WEST
The array of sites is generated by means of a Bethe lat
~or Cayley tree! @16,17#. This lattice is used in percolation
theory@17# as an exactly solvable model sharing with lattic
of arbitrarily large dimensions the property that a given s
is surrounded by a given number of nearest neighbors. T
number is called the coordination number and is denoted
the symbolz; it can be arbitrarily large. For this reason
Abou-Chacra, Anderson, and Thouless@18# used this model
to discuss the phenomenon of localization in the case
lattices of arbitrarily large dimensions. The Cayley tree h
been used recently to model the connectivity of dendrim
molecules, such as some possible configurations of biolo
cal macromolecules@19#, and physical processes bearin
some connections with the electron transfer in DNA@20#.

We choose a coordination numberz53, meaning that
each site has three nearest neighbors; see Fig. 2. We give
sites an ordering number, starting from a site that is assig
the number 0, and then we proceed with our ordering pro
dure following a path with an approximate circular symm
try around the initial site. The first layer of this circular stru
ture around site 0 consists of three nearest neighbors, w
are given the numbers from 1 to 3 going counterclockwi
The second layer has six sites that are numbered coun
clockwise from 4 to 9, starting from the two nearest neig
bors of 1. From now on the ordering rule is the same eve
where: We number the sites of an outer layer goi
counterclockwise and starting from the nearest neighbors
the site of the previous layer with the smallest ordering nu
ber. This procedures is described in Fig. 2 for the first fi
layers and can be easily applied to a lattice with an arbitra
large number of sites. In our simulations, however, we ha
considered a finite lattice, with 17 layers, with a total numb
of sites given by 113161¯1332175393 214.

The ordering of the sites illustrated in Fig. 2 makes
natural to define as a trajectory the spiral-like path deno

FIG. 2. The Cayley tree. Each site is connected with three ot
sites. Here the tree is plotted having in mind a circular symme
and is drawn up to 5 circular shells due to the space limitations
the numerical simulations herein we considered 17 shells.
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by the solid line of Fig. 3. This regular trajectory is obtaine
following the numbering prescription of Fig. 2. Thus it star
from 0, makes a jump to the first layer, and rotates coun
clockwise, visiting sites 1, 2, and 3, then it makes a jump
the next layer, and so on. This spiral is an imperfect but clo
realization of a structure with central symmetry. We ma
the assumption that thestationarylong-range correlated fluc-
tuations, generated by the GHT map, are distributed alo
this spiral-like path. The translational invariance implicit
the stationary condition is thus reflected into a rotation
symmetry for the statistical properties of the dichotomo
values carried by the sites of the Bethe lattice. The GHT m
is adopted to build up these correlated fluctuations accord
to the prescriptions

ym115 f ~ym!, ~24!

where

f ~y!55
y1ayz for 0<y<d

y1ayz21 for d,y,1/2

y112a~12y!z for 1/2<y,12d

y2a~12y!z for 12d<y<1

~25!

and d is defined implicitly by means ofd1adz51 anda
52z. The fluctuating variablejm

(0) takes the values11 or
21, thereby resulting in a noise with intensity^(j (0))2&, and
is determined by

jm
~0!52@2ym#21, ~26!

where@ # denotes the integer value. Note that Eq.~26! de-
fines a coarse graining for the map dynamics since the in
val 0,ym,1/2 is mapped onto the valuejm

(0)521 and the

er
y
n

FIG. 3. The Cayley tree: The sequence is generated by the r
lar trajectory. We see that the numbers of the nodes have b
assigned along a spiral~solid line! starting from the center of the
tree.
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57 4563FRACTIONAL BROWNIAN MOTION AS A . . .
interval 1/2<ym,1/2 is mapped onto the valuejm
(0)511.

The superscript~0! is adopted to point out that this sequen
corresponds to the spiral-like path of Fig. 3.

The map~24! is very similar ~it has the same lamina
behavior! to the map adopted in the CMM model@5# without
copying mistakes, namely, in the case wherepc51 in Eq.
~16!. The GHT map has been shown to give rise to ana-
stable Lévy process, in the sense pointed out earlier, nam
with ballistic fronts@21,22#, with Lévy index a51/(z21).
However, as can be proved with the arguments of@10#, this
result is independent of the details of the map and is
pected to be produced by all the maps or stochastic gen
tors resulting in the same correlation functionFj(t).

We have used the GHT map for computational simplic
and because it is well known in the literature, but the res
ing statistics are virtually identical to the statistics genera
with the stochastic generator of Ref.@10#. Due to the chaotic
nature of the map and the crude coarse graining it is imp
sible to distinguish the deterministically generated seque
from the stochastic one. In the stationary case@10,21# they
have the same correlation function and consequently
same statistical properties. This case was shown in Refs.@10,
21# to generate a truncated Le´vy process, namely, a diffusio
distribution with a central Le´vy-like structure, but with the
tails replaced by two ballistic peaks, corresponding to
abrupt truncation that any dynamically generated distribut
must have.

Another trajectory visiting all the sites is schematica
shown in Fig. 4, where again only five layers are consider
The prescription adopted to define this path is that it ke
moving with the tree on its left-hand side and skipping t

FIG. 4. The Cayley tree: The sequence is generated by th
regular trajectory. We imagine a DNA molecule folded around
tree. The Cayley tree is an extremely simplified model for the d
dritic structure of a real protein matrix. The rule for the trajecto
denoted by the dotted line, is to explore the nodes of the tree w
out intersecting the tree, keeping the graph on the left-hand s
and avoiding the sites already explored.
y,
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sites already explored. Thus we see that the path moves
site 0, the initial site, to sites 1, 4, 10, 22, and 46. At site
it meets the surface of the graph, and according to the rul
keeping the tree on the left-hand side, it goes to site
According to the same rule, it should reenter the graph
explore sites 22 and 10. Since these sites were already vi
by the trajectory, they are skipped and the trajectory goe
site 23 and so on.

Using this disordered path we can define a new seque
jm . The values of this sequence arej05j0

(0) , j15j1
(0) , j2

5j4
(0) , j35j10

(0) , and so on.
Notice that with this choice of trajectory the central sym

metry ordering is largely modified. If we determine the va
ues of the sites in such a way that a certain translatio
invariance is fulfilled by the sequencej i

(0), generated by the
spiral of Fig. 3, following the natural ordering of the plot,
is likely that this property in not fulfilled any longer by th
sequencej i generated by the ‘‘folded’’ trajectory discusse
above and shown in Fig. 4.

An important result of this paper is that the particul
reordering of the values of the natural sequence, station
by construction and long-range correlated, into the irregu
one generates a diffusion process of Gaussian nature. In
5 we show two plots with the histograms of the diffusio
process fort525 andt5100, respectively. In both cases th
truncated Le´vy process with ballistic peaks generated by t
GHT on the natural sequencej i

(0) ~upper curves! collapses to
a Gaussian function, as pointed out by the linear-logarithm
nature of the plot. This fact is, in our opinion, remarkab
because a numerical evaluation of the correlation function
the irregular sequencej i reveals a good agreement with th
theoretical inverse power law imposed on thej i

(0)’s, as we
can see in Fig. 6. In Fig. 6, in fact, we show the correlati
function of the irregular process together with an inve
power law proportional tot21/2; this is a guideline corre-
sponding to the theoretical shape of the stationary correla
function for our generator, the GHT map of Eq.~23! with
z55/3. We see that the distinctive feature of the unfoldi
procedure is the emergence of a structure that is perio
with respect to logt and thus compatible with a
renormalization-group approach@23#. However, no implica-
tion of this theory is explored herein.

To make complete our discussion of the statistical pr
erties of the disordered sequence of Fig. 4, let us study
distribution P(x,t) and its rescaling properties. The gene
property to investigate is

P~x,t !5
1

td FS x

tdD , ~27!

whereF is a generic function. For FBM it is known@7# that
F is Gaussian and

d5H512
b

2
. ~28!

In Fig. 7~a! the distribution relative tot525 is shown to-
gether with a Gaussian curve that was fitted to the data
Fig. 7 thesameGaussian curve has been rescaled accord
to Eq. ~27! with the condition~28! and compared with the

ir-
e
-

,
h-
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model data att550, 100, and 200. We see that in the regim
where the Gaussian distribution is recovered, so is the
caling of the FBM.

Note that in Ref.@10# it was proved that for a truncate
Lévy process, which is the stationary solution of the proc
stemming from Eqs.~6! and ~9!, the prescription~27! is not
exactly fulfilled because of the presence of ballistic pea
The Lévy-like central part of the distribution, however, fu
fills the rescaling property~27!, but with a value for the
index d different from Eq.~28!: It takes the value

d5
1

b11
5

1

a
, ~29!

wherea is the Lévy index of Eq.~20!. We point out that the
difference between the two prescriptions~28! and ~29! is
numerically very small and that in Ref.@10# the difference
was visible due to the adoption of numerical calculatio
with very accurate statistics. The curves of Fig. 7 are co

FIG. 5. Comparison of the space distributionsP(x) of the regu-
lar vs the irregular process at two different times. Upper figuret
525, the curve with the side peaks is the GHT map genera
process~through the regular trajectory!, while the other curve is the
‘‘unfolded DNA’’ process, generated through the irregular traje
tory of Fig. 4. Lower figure: same as before, witht5100. Here and
in the following figures timet and spacex are expressed as dimen
sionless quantities. The biological interpretation oft is the length of
a DNA segment measured in base pairs, while the spacex is the
difference between the number of purines and that of pyrimidine
the segment.
s-

s

s.

s
-

pared with the predictions of the rescaling~28!. In the
present case the accuracy of the statistical analysis is no
as to make it possible to distinguish Eq.~28! from Eq. ~29!.
However, the Gaussian nature of the distributions seem
be so pronounced as to provide further evidence that
folding process of this section is a satisfactory realization
FBM.

In conclusion, the numerical results of this section pro
that the irregular sequence produced according to the
scriptions illustrated in Fig. 4 shares the seemingly confl
ing properties of Gaussian statistics and long-range corr
tions. In other words, this is a satisfactory dynam
realization of FBM. The price to pay to realize this physic
condition, observed by Arneodoet al. in their statistical
analysis of DNA sequences@14#, is the breakdown of the
stationarity assumption. From an intuitive point of view th
conclusion can be drawn by comparing the regular traject
of Fig. 3 to the irregular trajectory of Fig. 4. The stationari
property of the former is a natural reflection of its trans
tional invariance, which in turn is generated by the alm
central symmetry of its structure. All these properties are l
by the irregular trajectory of Fig. 4 and with them probab
the possibility of expressing the statistical properties of
sequence by means of a single ‘‘time’’ correlation functi
Fj(t) is also lost.

Before concluding this section we would like to mentio
the possibility of applying the modeling of this section to t
problem of transport in condensed matter. We have alre
mentioned that the Cayley tree was used by Abou-Cha
Anderson, and Thouless@18# to discuss the problem o
Anderson localization in the case of a multidimensional l
tice. On the other hand, more recently an ever increas
number of researchers@25# have been studying the role that
correlated random distribution of site energies might have
the phenomenon of transport and localization@25#. Allegrini
et al. @26# have studied the effect of creating these corre
tions by means of deterministic maps, the GHT, and a va
tion of it @26#. The interesting result of these calculations w

d

-

in

FIG. 6. Correlation function of the ‘‘unfolded DNA’’ sequenc
~irregular trajectory!. The dashed line is a guide to the eye a
corresponds to the slope20.5, relative to the theoretical predictio
for the foldedsequence~the spiral!. We see that the two curves hav
the same slope, but there is the emergence of a structure th
periodic with respect to log10t.
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FIG. 7. Rescaling behavior for the process generated by the irregular trajectory of Fig. 4.~a! The numerical data att525 are fitted by
a Gaussian function.~b! The fitting Gaussian function of~a! is rescaled according to the FBM prescription~28! and compared with the
numerical data att550. ~c! Same as~b! but with t5100. ~d! Same as~b! but with t5200.
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that the localization length might be significantly increas
by the correlations among different sites. It would be int
esting to adopt the model of this section as a generato
correlation and to assess the resulting transport and loca
tion properties.

IV. APPLICATION: MODELING DNA SEQUENCES

There are several reasons to believe that the model i
trated in the preceding section may have some resembl
to a DNA molecule when it is folded in the nucleus. We ha
seen in Sec. III that if correlations are imposed to the g
metrical structure of the Cayley tree by means of a cen
symmetry prescription, a self-avoiding trajectory wrapp
around the hierarchical graph shows statistical features~the
FBM! that are actually detected in the real DNA sequen
@14#. Notice that a dynamic but stationary dichotomo
model would not be compatible with the FBM condition.

In other words, we imagine the DNA molecule in th
nucleus as a long knot-free polymer; it is therefore topolo
cally equivalent to a two-dimensional self-avoiding grap
with a hierarchical folding. As pointed out by Grosberget al.
@15#, a hierarchical folding is necessary for the DNA to
accessible to RNA and to several enzymes@15,27#. Lewin
@27# also states that the highly dense packing of the D
molecule inside the nucleus necessarily implies a hierar
cal organization of the spatial structure of the macromolec
in order to function properly.

Unfortunately, only the first levels of the hierarchic
folding are known@28–34#. It is known that the first level is
given by the nucleosomes, the second by a helix structur
nucleosomes, and the third by the folding of this structu
We know, however, that for the chromosomes~chromatine
in metaphase! one of the higher levels is constituted by
proteic scaffold~for the chromatine in interphase there is
analogous structure called a matrix! around which the chro
mosomes are wrapped. The folding of the DNA molec
implies constraints on the molecule flexibility properti
d
-
of
a-

s-
ce

e
o-
al
d

s
s

i-
,

A
i-
le

l

of
.

e

~bending, bendability, and curvature! @33# and the capability
of being anchored to the proteic matrix or to the scaffo
@29,34#. These constraints obviously depend on the lo
nucleotides composition and therefore can be seen as st
tical features of the DNA primary structure~unfolded se-
quence!.

If the role of the matrix~for the chromatine in the inter-
phase! @29# and of the scaffolds~for the metaphase! @34# is
that of keeping a fixed three-dimensional structure, we c
argue that this global constraint is very important and th
the DNA sequence must obey it. The correlations necess
to keep the tertiary structure stable are therefore constra
on chemical interactions between different segments of D
or between the DNA macromolecule and a proteic hierarc
cal structure. In our model, therefore, the correlations are
imposed on the sequence, but on the spiral of Fig. 3, in a w
that is somewhat ‘‘perpendicular’’ to the nucleotide chain

Our schematical model of a DNA molecule as a polym
wrapped on a Cayley tree may be imagined twisted a
folded again in a complicated manner, in order to be dens
packed, but saving a certain central symmetry of the co
plex globule. In this way we see that there are several an
gies between our model and the ‘‘crumpled globule stru
ture’’ or Ref. @15#, that is, a model for DNA in eukariotes
Also in this case the interactions between the sites resp
sible for the stability of the structure act on hierarchical su
faces in a way that is perpendicular to the chain structu
The model of Grosberget al. teaches us that the long-rang
correlation function is actually fundamental for the molecu
to be stable; a parameterH52/3 is predicted by the model in
a fair agreement with the data, but nothing is actually s
about the stationary properties of the corresponding
quence. Since the stationary assumption is actually a form
translational symmetry, we think that such a symmetry is n
likely to be fulfilled by a hierarchically folded molecule, bu
we argue that this symmetry is valid along a trajectory w
an approximate rotational invariance since the globule ha
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central symmetry. This assumption is somewhat arbitra
but it is consistent with the constraints of Grosberget al.
since in our model we have seen that the ‘‘re-ordering’’ p
cedure does not change the inverse-power-law index of
correlation function.

V. CONCLUDING REMARKS

In this paper we have provided a practical realization
FBM using a geometrical argument. This argument has b
logical significance and refers to a ‘‘geometrical’’ perspe
tive of the copying mistake mechanism introduced in ear
papers@5# on the statistical analysis of DNA sequences.

We emphasize that we do not have a rigorous mathem
cal basis for our conclusions. We are inclined to belie
however, on the basis of our numerical results, that the F
condition can be realized in practice by any physical proc
that decouples statistics from dynamics. To explain t
property we refer to the dynamical realization of Le´vy sta-
tistics using a GHT map@22#. We can generate a large num
ber of trajectories, each corresponding to a different ini
condition. A possible distribution of initial conditions fo
these trajectories is given by the variable ‘‘velocity’’j at
equilibrium and the variable positionx distributed according
to a Gaussian distribution. This means that the initial sta
tics of x will be Gaussian and the ensemble will rema
Gaussian for an extended period of time whose length ca
predicted. When the spreading mechanism creates a new
tribution, so large as to perceive the original Gaussian dis
bution as a Diracd function, the statistics will be dictate
again by the dynamics according to the arguments detaile
Ref. @10#. In the case studied herein, the Gaussian natur
the initial distribution is generated by the unfolding proce
This is, in this case, the ‘‘statistics’’ of the process foreign
the long-range correlations. The long-range correlations a
manifestation of a ‘‘dynamics,’’ that generates its own s
tistics, which, in this case, should be Le´vy statistics. The
unfolding process spans the whole diffusion process. Thu
sets persistent Gaussian constraints rather than only affe
the initial distribution. Remarkably, this Gaussian constra
does not affect the dependence of the ‘‘spatial’’ second m
ment on ‘‘time’’ and leaves unchanged the anomalous ch
acter of the diffusion process, namely, the coefficientH es-
tablished by the GHT map. For the resulting diffusio
process to be a genuine form of FBM, the unfolding proc
should also change the rescaling~29! into that of Eq.~28!, a
change too small to observe in experimental data.

The results of this work also shed light on why seve
r-
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techniques recently used to study the statistics of DNA
quences, such as the detrended analysis@35# and the Hurst
analysis@24#, can be adopted as proper indicators of the r
caling, in spite of the fact that there might be long-ran
correlations in the sequence. We know from earlier wo
@10# that the dichotomous condition in the presence of lon
range correlations should lead to a rescaling different fr
that of the second moment of the distribution. According
the results of an earlier investigation@5#, the detrended
analysis @2,3#, even if different in nature from the Hurs
analysis, as a method to detect the rescaling propertie
long-range correlation processes leads to results very cl
if not identical, to those of the Hurst analysis. This in turn,
discussed in Ref.@24#, is meaningful as a proper indicator o
rescaling only if the process considered is Gaussian. Onl
this case can the so-called Hurst coefficientH be identified
with a parameter defining the ‘‘speed’’ of the diffusion pr
cess, as indicated by the time dependence of the second
ment of the distribution. This paper shows that in practice
Gaussian statistics can be generated by the initial conditi
thereby producing the false impression that the FBM is
valid picture for the description of DNA sequences. If it is,
is for reasons that are not clearly understood in the cur
literature. For the same reasons the Hurst coefficient can
adopted as a proper indicator of the rescaling propertie
the observed dynamical process.

As far as the specific problem of the DNA sequences
concerned, this paper has to be thought as speculative as
by Li @36#. This author proposed an expansion-modificati
model, where two processes compete with each other,
creating long-range correlations and the other destroying
No real DNA sequence is then analyzed with this model. W
limit ourselves to remarking that on the basis of the analy
of this paper, not even the Li model, being dichotomous a
long-range correlated, can be both stationary and rigorou
Gaussian. Here the problem under discussion is inspired
the conflicting results of a statistical analysis of the data. T
problem is given a qualitative solution, based on numeri
arguments and resting on the essential conclusion that w
ever the biological origin of the process observed might
this process cannot be stationary.
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