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The long-range correlations in DNA sequences are currently interpreted as an exarsialgoofaryfrac-
tional Brownian motion(FBM). First we show that the dynamics of a dichotomous stationary process with
long-range correlations such as that used to model DNA sequences should corresposycstatistics and not
to FBM. To explain why, in spite of this, the statistical analysis of the data seems to be compatible with FBM,
we notice that an initial Gaussian condition, generated by a process foreign to the mechanism establishing the
long-range correlations and consequently implying a departure from the stationary condition, is maintained
approximately unchanged for very long times. This is so because due to the nature itself of the long-range
correlation process, it takes virtually an infinite time for the system to reach the genuine stationary state. Then
we discuss a possible generator of initial Gaussian conditions, based on a folding mechanism of the nucleic
acid in the cell nucleus. The model adopted is compatible with the known biological and physical constraints,
namely, it is shown to be consistent with the information of current biological literature on folding as well as
with the statistical analyses of DNA sequences.
[S1063-651%98)00404-9
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[. INTRODUCTION lently describe the scaling property of such processes using
fractional Brownian motion(FBM) or alternatively using

One of the most successful models of the statistics of-évy stable processes. Although these two processes share
DNA sequences has been the DNA walk. A DNA sequencetrikingly common characteristics, such as the power-law
is a chain of sites, each occupied by either a purine or growth of the second moment and the fractal dimension of
pyrimidine. If we read the sequence in order and we regardhe trajectorie6], they are fundamentally different in na-
the site number as a “discrete time” this symbolic sequencdUre- . - . o
can be regarded as a dichotomous time series. Thus one Canleferer!t initial conditions can be realized by aSS|gn|ng_to
imagine a random walker whose dispacemert the jth different sites of the DNA chain the role of departure point

step increases by 1 if the DNA site is occupied by a purine of the walker. This means that having available sufficiently

or decreases by the same amount if the site is occupied bykglng sequences, it is possible to realize a condition equiva-

R . . . . lent to that ordinarily adopted in statistical mechanics,
pyrimidine. In spite of its success in modeling the long-range

. . T namely, the observation of a large number of trajectories.
correlations obseryed n DNA sequenc@é&S], as mdma}ed This makes it possible to average over trajectories with dif-
by the power-law increase in the variance and the invers

'€ISfarent initial conditions and thus evaluate the second moment
power-law spectrumi2—5], the problem of the correct statis-

S X o >~ of the distancex traveled by the DNA random walker in a
tical interpretation of the DNA walk is still unsolved and is time t:

attracting the attention of an increasing number of investiga-
tors. <x2)~t2H, (1)

A subject of intense debate is the question of the existence
of long-range correlations in exons, that part of the sequencgith H>1/2. For this reason the overwhelming majority of
that codes for proteins. However, problems also arise at theesearchers working on the statistics of DNA sequences
level of the theoretical analysis of the data; in particular,agree that the conventional theory of Brownian motion can-
most of the analytical methods assume that the data are staet be considered as a proper paradigm to interpret the ex-
tionary, which in the DNA context actually means spatially perimental data, since in that calde=1/2.
homogeneous. This means that if the long-range correlations Which is the proper physical paradigm behind the DNA
reflect some internal “rules,” these rules apply to the wholesequences then? As mentioned earlier, the current literature
DNA sequence with no dependence at all from the specifiin the field essentially affords the following two proposals:
position in the sequence. In addition, it is very often assumeda) the physical paradigm of the-stable Ley processe$5]
that the statistics of the random-walk landscape variable iand(b) the physical paradigm of the FBM]. We think that
Gaussian. In addition to its biological implications, this ques-the two proposed paradigms conflict with one another, and
tion of the statistics of the process with long-range correlathe main aim of this paper is to settle the problems posed by
tions has implications for other fundamental phenomendhis conflict. We shall develop a model resulting in nonsta-
such as anomalous diffusion. In particular, one could equivationary properties for the DNA sequence. These nonstation-
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ary properties are realized through a shuffling procedure thatatural when the sequences studied are long enough. Let us
can be interpreted as the influence of the geometrical foldinglso make the assumption that a stationary, single-time auto-
of the macromolecule in the nucleus. The procedure will becorrelation function

discussed in detail in Sec. Ill.

0)&(t

A. The physical paradigm of the a-stable Levy processes

Let us discuss the former paradigm first. In a recent papegyists and has the asymptotic property
Buldyrev et al. [8], to interpret the long-range correlation in

noncoding DNA, have adopted a generalization of theylLe 1
walk proposed in an earlier paper by Araugoal. [9]. In- lim @ (t)< 5, (8
stead of takind; steps in the same directions as occurs in a toee

classic Lery walk, the walker takes each of steps in ran-
dom directions, with a fixed bias probability

1+e 0<B<1. 9
P,= 2 (2)

with

Note that this is the simplest analytical expression breaking
the integrability condition, which in turn is responsible for
to go up and the generation of ordinary Brownian motion. Let us integrate
Eq. (6) and use the resulting expression to evaluate the sec-

p — 1-¢ 3) ond moment ok. It is straightforward to shoyl1] that the
- 2 stationary assumption and the prope@yyield Eq. (1) with
to go down, wheree; gets the valuet € or —e randomly. B
Throughout this paper we shall be referring to this model as H=1- 2" (10
a generalized ey walk (GLW).
It is interesting to point out that Allegrirgt al. [5] have The second moment does not exhaust all the statistical

used a model, called a copying mistake ni@bIM), which  properties of this process. The important resultidf] is that

is totally equivalent to the GLW. Let us discuss this aspect ira complete statistical description of this diffusion process is
detail. The CMM assumes that the DNA sequence resultgiven by the equation of motion for the probability density
from the random joint action of two different prescriptions, p(x,t)

one responsible for the long-range correlations and the other !

of a totally “random” nature, implying no correlations at all. ap(X,t) N , )

The probability of running the sequence with the prescription o (€ >J;dt P (t—t) —zp(xt").  (11)
generating correlations ig; and the probability of running

the sequence with the random law is-p. . This equation is exact and rests on the assumption that the

The CMM is equivalent to the GLW. The equivalence fluctuation process is stationary and dichotomous. The lat-
between the two models is made evident by noticing that iter property is obviously fulfilled by the DNA sequences.
the CMM is adopted the probabilities of going up and down |t is thus evident that both models, the GLW model and

are the CMM model, are described by E@L1). On the other
hand, if we adopt the GLW model, we see that for the whole
= 1+pc 4) process characterized by a fixed valueepf €, the variable
2
§=¢—e€ (12)
and
behaves like ordinary white noise with no bias. If we take
1+p. into account that also the bigson a much larger time scale,
P_= 2 ©) undergoes a fluctuation process, we get
respectively, thereby implying thatis identified withp.. EO)=&(1)+e(t). (13

The corresponding equation of motion is easily written by

using the results of some recent papi®,11. Let us con- This means that the fluctuatigf{t) is the sum of a quickly

sider the simplest equation generating diffusion fluctuating process, with no correlatiof(t) and a process
with long-time fluctuationse(t) characterized by the auto-
X(1) = £&(1) (6) correlation function® (t), with the long-time property
wherex is the diffusing variable and the source of fluctua- lim q)e(t)“%- (14)
tion, supposed to be a dichotomous variable with the values t—o t

é=+1 andé=—1. In the case of the DNA sequence this
dichotomous property is dictated by the way it defines theThus the autocorrelation functich,(t) determining the sta-
DNA walk. The continuous time representati®) becomes tistical properties of the process through Etl) reads
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<1>§(t)=(1—62)®g(t)+ez®s(t), (15  This means, therefore, that EQ.7) with the same autocor-
relation function ®(t) as Eg. (11) leads to the same
where®7(t) denotes the autocorrelation function of the fastasymptotic expressiofi) and to the same coefficieht. On
contribution to the fluctuatio. Of course, if the CMM in-  the other hand, it is easy to proj&l] that the solution to Eq.
terpretation is adopted, this prescription must be rewritten agl7) is given by a Gaussian distribution with a width propor-
o 5 tional to second moment and, consequently, obeying the time
D (1) =(1-p)P7E(t)+p P (). (160 asymptotic prescriptio).

This means that if the dynamics of the DNA sequence is
determined by the joint action of a random prescription and a
prescription generating correlations, and the statistical All researchers in this field of investigation admit the ex-
weight of the latterp,, is small, then the statistical effect on istence of long-range correlations in the DNA sequences.
the correlation function of is still smaller. This property This, according to Ref.10], would imply a strong deviation
was overlooked in Ref5]. from Gaussian statistics, while the investigation of Arneodo
Note that to realize an artificial sequence mimicking a reakt al. [14] yields as an important conclusion that the DNA
DNA sequence ih5] a deterministic mapping similar to that statistics are essentially Gaussian.
of Geisel, Heldstap, and Thompk2] was used. The Geisel- On the other hand, the CMM model does not seem to be
Heldstap-Thoma&6GHT) map will be used here, according to totally satisfactory. There are two reasons why this model
the prescriptions of Sec. lll. However, in no way does thehas to be refined. First, the “copying mistake” rate predicted
adoption of this map imply the assumption that the DNAby the model illustrated ifi5] is very high and it is not clear
sequence might be generated by a deterministic rule. This i§it is compatible with what is known from biology. Second,
so because, as indicated by Efjl), the statistical properties the stationary assumption is questionable from a biological
of the sequence are only determined by the correlation fungaoint of view. In fact, it states that the correlation between
tion ®(t) and, once its decay properties are fixed, theséwo nucleotides depends only on their distance along the
statistical properties too are fixed, whatever the dynamicaprimary string and does not depend on the position of the
nature of the process driving the motion®§(t) might be.  nucleotides. This is very strange because we imagine that the
We note furthermore that, in principle, a slow motion with origin of the long-range correlation itself is a consequence of
the same inverse power law as E8) can be generated by a the tertiary structure of the DNA polym¢i5] or, in other
random model. For instance, the random activation energwords, of its self-similar folding structure. It is expected that
model[13] can result in slow motion with the same negative the short-range statistical and correlation properties, namely,
power as Eq(8). The numerical calculations carried out in the local properties of a given region of the folded DNA
[10] are based on a random generator of the inverse powemolecule, might depend on the region considered and might
law behavior(8). In conclusion, the adoption of either a ran- vary with moving from one region of the folded molecule to
dom or a deterministic generator to produce a given slowanother. We propose a folding model that, although sche-
motion does not imply that the DNA dynamics is interpretedmatic, contains the essential ingredient of a self-similar hier-
as either random or a deterministic process. We limit ourarchical structure responsible for a sort of short-range ran-
selves to saying that Eq15) is a mixture of short- and a domizing process. This model causes the breakdown of the
long-range correlation fluctuations. stationary assumption, implying, therefore, that the paradigm
Note that ife=1 and only the long-range contribution to of the FBM can be adopted provided, at the same time, the
the correlation functionb (t) is present, Eq(11) is proven  stationary assumption is rejected.
[10] to generate as a diffusion distribution a truncatesyle The outline of the paper is as follows. In Sec. Il we illus-
process, namely, a distribution with a central part given by drate the time evolution of initial Gaussian conditions due to
genuine Ley distribution, and thus with tails with an inverse a dynamics driven by a long-range correlated dichotomous
power law with the poweB+ 2. These tails are truncated by process and we see that the statistics remain Gaussian for
ballistic peaks, which reflect the fact than no trajectories caextended times. We shall refer to this behavior as viscosity
exist traveling faster than those with velocity equal|§&  or a viscous dependence on the initial Gaussian condition. In
=1. This kind of diffusion process implies a significant de- Sec. lll we illustrate the folding model for the DNA mol-

C. The search for a different physical paradigm

viation from Gaussian statistics. ecule, we show how to generate through it a proper se-
quence, and we discuss the statistics of this sequence. In Sec.
B. The physical paradigm of FBM IV we discuss why in our opinion this model can be applied

) ] to DNA statistics and in Sec. V, finally, we make some con-
The assumption that a process with the same long-rangqding remarks.

correlation, and consequently with the sakhe 1/2 as those
discussed above, is Gaussian implies immediately that the
corresponding statistical equation of motion reads

Ip(X,t)
p =(&)

Il. VISCOSITY OF GAUSSIAN INITIAL CONDITIONS

In this section we discuss the diffusion effects produced
by a theoretical model with a dichotomous random walker
moving as a traditional random walker frarz 0 tot=0 and
as a dynamical generator of W diffusion fromt=0 on.
This is so essentially for the following reasons. First of all, This is equivalent to studying the anomalous diffusion pro-
we note that the second moment obeys the same equation ©fss with an initial condition given by the Gaussian distribu-
motion as that of the second moment generated by Eqy.  tion

52
2P, (17

t
fdt’(bg(t’)
0
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e~ x°120? 0.08
(18

P(x,0)= 5
mTo
0.06 |
whereo? is the variance of the initial distribution. The ana-
lytic calculation of the diffusion process initiated by this con- =
dition can be easily accomplished. An analytic expression fo1 a0.04 ¢
the Green'’s function is now availabl&0] and it is given by
the inverse Fourier transform of the stationary characteristic

function 0.02 ¢

G(x,t)=

1 A jkx 5 — b|k| %t 0 :
EJ, dk e%e o(t—|x|) 150  -100

D (t ' i i :
n & )5(t—|x|), (19) FIG. 1. From Gauss to ly. The numerical convolution be

2 tween the initial conditior{18) with ¢=50, and the Green’s func-

tion (19) with a=1.5, at different times. The initial Gaussian rep-

where resents the result of an earlier diffusion process generated by a
dichotomous but totally uncorrelated fluctuation. The subsequent

a=1+p, (20) time evolution, responsible for the birth of ballistic peaks, is pur-

sued by the stochastic generator[@f]. The parameteA of Eq.

with g fulfilling condition (9). The parameteb in Eq. (19) (21 is obtained by fitting the experimental results with E2{l) and

depends only o3 and on the short-time properties of the tUrns out to be=0.5.

correlation function(7). If we choose an inverse—power-law

generator with the short-time structure lll. THE BETHE LATTICE

The main result of Sec. Il is that the FBM can be approxi-

(21) mately realized provided the system is not forced to fulfill
the stationary condition. This is so because the decoupling of
statistics, assumed to be Gaussian, from dynamics can only

A
PO Gamr e

it is shown[10] that be realized in a nonstationary regime. The initial Gaussian
condition assumed in Sec. Il can be the result of uncorrelated
7B(B+1)AWATL fluctuations acting at times preceding the observation time,

b= [ w(B+1) (22) namely, fort<0. For timest>0 the diffusion process is
ZSIT(T>T(B+ 2) determined by a dichotomous fluctuation with long-range

correlation and, consequently, according[1®] should be-
come a truncated My process. However, the viscosity of
the initial condition results in an approximated realization of
the FBM for an extended period of time.
1 The purpose of this section is to build a model realizing
lim @ () —=7. (23 conditions similar to these as well as effects similar to the
t—oo t joint action of a dichotomous fluctuation, with long-range
correlations and a short-range random process. This means
The probability distributionP(x,t) is obtained from the that the model has to account for both the same statistical
space convolution integral between E(¢E8) and (19). We  properties as those simulated by the CMM and the GLW
replace the Heaviside step function on the right-hand sidenodel and the Gaussian character of the resulting statistics.
(rhs) of Eq. (19) with 1. Then the first term on the rhs of Eq. Note that the CMM(and of course the equivalent GLW
(19) becomes am-stable Lery process and thus becomes model as we)l would depart from the Gaussian statistics in
responsible for the distorsion of the initial Gaussian shapéhe long-time limit. The Gaussian character of the model of
and for the birth of long tails. The second term on the rhs ofthis section is expected to be much more viscous. We shall
Eqg. (19 produces two peaks that correspond to the initialsee that both effects, correlations and Gaussian statistics, can
Gaussian distribution shifted backward and forward by theébe reproduced by a shuffling of the sequence according to
quantity(£2)t. The amplitude of these two duplicates of the certain geometrical prescriptions. We shall see in Sec. IV
initial distribution decays as the correlation functi@i). that these prescriptions are based on plausible assumptions
All this is illustrated by Fig. 1. We see from Fig. 1 that the on the folding of the DNA macromolecule.
Lévy nature of the central part of the distribution becomes We imagine a two-dimensional array of sites, each one
evident only after the transition from the one-mode to thecarrying a value of eithet- 1 or — 1. These sites can be used
three-mode shape. We can estimate this time as that necds-generate an ordered sequence by making a given trajectory
sary for the ballistic peak to travel a distance comparable twisit them one after the other. The procedure defines a se-
the half-width of the initial Gaussian distribution. This time quencet;, whereé; is the value of theth site visited by the
can therefore be made arbitrarily large by increasing thdrajectory. Notice that different trajectories define different
width of the initial Gaussian distribution. numerical sequences.

Note that due to Eq(20) the asymptotic property8) be-
comes
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FIG. 2. The Cayley tree. Each site is connected with three other
sites. Here the tree is plotted having in mind a circular symmetry FIG. 3. The Cayley tree: The sequence is generated by the regu-
and is drawn up to 5 circular shells due to the space limitations. Idar trajectory. We see that the numbers of the nodes have been
the numerical simulations herein we considered 17 shells. assigned along a spiréolid ling) starting from the center of the

tree.

The array of sites is generated by means of a Bethe lattice
(or Cay|ey tre¢ [16,1ﬂ This lattice is used in perco|ati0n by the solid line of Flg 3. This regular trajectory is obtained
theory[17] as an exactly solvable model sharing with latticesfollowing the numbering prescription of Fig. 2. Thus it starts
of arbitrarily large dimensions the property that a given siteffom 0, makes a jump to the first layer, and rotates counter-
is surrounded by a given number of nearest neighbors. Thiglockwise, visiting sites 1, 2, and 3, then it makes a jump to
number is called the coordination number and is denoted b{he next layer, and so on. This spiral is an imperfect but close
the symbolz; it can be arbitrarily large. For this reason, realization of a structure with central symmetry. We make
Abou-Chacra, Anderson, and Thould4$] used this model the assumption that thetationarylong-range correlated fluc-
to discuss the phenomenon of localization in the case ofuations, generated by the GHT map, are distributed along
lattices of arbitrarily large dimensions. The Cayley tree haghis spiral-like path. The translational invariance implicit in
been used recenﬂy to model the Connectivity of dendrimefhe stationary condition is thus reflected into a rotational
molecules, such as some possible configurations of biologsymmetry for the statistical properties of the dichotomous
cal macromolecule§19], and physical processes bearing values carried by the sites of the Bethe lattice. The GHT map
some connections with the electron transfer in D). is adopted to build up these correlated fluctuations according

We choose a coordination number3, meaning that to the prescriptions
each site has three nearest neighbors; see Fig. 2. We give the
sites an ordering number, starting from a site that is assigned Ym+1= F(Ym), (24)
the numberl 0, and then_we proceed \(vith our_ordering proceshere
dure following a path with an approximate circular symme-

try around the initial site. The first layer of this circular struc- y+ay? for Osy=d

ture around site 0 consists of three nearest neighbors, which yrayi—1 for d<y<1/2

are given the numbers from 1 to 3 going counterclockwise. f(y)= (25)
The second layer has six sites that are numbered counter- y+l-a(l-y)¢ for 1/2<y<i-d
clockwise from 4 to 9, starting from the two nearest neigh- y—a(l-y)¢ for 1-d<y<1

bors of 1. From now on the ordering rule is the same every-

where: We number the sites of an outer layer goingandd is defined implicitly by means ofi+ad‘=1 anda
counterclockwise and starting from the nearest neighbors of 2¢, The fluctuating variablfﬁr?) takes the values-1 or
the site of the previous layer with the smallest ordering num-— 1 ' thereby resulting in a noise with intensi§(®)2), and
ber. This procedures is described in Fig. 2 for the first fivejs determined by

layers and can be easily applied to a lattice with an arbitrarily

large number of sites. In our simulations, however, we have £9=212y -1, (26)
considered a finite lattice, with 17 layers, with a total number
of sites given by # 3+6+---+3x217=393 214. where[ ] denotes the integer value. Note that E26) de-

The ordering of the sites illustrated in Fig. 2 makes itfines a coarse graining for the map dynamics since the inter-
natural to define as a trajectory the spiral-like path denotegtal 0<y,,<1/2 is mapped onto the valud®=—1 and the
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1 FOG9 68 s!tes alreac_iy (_—:txplt_)red. Thus we see that the path moves from
47 BT AN AR site 0, the initial site, to sites 1, 4, 10, 22, and 46. At site 46
- BN :\\ M V- -4 it meets the surface of the graph, and according to the rule of
o S \}\\5\ 34\ 301 LT 463 keeping the tree on the left-hand side, it goes to site 47.
‘7\ ) 6 | Y 2951 2 B V- According to the same rule, it should reenter the graph to
7 NN N6 W[ T e explore sites 22 and 10. Since these sites were already visited
7/9,\' N\ ! ?7 ' T4 /,2/9/ 5’,50 b_y the trajectory, they are skipped and the trajectory goes to
& \\ \\ 4 =T 227 59 site 23 and so on.
g T8 /T A $’8 Using this disordered path we can degine a nevg sequence
Nl NI \) ) Ly =78 B &m- The values of this sequence Eﬁ&=§8 ), &= (1), &
Blo— TN X &g =0 e =) and so on.
82e-=--5 9. 5 \\ S R 6 Notice that with this choice of trajectory the central sym-
by w9 \\ % * 2% ‘\\;‘ metry orderin_g is _Iargely modified. If we deter_mine the \_/al—
c s § ) NS ues of the sites in such a way that a certain translational
\\8:5 RS AL AN ,25\\\3, invariance is fulfilled by the sequenét”, generated by the
T2 4y TDNEE R »3, spiral of Fig. 3, following the natural ordering of the plot, it
86>, ) f'/4 45 2 \\\\ NN is likely that this property in not fulfilled any longer by the
8774 AT SR /651 sequence; generated by the “folded” trajectory discussed
Y/ J\Ng a above and shown in Fig. 4.

An important result of this paper is that the particular
reordering of the values of the natural sequence, stationary
by construction and long-range correlated, into the irregular

FIG. 4. The Cayley tree: The sequence is generated by the iPne generates a diffusiqn process of Gaussian nature. In Fig.
regular trajectory. We imagine a DNA molecule folded around the® W€ Show two plots with the histograms of the diffusion
tree. The Cayley tree is an extremely simplified model for the denProcess fot=25 andt=100, respectively. In both cases the
dritic structure of a real protein matrix. The rule for the trajectory, truncated Ley process with ballistic peaks generated by the
denoted by the dotted line, is to explore the nodes of the tree withGHT on the natural Sequeng@ (upper curvescollapses to
out intersecting the tree, keeping the graph on the left-hand sideg Gaussian function, as pointed out by the linear-logarithmic
and avoiding the sites already explored. nature of the plot. This fact is, in our opinion, remarkable

because a numerical evaluation of the correlation function of
interval 1/2<y,,<1/2 is mapped onto the valug?=+1.  the irregular sequencg reveals a good agreement with the
The superscript0) is adopted to point out that this sequencetheoretical inverse power law imposed on #®’s, as we
corresponds to the spiral-like path of Fig. 3. can see in Fig. 6. In Fig. 6, in fact, we show the correlation

The map(24) is very similar (it has the same laminar function of the irregular process together with an inverse
behavioj to the map adopted in the CMM mod&l] without  power law proportional td =% this is a guideline corre-
copying mistakes, namely, in the case whpge=1 in Eq.  sponding to the theoretical shape of the stationary correlation
(16). The GHT map has been shown to give rise toan function for our generator, the GHT map of E@3 with
stable L&y process, in the sense pointed out earlier, namely;=5/3, We see that the distinctive feature of the unfolding
with ballistic fronts[21,22, with Levy index @=1/({—1).  procedure is the emergence of a structure that is periodic
However, as can be proved with the argumentfl@, this  with respect to log and thus compatible with a
result is independent of the details of the map and is eXrenormanzation_group approa¢3]_ However' no imp"ca_
pected to be produced by all the maps or stochastic genergion of this theory is explored herein.
tors resulting in the same correlation functidn(t). To make complete our discussion of the statistical prop-

We have used the GHT map for computational simplicityerties of the disordered sequence of Fig. 4, let us study the

and because it is well known in the literature, but the resultyjstribution P(x,t) and its rescaling properties. The general
ing statistics are virtually identical to the statistics generategyroperty to investigate is

with the stochastic generator of REL0]. Due to the chaotic

nature of the map and the crude coarse graining it is impos- 1 /x

sible to distinguish the deterministically generated sequence P(x,t)= —(SF(—S), (27)
. . t t

from the stochastic one. In the stationary cfs@,21] they

have the same correlation function and consequently the . . . -

same statistical properties. This case was shown in Rids. \Ilzvr;grg;ulzs?a%egr?(;lc function. For FBM it is knowfT] that

21] to generate a truncated \yeprocess, namely, a diffusion

distribution with a central Ley-like structure, but with the

tails replaced by two ballistic peaks, corresponding to the S=H=1— E (28)
abrupt truncation that any dynamically generated distribution 2
must have.

Another trajectory visiting all the sites is schematically In Fig. 7(a) the distribution relative td=25 is shown to-
shown in Fig. 4, where again only five layers are consideredgether with a Gaussian curve that was fitted to the data. In
The prescription adopted to define this path is that it keep&ig. 7 thesameGaussian curve has been rescaled according
moving with the tree on its left-hand side and skipping theto Eqg. (27) with the condition(28) and compared with the



4564 ALLEGRINI, BUIATTI, GRIGOLINI, AND WEST 57
10-1 . ' , . ' ' ' ' 1
107 | T~ e L
=102 |
g
102 |
-4 ) ) , ) . ) ) ) 1074 | ! "
0 o520 =50 5 5015 20 25 10 t 100 1000
101 X
FIG. 6. Correlation function of the “unfolded DNA” sequence
02 e (irregular trajectory. The dashed line is a guide to the eye and
1 F ooojﬁ* **ijooo b corresponds to the slope0.5, relative to the theoretical prediction
o°°° ‘Moo for thefoldedsequencéthe spira). We see that the two curves have
103 | °°°° - +++ ®ous the same slope, but there is the emergence of a structure that is
= Vo 0o® N * oo, periodic with respect to logt.
T . ° N "
107 ¢ . N pared with the predictions of the rescalirig8). In the
present case the accuracy of the statistical analysis is not so
105 L as to make it possible to distinguish E&8) from Eq. (29).
. . However, the Gaussian nature of the distributions seems to
. be so pronounced as to provide further evidence that the
10760 20 0 50 700 folding process of this section is a satisfactory realization of
FBM.

FIG. 5. Comparison of the space distributidP&) of the regu- In conclusion, the numerical results of this section prove

lar vs the irregular process at two different times. Upper figure: that the irregular sequence produced according to the pre-
=25, the curve with the side peaks is the GHT map generategCriptions illustrated in Fig. 4 shares the seemingly conflict-
procesgthrough the regular trajectorywhile the other curve is the  INg properties of Gaussian statistics and long-range correla-
“unfolded DNA" process, generated through the irregular trajec-tions. In other words, this is a satisfactory dynamic
tory of Fig. 4. Lower figure: same as before, with 100. Here and  realization of FBM. The price to pay to realize this physical
in the following figures time and spacex are expressed as dimen- condition, observed by Arneodet al. in their statistical
sionless quantities. The biological interpretatiort &f the length of ~ analysis of DNA sequencgd4], is the breakdown of the
a DNA segment measured in base pairs, while the spaisethe  stationarity assumption. From an intuitive point of view this
difference between the number of purines and that of pyrimidines irconclusion can be drawn by comparing the regular trajectory
the segment. of Fig. 3 to the irregular trajectory of Fig. 4. The stationarity
property of the former is a natural reflection of its transla-
model data at=50, 100, and 200. We see that in the regimetional invariance, which in turn is generated by the almost
where the Gaussian distribution is recovered, so is the regentral symmetry of its structure. All these properties are lost
caling of the FBM. by the irregular trajectory of Fig. 4 and with them probably
_Note that in Ref[10] it was proved that for a truncated the possibility of expressing the statistical properties of the
Levy process, which is the stationary solution of the processequence by means of a single “time” correlation function
stemming from Eqgs(6) and(9), the prescription(27) is not D 4(t) is also lost.
exactly fulfilled because of the presence of ballistic peaks. Before concluding this section we would like to mention
The Levy-like central part of the distribution, however, ful- the possibility of applying the modeling of this section to the
fills the rescaling property27), but with a value for the problem of transport in condensed matter. We have already
index o different from Eq.(28): It takes the value mentioned that the Cayley tree was used by Abou-Chacra,
Anderson, and Thoulesgl8] to discuss the problem of
Anderson localization in the case of a multidimensional lat-
tice. On the other hand, more recently an ever increasing
number of researchef&5] have been studying the role that a
correlated random distribution of site energies might have on

1 1
5=m:;, (29)

wherea is the Levy index of Eq.(20). We point out that the
difference between the two prescriptiof28) and (29) is  the phenomenon of transport and localizatigf]. Allegrini

numerically very small and that in Reff10] the difference et al. [26] have studied the effect of creating these correla-
was visible due to the adoption of numerical calculationstions by means of deterministic maps, the GHT, and a varia-
with very accurate statistics. The curves of Fig. 7 are comtion of it [26]. The interesting result of these calculations was
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FIG. 7. Rescaling behavior for the process generated by the irregular trajectory of FagThe numerical data at=25 are fitted by
a Gaussian functionb) The fitting Gaussian function df) is rescaled according to the FBM prescripti(®8) and compared with the
numerical data at=50. (c) Same agh) but with t=100. (d) Same agb) but with t=200.

that the localization length might be significantly increased(bending, bendability, and curvatyrig3] and the capability

by the correlations among different sites. It would be inter-of being anchored to the proteic matrix or to the scaffold
esting to adopt the model of this section as a generator 49,34. These constraints obviously depend on the local
correlation and to assess the resulting transport and localizaucleotides composition and therefore can be seen as statis-

tion properties. tical features of the DNA primary structur@nfolded se-
guence.
IV. APPLICATION: MODELING DNA SEQUENCES If the role of the matrix(for the chromatine in the inter-

There are several reasons to believe that the model illui2hase [29] and of the scaffoldgfor the metaphadd34] is

trated in the preceding section may have some resemblan Igat of keeplr_lg a fixed three-(.jlm.ensmnall structure, we can
argue that this global constraint is very important and that

to a DNA molecule when it is folded in the nucleus. We have h bev it Th )
seen in Sec. Ill that if correlations are imposed to the geotN® DNA sequence must obey it. The correlations necessary

metrical structure of the Cayley tree by means of a central© keep t'he t_ertiary fstructure stablg are therefore constraints
symmetry prescription, a self-avoiding trajectory wrapped©n chemical interactions between different segments of DNA
around the hierarchical graph shows statistical feat(tress  OF between the DNA macromolecule and a proteic hierarchi-
FBM) that are actually detected in the real DNA sequence§a| structure. In our model, therefore, the correlations are not
[14]. Notice that a dynamic but stationary dichotomousimposed on the sequence, but on the spiral of Fig. 3, in a way
model would not be compatible with the FBM condition.  that is somewhat “perpendicular” to the nucleotide chain.

In other words, we imagine the DNA molecule in the  Our schematical model of a DNA molecule as a polymer
nucleus as a long knot-free polymer; it is therefore topologi-wrapped on a Cayley tree may be imagined twisted and
cally equivalent to a two-dimensional self-avoiding graph,folded again in a complicated manner, in order to be densely
with a hierarchical folding. As pointed out by Grosbeftgal.  packed, but saving a certain central symmetry of the com-
[15], a hierarchical folding is necessary for the DNA to be plex globule. In this way we see that there are several analo-
accessible to RNA and to several enzym#$,27. Lewin  gies between our model and the “crumpled globule struc-
[27] also states that the highly dense packing of the DNAture” or Ref.[15], that is, a model for DNA in eukariotes.
molecule inside the nucleus necessarily implies a hierarchiAlso in this case the interactions between the sites respon-
cal organization of the spatial structure of the macromoleculsible for the stability of the structure act on hierarchical sur-
in order to function properly. faces in a way that is perpendicular to the chain structure.

Unfortunately, only the first levels of the hierarchical The model of Grosbergt al. teaches us that the long-range
folding are knowrn28—34|. It is known that the first level is correlation function is actually fundamental for the molecule
given by the nucleosomes, the second by a helix structure db be stable; a parametlr=2/3 is predicted by the model in
nucleosomes, and the third by the folding of this structurea fair agreement with the data, but nothing is actually said
We know, however, that for the chromosomebromatine about the stationary properties of the corresponding se-
in metaphaseone of the higher levels is constituted by a quence. Since the stationary assumption is actually a form of
proteic scaffold(for the chromatine in interphase there is antranslational symmetry, we think that such a symmetry is not
analogous structure called a majracound which the chro- likely to be fulfilled by a hierarchically folded molecule, but
mosomes are wrapped. The folding of the DNA moleculewe argue that this symmetry is valid along a trajectory with
implies constraints on the molecule flexibility properties an approximate rotational invariance since the globule has a
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central symmetry. This assumption is somewhat arbitrarytechniques recently used to study the statistics of DNA se-
but it is consistent with the constraints of Grosbeftgal.  quences, such as the detrended analy@% and the Hurst

since in our model we have seen that the “re-ordering” pro-analysig[24], can be adopted as proper indicators of the res-
cedure does not change the inverse-power-law index of thealing, in spite of the fact that there might be long-range

correlation function. correlations in the sequence. We know from earlier work
[10] that the dichotomous condition in the presence of long-
V. CONCLUDING REMARKS range correlations should lead to a rescaling different from

) _ _ o that of the second moment of the distribution. According to

In this paper we have provided a practical realization ofihe results of an earlier investigatidit], the detrended
FBM using a geometrical argument. This argument has bioanalysis[2,3], even if different in nature from the Hurst
logical significance and refers to a “geometrical” perspec-analysis, as a method to detect the rescaling properties of
tive of the copying mistake mechanism introduced in earliefjong-range correlation processes leads to results very close,
papersg5] on the statistical analysis of DNA sequences. it not identical, to those of the Hurst analysis. This in turn, as

We emphasize that we do not have a rigorous mathematyjiscyssed in Ref24], is meaningful as a proper indicator of
cal basis for our conclusions. We are inclined to believeyescaling only if the process considered is Gaussian. Only in
however, on the basis of our numerical results, that the FBMpjs case can the so-called Hurst coefficiehbe identified
condition can be realized in practice by any physical procesg;ith a parameter defining the “speed” of the diffusion pro-
that decouples statistics from dynamics. To explain thigess, as indicated by the time dependence of the second mo-
property we refer to the dynamical realization ofwesta-  ment of the distribution. This paper shows that in practice the
tistics using a GHT map22]. We can generate a large num- Gayssian statistics can be generated by the initial conditions,
ber of trajectories, each corresponding to a different '”'“althereby producing the false impression that the FBM is a
condition. A possible distribution of initial conditions for a|ig picture for the description of DNA sequences. If it is, it
these trajectories is given by the variable “velocit¢’at s for reasons that are not clearly understood in the current
equilibrium and the variable positiondistributed according |iterature. For the same reasons the Hurst coefficient can be
to a Gaussian distribution. This means that the initial Statisadopted as a proper indicator of the rescaling properties of
tics of x will be Gaussian and the ensemble will remainthe gbserved dynamical process.
Gaussian for an extended period of time whose length can be ag far as the specific problem of the DNA sequences is
predicted. When the spreading mechanism creates a new digoncerned, this paper has to be thought as speculative as that
tribution, so large as to perceive the original Gaussian distriby Li [36]. This author proposed an expansion-modification
bution as a Diracs function, the statistics will be dictated model, where two processes compete with each other, one
again by the dynamics according to the arguments detailed igreating long-range correlations and the other destroying it:
Ref.[10]. In the case studied herein, the Gaussian nature qfg real DNA sequence is then analyzed with this model. We
the initial distribution is generated by the unfolding processiimit ourselves to remarking that on the basis of the analysis
This is, in this case, the “statistics” of the process foreign toof this paper, not even the Li model, being dichotomous and
the long-range correlations. The long-range correlations are @ng-range correlated, can be both stationary and rigorously
manifestation of a “dynamics,” that generates its own sta-Gayssjan. Here the problem under discussion is inspired by
tistics, which, in this case, should be westatistics. The  the conflicting results of a statistical analysis of the data. The
unfolding process spans the whole diffusion process. Thus §roplem is given a qualitative solution, based on numerical
sets persistent Gaussian constraints rather than only affectirggumemS and resting on the essential conclusion that what-
the initial distribution. Remarkably, this Gaussian constraintayer the biological origin of the process observed might be,
does not affect the dependence of the “spatial” second mogpig process cannot be stationary.
ment on “time” and leaves unchanged the anomalous char-
acter of the diffusion process, namely, the coefficidnés-
tablished by the GHT map. For the resulting diffusion ACKNOWLEDGMENTS
process to be a genuine form of FBM, the unfolding process
should also change the rescali®9) into that of Eq.(28), a We warmly thank Dr. Marcello Buiatti for his sugges-
change too small to observe in experimental data. tions, which had the beneficial effect of making much more

The results of this work also shed light on why severalrobust the biological significance of our folding model.
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