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Mesomaorphic polymorphism of binary mixtures of water and surfactants

A. Linhananta and D. E. Sullivan
Department of Physics and Guelph-Waterloo Program for Graduate Work in Physics, University of Guelph, Guelph,
Ontario N1G 2W1, Canada
(Received 26 August 1997; revised manuscript received 18 December 1997

In this work, a vector lattice model is employed to study binary mixtures of water and surfactants. The
face-centered-cubic lattice is employed in order to best approximate a realistic liquid environment. The model
is analyzed by low-temperature expansion and Monte Carlo methods. It is shown that for sufficiently strong
surfactant-water interactions the system exhibits a rich polymorphism where up to eight phases are stable. In
addition to the disordered water-rich and surfactant-rich phases, liquid-crystalline phases such as the hexagonal
and the lamellar phases as well as the inverse bicontinuous cubic, inverse hexagonal and inverse micellar cubic
phases are stable in the model. It is shown that the inverse bicontinuous cubic structure in our model is
remarkably similar to the gyroid phase. The formation of water channels in the surfactant bilayers of a lamellar
phase is also examine51063-651X98)13104-3

PACS numbgs): 64.70.Ja, 64.60.Cn, 05.50q, 87.15.Da

[. INTRODUCTION stable but is replaced by an intermediate lamé¢Bphase in
which each surfactant bilayer is pierced by water-filled chan-
Binary mixtures of water and surfactants exhibit a richnels. For some systems the water channels are arranged in a
polymorphism due to their tendency to form water-surfactantwo-dimensional array, whereas in others the arrangements
interfaces. At low surfactant concentration, surfactant mol-are random. There are also systems in which, in addition to
ecules form aggregates or micelles that shield their hydrocathe two-dimensional order of the channels, there is also a
bon tails from water, leaving only their polar heads exposedcorrelation between channels in adjacent bilayers, resulting
Depending on the chemical properties of the surfactant angh a tetragonal arrangement of water channels. Another ex-
the temperature of the system, the micelles usually assumeample of nonuniversal behavior is that, in mixtures where the
dominant geometrical shape which can be spherical, cylintail groups of the surfactants are especially bulkuch as
drical, or a two-dimensional bilayer. At higher concentrationphosolipid$, the phase diagrams are dominated by inverse
and sufficiently low temperature, these micelles are the basiphaseq4]. Similar universal and specific behavior is also
building blocks for a rich array of complex liquid-crystalline observed in mixtures oA-B diblock copolymer andh or B
phases. For example, spherical or finite cylindrical micelleshomopolymer5,6]. These systems show the same progres-
give rise to micellar cubic @”) phases which consist of sion of stable phases from the disordered micellar phase to
periodic arrangements of these micelles. With increasinghe ordered micellar cubic, hexagonal, bicontinuous cubic,
concentration, the hexagonal), bicontinuous cubic®@'),  and lamellar phases when a composition variable such as the
and lamellar ,) phases, in that order, are observed to beconcentration of added homopolymer is varied. This similar-
stable. As is well known, the lamellar phase is a one-ty is explained by the fact that copolymer-homopolymer and
dimensionally ordered stack of infinite surfactant bilayerswater-surfactant mixtures both tend to form interfaces be-
whereas the hexagonal phase consists of infinite cylindricatlveen two distinct fluid components.
micelles arranged in a two-dimensional array. For the latter At a given surfactant concentration, the mixture organizes
phase, the two-dimensional array is either hexagonal or dignto a phase consisting of water-surfactant interfaces. The
torted hexagonal. The bicontinuous cubic phase, which igonfiguration of the phase is determined by the competition
intermediate between the hexagonal and the lamellar phasdsstween interaggregate and intra-aggregate forces between
is a three-dimensional periodic arrangement where both thsurfactant molecules. The interaggregate forces favor flat in-
water and surfactant form continuous networks that span theerfaces, whereas intra-aggregate forces tend to favor curved
system. At surfactant volume fractions that are significantlyinterfaces. By employing topological arguments, Charvolin
higher than 0.5, the inverse analogs of the above-mentioneehd Sado¢7] showed that this interfacial “frustration” re-
phases are expected to be stable. These are the inverse sidts in the formation of the various mesophases observed in
continuous cubicl@Q'), the inverse hexagonalH), and the  binary mixtures of water and surfactants, confirming that the
inverse micellar cubiclQ") phases. phase behavior of these systems is due mainly to the am-
Experimentally, most surfactant-water mixtures do exhibitphiphillic nature of surfactants. However, they did not con-
the above-mentioned universal phase behavior. However, tteider the energetics associated with these interactions. In
chemical properties of surfactant molecules can also give risgeneral, the free energy of the mixture is a function of the
to very specific features. For example, the micellar cubidemperature, surfactant concentration, and curvature of the
(Q") phase is usually observed in mixtures containing catsurfactant-water interface. At a fixed temperature and con-
ionic surfactant$1] or nonionic surfactants with bulky head centration, the free energy is minimized when the curvature
groups[2]. Similarly, in mixtures containing anionic surfac- assumes a value equal to the spontaneous curvature of the
tants or surfactants with very long tails, te phase is not mixture[8]. The spontaneous curvature is the preferred cur-
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vature of the interface, and is determined by the chemical Il. MODEL
properties of the surfactant molecules. For example, in mix-

tures containing ionic surfactants, the electrostatic repulsiongnd water molecules are restricted to occupying a face-
between surfactant head groups result in spontaneous CUNV@sered-cubic lattice. As in the Ising lattice gas model, each
tures that are favorable to the formation of high curvatur@ice siteu is assigned a spin variable,, which takes a
phases such as tl@" andH phaseg9]. For such mixtures, yajue +1 or 0 to represent a water molecule or a surfactant
a stable lamellar phase is induced by increasing the Surfa‘f“holecule respectively. In addition, a vector variaBlds

tant concr(]antrr]atu()jn or by thel "?‘dd'“O” .Of lonic Salt. Wh'Ch assigned to every surfactant molecule to describe its orienta-
screens the head group repulsigag]. Mixtures containing  jonal degrees of freedom. In this work the orientation of a

surfactants with long alkyl tails favor the formation of flat ¢ tactant occupying a siteis restricted to point toward one
interfaces resulting in phase diagrams dominated by thgs its 12 nearest neighbors. The Hamiltonian is
lamellar phase. In mixtures containing surfactants with bulky

tails, steric interactions between the tail groups favor the o o
formation of surfactant-water interfaces that are concave ~ H=— 2 [J1040,+32(0,Sy Ty +0uS, Ty0)]
with respect to the water regions resulting in phase diagrams (wo
dominated by inverse phasg$.

This paper focuses on the universal properties of binary —us> (1-ay), (1)
mixtures of water and surfactants. Due to the complexity of !

water-surfactant mixtures, most theoretical models that exyhere(u,v) denotes a summation over all distinct pairs of
amine these _properties are either phe_nomenologic_al or |attic|‘?earest neighbor sitas andv. The vectorfuv specifies the
mO(J:[ieIs];. AI\dGlnzburg-Llandgubmcgel with a scdalz fﬁldtand Yirection from lattice sitel to sitev. For convenience we set
hain a phase ciagram with he above.mentioned phase sl =1 Where the length scale is i unis o the latie spac-
Ihg. The term with coupling, represents the isotropic inter-

quenc?. :(Djaws?n ano: Kurtov[td.Z]I zat[?_pl|ed g(;oimd-ztatbet a_mdd actions between nearest-neighbor sites. The terms with cou-
mean-field analyses 1o a vector fatlice model, and obtaine ing constant J, describe the orientation-dependent

phase sequence of lamellar, cylindrical, and cubic phaseg,eraction between a surfactant molecule and a neighboring
The present work employs a vector lattice model similar tQ,ater molecule. This is the simplest form of such an inter-
that of Ref.[12] and to that used by Matsen and Sullivan

[13], Laradji et al. [14] and Ciach and co-workefd 5], in

In the lattice model employed in this work, the surfactant

action, assumed to be linear in the surfactant orientéili,on
their stud f1 it f wat i| and surfactant This interaction expresses the amphiphillic nature of a sur-
€ir studies of tenary mixtures ot water, ofl, and surtactantSey ant molecule, since a positive value Bf favors a sur-

The model, which is presented in Sec. II, generalizes the, yant orientation with its head pointing toward a neighbor-
two-component lattice gas model by allowing the componen,, \yater molecule. The last term gives the chemical
representing a surfactant molecule to have a discrete orieRyiantial energy of the surfactant molecules. This is consis-
tation. _To bes_t represent a realistic I|qU|q envm_)nment, th&ant with analyzing the system in the grand canonical en-
model is studied on a face-centered-culizr) lattice. Al- gemple, where the surfactant concentration is controlled by
though the model contains universal features that are coMpg g rfactant chemical potential, rather than in the ca-
mon to all surfactant-water mixtures—mainly their ability t0 \,hica| ensemble where the surfactant concentration is fixed.
form interfaces—it does not contain nonuniversal features In this work, the energy will be scaled with respectlto

that are associated with the chemical structures of Surfaqqence\ll is rep’laced by 1 and, by j =J,/J,. We define the

tants. This means that Fhe model can be employed to Identlf%caled Hamiltonian, temperature, and chemical potential as
and understand the universal behaviors of binary mixtures o

water and surfactants. The goal of this study is similar to eﬁ/‘].l’blt:kBET/‘]ll snd #=psldy. In terms of these scaled
recent Monte Carlo study of a lattice model by Lar$af]. variables, Eq(1) becomes
However, the simple form of our model permits it to be

analyzed by a variety of methods. The simplicity of the |:|=—2 [Uuo-v—’_j(Uvéu'Fuv—’_o-uév'Fvu)]
analyses clarifies the physics that underlines the mesomor- (uv)
phic polymorphism of binary water-surfactant mixtures.

In Sec. Il ground-state and low-temperature analyses of _ME (1-0o). )
the model are presented. It is found that for sufficiently u !

strong surfactant-water interaction, with increasing surfactant
chemical potential, the phase sequeki¢eH, L, 1Q’, IH,

IQ"”, andS phases, in that order, is observed to be stable. The
W andS phases are disordered water-rich and surfactant-rich
phases, respectively. Also examined is the formation of wa- One advantage of a lattice model is that it can be analyzed
ter channels in surfactant bilayers of a stable lamellar phasdy a variety of methods such as the mean-field and Bethe
In Sec. IV phase diagrams obtained by the low-temperaturapproximationg 13|, or by the low- and high-temperature
expansion method are presented. These results are comparsgansion methods. The renormalization group approach and
with Monte Carlo simulation data to be presented more fullyMonte Carlo methods can also be employed. In this paper the
in a subsequent papét7]. Finally, a discussion of the re- low-temperature expansion method is used. Due to the fact
sults and a summary are presented in Sec. V. there is no explicit surfactant-surfactant interaction in our

Ill. ZERO-TEMPERATURE
AND LOW-TEMPERATURE ANALYSES
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model, it is possible to include exactly orientational fluctua- ® 6 © ¢ 0 0 o
tions of surfactants in an expansion about the ground state of
a phase. On the other hand, the inclusion of fluctuations that

alter the ground-state concentration of a phase cannot be eas- ® OO @'~ "\ @
ily included in such an expansion. However, computer simu- ® 060 06°0°0 ©
lation results which are to be presented in a subsequent paper

show that even at temperatures as higtt-a4 the concen- ® O O @€ O O e
tration of an ordered phase deviates only slightly from the ® O O @ O O @

ground state, indicating that orientational fluctuations are the

dominant mode of excitations at low temperature. This ® &6 6 06 6 0 o
means that a low-temperature analysis that considers only FIG. 1. Two-dimensional slice through tité phase on a fcc
tflllsd molcljehOf exgltatlzn can Obtalr;l phase dlalgra(;ns thglt InI'attice, where the open and closed symbols denote surfactants and
clude all the stable phases as well as correctly describe trVv"/'ater molecules, respectively. The arrows in one of the cells indi-

qual_itative behavior of the sy_stem. . . cate the ground state orientations of the surfactants.
First consider the water-richW) phase, which in the

ground state consists of all sites being occupied by watery
Since each site has 12 nearest neighbors, the zer
temperature grand canonical potential per site oMhghase
(equal to the ground-state energy per)sgesasily calculated
to be

istance between the centers of two neighboring cross sec-

%ions is three lattice spacings. In the figure, the filled circles

indicate water sites, and the open circles denote surfactant

sites in a particulakth plane, while the squares and triangles

about one of the micelles indicate the locations of surfactant

sites of the micelle in thek( 1)th and k—1)th planes,
—~=_8, (3)  respectively. The arrows in one of the cells indicate the
N ground-state orientations of four surfactants in kkie plane.

] o ) ) _ The two surfactants with the normal arrowheads orient them-
whereN is the number of sites in the lattice. On increasingse|ves directly at two water sites in the same plane, whereas
the surfactant concentration, which in our model correspondghe syrfactants with the filled and open arrowheads orient
to increasing the chemical potentjal it is expected that the themselves directly at water sites in the+1)th and k
micellar cubic Q") phase becomes stable. This consists of_1)th planes, respectively. The fact that the cross sections
finite micelles arranged in a three-dimensional periodic aryf the micelles are not circular is a consequence of the lattice
ray. The optimum size and shape of these micelles, howevegycture. However, several systems exhibit intermediate
are not certaim priori. The simplest possibility is a spherical phases, which are cylindrical phases as isHhghase, but in
micelle consisting of a central surfactant site and its 12 neargnich the cylinders have noncircular cross sections orga-
est neighbors. Computer simulation results found that at lovkized in rectangular, quadratic or monoclinic symmétrg].
temperature and at a chemical potential where the sysStem iince the phase shown in Fig. 1 has hexagonal symmetry, it
in a disordered micellay/ phase, most of the observed mi- js stjl| appropriate to call this aHl phase. Inspection of Fig.
celles are indeed spherical or a slight distortion of it. In theq shows that each plane of this phase can be spanned by unit
ground state, the 12 surface surfactants orient themselvegis of nine sites, of which four are surfactants and five are
directly away from the central site, resulting in a water-yater, which implies that the surfactant concentration of this

surfactant interaction energy of3j per surface surfactant, phase isd. The zero-temperature grand potential per site is
which is the lowest possible water-surfactant interaction en-

ergy for a surfactant site in our model. Since in this model

there are no explicit surfactant-surfactant interactions, the SH_ P = (4
central surfactant has an interaction energy of zero. This N 9 3 9

means that a spherical micelle placed in the mixture in the

ground-statéV configuration, changes the energy bff= At nonzero temperature, the system is allowed to occupy

—36] —13u+ 120, where the final term of 120 is the water- higher energy configurations. If the temperature is very low,
water interaction due to the 13 sites before the addition of thenly configurations whose energies deviate slightly from the
micelle. ForAE<0 or u>(120-36j)/13, the introduction  ground state are likely to occur. For the phase, these are

of a micelle lowers the grand potential of the system, anctonfigurations where the surfactant molecules in the cylin-
hence aQ” phase that consists of an ordered arrangemendrical micelles have orientations which differ from the
[18] which maximizes the concentration of these micelles isground-state orientations. Due to the absence of explicit
stable compared to the&/ phase. However, it is found that surfactant-surfactant interactions, the orientational fluctua-
the Q" phase is never stable when compared to other orderegbns of each surfactant are independent and can easily be
phases such as ti¢ or L , phase, and therefore we go on to summed. This produces a low-temperature expansion of the

examine the latter. grand potential about thid ground state, given by
The H phase consists of infinite cylindrical micelles in a
periodic two-dimensional2D) array. Figure 1 shows a two- Q 0 44
dimensional slice through thel phase on the fcc lattice, WH:WH_gm(FH)’ (5)

which is represented as a stack of two-dimensional triangular
lattices. The cross sections of the infinite micell@pen
circles are arranged in a 2D hexagonal array, where thavhere
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FIG. 3. Cross-sectional view of a lamelldr {) phase showing
e OO O @ OO O e water monolayers alternating with surfactant bilayers. In the figure,
® © © ¢ o o o o o filled circles are water molecules, and the arrows denote surfactant
molecules with orientations in the direction of the arrows.

FIG. 2. Two-dimensional slice through tHephase on a fcc
lattice. strong surfactantfargej), since each water monolayer is in
contact with two surfactant bilayers. Since the orientations of
PN ex;{ —_31 4 ex;{ —_91) the surfgctants are such that .their heads reside on the SL_Jrface
t 2t of the bilayer, this configuration has the maximum possible
) number of surfactant head-water contacts. For weaker surfac-
tex F{ __61) tants, lamellar phases with more than one layer of water sites
t between surfactant bilayers can also be stable, as is indicated
by Monte Carlo simulations of the model discussed in Sec.
is due to orientation fluctuations of the surfactant moleculesyy.
Computer simulations of the model have indicated the At zero temperature, for any value pfonly the lamellar
occurrence of another cylindrical phase which consists of @hase with one water layer between surfactant bilayers is

2D arrangement of infinite cylindrical micelles where eachstable. This lamellar configuration has a surfactant concen-
micelle has a rectangular cross section containing six surfagration of 2 and a grand potential per site of

tants. This phase is shown in Fig. 2, where the various sym-

bols have the same meaning as before. For simplicity, arrows QE 4j 2u

indicating surfactant orientations are omitted. Since the ar- == (8
rangement is rectangular, it is appropriate to call thislthe N 3 3

phase. Analysis shows that this phase has a surfactant COEi'round—state analysis shows that each surfactant can orient
centration of3, and a zero-temperature grand potential per. y

. itself toward any one of the three nearest neighbor water sites
site of : . . X ;
in the adjacent water monolayer. This degeneracy is partially
Qo 3 4 pu indicated in Fig. 3. A low-temperature expansion of the
— == . (6)  grand potential that allows for orientational fluctuations of
sites occupied by surfactant molecules gives

Fu=1+4 3
HESTR &R 0

A low-temperature expansion about the ground state gives a

0
grand potential of % - oL, - gmg

. N N 3
s e
NN gha—gln 2t —2j —4j
N N 6 37" ——=Inj1+2 exp(TJ +exy{Tj)}. 9

t —2j — 4]

- g'” 1+ex T tex t ' @) The second term in the expansion is due to the ground-state

orientational degeneracy, while the final term is due to ori-

The second term in Eq7) is due to the ground-state degen- entational fluctuations. At low temperature, the ground-state
eracy of two of the surfactants in the cross section. The finalegeneracy gives the largest correction to the grand poten-
two terms arise from allowing all the surfactant sites to haveial. At higher temperature, fluctuations become important,
orientational fluctuations. At low temperature, the ground-and the lamellar phase can assume configurations that are
state degeneracy term provides the most significant correaery different from the ground-state configuration. Aside
tion to the ground-state grand potential. Later, it will befrom surfactant orientational fluctuations, two other modes
shown that at=0 thel phase is never stable compared toof fluctuations may also be important. One mode is of fluc-
theH andL, phases. However, due to the ground-state detuations that bend the surfactant bilayers. However, in the
generacy, thd phase does become stable at nonzero tempresent model, bilayer curvature fluctuations have a low
perature for large values ¢f probability of occurring. This is because on a fcc lattice, a

Consider next the lamellat(,) phase, which is a stack of bilayer can only bend at an angle of 60°. Furthermore, a
infinite surfactant bilayers. The phase is easily constructed ibend in a single bilayer induces a bend in all bilayers, and so
the stacked triangular lattice representation of the fcc latticehis mode of fluctuation causes a significant increase in en-
by alternating two surfactant layers with one water layer.ergy. A more likely mode of fluctuations is one where the
Figure 3 pictures a two-dimensional slice through a lamellabilayers are pierced by water-filled channels.
phase showing alternating water monolayers and surfactant Figure 4a) shows a surfactant bilayer with a pinhole de-
bilayers. This configuration is the most favorable one forfect. The pinhole defect is the smallest possible water-filled
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FIG. 4. Pinhole defect in a surfactant bilayéa} a side view of O O @ .: O O e eor
the defectjb) a top view where the water is the filled circle and the -

open circles are surfactants. The triangles indicate the three possible OA OA ® O O a O a ® O
locations of the other water site in the adjacent surfactant mono- © O O" 0O O O O" O
layer.
FIG. 5. Two-dimensional slice of the inverse bicontinuous cubic

channel that can form in a bilayer, and consists of two WateFIQ ) phase. The ?ymbOIS are explained in the text. .Ihmdy
axes of the Cartesian coordinate system are shown in the top left

sites. Figure &) shows a top view of the defect, where the hand corner, with the axis pointing out of the page
three triangles indicate the possible locations of the other ' '
water site in the surfactant monolayer below. To minimize
the free energy, the surfactants surrounding the channel orfinverse bicontinuous cubighase, the minimal surface is
ent themselves at an angle of 60° with the water-filled siteslocated at the center of the watsurfactant bilayerfilm that

At zero temperature, the placement of a pinhole changes thgeparates the two surfactafwatep labyrinths. For water-
grand potential byAE=2u—7. The result is rather curious, surfactant binary mixtures, the most commonly obser@éd
since the defect energy does not depend on the wate(iQ'’) phase is the gyroid@) phase with a space group
surfactant interaction parameterThis result is exclusive to 1a3d [24]. A second type of IPMS phase called the diamond
pinhole defects, since in general defect energies of largeiD) phase with a space groupn3m has been identified
water-filled channels depend gnif AE<O0, which occurs [24]. A third possible IPMS is the so-called Schwammi-
when ©<3.5, then the pinhole lowers the free energy, intive (P) surface with a space grodm3m, but the occur-
which case an ordered 2D arrangement which maximizes theence of this phase in water-surfactant binary mixtures has
number of pinholes is more stable than a lamellar phase withot been clearly establish¢d4].

no water channels. This is the catenoid lame{fak) phase In this work, we were not successful in finding a stable
which has been investigated recently by several auflay's Q' phase, but a stableQ’ phase has been identified. A
22]. This phase is only stable if the lamellar phase is alreadywo-dimensional slice of the phase is shown in Fig. 5. In the
stable when compared to other phases. In the ground statigure the open circles are surfactant sites in kkie plane

for j>2 and u<3.5 there is always a range @f that in- and the filled circles, squares, and triangles are water sites in
creases with) where the CL phase is stable compared to thehekth, (k+1)th, and k—1)th planes, respectively. Inspec-

W phase. For this thermodynamic range, however, the lamekion of the structure reveals that the phase is bicontinuous.
lar phase is less stable than tHephase, and so the catenoid The water sites form an infinite three-dimensional network
lamellar phase is never stable in our model. However, as wilbf rods joined coplanarly 8 3 with a body-centered-cubic

be discussed in Sec. IV, at nonzero temperature, water chafbco arrangement. To see that the water labyrinth forms a
nels are observed to form in a stable lamellar phaseufor bcc array, assume that the center of a unit cell is located at
< 3.5, but their arrangement is disordered. any water site, and then the centers of the eight nearest

The sug_aﬁn_t-rich r?giog k?f t::e 'phasge@diaﬁgarr(’g whicheighbor cells are at the water sites located “aft2x
occurs at highu, is populated by the inverd®’, IH, 1Q”, ° 257 41 o3 ° 257 o
and S phases. Consider first the inverse bicontinuous cubic?r(zﬂﬁ)er \/;Z]’ ZT[_ 2x+(2/\/§)y+ \/;Z] L(4N3)Y
(1Q") phase, which is the inverse analog of ¢ phase. — 5Z], andiS\/;z, in a Cartesian coordinate representa-
The bicontinuous cubic phase is a cubic arrangement of tw§on with distance in units of one fcc lattice spacing. Simple
nonintersecting infinite labyrinths of surfactant molecules@lgebra shows that the centers of the eight nearest neighbor
separated by a single water film. For the inverse bicontinutinit cells are located at the corners of a cube with edge
ous cubic phase, the roles of the water and surfactant atength of 2/2. The labyrinth is in a class of structures called
interchanged, and the phase consists of two water labyrintH&ree-dimensional nets which was studied by WelS. It is
separated by a single surfactant bilayer film. It is now thea uniform 3-connected net with the notati¢h0,3-a [26]
consensus that this intriguing phase is characterized by infand a space groulp4,32. This phase is very similar to the
nite periodic minimal surface8PMS’s) [23,24. A minimal  inverseG phase, since it is well known that the latter also
surface is a surface having at each point a mean curvature pbssesses bcc symmetry and consists of two nonintersecting
zero. For binary mixtures of water and surfactants, the simwater labyrinths in which each labyrinth consists of water
plest example of ainfinite minimal surfaceés the surfactant rods joined coplanarly 8 3 [24]. Indeed, Luzzati and Spegt
bilayer in a lamellar phase, which can be considered as af27] point out that the gyroid phase is one of the structures
infinite volume that divides two nonintersecting infinite sub- studied by Well§25]. The main difference between th@’
volumes (the two adjacent water layersin this case the phase in our model and the inver§e phase observed in
periodicity is one dimensional, but in general an IPMS canexperiments is that the former has only one water labyrinth.
have three-dimensional periodicity. For a bicontinuous cubid=or the latter, the two labyrinths are enantimorptrigrror
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FIG. 6. Two-dimensional ;Iice of thed phase on a fcc lattice, O O O o O OAO0 O O O
fely. The.oxes of the mverse eyincrical mceles make 2 00- OAC O O O O @ O
angle with the 2D plane. O O ® O O O O
images resulting in an overall space group la3d [28,29. O O O ol
The absence of a second labyrinth in 6@ phase is prob- FIG. 7. The inverse cubitQ” phase on a fcc lattice, where a

ably due to the lattice constraint and the assumption in OUfilled circle indicates the center of an inverse micelle, and the open

model that a water molecule occupies the same volume aS@cles indicate the surrounding surfactants in kike plane. The

surfactant molecule. squares and triangles indicate inverse micelle centers in khe (
The surfactant concentration of th@’ phase is}, which, 1)th and k—1)th plane, respectively.

as expected, is of an intermediate value between_thand

IH phases. Due to the high symmetry of the phase, th¢yhere

ground-state grand potential per site is easily calculated to be

1 —]
Qg - S 1+ —exd —
IQ _§_3_]_3[.L (10) FlHl 1+2eXF< ot

-2j) 1 — 9]
A low-temperature expansion that allows surfactant orienta- +ex;{ e +§exr< ot
tional fluctuations gives a grand potential of

0 and
oot an
" e —J — ] -3
where Fiha=1+4 exp{ >t +2 ex;{ T +4 ex;{ 7)
. _ _ Y
= ) 2) 3l +exp{ —)
F|Q,—1+4exr{ t)+2ex;{ T +4ex;< n ) .
4 The second term in Eq13) is due to ground-state degen-
TR eracy, and constitutes the largest correction to the zero-

temperature grand potential, while the final two terms arise
Consider now théH phase, which is the inverse analog from the surfactant orientational fluctuations.

of the hexagonal phase. Thid phase is made up of inverse  Figure 7 shows the ground-state configuration of an in-
cylindrical micelles, which are lines of water molecules sur-verse micellar cubiclQ”) phase which is a distorted simple
rounded by surfactants. The inverse cylindrical micelles areubic arrangement of inverse micelles. An inverse micelle
arranged in a two-dimensional hexagonal array. A two-consists of a single water molecule surrounded by 12 nearest
dimensional slice of théH phase is shown in Fig. 6, where neighbor surfactant molecules that orient themselves directly
the axes of the cylinders make a 60° angle with the planetoward the water molecule. Since each micelle consists of 13
ThelH phase has a surfactant concentratio ahd a zero- molecules, and has a water-surfactant interaction energy of

temperature grand potential of —12j, the zero-temperature grand potential is
Q1 8] 6u Q0 :
NTTTT a2 IR W ) 19
N 13 13

A low-temperature expansion of the grand potential that in-A low-t i . f th d potential ai
cludes fluctuations of the surfactant orientations gives ow-temperature expansion of the grand potential gives

—12j

Qn Qf 4t 4t 2t Qo Oror  t
i=i——|n2—7|nF|H1—7|nF|H2, (13) £=£——|n

N N 7 N N 13 ” (15

Fi2 41913 exp(“
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FIG. 8. Zero-temperature phase diagram. FIG. 9. Temperaturet] vs chemical potential) phase dia-

) ) . gram for interaction parametgr1.5.
In Eqg. (15) the first term in the argument of the logarithm

includes all orientational configurations of the 12 surfactantState degeneracy, whereas I phase has none, and thus
sites surrounding a water molecule. In addition, for this 9 Y, P '

phase, we have allowed for fluctuations that change the su it nonzero temperature e, phase quickly preempts the

I ! n
factant concentration. This is contained in the second ter Q' phase. At the zero-temperatu®”-1Q" phase bound-

inside the logarithm, which arises from a water site beingary[/“‘:(ngr 20j)/6], theIH phase is also stable. At=2

replaced by a surfactant. This fluctuation is included becaus@nd"‘:?"s’ theH, W, andIQ" phases, as well as the pre-

it has a low excitation energy due to the high surfactantvIOUSIy discussed cat_enoid lamellar phase, all coe>_<ist. How-
concentration of2 ever, the CL phase is not stable at any other point on the
13-

Finally, at very high surfactant chemical potential the phase diagram. Thiephase is not stable at zero temperature

mixture is in a disordered surfactant-ricB)(phase. At zero for aPy vaIfoJ_e. OfJI’ bIUt bgcomes stable at nonzero tempera-
temperature this consists of all sites in the lattice being octUre for sufficiently largg .

cupied by surfactants. Since this phase has no interaction As is expec_;ted,l with mcrete)lsmgfsu;fact:nt;]water t|)nterac—
energy, the zero-temperature grand potential is simply ~ UON parametey, a larger number of ordered phases become
stable. The ground-state results suggest that to obtain a phase

Qg diagram that shows completely the rich polymorphism of a
N & (16) binary water-surfactant mixtures, a sufficiently large interac-
tion parameterj must be employed. However, although

At t=0, each surfactant site is allowed to assume all of itsﬁ;asef diagramsl obtﬁined bi/] emp'oy"gg ;maltl1er yaluerj]; of
orientation states. This ground state degeneracy gives rise (Ve fewer stable phases, they do exhibit behaviors that are

a correction to the zero-temperature grand potential of Nt observed for larger values ¢f In view of the variation
in the behavior of the system with changing interaction pa-

Qg rameterj, the valuesj=1.5, 3.0, and 5.0 are employed in

N - ma—tini2 (17 Sec. V.

Employing the ground-state grand potentials given by
Egs. (3), (4), (6), (8), (10), (12), (14), and (16), a zero-
temperature phase diagram shown in Fig. 8 is obtained by In this section, temperature-chemical potential phase dia-
equating the grand potentials for all possible pairs of coexgrams are presented. As at zero temperature, the phase
isting phases. In the phase diagram, jfer0.5 only the dis-  boundaries are determined by equating the grand potentials
orderedW andS phases are stable. Th®” phase becomes of possible pairs of coexisting phases. In general, the result-
stable forj>0.5, followed by thd Q' phase foj >1, and by ing phase transitions are first order, which is consistent with
the H phase forj>2. For 1<j<2, at theW-1Q' phase the fact that the various phases have different symmetries.
boundary fx=%—2j), lamellar phases with any number of This is also in accord with experimental results. Figure 9
water layers between surfactant bilayers coexist withihe shows the phase diagram for the interaction paramgter
andlQ’ phases. However, it is only along thé-1Q' phase =1.5. With increasingu, theW, L,, 1Q’, IH, I1Q”, andS
boundary that the lamellar phase is stable, as elsewhere it hases are stable. In general, the slopes of the phase bound-
preempted by either thé&/ phase or théQ'’ phase as shown aries are negative. This is because asncreases, phases
in Fig. 8. This is unexpected since the lamellar phase is thevith higher surfactant concentrations and hence higher en-
most commonly observed phase in computer simulations dfropies become stable, and so with increasing temperature
the mode[17]. On the other hand, th& ' phase is observed high-surfactant-concentration phases increase their thermo-
in simulation only for large values gfand at low tempera- dynamic ranges of stability at the expense of lower concen-
ture [17]. This is because the, phase has a large ground- tration phases. Two exceptions are thelQ' andIH-1Q”

IV. PHASE DIAGRAMS AT T>0
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the W-S phase boundary is not visible in the figure, it does
exist fort>4.7. However, since this boundary should really
end in a critical point, it is likely that foj =3 the lamellar
phase preempts the whol®-S coexistence line. For this
value of j, Monte Carlo simulations have observed a stable
IH phase as well as ah, phase. TheH, 1Q’, and Q"
phases are not observed in simulations, although finite cylin-
drical micelles with cross sections identical to the infinite
cylindrical micelles that make up thé phasgsee Fig. 1are
observed in the disordered/ phase. In Fig. 10 the circles
and triangles indicate thie -disorderedeitherW or S) and
IH-S phase boundaries, respectively, found by the Monte
Carlo method. The simulations are performed only at tem-
peratures above 0.75, since at lower temperature the Monte
Carlo equilibration time becomes excessive. For tempera-
1% tures below 1.2, the correlation between WL, phase
coexistence obtained by the Monte Carlo method and that
obtained by the low-temperature expansion method is quite
good. For the same temperature range and at highehe
S-L, coexistence obtained by the Monte Carlo method lies
phase boundaries. In the former case, thephase has a close to thel,-IH phase boundary obtained by low-
larger ground-state entropy than th@' phase, making the temperature analyses. This suggests that in this thermody-
slope of the phase boundary positive. For tRe1Q” tran-  namic range the disordered surfactant rich phase preempts
sition, thelH phase has a larger ground-state entropy thamhe IH phase. At temperatures above 1.2, Monte Carlo data
the |Q" phase, which has none, making the initial slope ofdo not compare well with results obtained by low-
the phase boundary positive. However, at higher temperatutemperature analyses. This is because the low-temperature
the orientational entropy of theQ” phase becomes impor- analyses do not correctly calculate the grand potentials of the
tant, and théQ” phase range of stability expands making thedisorderedW and S phases near the high-temperature coex-
slope of the phase boundary negative. istence boundaries with ordered phases. In these regions the
The L, phase is stable up tb=1.18, above which only W (S) phase is either disordered micell@mverse micellar
the disorderedV andS phases are stable. Low-temperatureor a sponge I{;) phase. Due to their large entropies, low-
analysis gives an expression pf=6—t In12 for theW-S  temperature analyses of these phases are not expected to be
phase boundary, which in this approximation extends to accurate.
=00, However, it is expected that at high temperature, the Only the lamellar phase with water monolayers alternat-
W-S phase boundary should really end at a critical pointing with surfactant bilayers is predicted to be stable by our
The mean-field and Bethe approximations give critical poinfow-temperature expansion. However, our Monte Carlo
values oft=3 and u=6—-31In12=—1.455, andt=2.381 simulations[17] have observed the formation of water chan-
andu=—0.3141(for j=1.5), respectively. Better estimates nels in surfactant bilayers. As discussed in Sec. lll, jfor
can be obtained by the renormalization group or high->2 and at nonzero temperature, the dominant mode of fluc-
temperature expansion methods. tuations that destabilizes the one-dimensional order of the
At t=0, the W-1Q’-L, phase boundary obtained by lamellar phase is the formation of water channels. It was
equating Eqs(3), (8), and(10) occurs atu=%—2j. Infact,  shown that at=0 and foru>3.5, the stable lamellar phase
along this phase boundary, lamellar phases with an arbitrariyas a surfactant concentration $fWhen the chemical po-
number of water layers between surfactant bilayers argéential is decreased below 3.5, the formation of water-filled
equally stable. The low-temperature expansion method enpinholes in surfactant bilayers becomes energetically favor-
ployed in this work found that these dilute lamellar phasesable and the surfactant concentration is decreased. Low-
are never stable at nonzero temperature. However, Monteemperature analysis shows that the catenoid lamellar phase
Carlo simulation results to be presented in a subsequent p& never stable at nonzero temperature when compared to the
per have observed dilute lamellar phases for interaction pas andL, phases. This is because, although the addition of
rameter valug = 1.5. In fact, a lamellar phase with surfac- pinholes reduces the internal energy of the system, it also
tant number concentration as low as 0.07 has been observeelduces the surfactant concentration which in turn reduces
to be stablelQ’, IH, andIQ"” are stable up t6=0.21, 0.56, the entropy of the lamellar phase. However, fox 3.5 and
and 0.37, respectively. Due to the fact that these phases ate-0, the random formation of pinholes does occur in a
only stable at such low temperatures, they are not observestable lamellar phadd 7]. For u~3.5, the concentration of
in computer simulation studies. pinholes is small and the surfactant concentration of the
Figure 10 shows the phase diagram for the interactionamellar phase is only slightly reduced from its maximum
parametelj =3.0. The phase diagram is qualitatively similar value of3. The concentration of pinholes increases with de-
to the one forj = 1.5, with the exception that thd phase is creasingu, reaching its maximum value near thkL , co-
also stable. In addition to this, the thermodynamic range oéxistence boundary, where there can be a significant reduc-
stability of the ordered phases is much larger, with the tion in the surfactant concentration. At higher temperature
phase being stable up to a temperaturé=o#1.7. Although when theH phase is no longer stable and near el ,

R0 —
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FIG. 10. Temperaturet) vs chemical potentialg) phase dia-
gram for interaction parametgr=3.0.
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higher temperature than for lower valuesjoThel Q" phase

is not observed in our simulations, even though Fig. 11 in-
dicates that this phase is stable abowvel, implying that the
phase should be observable in Monte Carlo simulation. Of
course, the low-temperature approximation may not be valid
at this temperature since it does not take into account the
entropic gain that results from the dispersion of finite inverse
micelles when thd Q” phase melts into the disorder&i
phase. For this reason, the” phase may in reality be stable
only at temperatures much less than 1, making it unobserv-
able by computer simulation.

V. CONCLUSION

In this paper, binary mixtures of water and surfactants are
investigated using a simple Ising-like lattice model. The
FIG. 11. Temperaturet) vs chemical potentialg) phase dia- model extends the Ising model by giving a surfactant site a
gram for interaction paramet¢5.0. discrete set of orientations toward its nearest neighbors. It
mimics the amphiphillic property of surfactants by making it
phase boundary, the formation of larger water channels besnergetically favorable for a surfactant molecule to orient
comes favorable, and the surfactant concentration is datself toward water molecules. Although there are isotropic
creased even further until finally the order of the lamellarwater-water and surfactant-surfactant interactions, the model
phase is destroyed. This behavior is not observed 02, does not include orientation-dependent anisotropic water-
where the formation of water channels in surfactant bilayersvater and surfactant-surfactant interactions. Furthermore, it
is never favorable; hence at high temperature and with deseglects the structure of surfactant molecules by assuming
creasingu the lamellar phase becomes more dilute by in-that these molecules are point particles. Despite this, the
creasing the distance between surfactant bilayers. phase diagrams presented in Sec. IV exhibit a rich polymor-
The formation of water channels in surfactant bilayers ofphism. This suggests that the complex polymorphism ob-
a lamellar phase has recently been investigated by seversérved in binary mixtures of water and surfactants is due
authors. Monte Carlo simulation studig®0] of the Larson  mainly to their tendency to form water-surfactant interfaces.
lattice model have observed the formation of water channelét a given temperature, the phase behavior is determined by
in surfactant bilayers. More recently Netz and ScHigk] the water-surfactant interfacial free energy as well as by the
employed a self-consistent-field theory to investigate the stasurfactant concentratiofwhich in this model is controlled
bility of a lamellar phase perforated with hexagonally ar-by w). For j>2, cylindrical micelles(Fig. 1) are the most
ranged water channels. Unexpectedly, they found that thenergetically favorable micelles, and hence the hexagonal
water channels are hydrophobic, i.e., the surfactant molphase is the first ordered phase to become stable as the con-
ecules neighboring the water channels do not rearrangeentration increasggcreasingu). At higher surfactant con-
themselves to shield their tails from water. This is in contrastentration, the lamellar phase becomes stable even though
to a later Monte Carlo study by Muller and Schif&2], surfactant bilayers are not as energetically favorable as cy-
which found that the surfactants surrounding the channels diindrical micelles. This is because the amount of water-
rearrange themselves in order to shield their tails from watersurfactant interface is maximized in the lamellar phase, mak-
making the channels hydrophilic. In our model, the analysigng it stable in the surfactant concentration range between
of Sec. Ill found that the surfactants neighboring the pin-and 1. Increasing the surfactant concentration further, the
holes tend to orient their head groups toward the water channverselQ’, IH, and1Q"” phases become stable to accom-
nels, which is consistent with hydrophilic channels. This ismodate the high number of surfactant molecules. This behav-
also the case for larger water channels for which Montdor agrees with experimentally observed phase sequences.
Carlo simulation has found the channels to be hydrophilic, The stability of thelQ’ phase between the, and IH
which will be examined further in a subsequéh?] paper.  phase is significant, since inverse bicontinuous cubic phases
Figure 11 shows the phase diagram for the interactiorare commonly observed in experimental studies of water-
parameteij =5.0. Qualitatively, the phase diagram is similar amphiphile mixtureq24]. Despite the lattice constraint of
to the one forj =3, with the ordered phases being stable forour model, there is a striking similarity between @@’ and
a larger thermodynamic range. Formation of random wategyroid phases, suggesting that the gyroid structure may be as
channels in surfactant bilayers also occursder 3.5 at non-  universal a structure as the lamellar or the cylindrical. The
zero temperature, as indicated by Monte Carlo simulatiolow-temperature analyses of Sec. 1l show thatli@é phase
[17]. In addition to this, the intermediate phase is also has the lowest ground-state water-surfactant interaction per
predicted by low-temperature analysis to be stable in a smaflite (—3j/2), resulting in a large range of stability in the
thermodynamic range as indicated in Fig. 11. Thghase is zero-temperature phase diagréfig. 8). However, the fact
also observed in Monte Carlo simulation fp=5. The H that the phase does not possess a ground-state entropy results
and Q' phases as well as the, and IH phases are also in its small thermodynamic range of stability in theu
observed in Monte Carlo simulatiofis7]. This is because, at phase diagraniFigs. 9, 10, and 11 For this reason th&Q'
such highj, the ordered phases are stable up to a muclphase is only observed in Monte Carlo simulation for high
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The micellar and normal bicontinuous cubic phases argrams obtained by this method should be quite accurate, es-
not stable in our model. Since in this model, infinite cylin- pecially at low temperaturet€1). However, at higher tem-
drical micelles are more energetically favorable than finiteperature, near the phase boundaries between ordered and
micelles at low surfactant concentration, it is not surprisingdisordered phases, concentration and structural fluctuations
that the micellar cubic phase is not stable. Also it is nhotewor-occur, and the approximation is probably less valid. For ex-
thy that forj>2 water channels tend to form in surfactant ample, for thelL ,-W phase transition afj=1.5 andt>1,
bilayers of a stable lamellar phase. As discussed earlier, iMonte Carlo simulations show that the lamellar phase of
binary mixtures containing surfactants with very long alkyl concentratiorg unbinds with decreasing to form a dilute
tails, the intermediate phase betweenlhandL , phasesis lamellar phase of lower concentration before transforming
usually not theQ’ phase but a lamellar phase with water into a disordered sponge phase. Similarly, fer5 and att
channel defects in surfactant bilayers. The defects can have1, with decreasing: and near thed-W phase boundary,
two- or three-dimensional order, or be randomly dispersed imomputer simulations show that a stablephase of concen-
the bilayerd 3]. This suggests that, in our model, the absenceration § unbinds to form a lower-concentration phase of in-
of the Q' phase is compensated for by the presence of thénite cylindrical micelles that are not arranged in a two-
intermediate defective lamellar phase. dimensional array, before transforming into a disordered

Another interesting result is the fact that both inverse anghase consisting of dispersed spherical micelles. A related
noninverse phases are stable in our model. This is contrary toint is the formation of water channels in surfactant bilayers
most experimental observations in which either inverseof a stable lamellar phase fpr-2. As discussed earlier, for
phases or noninverse phases—but not both—are observetiese values of and at low temperature, the formation of
As discussed in Sec. I, this behavior is due to steric interacwater-filled pinholes occurs forn<3.5. However, at higher
tions between surfactant tail groups which favor inverseemperature and for<3.5, Monte Carlo simulations indi-
phases when the tail-tail interactions supersede the heaghte the formation of larger water channels which, with de-
group repulsions. Since our model considers surfactants to geasingu, results in melting of the lamellar phase into a
point particles, there are no anisotropic tail-tail interactionsdisordered phase. These behaviors are not predicted by the
and hence inverse phases occur naturally at high surfactasimple low-temperature analyses, and are investigated by
concentrationhigh w). Monte Carlo methods to be presented in a subsequent paper

As mentioned earlier, the low-temperature analyses em-17].
ployed in this work assume that the ordered phases retain
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while allowing orientational fluctuations of the surfactant
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