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Inhomogeneous magnetization in dipolar ferromagnetic liquids

B. Groh and S. Dietrich
Fachbereich Physik, Bergische Universita¨t Wuppertal, D-42097 Wuppertal, Federal Republic of Germany

~Received 3 December 1997!

At high densities fluids of strongly dipolar spherical particles exhibit spontaneous long-ranged orientational
order. Typically, due to demagnetization effects induced by the long range of the dipolar interactions, the
magnetization structure is spatially inhomogeneous and depends on the shape of the sample. We determine this
structure for a cubic sample by the free minimization of an appropriate microscopic density functional using
simulated annealing. We find a vortex structure resembling four domains separated by four domain walls
whose thickness increases proportional to the system sizeL. There are indications that for largeL the whole
configuration scales with the system size. Near the axis of the mainly planar vortex structure the direction of
the magnetization escapes into the third dimension or, at higher temperatures, the absolute value of the
magnetization is strongly reduced. Thus the orientational order is characterized by two point defects at the top
and the bottom of the sample, respectively. The equilibrium structure in an external field and the transition to
a homogeneous magnetization for strong fields are analyzed, too.@S1063-651X~98!12604-1#

PACS number~s!: 75.50.Mm, 64.70.2p, 75.70.Kw, 61.30.Cz
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I. INTRODUCTION

At high densities strongly dipolar fluids can exhibit a
orientationally ordered liquid phase characterized by a sp
taneous magnetization. This has been demonstrated fo
first time by Monte Carlo simulations of dipolar soft spher
by Wei and Patey@1,2# and has been confirmed by simul
tions of hard spheres@3–5# and of Stockmayer fluids@6#.
Theoretical approaches leading to the same conclusion
clude a mean-field theory for a dipolar lattice gas@7#, a gen-
eralized van der Waals theory@8#, and different kinds of
density-functional theory@9–11#. At low densities the typical
configurations of dipolar fluids exhibit chain formation@12–
14,5#, which may inhibit the phase transition from the is
tropic vapor phase to the isotropic liquid phase@15–18#. If
the dipole moments areelectric as in molecular liquids the
orientationally ordered phase exhibits a spontaneous po
ization; in the case ofmagneticdipoles as in ferrofluids, i.e.
colloidal suspensions of permanently ferromagnetic p
ticles, one speaks of ferromagnetic order and a spontan
magnetization. In this paper we adopt the magnetic langu
keeping in mind that completely analogous phenomena o
in the electric case~as long as no free charge carriers a
present in the fluid!.

In both simulations and analytic theories the dipo
forces must be treated carefully due to their long ran
which may give rise to effects depending on the shape of
sample. It turns out that for all sample shapes with the
ception of a long needle the equilibrium configuration is
homogeneous with a spatially varying magnetizationM (r )
@19,20#. This leads to a shapeindependentfree energy, as is
expected on general grounds@21#. The highly nontrivial
problem to determine explicitly the spatial distribution
this inhomogeneous magnetization for a given sample sh
has not yet been solved satisfactorily. In simulations usu
a homogeneous magnetization is enforced by using an
nitely permeable surrounding of the periodically repea
simulation cells. If instead the sample is surrounded
571063-651X/98/57~4!/4535~12!/$15.00
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vacuum the simulation cell splits into two domains with o
posing magnetizations@2#. But this structure is clearly in-
duced by the artificial periodic boundary conditions. We a
dressed this problem recently@20# for the experimentally
more relevant case of open boundaries and obtained the
lowing general characterization of the equilibrium config
rations: On a macroscopic scale the absolute value ofM (r )
is constant, its divergence is zero, and at the surfaces
normal component vanishes. However, these properties
not yet enable one to construct the configuration for a giv
shape. For a cubic sample we determined@20# the most
stable configuration under the constraint of sharp dom
boundaries. It consists of four triangular domains with 9
domain walls in between. In contrast to solid ferromagn
the number of domains does not increase with the sys
size, but remains as small as possible. On the other hand
assumption of sharp domain boundaries is not justified
liquid systems. Due to the lack of a lattice anisotropy o
rather expects very thick domain walls@22#.

Therefore, in order to analyze the domain configuration
more detail in the present work we have performed a num
cal minimization of an approximate microscopic dens
functional that has been used before@10,11,20# to describe
the ferromagnetically ordered fluid. We have made noa pri-
ori assumptions regarding the symmetry of the domain str
ture and have minimized with respect to a large num
(104–105) of parameters that represent the local magnet
tion at mesh points within the sample. This approach is si
lar in spirit to the determination of the magnetization stru
ture of solid ferromagnetic particles of micrometer size in t
framework of micromagnetic theory@23–25#. But there are
two main differences. First, we do not constrain the abso
value of the magnetization, thus allowing for the formati
of less ordered regions. Second, we work on the microsco
scale determined by the particle diameter, which enable
to examine in detail the overall structure as well as the str
ture of domain walls and the cores of topological defects

A brief account of some of our results has been publish
4535 © 1998 The American Physical Society
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4536 57B. GROH AND S. DIETRICH
in Ref. @26#. Here we provide the important derivation of th
functional from the underlying model, discuss the impleme
tation of the simulated annealing, and give a thorough an
sis of the resulting configurations. We also analyze the c
sequences of the necessary discretization and of the fi
sample size. Furthermore we discuss in detail the orie
tional structure in an external field, which is relevant for t
experiments with the recently discovered metallic liquid f
romagnets@27–29#.

II. MODEL AND THEORETICAL APPROACH

A. Density-functional theory for Stockmayer fluids

We consider Stockmayer fluids consisting of spheri
particles with fixed embedded point dipoles that interact
pairwise dispersion and dipolar forces. The interaction
tentialw5wLJ1wdip is the sum of the Lennard-Jones pote
tial

wLJ~r 12!54eF S s

r 12
D 12

2S s

r 12
D 6G ~1!

and the dipolar potential

wdip~r12,v,v8!5
m2

r 12
3 @m̂~v!•m̂~v8!23„m̂~v!• r̂12…

3„m̂~v8!• r̂12…#Q~r 122s!. ~2!

r125r2r 85r 12r̂12 denotes the interparticle vector,v
5(u,f) andv8 are the orientations of the dipole momen
at r and r 8, respectively, withm5umu; carets indicate unit
vectors. At short distances the interaction is cut off by
Heaviside functionQ.

In order to study the spatially inhomogeneous configu
tions within a ferromagnetically ordered fluid we employ t
density-functional theory introduced in Ref.@30# and for
which we have worked out analytical results previou
@10,11,20#.

The configurations of the fluid are described by the s
tially constant number densityr and the normalized orienta
tional distributiona(r ,v) so that the probability density fo
finding a particle at pointr with the orientationv is
r̂(r ,v)5ra(r ,v). The free energy density functional
given by

F„r,@a~r ,v!#;T…5V fHS~r,T!1For1Fex1FH . ~3!

V is the sample volume andf HS is the free energy density o
the hard sphere reference system characterized by an e
tive temperature dependent radius@30#. The second term
@b51/(kBT)#,

For5
r

bEV
d3r E dva~r ,v!ln@4pa~r ,v!#, ~4!

takes into account the loss of entropy if the orientatio
distribution is not isotropic, i.e., different from 1/(4p). Here
and in the following the integrations over the anglesv are
taken over the unit sphere. For the excess contributionFex
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due to the long-ranged part of the interaction potential
apply the low-density approximation for the pair distributio
function, which yields@30#

Fex52
r

2bEV
d3r E

V
d3r 8E dvdv8a~r ,v!a~r 8,v8!

3Q~r 122s! f̃ ~r12,v,v8! ~5!

with the Mayer function

f̃ ~r12,v,v8!5211exp@2bw~r12,v,v8!#. ~6!

We regard this approximation as a first step towards an a
lytic quantitative theory of dipolar liquids. Improvemen
that employ pair distribution functions obtained from integ
equation theories have been worked out for homogene
dipolar fluids@31# but are numerically too demanding for th
inhomogeneous case examined here.

The Mayer function in Eq.~6! can be expanded in term
of the rotational invariants@C( l 1l 2l ,m1m2m) are Clebsch-
Gordan coefficients#

F l 1l 2l~v,v8,v12!5 (
m1 ,m2 ,m

C~ l 1l 2l ,m1m2m!

3Yl 1m1
~v!Yl 2m2

~v8!Ylm* ~v12! ~7!

with coefficientsf̂ depending only on the distance betwe
the particles:

f̃ ~r12,v,v8!5 (
l 1l 2l

f̂ l 1l 2l~r 12!F l 1l 2l~v,v8,v12!. ~8!

Finally, the interaction energy with a homogeneous exter
field H is

FH52rmHE
V
d3r E dva~r ,v!cosg, ~9!

whereg is the angle betweenv and the direction of the field
We take into account the external potential due to the c
tainer walls only summarily in that they provide the confin
ment of the fluid toV because we are interested in thebulk
behavior of the fluid. In this spirit we also do not consid
spatial variations of the number densityr(r )5*dvr̂(r ,v)
in the vicinity of the walls. Moreover, in Eqs.~3!–~9! we
have assumed thatr(r ) is constant throughout the samp
even ifa(r ,v) varies deep inside the sample. We expect t
due to the small compressibility of the fluid in the orient
tionally ordered phase possible variations ofr(r ), e.g., in-
side the domain walls, are only small and thus not sign
cant.

In the next step the orientational distribution is expand
into spherical harmonics:

a~r ,v!5(
l 50

`

(
m52 l

l

m lm~r !Ylm~v! ~10!
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57 4537INHOMOGENEOUS MAGNETIZATION IN DIPOLAR . . .
with m0051/A4p due to the normalization*dva(r ,v)51
andm lm* 5(21)mm l ,2m becausea is real. Inserting Eqs.~8!
and ~10! into Eq. ~5! one finds for the excess free energy

Fex52
r2

2b
(

l 1 ,l 2 ,l
(

m1 ,m2 ,m
C~ l 1l 2l ,m1m2m!

3E
V
d3r E

V
d3r 8m l 1m1

~r !m l 2m2
~r 8! f̂ l 1l 2l~r 12!Ylm~v12!.

~11!

In order to make the free minimization of the density fun
tional with respect to the set$m lm(r )% numerically feasible
we must refrain from determining the full orientational di
tribution a(r ,v) at each pointr . Instead we focus on the
reduced information provided by the dimensionless lo
magnetization

M ~r !5E dfdu sinua~r ,v!S cosf sinu
sinf sinu

cosu
D

5S 2A2 Rem11~r !

A2 Imm11~r !

m10~r !
D 5S M1~r !

M2~r !

M3~r !
D . ~12!

@The actual magnetization isM(r )5A4p/3rmM (r ).# Thus
M (r ) can be obtained from the orientational distributi
a(r ,v) and denotes the spatially varyingthermal averageof
the fluctuating dipole moment. The above restriction impl
that in Eq.~10! only terms up tol 51 have to be taken into
account. Within this approximation those contributions to
excess free energy which depend on the orientational o
are given by

DFex5Fex
~110!1Fex

~112!

5
r2

2b

1

A12p
E

V
d3r E

V
d3r 8M ~r !•M ~r 8!

3Q~r 122s! f̂ 110~r 12!

1
r2

2b
A 5

24pEV
d3r E

V
d3r 8M ~r !T̂~ r̂12!M ~r 8!

3Q~r 122s! f̂ 112~r 12! ~13!

with the tensorT̂i j ( r̂ )5d i j 23r̂ i r̂ j . We note that in contras
to Ref. @20# we do not have to separate long- and sho
ranged contributions tof̂ 112 because within our numerica
approach we are always dealing with finite systems with
carrying out the thermodynamic limit. Analytic expressio
for the functionsf̂ 11l are provided by Eqs.~B33! and ~B34!
in Ref. @30# from which one obtains the following expan
sions in terms ofm2:
-

l

s
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t

f̂ 110~r !52
8p

25
A4p

3
e2bwLJ~r !

b3m6

r 9
1O~m10!, ~14!

f̂ 112~r !5~4p!3/2A 2

15 F ~12e2bwLJ~r !!
bm2

r 3

1
6

25
e2bwLJ~r !

b3m6

r 9
1O~m10!G .

To lowest order inm2 the functionf̂ 112(r ) contains the char-
acteristic dependence;r 23 of the dipolar potential wherea
the function f̂ 110 arises only due to the cubic and high
order terms in the expansion of the Mayer function.@For the
actual calculations we have used the full expressions
given in Ref.@30# instead of the expansions in Eq.~14!.#

In the following we specifically analyze a cubic volum
of side lengthL containing the fluid. The spatial integration
are discretized by introducing a~simple cubic! lattice with
lattice constant a5L/N and lattice vectors R
5a(n1 ,n2 ,n3), with niP$2(N21)/2, . . . ,2 1

2 , 1
2 , . . . ,

(N21)/2% (N is even!, so that

DFex5
r2

2b
a6(

R
(
R8

(
i , j

M i~R!wi j ~R2R8!M j~R8!.

~15!

The interaction tensorwi j is given by

wi j ~R!5A 5

24p
Q~R2s!FA2

5
f̂ 110~R!d i j

1 f̂ 112~R!~d i j 23R̂i R̂j !G , i , j 51,2,3, ~16!

so thatwi j (2R)5wi j (R). ~The value ofs/a is taken to be
noninteger; otherwise there are distances between la
points that correspond to the discontinuity of the Heavis
function.! An alternative formulation, which will prove to be
helpful later on, is

DFex5
r2

2b
a3(

R
(

i
Hi~R!Mi~R! ~17!

with the local fields

Hi~R!5a3(
R8

(
j

wi j ~R2R8!M j~R8!. ~18!

The entropic term given by Eq.~4! can be simplified us-
ing the fact that by applying a suitable rotation the orien
tional distribution at a given pointr can be cast into the form

a~r ,v!5
1

4p
1M ~r !A 3

4p
cosu ~19!

with M (r )5uM (r )u. Due to the angular integration in Eq.~4!
this rotation does not alter the value ofFor so that
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4538 57B. GROH AND S. DIETRICH
For5
r

bEV
d3r E dvS 1

4p
1M ~r !A 3

4p
cosu D

3 ln~11M ~r !A12pcosu!. ~20!

The expansion of the logarithm yields in the discrete vers

For5
r

b
a3(

R
(
n51

`
@A12pM ~R!#2n

~2n21!2n~2n11!

5
r

b
a3(

R
s„M ~R!…. ~21!

Finally, the term due to the external field, which is taken
point into thez direction, is

FH52A4p

3
rmHa3(

R
M3~R!. ~22!

Thus the free energy differenceFi f between the ferromag
netic and the isotropic phases is

Fi f 5For1DFex1FH , ~23!

where the individual terms are given by Eqs.~15!, ~21!, and
~22!, respectively.

B. Simulated annealing

We have minimized the free energy in Eq.~23! with re-
spect to the magnetization configuration$M (R)% by using
the simulated annealing algorithm@32#. In the first step the
interaction tensorwi j is determined once for all relevant dis
tances between the lattice sites withinV5L3. In the second
step the local fieldsHi(R) are calculated for an initial choic
of the configurationM ~ini!(R) according to Eq.~18!. In each
following step a lattice siteR0 is chosen and a new magn
tization M 8(R0) is proposed by changing each compone
i 51,2,3 by a random valueDMi5Mi8(R0)2Mi(R0) be-
tween2kM (R0) and1kM (R0) (k50.1 turned out to be a
suitable choice!. The resulting change in free energy is

DFi f 5
r

b
a3Fs„M 8~R0!…2s„M ~R0!…1(

i
Hi~R0!DMi G

2A4p

3
rmHa3DM3 . ~24!

There is no term quadratic inDMi due to wi j (R50)50.
The proposed change of the configuration is accepted
certainty if DFi f is negative and with a probability
exp@2DFif /(kBTs)# if it is positive. Ts is the control tempera
ture of the annealing algorithm, which is decreased slo
during the minimization. In case of acceptance the new fi
Hi8(R) at each site is calculated according to@see Eq.~18!#

Hi8~R!5Hi~R!1a3(
j

wi j ~R2R0!DM j . ~25!

The time required for this computational step, which is co
suming most of the CPU time, is of the orderO(N3). The
n

t

th

y
ld

-

advantage of using the local fields is that they need not
updated if the proposed change is rejected, which happ
quite often especially at low control temperatures near
end of a run, while the acceptance decision itself can
reached very fast.

The control temperature is lowered by a factor of 0.
after 3N3 successful changes or 15N3 trials. The algorithm is
terminated if no successful step occurred during the 15N3

trials. With the assumption that the number of temperat
steps is independent ofN the total computing time should
scale asN6. Actually we found a scaling exponent between
and 7. Typical CPU times for one run on a DEC alpha wo
station were 3.2 h forN516 and 25 h forN522.

The minimizing configurations can be found starting fro
completely random initial states, but this requires a relativ
large initial value ofTs and therefore very long runs. For th
reason we started in almost all cases from a configura
that had been obtained as a minimum for other param
values. It is partly randomized during the first phase of
algorithm by applying an appropriate initial control temper
ture so that a large fraction of proposals is accepted.
testing in some cases different starting configurations
took care not to bias the final result by a prejudiced init
guess.

III. RESULTS AND DISCUSSION

A. Magnetization structure

As our standard values of the thermodynamic parame
we chosem* 5Am2/s3e51.5, T* 5kBT/e52.25, andr*
5rs350.94. This leads to a thermodynamic state th
within the present density-functional theory approximatio
lies deep in the ferromagnetic liquid phase. In view of t
numerical challenges described in Sec. II B we have exa
ined system sizesL* 5L/s between 4.8 and 12 using lattice
consisting ofN510,12, . . . ,24sites in each dimension.~Al-
though we used an ordinary workstation our maximum s
tem size is even 30% larger than the system consisting of3

sites examined by Williams and Dunlop@24# on a supercom-
puter in 1989.!

The result of a minimization run is a three-compone
vector fieldM (R) representing the magnetization structu
within the cubic volume. In order to visualize this field w
display sections parallel to the faces of the cube with
magnetization projected onto the section plane. Since
component is lost due to this projection the absolute va
uM (R)u cannot be inferred from these figures. We adop
reference frame that has its origin in the center of the cu
Figure 1~a! shows a section perpendicular to thez axis at
z* 5z/s50.18.0, i.e., close to the center of the cube, f
L* 57.2 andN520. The overall picture is that of a vortex o
closed magnetization lines circulating around thez axis. In
this context it is interesting to note that clusters of some
to 100 dipolar particles also exhibit a vortex structure at l
temperatures@33,34#. This structure leads to divH50 for
the resulting magnetic fieldH. A closer look at the structure
in Fig. 1~a! reveals that it may be described as composed
four domains with an approximately constant magnetizat
separated by broad domain walls along the diagonals of
square within which the direction ofM changes continu-
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57 4539INHOMOGENEOUS MAGNETIZATION IN DIPOLAR . . .
ously. This configuration resembles the triangular struct
that has been found to be the most stable structure unde
constraint ofsharp domain walls@20#. A similar structure
has also been found to be the most favorable one in c
magnetite particles just above the critical single-domain s
while more complicated structures occur in this case
larger particles@24,25#. In a section near the bottom of th
cube@z* 523.06.2L* /2, Fig. 1~b!# the domain walls are
slightly shifted off the diagonals into the direction oppos
to the circulation. The reverse situation is found near the
However, in contrast to the triangular structure studied
Ref. @20#, the magnetization is not confined to a plane.
can be seen in the sections perpendicular to they axis in Fig.
2 there is a nonvanishingz component, leading to an ‘‘es
cape into the third dimension,’’ which is particularly pro

FIG. 1. Sections perpendicular to thez axis through the magne
tization structure of a ferromagnetic liquid in a cubic volume~for
L* 57.2 andN520); ~a! section planez* 50.18 near the midplane
~b! section planez* 523.06 near the bottom. Here and in the fo
lowing the arrows represent projections onto the section plan
the local magnetization~at the midpoint of the arrows!, which is the
thermal average of the dipole moments of particles at this poin
e
the

ic
e,
r

p.
n

nounced near the vortex axis@Figs. 2~b! and ~c!#. This
mechanism avoids the formation of a topological def
along thez axis. This is in accordance with general cons
erations showing that line singularities are topologically u
stable in a system of three-component spins in three sp
dimensions@35#, which means that they can always be r
moved by continuouslocal modifications. However, near th
top and the bottom faces of the cube thez component de-
creases in order to avoid a large normal component at
surface that would produce an unfavorable demagnetiza

of

FIG. 2. The same as in Fig. 1, but sections perpendicular to
y axis; ~a! y* 521.62, ~b! y* 520.54. The schematic drawing in
~c! demonstrates the mechanism of the ‘‘escape into the third
mension,’’ which avoids the formation of a topological line defe
along thez axis. u denotes the polar angle of the magnetizatio
„The increase ofu to values larger thanp/2 close to the sample
edges@see Fig. 4~b!# is not shown.…
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4540 57B. GROH AND S. DIETRICH
field @20#. Thus two topologically stable point singularitie
near the centers of the bottom and top surfaces are inevit
A closer look at the magnetization structure reveals a str
decrease of the absolute value ofM in the core of these
defects~see Fig. 3!. The fact that the size of this less order
core also scales with the system size underlines the im
tance of including the absolute value of the magnetization
a minimization parameter. If instead the assumption of c
stant magnitude ofM were applied, as is usually done in th
micromagnetic theory, the defect could not be described
rectly even on a mesoscopic scale.

Very similar structures have been found for all values
L andN. In Fig. 4 we compare the ‘‘degree of escape’’ f
different system sizes with fixedN520. The cosine of the
polar angle ofM (cosu5M3 /M) is plotted as a function o
the distancer 5Ax21y2 from the center along the diagona
~i.e., the linesx56y with z5const) and the center line
~i.e., the linesx50 andy50 with z5const). With the ex-
ception of the smallest system the scaling property

M ~r /s,L/s!5M ~0!~r /L ! ~26!

is approximately fulfilled, so that one can surmise that t
holds also in the thermodynamic limit.~SinceM is dimen-
sionless, for a given thermodynamic state it can only dep
on r /s and L/s.! The functionM (0) represents the globa
texture in the thermodynamic limit. Near the edges of
cube, i.e., near the corners in the projection plane, there i
escape into the opposite direction, but combined with
strong decrease of the absolute value of the magnetiza
~see Fig. 5!. Upon moving outwards from the center cou
decreases faster along the diagonals than along the c
lines, indicating that there is not a circular but rather a squ
symmetry.

In the inner part of the sample the absolute valueM (R)
5uM (R)u ~Fig. 5! is approximately constant and indepe
dent ofL. It decreases near the surface and near the ed
This less ordered surface layer thickens relative to the sys
size asL decreases. Here, too, scaling with the system s
for large L @Eq. ~26!# is compatible with the data. In th

FIG. 3. The absolute value of the dimensionless magnetiza
near the point defect at the center of the bottom face of the cube~for
L* 57.2 andN524). uM u is plotted as a function of the distanc
from thez axis along lines parallel to thex or y axis for a series of
fixed values ofz @compare the casez.0, Fig. 5~a!#. One finds a
pronounced decrease ofuM u near the core of the point defect.
le.
g

r-
s
-
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f

s
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e
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a
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m
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smallest system we studied (L* 54.8) M decreases also nea
the center, which indicates a second mode for avoiding a
singularity besides the ‘‘escape into the third dimension
This mode appears also for the larger systems near
ferromagnetic-isotropic phase transition and might be
duced by the proximity of this transition forL* 54.8 ~see
Sec. III C!. In Fig. 6 we present the average magnetizat
within each plane parallel to thexy plane ^M &xy(z)
5N22(n1 ,n2

M (n1a,n2a,z) as a function of the heightz.
Again there is a clear decrease near the surfaces while in
central region̂ M &xy is constant. The average^M &xy attains
its thermodynamic limitL→` more rapidly than cosu or
M (R) ~see Figs. 4 and 5!. For smallL the surface disordered
region shrinks on the scale ofL but in the thermodynamic
limit it remains proportional toL. For largeL we find for the
excess quantity*2L/2

L/2 dz@^M &xy(0)2^M &xy(z)#/^M &xy(0)
.0.08L.

As shown in Fig. 7 the minimum value of the free ener

n

FIG. 4. The cosine of the polar angle of the magnetizat
(cosu5M3 /M) along~a! the center and~b! the diagonal lines within
a plane close to the midplane (z52a/2, with the lattice constant
a5L/N) for N520 and different system sizesL* . r 5Ax21y2 is
the distance from the center of the cube;r /L<0.5 for the center
lines ~a! andr /L<1/A250.707 for the diagonals~b!. The values of
cosu are averaged over the four equivalent sites for each valu
r /L. The magnetization ‘‘escapes’’ into the positivez direction near
the center (cosu→1), lies in plane (cosu50) near the sample sur
faces~center lines!, and turns into the negativez direction (cosu
521) near the edges. Except for the smallest system (L* 54.8) the
proposed scaling with the system size@see Eq.~26!# is fulfilled
approximately, i.e., in the limitL@s two master curves evolve, on
for the center lines and one for the diagonals.
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density f i f* 5(Fi f /L3)(s3/e) exhibits a relatively strong, os
cillatory dependence on the lattice constanta5L/N with a
decreasing amplitude for increasing values ofN. This figure
reveals that minima occur whena/s5L* /N is close to the
inverse of an integer, which indicates a strong discretiza
effect. For the larger values ofL we could not reach the

FIG. 5. The absolute valueM of the dimensionless magnetiza
tion M for the same parameters as in Fig. 4 averaged over~a! the
four center lines and~b! the four diagonals. With the exception o
the smallest systemM is approximately constant in the bulk an
decreases near the surfaces. ForL@s the behavior turns into a
single master curve consistent with the proposed scaling@Eq. ~26!#.

FIG. 6. Averaged absolute valuêM &xy of the magnetization
within the planesz5const forN520 and several system sizes. It
constant in the inner part of the sample and decreases nea
bottom and top surfaces. The size of the disordered region rem
proportional toL for largeL.
n

region where the oscillations have died out, which inhibit
further finite-size analysis. Similar oscillations were found
the spatially averaged value ofM (R) and forL* 54.8 also
in the degree of the rotation out of the plane. The precision
which the minimum value off i f* can be determined by simu
lated annealing for a given set of parameters is much hig
than the discretization effect described above; from the
pendencef i f* (Ts) we estimate the minimization error to be o
the order of 0.01.

B. Domain walls

In solid ferromagnets the walls between adjacent doma
have a microscopic thickness~i.e., it does not scale with the
system size! which is determined by the competition be
tween the exchange energy resulting from the spin coup
and the anisotropy energy due to the lattice structure
causes easy axes for the magnetization. Since there i
such lattice anisotropy in liquid ferromagnets de Gennes
Pincus@22# surmised that consequently there are also no
main walls. Below we shall argue that in the case of cu
samples as considered here the thickness of the domain w
is proportional to the system size and thus diverges in
thermodynamic limit. Thus one is left with a question
terminology whether one still speaks of walls, but certain
the behavior is qualitatively different from that in solids.

In order to analyze the properties of the fluid doma
walls in the finite cube we consider the behavior of the
mensionless magnetizationM along straight paths normal t
the wall. Along these pathsM changes continuously betwee
the magnetization directions of the adjacent domains. In
present case these domains have the quasitriangular stru
indicated in Fig. 1~a! so that the orientational order betwee
neighboring domains differs by an angle ofp/2. Except near
the vortex axis we find a Ne´el type of wall, i.e., the magne
tization vector rotates mainly within the plane spanned
the asymptotic orientations deep inside the adjacent doma
in Fig. 1~a! this is thexy plane. In contrast, in bulk solid
ferromagnets one usually observes Bloch walls with
magnetization vector rotating out of plane on a cone aro

the
ins

FIG. 7. Reduced free energy difference between the isotro
and the ferromagnetic phasef i f* 5(Fi f /L3)(s3/e) as a function of
the lattice constanta/s5L* /N of the discretization mesh for thre
system sizes. The finite lattice constant induces minima~maxima!
near the points where the inverses/a5N/L* is an integer~one-
half plus an integer!. These oscillations die out fora→0.
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4542 57B. GROH AND S. DIETRICH
the wall normal@36#; only in thin solid films@36# and small
particles@24# Néel walls do occur too. In Fig. 8 the relevan
transversal componentMt,xy5(M11M2)/A2 is shown as a
function of the normal coordinaten.

We define the wall thicknessd as the distance betwee
the points where the tangent to the curve at its inflect
point reaches the extreme values ofMt,xy ~see Fig. 8!. The
dependence ofd on the distancer of the wall normal from
the center of the cube is displayed in Fig. 9~all paths lie in
the planez52a/2, i.e., close to the center of the cube!. The
wall thickness decreases near the edge of the cube wher
normal paths hardly reach the region of homogeneous m
netization~see Fig. 1!. The thickness increases near the ce
ter r 50 due to the ‘‘escape’’ region@see Fig. 2~c!#. How-
ever, it is approximately constant in the ranger /L
50.2, . . . ,0.35 and there is no monotonic trend as a fun

FIG. 8. Variation of the transversal magnetization compon
Mt,xy5(M11M2)/A2 upon traversing the domain wall along
normal to the wall through the pointR0 /s5(21.95,21.95,
20.15) ~see the inset! for L* 57.2 andN524 @compare Fig. 1~a!#.
This is the component that characterizes the difference of the m
netization directions of the adjacent domains. Our definition of
wall thicknessd can be inferred from the figure. Herer /L50.38.

FIG. 9. Dependence of the domain wall thicknessd on the dis-
tancer from the center of the planez52a/2.0 ~i.e., close to the
midplane! for L* 57.2 and different numbers of lattice pointsN,
averaged over the four equal walls in the cube~see Fig. 8!. In the
medium range ofr the thicknessd depends only weakly onr and
N, while near the center and edgesd is influenced by the escape o
the orientation into thez direction and the vicinity of the surfaces
respectively.
n

the
g-
-

-

tion of the number of lattice sites. Its dependence on
system sizeL is analyzed in Fig. 10. Here we selected t
values ofd at ~or, due to the discrete lattice, close to! r /L
51/23/2 corresponding to half the distance between the c
ter and the edge. For each sizeL we display the results
obtained for different values ofN which render an estimate
of the uncertainty caused by the finite lattice constana
5L/N. A slight decrease ofd/L with increasingL indicates
that the domains are getting sharper. However, most p
ably the data can be extrapolated to a finite limit ofd/L for
L→`, which would be in accordance with the propos
scaling behavior in Eq.~26!.

C. Temperature dependence and critical point

Starting from the standard valueT* 5kBT/e52.25 used
up to here we have increased the temperature at the fi
densityr* 50.94 in order to examine the structural chang
upon approaching the ferromagnetic-isotropic transition.
have chosenN516 and studied the system sizesL* 54.8
and L* 59.6. The spatially averaged absolute value of
magnetization decreases and finally vanishes at a temp
ture Tc(L) in accordance with the inherent mean field a
proximation~see Fig. 11!. ~We define the finite-size critica
temperature as the limiting temperature above which no c
figurations with a negative free energy differenceFi f are
found by the minimization algorithm.! As expected this
finite-size ~strictly speaking quasi-! critical temperature is
lower for smaller systems. From Eq.~7.10! in Ref. @11# we
infer Tc* (L→`)53.04 for the parameters used here. T
evolution of the magnetization structure is analyzed in Fi
12 and 13 forL* 59.6. The escape into thez direction near
the vortex axis is strongly reduced at higher temperatu
~Fig. 12! while the absolute value of the magnetization
this region decreases more rapidly than for intermediate
ues of r /L ~Fig. 13!. Thus a column of less ordered flui
develops around the vortex axis. These effects are even m
pronounced in the smaller system, as has been already
gested by Figs. 4 and 5. Furthermore Fig. 13 demonstr
that the surface layer with reduced orientational order thi

t

g-
e

FIG. 10. The wall thickness at half distance between the ce
and the edges of the cube as a function of the system sizeL. The
different points at the sameL correspond to different lattice con
stants.~From top to bottom:L* 54.8,N510,12,14,16,20,18,22,24
L* 57.2, N514,12,18,10,22,16,20,24; L* 59.6, N
518,14,16,24,20,22;L* 512, N522,20.! The extrapolation to 1/L
50 suggests a finite value ofd/L in the thermodynamic limit.
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57 4543INHOMOGENEOUS MAGNETIZATION IN DIPOLAR . . .
ens, which is a consequence of the increasing correla
length upon approaching the phase transition. The dom
wall thickness as defined in the preceding subsection
increases slightly but this change is smaller than the un
tainty caused by the finite lattice constant.

IV. EXTERNAL FIELD

Up to now all results refer to zero external field. If a
external field is applied the dipolar particles tend to ali
along the field direction. The resulting transition from t
inhomogeneous zero-field configuration to the homo
neously magnetized state in the presence of strong fields
also be examined within the present approach.

The field destroys the equivalence of the three perp
dicular directions of the cubic axes.@One should keep in
mind that belowTc(L) this equivalence is alsospontane-
ouslybroken in zero field.# We have applied the field norma
to the surfaces of the cube either parallel or perpendicula
the spontaneously chosen vortex axis of the zero-field c
figuration, which was used as an initial guess for the m

FIG. 11. The squared spatially averaged order param
^uM u&25@N23(RuM (R)u#2 decreases linearly with increasing tem
peratureT* . It vanishes at a critical temperatureTc(L), which de-
pends on the system size. This linear behavior holds even ou
the close vicinity ofTc(L) where it has to be so due the inhere
mean-field character of the present theory.

FIG. 12. The polar angle ofM @see Figs. 2~c! and 4# along the
central lines near the midplane~fixed z52a/2 as in Fig. 4! as a
function of the temperature forL* 59.6 andN516. The escape
near the vortex axis reduces upon approaching the critical p
Tc* (L* 59.6)52.89.
n
in
so
r-

-
an

n-

to
n-
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mization algorithm. The most stable configurations we
found when the external field is parallel to the vortex ax
~In principle, equivalent but rotated configurations should
obtained if at the beginning of the algorithm the field
applied perpendicular to this axis. Since, however, only
medium value for the initial control temperature was e
ployed, for this latter choice of the initial guess the syste
could not reach the equilibrium structure, which in this ca
differs significantly from the initial configuration.! The rela-
tive stability of the resulting configurations can be judged
the basis of the corresponding value of the free energy
typical result is depicted in Figs. 14 and 15. The sect
parallel to thexy plane, i.e., perpendicular to the extern
field, exhibits smaller absolute values of the magnetizat
components orthogonal to the field direction than forH50
~Fig. 14!, but the structure is very similar. On the other ha
there is a substantial increase of the magnetization com
nent parallel to the field as shown in the sectionsy5const in
Fig. 15. Thus the overall structure is essentially preserv
but at each point the magnetization is rotated into the fi
direction by a certain amount. This demonstrates that
behavior, which was anticipated in Ref.@20#, corresponds
indeed to the equilibrium configuration. If the field is suffi
ciently strong the vortex structure is lost at a critical fie
strengthHc . This is shown in Fig. 16 by the field depen
dence of the averaged parallel component^M i&
5N23(RM3(R) and of the angular component̂Mw&
5N23(Rew(R)•M (R), where ew(R)5(R2 ,2R1,0)/uRu.
Below Hc the parallel component increases approximat
linearly @20# while the angular component decreases a
vanishes atHc ~apparently linearly inHc2H). The absolute
value of M increases almost homogeneously over
sample. A surface layer of lower magnetization is preser
even in the presence of strong fields. AboveHc the increase
of ^M i& is only due to the increase ofuM u and will saturate in
the limit H→`.

These results should be compared with those of a mic
magnetic calculation for isotropicspheresby Aharoni and
Jakubovics@37#. They were intended as a first step in mo
eling amorphous solid ferromagnets, but due to the assu

er

de

nt

FIG. 13. The absolute value of the magnetization along the
agonal lines~for fixed z52a/2) at various temperatures. The di
ferent line styles correspond to the same temperatures as in Fig
Near the phase transitionTc* (L* 59.6)52.89 the orientational or-
der is particularly reduced near the vortex axis and in a surf
layer of increasing thickness.
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4544 57B. GROH AND S. DIETRICH
tion of a vanishing anisotropy constant they should also b
interest for liquid ferromagnets. These authors find a vor
structure with the axis parallel to the external field too. In t
center of the vortex the magnetization points into the fi
direction, also forH→0. However, for the cube this contr
bution to the net magnetization is compensated by the op
site orientation of the magnetization near the edges@see Fig.
4~b!#. This implies that for cubeŝ M i&.0 for H→0,
whereas for spheres a spontaneous net magnetiz
^M i&(H→01)52^M i&(H→02)Þ0 remains in the limits
H→06. This discontinuity atH50 yields an infinite zero
field susceptibility. Thus spontaneous liquid ferromagneti
should be easier to detect by macroscopic magnetiza
measurements in spherical than in cubic samples.

The same transition between an inhomogeneous an
nearly homogeneous state arises when the external fie
kept fixed and the temperature is varied. As shown in Fig.
the angular magnetization component decreases with
creasingT and vanishes at a critical temperatureTc(H),
which is lower thanTc(H50) ~compare Fig. 11!. The par-

FIG. 14. Sections orthogonal to the field direction through
magnetization structure forL* 59.6 andN516 at z* 520.9 ~a!
without and~b! with an external fieldH* 5HAs3/e51 applied in
the z direction. The scale factor that determines the lengths of
arrows is the same in both parts of this figure and also in Fig.
The transversal components of the magnetization are reduced b
field but the overall feature of the inhomogeneous structure is
served.
of
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FIG. 15. Vertical sections perpendicular to they axis and thus
parallel to the field direction through the same magnetization st
tures as in Fig. 14 fory* 522.1. At this distance of the plane from
the center thez component of the magnetization in zero field is on
small, while the external field induces a largez component every-
where.

FIG. 16. Dependence of the averaged longitudinal magnet
tion component̂M i& and the averaged angular component^Mw& on
the field strength (L* 59.6, N516, T* 52.25). The angular com-
ponent decreases for increasingH* and vanishes seemingly linearl
at Hc* .1.50. BelowHc* the parallel component increases appro
mately linearly and crosses over towards saturation forH* .Hc* .
Above Hc* the sample has an approximately homogeneous ma
tization. Compare Fig. 11 in Ref.@20#.
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57 4545INHOMOGENEOUS MAGNETIZATION IN DIPOLAR . . .
allel component is nearly constant belowTc and decrease
gradually aboveTc where the sample is almost homog
neously magnetized. Our previous work@20# as well as Ref.
@38# predict a kink in the curveM i(T) and the constant valu
M(T,Tc)5H/(4pD) with the demagnetization factorD.
In the present units, usingD51/3 for the cube, this would
meanM (T,Tc)5(3/4p)3/2H/(rm).0.0827 for the param-
eters used in Fig. 17. Both features have also been obse
in ellipsoidal samples of a solid dipolar Ising ferromagn
@39#. Obviously the present theory yields a higher plate
value of the magnetization and a rounding of the kink at
phase transition. One also observes that the angular com
nent vanishes linearly at the critical point, as in Fig. 16, b
in contrast to the simplified model used in Ref.@20#. We
surmise that these differences are due to the fact that f
cube the assumption adopted in Refs.@38# and @20# of a
homogeneous magnetizationM i in both phases is not ful
filled. Another possible source for this discrepancy could
the finite size of the systems we examined.

V. SUMMARY

Based on density-functional theory we have obtained
following main results for the long-ranged orientational o
der of a dipolar liquid confined to a cube:

~1! The equilibrium magnetization configuration corr
sponds to a predominantly planar vortex structure, which
be viewed as being composed of four triangular doma
separated by thick domain walls along the diagonal plane
the cube. Near one of the symmetry axes of the cube cho
spontaneously the magnetization escapes into the third
mension in order to avoid a topological line singularity~Figs.
1, 2, and 4!.

~2! Point defects arise at the centers of the top and bot
face of the cube. The absolute valueuM u of the magnetiza-

FIG. 17. The same magnetization components as in Fig. 16
fixed H* 51 as a function of temperature (L* 59.6,N516). There
is a transition from a vortex structure to an almost homogene
magnetization atTc* (H* ).2.65. Compare Fig. 12 in Ref.@20#.
ed
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tion is reduced inside the cores of these defects~Fig. 3!
whose sizes scale with the system size. Therefore an ap
priate description of the structure requires to take the spa
variation of uM u into account.

~3! Near the surfaces there is a layer of reduced orien
tional order~Figs. 5 and 6!.

~4! The domain walls~Fig. 8! are mainly of the Ne´el type,
i.e., upon traversing the wall the magnetization rotates wit
the plane spanned by its asymptotic directions deep in
the adjacent domains. The size dependence of the wall th
ness~Fig. 10! and of other features of the configurations a
compatible with the scaling behavior formulated in Eq.~26!.

~5! The ferromagnetic order vanishes at a critical tempe
ture that depends on the system size~Fig. 11!. Upon increas-
ing the temperature the ‘‘escape’’ region near the vortex a
is gradually replaced by a column of disordered fluid~Figs.
12 and 13!.

~6! In weak external fields normal to the surfaces of t
cube the vortex axis is aligned parallel to the field directi
and the overall structure is similar to the one in zero fie
~Figs. 14 and 15!. For stronger fields the magnetization
rotated increasingly into the field direction until a transitio
to an approximately homogeneously magnetized state ta
place at a critical field strength beyond which the vort
structure is lost~Fig. 16!. In an external field the magnetiza
tion components normal to the field direction vanish linea
upon approaching a critical temperature~Fig. 17!.

Recently metallic liquid ferromagnets have been disc
ered in undercooled CoPd alloys@27–29#. For the formation
of the ferromagnetic order of these materials short-ran
exchange interactions play an important role. However,
addition dipolar interactions are also present and, as in s
ferromagnets, are essential in forming the domain struct
Therefore for these systems we expect strong similaritie
the behavior of dipolar fluids as discussed in this work. Up
now these undercooled liquid alloys have been prepared
as electromagnetically suspended spherical samples. On
speculate that the domain structure within a sphere ha
vortex axis too, but no domain walls due to the higher sy
metry compared to a cube. Our analysis indicates that
experimental study of these structures~e.g., by using mag-
netic neutron or x-ray tomography@40#! would certainly be
very rewarding. Thus to our knowledge to date there are
experimental results that could be directly compared to
theory. However, we stress that the present method is ge
ally applicable for studying the structure and the phase
havior of orientationally ordered liquids exposed to exter
fields such as, e.g., mixtures of magnetic and nonmagn
fluids in external magnetic fields, which exhibit interestin
drop shapes and surface instabilities@41–43#.
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