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Inhomogeneous magnetization in dipolar ferromagnetic liquids
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At high densities fluids of strongly dipolar spherical particles exhibit spontaneous long-ranged orientational
order. Typically, due to demagnetization effects induced by the long range of the dipolar interactions, the
magnetization structure is spatially inhomogeneous and depends on the shape of the sample. We determine this
structure for a cubic sample by the free minimization of an appropriate microscopic density functional using
simulated annealing. We find a vortex structure resembling four domains separated by four domain walls
whose thickness increases proportional to the systemLsiddéere are indications that for largethe whole
configuration scales with the system size. Near the axis of the mainly planar vortex structure the direction of
the magnetization escapes into the third dimension or, at higher temperatures, the absolute value of the
magnetization is strongly reduced. Thus the orientational order is characterized by two point defects at the top
and the bottom of the sample, respectively. The equilibrium structure in an external field and the transition to
a homogeneous magnetization for strong fields are analyzed,St663-651X98)12604-1

PACS numbg(s): 75.50.Mm, 64.70-p, 75.70.Kw, 61.30.Cz

I. INTRODUCTION vacuum the simulation cell splits into two domains with op-
posing magnetizationg2]. But this structure is clearly in-

At high densities strongly dipolar fluids can exhibit an duced by the artificial periodic boundary conditions. We ad-
orientationally ordered liquid phase characterized by a spordressed this problem recent[20] for the experimentally
taneous magnetization. This has been demonstrated for tmeore relevant case of open boundaries and obtained the fol-
first time by Monte Carlo simulations of dipolar soft sphereslowing general characterization of the equilibrium configu-
by Wei and Patey1,2] and has been confirmed by simula- rations: On a macroscopic scale the absolute valud @f)
tions of hard sphereg3-5] and of Stockmayer fluid$6]. is constant, its divergence is zero, and at the surfaces the
Theoretical approaches leading to the same conclusion imormal component vanishes. However, these properties do
clude a mean-field theory for a dipolar lattice §@§ a gen-  not yet enable one to construct the configuration for a given
eralized van der Waals theofg], and different kinds of shape. For a cubic sample we determif@f)] the most
density-functional theor{9—11]. At low densities the typical stable configuration under the constraint of sharp domain
configurations of dipolar fluids exhibit chain formatipf2—  boundaries. It consists of four triangular domains with 90°
14,5], which may inhibit the phase transition from the iso- domain walls in between. In contrast to solid ferromagnets
tropic vapor phase to the isotropic liquid phd4®&-194. If = the number of domains does not increase with the system
the dipole moments arelectric as in molecular liquids the size, but remains as small as possible. On the other hand the
orientationally ordered phase exhibits a spontaneous polaassumption of sharp domain boundaries is not justified for
ization; in the case afmagneticdipoles as in ferrofluids, i.e., liquid systems. Due to the lack of a lattice anisotropy one
colloidal suspensions of permanently ferromagnetic parfather expects very thick domain walta2].
ticles, one speaks of ferromagnetic order and a spontaneous Therefore, in order to analyze the domain configuration in
magnetization. In this paper we adopt the magnetic languageore detail in the present work we have performed a numeri-
keeping in mind that completely analogous phenomena occuwral minimization of an approximate microscopic density
in the electric casdas long as no free charge carriers arefunctional that has been used bef¢f®,11,2Q to describe
present in the fluid the ferromagnetically ordered fluid. We have madearyri-

In both simulations and analytic theories the dipolarori assumptions regarding the symmetry of the domain struc-
forces must be treated carefully due to their long rangeture and have minimized with respect to a large number
which may give rise to effects depending on the shape of th¢10*—~1®) of parameters that represent the local magnetiza-
sample. It turns out that for all sample shapes with the extion at mesh points within the sample. This approach is simi-
ception of a long needle the equilibrium configuration is in-lar in spirit to the determination of the magnetization struc-
homogeneous with a spatially varying magnetizatid(r) ture of solid ferromagnetic particles of micrometer size in the
[19,20. This leads to a shapgadependenfree energy, as is framework of micromagnetic theof23—25. But there are
expected on general ground21]. The highly nontrivial two main differences. First, we do not constrain the absolute
problem to determine explicitly the spatial distribution of value of the magnetization, thus allowing for the formation
this inhomogeneous magnetization for a given sample shapef less ordered regions. Second, we work on the microscopic
has not yet been solved satisfactorily. In simulations usuallwcale determined by the particle diameter, which enables us
a homogeneous magnetization is enforced by using an infto examine in detail the overall structure as well as the struc-
nitely permeable surrounding of the periodically repeatedure of domain walls and the cores of topological defects.
simulation cells. If instead the sample is surrounded by A brief account of some of our results has been published
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in Ref.[26]. Here we provide the important derivation of the due to the long-ranged part of the interaction potential we
functional from the underlying model, discuss the implemen-apply the low-density approximation for the pair distribution
tation of the simulated annealing, and give a thorough analyfunction, which yieldq 30]
sis of the resulting configurations. We also analyze the con-
sequences of the necessary discretization and of the finite p s 3, ) o,
sample size. Furthermore we discuss in detail the orienta- Fex:_ﬁjvd rJVd r dedw a(r,o)a(r',o’)
tional structure in an external field, which is relevant for the
experiments with the recently discovered metallic liquid fer- XO(F1o— ) T (i 0,0") (5)
romagnet§27-29.
with the Mayer function
Il. MODEL AND THEORETICAL APPROACH

A. Density-functional theory for Stockmayer fluids f(rp,00)=-1+exg - pw(ryp 0,0’)]. (6

We consider Stockmayer fluids consisting of spherica . L .
particles with fixed embedded point dipoles that interact viallwe regard this approximation as a first step towards an ana-

pairwise dispersion and dipolar forces. The interaction po-ytiC quantitative theory of dipolar liquids. Improvements

tentialw=w, ,+ W, is the sum of the Lennard-Jones poten-that e_mploy pair distribution functions obtained from integral
tial equation theories have been worked out for homogeneous

dipolar fluids[31] but are numerically too demanding for the
o | 2 6 inhomogeneous case examined here.
<_) _(_> 1 ) The Mayer function in Eq(6) can be expanded in terms
2 F12 of the rotational invariant§ C(l,l,l,m;m,m) are Clebsch-
Gordan coefficients

W (o) =4e

and the dipolar potential

ML Oy ,(0,0 0= X Cllylol,mmpm)
Waip(r12,@,® )=r7[m(w)-m(w )—3(M(w)-T1p) m, My, m
v XY my(0) Ym0 ) Yin(01)  (7)
X(M(')-11)]0(r 1~ 7). )

with coefficientsf depending only on the distance between

r12=r—r’=r12f12 denotes the interparticle vectore the particles:

=(0,¢) andw’ are the orientations of the dipole moments
atr andr’, respectively, withm=|m|; carets indicate unit
vectors. At short distances the interaction is cut off by the TFrpoo)=> f|1|2|(f12)¢’|1|2|(w,w'-wlz)- )
Heaviside functior®. PIPY

In order to study the spatially inhomogeneous configura-
tions within a ferromagnetically ordered fluid we employ the Finally, the interaction energy with a homogeneous external
density-functional theory introduced in Rgf0] and for field H is
which we have worked out analytical results previously
[10,11,2Q. 5

The configurations of the fluid are described by the spa- Fr= _PmeVd rf dwa(r,w)cosy, ©
tially constant number densigy and the normalized orienta-

tional distributiona(r,w) so that the probability density for wherey is the angle betweea and the direction of the field.

tlndlng a particle at pointr with the 0r|_entat|on_w IS _ We take into account the external potential due to the con-
p(r,w)=pa(r,»). The free energy density functional is tainer walls only summarily in that they provide the confine-
given by ment of the fluid toV because we are interested in thak
behavior of the fluid. In this spirit we also do not consider
Flp.La(r,0);T)=Vius(p, T) +Fot Fext Fr.  (3)

spatial variations of the number densijiyr) = [dwp(r,w)

V is the sample volume arfds is the free energy density of N the vicinity of the walls. Moreover, in Eqs3)—(9) we

the hard sphere reference system characterized by an effdt@ve assumed thgi(r) is constant throughout the sample
tive temperature dependent radi[80]. The second term €Ven ifa(r,w) varies deep inside the sample. We expect that
[B=1/(ksT)] due to the small compressibility of the fluid in the orienta-

tionally ordered phase possible variationspgf), e.g., in-

p side the domain walls, are only small and thus not signifi-
Fo,=—J d3I’J dwa(r,w)Iln[47a(r,w)], (4  cant.

Blv In the next step the orientational distribution is expanded

. _ . .___into spherical harmonics:
takes into account the loss of entropy if the orientational

distribution is not isotropic, i.e., different from 1/(4. Here w
and in the following the integrations over the anglesre Fw)= Y 10
taken over the unit sphere. For the excess contributign a(r,w) |=Eo mz Him(1)Yim( @) (19
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with ugo=1/J47 due to the normalizatiofdwa(r,w)=1 R 87 [Am B3mé
and ujm=(—1)"w _, becauser is real. Inserting Eqs(8) flgr)=— 5 ?e*BWuU)_ngO(mlO), (14
and(10) into Eq. (5) one finds for the excess free energy r
. 2 m?
p? fllz(r):(477)3/2\/: {(1_eﬁWu(r))B_3
Fox=——— > Cllyll,mym,m) 15 r
2B11.15.1 mymy,m
6 3,76
, . + e A2 omio|.
vadgffvdgr ety my (1) my (F) 1 (F12) Yim(@12). 25 ro

(1) To lowest order irm? the functionf,;r) contains the char-
acteristic dependencer 2 of the dipolar potential whereas

In order to make the free minimization of the density func-the functionf,;, arises only due to the cubic and higher
tional with respect to the sdfu;,(r)} numerically feasible —order terms in the expansion of the Mayer functifor the

we must refrain from determining the full orientational dis- actual calculations we have used the full expressions as
tribution «(r,w) at each point. Instead we focus on the given in Ref.[30] instead of the expansions in Ed.4).]

reduced information provided by the dimensionless local In the following we specifically analyze a cubic volume
magnetization of side lengthL containing the fluid. The spatial integrations

are discretized by introducing @imple cubig¢ lattice with
lattice constant a=L/N and lattice vectors R

cosp sing =a(n;,ny,ng), with nie{—(N=-1)/2,... %% ...,
M(r)=f d¢dé sinfa(r,w)| Sing sing (N—1)/2} (N is even, so that
coy
2
—V2 Reuyy(n)\ [ My(1) AFe=2—at% 3 3 Mi(Ryw;;(R—R")M;(R).
=| VZimpyn) | =MD 2 2p FoR (15
ao(r) M(r)
The interaction tensow;; is given by
[The actual magnetization i$1(r) =4@/3pmM(r).] Thus 3 5
M(r) can be obtained from the orientational distribution By / D \/:A g
a(r,») and denotes the spatially varyitigermal averagef Wij (R)=\ 22,9 (R= o)) V5T udR) 9
the fluctuating dipole moment. The above restriction implies
that in Eq.(10) only terms up td =1 have to be taken into 2 _abnba| i
account. Within this approximation those contributions to the TTudR)(8;=3RR)) |, 1,j=123, (16

excess free energy which depend on the orientational order

are given by so thatw;; (—R)=w;;(R). (The value ofs/a is taken to be
noninteger; otherwise there are distances between lattice
points that correspond to the discontinuity of the Heaviside
function) An alternative formulation, which will prove to be
helpful later on, is

__ (110 11
AFex_ Ffex )+F(ex &

_P2 1 3 3pr !
_ﬁﬁfvd rjvd r'M(r)-M(r")

2
) AFe=2—a%3 S H(RM(R) (17)
XO(r—0)f1dri) 2B R
p> |5 5 ., . , with the local fields
+£ Efvd rfvd r'Mm(r)T(rim)M(r")
. Hi(R)=a3 i (R=R")M(R"). 18
X011 0) 13112 (13 (RI=a’2 2 wy(R-ROM;(R). (19

o L The entropic term given by E@4) can be simplified us-
with the tensofT;;(r)= &;; —3r;r;. We note that in contrast ing the fact that by applying a suitable rotation the orienta-
to Ref. [20] we do not have to separate long- and short-tional distribution at a given poirttcan be cast into the form
ranged contributions td,;, because within our numerical

approach we are always dealing with finite systems without 1 3
carrying out the thermodynamic limit. Analytic expressions a(r,0)=7—+M(r)\/;— cost
for the functionsf,; are provided by Eq¥B33) and (B34)

in Ref. [30] from which one obtains the following expan- with M(r)=|M(r)|. Due to the angular integration in E@)
sions in terms ofm?: this rotation does not alter the value 6§, so that

(19
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p 1 [3 advantage of using the local fields is that they need not be
Forz—J d3rJ do| =—+M(r) \/-— cosd updated if the proposed change is rejected, which happens
Blv 4 47 . ]
quite often especially at low control temperatures near the
X In(1+M(r)127cosh). (20) end of a run, while the acceptance decision itself can be
reached very fast.
The expansion of the logarithm yields in the discrete version The control temperature is lowered by a factor of 0.95
after 33 successful changes or8trials. The algorithm is
P 4 = [V12aM(R)]?" terminated if no successful step occurred during thh*15
or:Ea = &4 (2n—1)2n(2n+1) trials. With the assumption that the number of temperature
steps is independent ™ the total computing time should
scale as\®. Actually we found a scaling exponent between 6
= £a32 s(M(R)). (21) and 7. Typical CPU times for one run on a DEC alpha work-
B R station were 3.2 h foN=16 and 25 h foN=22.

. . L The minimizing configurations can be found starting from
Finally, the term due to the external field, which is taken t0compjetely random initial states, but this requires a relatively
point into thez direction, is large initial value ofT¢ and therefore very long runs. For this

= reason we started in almost all cases from a configuration
Fr=—\ /—pmHaBE M3(R). (22)  that had been obtained as a minimum for other parameter
3 R values. It is partly randomized during the first phase of the
_ algorithm by applying an appropriate initial control tempera-
Thus the free energy differendg; between the ferromag- tyre so that a large fraction of proposals is accepted. By

F

netic and the isotropic phases is testing in some cases different starting configurations we
took care not to bias the final result by a prejudiced initial
I:if:For""AFex'H:H ' (23) guess. ’ i

where the individual terms are given by E@$5), (21), and

(22), respectively.
I1l. RESULTS AND DISCUSSION

B. Simulated annealing A. Magnetization structure

We have minimized the free energy in E@3) with re- As our standard values of the thermodynamic parameters
spect to the magnetization configuratipkl(R)} by using we chosem* =\m%c3e=1.5, T* =kgT/e=2.25, andp*
the simulated annealing algorithi82]. In the first step the =ps3=0.94. This leads to a thermodynamic state that,
interaction tensow;; is determined once for all relevant dis- within the present density-functional theory approximation,
tances between the lattice sites withir=L3. In the second lies deep in the ferromagnetic liquid phase. In view of the
step the local field#1;(R) are calculated for an initial choice numerical challenges described in Sec. Il B we have exam-
of the configuratiorM ")(R) according to Eq(18). In each  ined system sizels* =L/ between 4.8 and 12 using lattices
following step a lattice sitdR, is chosen and a new magne- consisting ofN=10,12 . . . ,24sites in each dimensiolAl-
tization M’ (R,) is proposed by changing each componentthough we used an ordinary workstation our maximum sys-
i=1,2,3 by a random valuaM;=M/(Ry)—M;(R,) be- tem size is even 30% larger than the system consistingbf 22
tween— kM (Ry) and+ kM (Ry) (k=0.1 turned out to be a sites examined by Williams and Dunl$p4] on a supercom-
suitable choicg The resulting change in free energy is puter in 1989.

The result of a minimization run is a three-component
vector fieldM(R) representing the magnetization structure
within the cubic volume. In order to visualize this field we
display sections parallel to the faces of the cube with the

|4 magnetization projected onto the section plane. Since one
N ?pmHa3AM3. (24) component is lost due to this projection the absolute value
IM(R)| cannot be inferred from these figures. We adopt a
There is no term quadratic iAM; due tow;;(R=0)=0. reference frame that has its origin in the center of the cube.
The proposed change of the configuration is accepted witRigure Xa) shows a section perpendicular to theaxis at
certainty if AF;; is negative and with a probability z*=2z/0=0.18=0, i.e., close to the center of the cube, for
exd —AF;¢ /(kgT9] if it is positive. T4 is the control tempera- L* =7.2 andN=20. The overall picture is that of a vortex of
ture of the annealing algorithm, which is decreased slowlylosed magnetization lines circulating around thexis. In
during the minimization. In case of acceptance the new fieldhis context it is interesting to note that clusters of some 10
H{(R) at each site is calculated according $ee Eq.(18)] to 100 dipolar particles also exhibit a vortex structure at low
temperature$33,34. This structure leads to did=0 for
the resulting magnetic fieldl. A closer look at the structure
in Fig. 1(a) reveals that it may be described as composed of
four domains with an approximately constant magnetization
The time required for this computational step, which is con-separated by broad domain walls along the diagonals of the
suming most of the CPU time, is of the ord®(N®). The square within which the direction dfi changes continu-

p
AFif:Eaa

s(M'(Ro»—s(M(Ro)HZ Hi(Ro)AM;

H/(R)=H;(R)+a°> w;(R-Rp)AM;. (25
J
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FIG. 1. Sections perpendicular to thexis through the magne-
tization structure of a ferromagnetic liquid in a cubic volugher
L* =7.2 andN=20); (a) section plane* =0.18 near the midplane,
(b) section plane* = —3.06 near the bottom. Here and in the fol-
lowing the arrows represent projections onto the section plane of
the local magnetizatiofat the midpoint of the arrowswhich is the FIG. 2. The same as in Fig. 1, but sections perpendicular to the
thermal average of the dipole moments of particles at this point. y axis: (a) y* = —1.62, (b) y* = —0.54. The schematic drawing in

(c) demonstrates the mechanism of the “escape into the third di-

ously. This configuration resembles the triangular structurénension,” which avoids the formation of a topological line defect
that has been found to be the most stable structure under ti#ong thez axis. 6 denotes the polar angle of the magnetization.
constraint ofsharp domain walls[20]. A similar structure ~ (The increase of) to values larger thanr/2 close to the sample
has also been found to be the most favorable one in cubigdgessee Fig. )] is not shown)
magnetite particles just above the critical single-domain size,
while more complicated structures occur in this case fomounced near the vortex axigigs. 2b) and (c)]. This
larger particle§24,25. In a section near the bottom of the mechanism avoids the formation of a topological defect
cube[z* =—3.06=—L*/2, Fig. Ab)] the domain walls are along thez axis. This is in accordance with general consid-
slightly shifted off the diagonals into the direction opposite erations showing that line singularities are topologically un-
to the circulation. The reverse situation is found near the topstable in a system of three-component spins in three spatial
However, in contrast to the triangular structure studied indimensiong[35], which means that they can always be re-
Ref. [20], the magnetization is not confined to a plane. Asmoved by continuoukcal modifications. However, near the
can be seen in the sections perpendicular to/theis in Fig.  top and the bottom faces of the cube theomponent de-
2 there is a nonvanishing component, leading to an “es- creases in order to avoid a large normal component at the
cape into the third dimension,” which is particularly pro- surface that would produce an unfavorable demagnetization
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FIG. 3. The absolute value of the dimensionless magnetization
near the point defect at the center of the bottom face of the @dabe
L*=7.2 andN=24). |M| is plotted as a function of the distance
from thez axis along lines parallel to theor y axis for a series of 0.5
fixed values ofz [compare the case=0, Fig. §a)]. One finds a
pronounced decrease || near the core of the point defect.

............

cos 0
o

field [20]. Thus two topologically stable point singularities

near the centers of the bottom and top surfaces are inevitable -0.5
A closer look at the magnetization structure reveals a strong
decrease of the absolute value Mf in the core of these
defects(see Fig. 3. The fact that the size of this less ordered
core also scales with the system size underlines the impor-
tance of including the absolute value of the magnetization as r/L

a minimization parameter. If instead the assumption of con- FIG. 4. The cosine of the polar angle of the magnetization

stgnt magnitu_de o1 were applied, as is usually done_) in the (cos¥=M3/M) along(a) the center andb) the diagonal lines within
micromagnetic theory, the defect could not be described cory plane close to the midplane< —a/2, with the lattice constant

rectly even on a mesoscopic scale. a=L/N) for N=20 and different system sizés'. r=x?+y? is
Very similar structures have been found for all values ofihe distance from the center of the cubét.<0.5 for the center

L andN. In Fig. 4 we compare the “degree of escape” for |ines(a) andr/L<1/\/2=0.707 for the diagonalt). The values of
different system sizes with fixe=20. The cosine of the cos are averaged over the four equivalent sites for each value of
polar angle ofM (cos#=M3/M) is plotted as a function of r/L. The magnetization “escapes” into the positwelirection near
the distance = \/X2+yz from the center along the diagonals the center (co$—1), lies in plane (co§=0) near the sample sur-
(i.e., the linesx=+*y with z=const) and the center lines faces(center liney and turns into the negative direction (co®

(b) diagonals

0.1 0.2 0.3 0.4 0.5 0.6 0.7

(i.e., the linesx=0 andy=0 with z=const). With the ex- =—1) near the edges. Except for the smallest systetn<4.8) the
ception of the smallest system the scaling property proposed scaling with the system sizgee Eq.(26)] is fulfilled
approximately, i.e., in the limit > o two master curves evolve, one
M(r/o,Lla)=MO(r/L) (26)  for the center lines and one for the diagonals.

is approximately fulfilled, so that one can surmise that thisSmallest system we studied{=4.8) M decreases also near
holds also in the thermodynamic limitSinceM is dimen- the center, which indicates a second mode for avoiding a line

sionless, for a given thermodynamic state it can only depengngularity besides the “escape into the third dimension.”
on t/o andL/c.) The functionM(© represents the global This mode appears also for the larger systems near the

texture in the thermodynamic limit. Near the edges of theferromagnetic—isotrpp?c phasz_a transi_ti_on a”f might be in-
cube, i.e., near the corners in the projection plane, there is giP'ced Py the proximity of this transition fdr* =4.8 (see
escape into the opposite direction, but combined with @>€C: I O- In Fig. 6 we present the average magnetization
strong decrease of the absolute value of the magnetizatio‘f’f'th[n2 each plane parallel to they plane (M),y(2)
(see Fig. 5. Upon moving outwards from the center dos — N~ >n, .n,M(Ma,nza,2) as a function of the height.
decreases faster along the diagonals than along the centdgain there is a clear decrease near the surfaces while in the
lines, indicating that there is not a circular but rather a squaréentral regionfM),, is constant. The averagd!),, attains
symmetry. its thermodynamic limitL —o more rapidly than cas or

In the inner part of the sample the absolute vallieR) M(R) (see Figs. 4 and)5For smallL the surface disordered
=|M(R)| (Fig. 5 is approximately constant and indepen- region shrinks on the scale &f but in the thermodynamic
dent of L. It decreases near the surface and near the edgdénit it remains proportional ta.. For largeL we find for the
This less ordered surface layer thickens relative to the systeexcess quantity [-2,,d 4 (M)y,(0)—(M),,(2) 1/{M),,(0)
size asL decreases. Here, too, scaling with the system size=0.08..
for large L [Eq. (26)] is compatible with the data. In the As shown in Fig. 7 the minimum value of the free energy
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FIG. 5. The absolute valukl of the dimensionless magnetiza-
tion M for the same parameters as in Fig. 4 averaged (ethe
four center lines andgb) the four diagonals. With the exception of
the smallest systerM is approximately constant in the bulk and
decreases near the surfaces. Eefo the behavior turns into a
single master curve consistent with the proposed sciliiag(26)].

densityf¥ = (Fi; /L%)(o°/€) exhibits a relatively strong, os-
cillatory dependence on the lattice constastL/N with a
decreasing amplitude for increasing valueNofThis figure
reveals that minima occur wheaio=L*/N is close to the
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FIG. 7. Reduced free energy difference between the isotropic
and the ferromagnetic phag§ = (Fi; /L%) (% €) as a function of
the lattice constard/o=L*/N of the discretization mesh for three
system sizes. The finite lattice constant induces minimaxima
near the points where the inverséa=N/L* is an integer(one-
half plus an integer These oscillations die out fa—0.

region where the oscillations have died out, which inhibits a
further finite-size analysis. Similar oscillations were found in
the spatially averaged value df(R) and forL* =4.8 also

in the degree of the rotation out of the plane. The precision to
which the minimum value of;§ can be determined by simu-
lated annealing for a given set of parameters is much higher
than the discretization effect described above; from the de-
pendencd;(Ts) we estimate the minimization error to be of
the order of 0.01.

B. Domain walls

In solid ferromagnets the walls between adjacent domains
have a microscopic thicknesgse., it does not scale with the
system sizg which is determined by the competition be-
tween the exchange energy resulting from the spin coupling
and the anisotropy energy due to the lattice structure that
causes easy axes for the magnetization. Since there is no

inverse of an integer, which indicates a strong discretizatiorsuch lattice anisotropy in liquid ferromagnets de Gennes and
effect. For the larger values df we could not reach the Pincus[22] surmised that consequently there are also no do-

0.14

0.12

0.1

<M>,

0.08

0.06

FIG. 6. Averaged absolute valugM),, of the magnetization

0.4 0.2 0 0.2 0.4
z/L

main walls. Below we shall argue that in the case of cubic
samples as considered here the thickness of the domain walls
is proportional to the system size and thus diverges in the
thermodynamic limit. Thus one is left with a question of
terminology whether one still speaks of walls, but certainly
the behavior is qualitatively different from that in solids.

In order to analyze the properties of the fluid domain
walls in the finite cube we consider the behavior of the di-
mensionless magnetizatidh along straight paths normal to
the wall. Along these pathg changes continuously between
the magnetization directions of the adjacent domains. In the
present case these domains have the quasitriangular structure
indicated in Fig. 1a) so that the orientational order between
neighboring domains differs by an angle®f2. Except near
the vortex axis we find a Mg type of wall, i.e., the magne-
tization vector rotates mainly within the plane spanned by

within the planeg= const forN=20 and several system sizes. Itis the asymptotic orientations deep inside the adjacent domains;
constant in the inner part of the sample and decreases near tie@ Fig. 1(a) this is thexy plane. In contrast, in bulk solid
bottom and top surfaces. The size of the disordered region remairfefromagnets one usually observes Bloch walls with the
proportional toL for largelL.

magnetization vector rotating out of plane on a cone around
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FIG. 8. Variation of the transversal magnetization component FIG. 10. The wall thickness at half distance between the center
Mtyxy:(MlJ,_Mz)/\/E upon traversing the domain wall along a a_nd the edges of the cube as a function of the systeml__siirdne
normal to the wall through the poinRy/o=(—1.95~1.95, different points at the samke correspond to different lattice con-
—0.15) (see the insgtfor L* =7.2 andN =24 [compare Fig. (8)]. stants.(From top to bottomL* =4.8,N=10,12,14,16,20,18,22,24;
This is the component that characterizes the difference of the mag-" = 7-2; N=14,12,18,10,22,16,20,24; L*=9.6, N
netization directions of the adjacent domains. Our definition of the= 18,14,16,24,20,22,* =12, N=22,20) The extrapolation to 1/
wall thicknesss can be inferred from the figure. HeréL=0.38. =0 suggests a finite value @/L in the thermodynamic limit.

o o tion of the number of lattice sites. Its dependence on the
the wall normal[36]; only in thin solid films[36] and small  gystem sizel is analyzed in Fig. 10. Here we selected the
particles[24] Neel walls do occur too. In Fig. 8 the relevant \ 51 es ofs at (or, due to the discrete lattice, close tdL
transversal componeM = (M, + M,)/\/2 is shown as a = 1/232 corresponding to half the distance between the cen-
function of the normal coordinate. _ ter and the edge. For each sizewe display the results

We define the wall thickness as the distance between gptained for different values dfl which render an estimate
the points where the tangent to the curve at its inflectionys the uncertainty caused by the finite lattice constant
point reaches the extreme valuesMf,, (see Fig. 8 The  —| /N. A slight decrease of/L with increasingL indicates
dependence o on the distance of the wall normal from  that the domains are getting sharper. However, most prob-
the center of the cube is displayed in Fig(el paths lie in  gp|y the data can be extrapolated to a finite limitSE. for

the planez=—a/2, i.e., close to the center of the cyb&he | o which would be in accordance with the proposed
wall thickness decreases near the edge of the cube where tgga"ng behavior in Eq(26).

normal paths hardly reach the region of homogeneous mag-
netization(see Fig. 1 The thickness increases near the cen-

terr=0 due to the “escape” regiopsee Fig. 2c)]. How- _
ever, it is approximately constant in the rangeélL Starting from the standard value" =kgT/e=2.25 used

=0.2,...,0.35 and there is no monotonic trend as a func-Up to here we have increased the temperature at the fixed
densityp* =0.94 in order to examine the structural changes
upon approaching the ferromagnetic-isotropic transition. We

C. Temperature dependence and critical point

N=16 have choserN=16 and studied the system sizk$¥=4.8
” E:ﬁ andL*=9.6. The spatially averaged absolute value of the
No oo magnetization decreases and finally vanishes at a tempera-
2 N=24 ture T.(L) in accordance with the inherent mean field ap-

proximation(see Fig. 11 (We define the finite-size critical
temperature as the limiting temperature above which no con-
figurations with a negative free energy differenég are
. found by the minimization algorithmh.As expected this
\‘;3-\‘2 finite-size (strictly speaking quasi-critical temperature is
Sy lower for smaller systems. From E/.10 in Ref.[11] we
infer T (L—)=3.04 for the parameters used here. The
evolution of the magnetization structure is analyzed in Figs.
r/L 12 and 13 forL* =9.6. The escape into thedirection near

FIG. 9. Dependence of the domain wall thickngsen the dis-  th€ Vortex axis is strongly reduced at higher temperatures
tancer from the center of the plane= —a/2=0 (i.e., close to the (Fig. 12 while the absolute value of the magnetization in
midplang for L* =7.2 and different numbers of lattice poitg  this region decreases more rapidly than for intermediate val-
averaged over the four equal walls in the cubee Fig. 8 Inthe ~ ues ofr/L (Fig. 13. Thus a column of less ordered fluid
medium range of the thicknesss depends only weakly onand  develops around the vortex axis. These effects are even more
N, while near the center and edgéss influenced by the escape of pronounced in the smaller system, as has been already sug-
the orientation into the direction and the vicinity of the surfaces, gested by Figs. 4 and 5. Furthermore Fig. 13 demonstrates
respectively. that the surface layer with reduced orientational order thick-
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Flczs. 117.3 The squazred spatially averaged order parameter G 13, The absolute value of the magnetization along the di-
(IM*=[N"2¢|M(R)|]° decreases linearly with increasing tem- 4444 lineg(for fixed z= —a/2) at various temperatures. The dif-

peratureT*. It vanishes at a critical temperatufg(L), which de-  forant line styles correspond to the same temperatures as in Fig. 12.
pends on the system size. This linear behavior holds even outsidgagr the phase transitioR (L* =9.6)=2.89 the orientational or-

the close vicinity ofT(L) where it has to be so due the inherent yer js particularly reduced near the vortex axis and in a surface
mean-field character of the present theory. layer of increasing thickness.

ens, which is a consequence of the increasing correlation ization algorithm. The most stable confiqurations were
length upon approaching the phase transition. The domaiH‘ 9 : 9

wall thickness as defined in the preceding subsection als ound' w_hen the gxternal field is paralle_l to th_e vortex axis.
increases slightly but this change is smaller than the unce In principle, equivalent but rotated configurations should be

tainty caused by the finite lattice constant obta_ined if at th_e beginning of _the glgorithm the field is
’ applied perpendicular to this axis. Since, however, only a
medium value for the initial control temperature was em-
IV. EXTERNAL FIELD ployed, for this latter choice of the initial guess the system
Up to now all results refer to zero external field. If an could not reach the equilibrium structure, which in this case
external field is applied the dipolar particles tend to aligndiffers significantly from the initial configurationThe rela-
along the field direction. The resulting transition from thetive stability of the resulting configurations can be judged on
inhomogeneous zero-field configuration to the homogethe basis of the corresponding value of the free energy. A
neously magnetized state in the presence of strong fields cdypical result is depicted in Figs. 14 and 15. The section
also be examined within the present approach. parallel to thexy plane, i.e., perpendicular to the external
The field destroys the equiva|ence of the three perpenﬁeld, exhibits smaller absolute values of the magnetization
dicular directions of the cubic axefOne should keep in components orthogonal to the field direction than Hfor0
mind that belowT,(L) this equivalence is alsspontane- (Fig. 14, but the structure is very similar. On the other hand
ouslybroken in zero field.We have applied the field normal there is a substantial increase of the magnetization compo-
to the surfaces of the cube either parallel or perpendicular t§ent parallel to the field as shown in the sectigrsconst in
the spontaneously chosen vortex axis of the zero-field corFig. 15. Thus the overall structure is essentially preserved,

figuration, which was used as an initial guess for the mini-but at each point the magnetization is rotated into the field
direction by a certain amount. This demonstrates that this

1 behavior, which was anticipated in R¢R0], corresponds
L"=9.6,N=16 — indeed to the equilibrium configuration. If the field is suffi-
0.8 ciently strong the vortex structure is lost at a critical field
strengthH.. This is shown in Fig. 16 by the field depen-
s 06 dence of the averaged parallel componeriv)
@ =N"32gM;4(R) and of the angular componentM o
o 04 =N"33ge,(R)-M(R), where e,(R)=(Rz,—Ry,0)/|R|.
02 Below H; the parallel component increases approximately
| linearly [20] while the angular component decreases and
0 vanishes aH . (apparently linearly irH.—H). The absolute
value of M increases almost homogeneously over the

sample. A surface layer of lower magnetization is preserved
even in the presence of strong fields. Abdvgthe increase

of (M) is only due to the increase (1| and will saturate in

FIG. 12. The polar angle d#l [see Figs. &) and 4 along the  the limit H—co.

central lines near the midplar{éixed z=—a/2 as in Fig. 4 as a These results should be compared with those of a micro-
function of the temperature for* =9.6 andN=16. The escape magnetic calculation for isotropispheresby Aharoni and
near the vortex axis reduces upon approaching the critical poindakubovicd37]. They were intended as a first step in mod-
T(L*=9.6)=2.89. eling amorphous solid ferromagnets, but due to the assump-

005 01 015 02 025 03 035 04 045
r/L
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FIG. 14. Sections orthogonal to the field direction through the FIG. 15. Vertical sections perpendicular to thexis and thus
magnetization structure fdc* =9.6 andN=16 atz*=-0.9 (a) parallel to the field direction through the same magnetization struc-
without and(b) with an external fieldH* =H+/c3/e=1 applied in  tures as in Fig. 14 foy* = —2.1. At this distance of the plane from
the z direction. The scale factor that determines the lengths of théhe center the component of the magnetization in zero field is only
arrows is the same in both parts of this figure and also in Fig. 15small, while the external field induces a larggomponent every-
The transversal components of the magnetization are reduced by théhere.
field but the overall feature of the inhomogeneous structure is pre-
served.

tion of a vanishing anisotropy constant they should also be of g::j
interest for liquid ferromagnets. These authors find a vortex A
structure with the axis parallel to the external field too. In the 0.12
center of the vortex the magnetization points into the field *, 0.1
direction, also foH— 0. However, for the cube this contri- = 0.08
bution to the net magnetization is compensated by the oppo- vV 0.06

site orientation of the magnetization near the edgeg Fig. 0.04
4(b)]. This implies that for cubegM)=0 for H—O0, 0.02
whereas for spheres a spontaneous net magnetization 0 S an

(M)(H=0")=—(M)(H—0")#0 remains in the limits
H—0*. This discontinuity atH=0 yields an infinite zero
field susceptibility. Thus spontaneous liquid ferromagnetism H

should be easier to detect by macroscopic magnetization FIG. 16. Dependence of the averaged longitudinal magnetiza-

measurements in spherical than in cupic samples. tion componentM) and the averaged angular compont,) on
The same transition between an inhomogeneous and e field strength I(* =9.6, N=16, T* =2.25). The angular com-

nearly homogeneous state arises when the external field jnent decreases for increasiig and vanishes seemingly linearly
kept ﬁxed and the temperature iS Varied. AS ShOWn in F|g 1Et H::lso Be|owH"(’:c the para||e| Component increases approxi_
the angular magnetization component decreases with innately linearly and crosses over towards saturationHbeH* .
creasingT and vanishes at a critical temperatufg(H),  AboveH? the sample has an approximately homogeneous magne-
which is lower thanT.(H=0) (compare Fig. 1)Ll The par- tization. Compare Fig. 11 in Ref20].

0 02 04 06 08 1 12 14 16 18
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tion is reduced inside the cores of these defd€lg. 3
0.1 W whose sizes scale with the system size. Therefore an appro-
N priate description of the structure requires to take the spatial
008 § oy variation of[M| into account.
A A o <My> (3) Near the surfaces there is a layer of reduced orienta-
Ei 0.06 . A <M, > tional order(Figs. 5 and & )
vV o.04 » (4) The domain wallgFig. 8) are mainly of the Nel type,
: A i.e., upon traversing the wall the magnetization rotates within
0.02 ' the plane spanned by its asymptotic directions deep inside
' Iz the adjacent domains. The size dependence of the wall thick-
0 By aaa . . ness(Fig. 10 and of other features of the configurations are

compatible with the scaling behavior formulated in E2f).

(5) The ferromagnetic order vanishes at a critical tempera-
™ ture that depends on the system digiy. 11). Upon increas-
o - ing the temperature the “escape” region near the vortex axis
FIG. 17. The same magnetization components as in Fig. 16 fo. - .
fixedH* =1 as a function of temperaturé{=9.6,N=16). There _(Lszg;zgufglgly replaced by a column of disordered flcfigs.
is a transition from a vortex structure to an almost homogeneous ) In Weak external fields normal to the surfaces of the

tizati T*(H*)=2.65. C Fig. 12 in Reff20]. L - . . .
magnetization af¢ (H*) ompare g in Ref20] cube the vortex axis is aligned parallel to the field direction
and the overall structure is similar to the one in zero field
(Figs. 14 and 1p For stronger fields the magnetization is
rotated increasingly into the field direction until a transition
to an approximately homogeneously magnetized state takes
M(T<T,.)=H/(47D) with the demagnetization factd. place at a CrItIC§1| field strength beyond which the vprtex

. N . structure is lostFig. 16). In an external field the magnetiza-
In the present units, usin@ =1/3 for the cube, this would . : L S
_ 3/ tion components normal to the field direction vanish linearly
meanM (T<T,) = (3/47)~“H/(pm)=0.0827 for the param- hi itical Rig. 1
eters used in Fig. 17. Both features have also been observe§ Ol approaching a critica temperatyfég. 17). .
Co Recently metallic liquid ferromagnets have been discov-

in ellipsoidal samples of a solid dipolar Ising ferromagnet ered in undercooled CoPd allof27—29. For the formation

[39]. Obviously the present theory y|el_ds a h|ghe_r plateauof the ferromagnetic order of these materials short-ranged
value of the magnetization and a rounding of the kink at the ; . . .

" exchange interactions play an important role. However, in
phase transition. One also observes that the angular comp

nent vanishes linearly at the critical point, as in Fig. 16, butgddmon dipolar interactions are also present and, as in solid

in contrast to the simplified model used in RE20]. We ferromagnets, are essential in forming the domain structure.

surmise that these differences are due to the fact that for t%e behavior of dipolar fluids as discussed in this work. Up to

cube the assumption adopted in Ref&8] and[20] of a h d led liquid allovs h b donl
homogeneous magnetizatidv; in both phases is not ful- now these undercooled liquid alloys have been prepared only
filled. Another possible source for this discrepancy could be> electromagnetically su_spended spher_lcz_al samples. One can
the fi.nite size of the systems we examined speculate that the domain ;tructure within a sp_here has a

’ vortex axis too, but no domain walls due to the higher sym-
metry compared to a cube. Our analysis indicates that an
V. SUMMARY experimental study of these structur@sg., by using mag-
Jetic neutron or x-ray tomograpl0]) would certainly be
very rewarding. Thus to our knowledge to date there are no
experimental results that could be directly compared to our
theory. However, we stress that the present method is gener-
lly applicable for studying the structure and the phase be-
avior of orientationally ordered liquids exposed to external
elds such as, e.g., mixtures of magnetic and nonmagnetic
é ids in external magnetic fields, which exhibit interesting
Irop shapes and surface instabilitjidd —43.

allel component is nearly constant beldw and decreases
gradually aboveT. where the sample is almost homoge-
neously magnetized. Our previous wg&0] as well as Ref.
[38] predict a kink in the curvé/ (T) and the constant value

Therefore for these systems we expect strong similarities to

Based on density-functional theory we have obtained th
following main results for the long-ranged orientational or-
der of a dipolar liquid confined to a cube:

(1) The equilibrium magnetization configuration corre-
sponds to a predominantly planar vortex structure, which cal
be viewed as being composed of four triangular domaing:
separated by thick domain walls along the diagonal planes
the cube. Near one of the symmetry axes of the cube chos
spontaneously the magnetization escapes into the third d
mension in order to avoid a topological line singulafifigs.
1,2, and 4

(2) Point defects arise at the centers of the top and bottom One of us(S.D) acknowledges helpful discussions with
face of the cube. The absolute valiM| of the magnetiza- D. Thouless.
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