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Structure function and fractal dimension of diffusion-limited colloidal aggregates
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On a three-dimensional lattice and at different concentrations we perform extensive numerical simulations of
diffusion-limited colloidal aggregation~DLCA!. In a previous work, we showed that the fractal dimensiondf

of the DLCA aggregates in the flocculation limit presents a square root type of dependence with the initial
colloidal concentration. Thedf was obtained from the slope of a standard log-log plot of the number of
particles versus size of the formed aggregates. In this work we confirm the concentration dependency using the
particle-particle correlation functiong(r ) and the structure functionS(q) of individual aggregates. We dem-

onstrate that theg(r )5Ardf23e2(r /j)a
, whereA, a, andj are parameters characteristic of the aggregates, and

a.1. This stretched exponential law gives an excellent fit to the cutoff of theg(r ). The structure function
reveals thedf from the slope of a log-lot plot ofS(q) versusq for high q values. We also analyzeg(r ) and
S(q), at different times during the reaction, for the whole aggregating system composed of many clusters of
different sizes. We observe that thedf calculated from theg(r ) agrees well with that obtained from individual
clusters. However, caution should be observed to extract adf from the correspondingS(q). Our results
indicate that for finite concentrations adf systematically larger than the true value is obtained from such
analysis.@S1063-651X~98!12404-2#

PACS number~s!: 64.60.Qb, 02.70.2c, 05.40.1j, 81.10.Dn
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I. INTRODUCTION

In recent years, experimental@1,2# and theoretical@3–8#
studies of the aggregation processes in colloidal suspens
have motivated further studies in several areas, such as a
sols@9,10#, and aerogels@11,12#. During the growth process
and before gelation, monodisperse colloidal particles ag
gate under suitable conditions, leading to the formation
clusters of different sizes. The larger aggregates are belie
to exhibit scale invariance and self-similarity@13#, although
a hierarchy of exponents might be in order@14–16# to de-
scribe the scaling structure of the cluster-cluster aggrega
Cluster-cluster aggregates in the diffusion-limited colloid
aggregation~DLCA! regime are characterized by their op
structure. The outermost region, where aggregation is sti
process, might exhibit other dimensions besides the fra
dimensiondf that relates the number of particles in a clus
N to the cluster radius of gyrationRg : N;Rg

df . Recently we
have found that the fractal dimension is concentration dep
dent @8#. In the infinite dilution limit df'1.8, but as the
concentration of monodisperse colloidal particles increa
the fractal dimension increases as a square-root-type law

This work is a thorough study of two alternative metho
to obtain the fractal dimension of aggregates composed
monodisperse particles, which are the particle-particle co
lation function g(r ) and the structure functionS(q). We
analyze the data in two ways. In one we extract from
aggregation bath, at four different times during the aggre
tion, sets of clusters of selected sizes. For each cluster
g(r ) is calculated and its average is performed over all cl
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ters in a given set. This averagedg(r ) behaves according to

the following law:g(r )5Ardf23e2(r /j)a
, whereA, a, andj

are parameters characteristic of the aggregates in a given
set. Thedf can be extracted from this calculation and sho
the concentration dependence that we have predicted p
ously@8#. Fourier transforming theg(r ) leads to theS(q) for
the aggregates corresponding to a given set. From this
quantity we obtain another estimate for thedf that is in com-
plete agreement with the first one. In the second approach
consider the full reaction bath in which there are many
gregates of different sizes, at selected times during the
gregation process. In this case we calculate theg(r ) for the
whole system, much in the same manner as in previous s
ies @17,18#. This g(r ) is fundamentally different from the
g(r ) of individual clusters. Although at short distances
presents the same power law behaviorr df23 as in the first
approach, for longer length scales it presents a minimum
tends to one for infinitely large distances. The estimate odf
now is only possible for very short distances. Once aga
this estimate compares well with all our previous calcu
tions. Finally, we obtain theS(q) for the whole system from
this g(r ). Although this function exhibits, for the lowes
concentrations, a region that could be associated with f
tality, the slope of the log-log plot ofS(q) versusq is dif-
ferent from and cannot be associated with thedf in the range
of concentrations studied. These new results open the q
tion of how adequate are the scattering methods commo
used to determine the fractal dimension at not very low c
centrations.

This paper is organized as follows: Sec. II describes
algorithm used to perform the simulations and includes
expressions used to compute the particle-particle correla
functions and the structure functions. In Sec. III we demo
strate that the clusters generated in the simulations at
4520 © 1998 The American Physical Society
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57 4521STRUCTURE FUNCTION AND FRACTAL DIMENSION OF . . .
various concentrations used are fractal, using a recently
veloped criteria@14–16#. Section IV contains our results fo
the df from the g(r ) and S(q) of individual clusters, as a
function of concentration. In Sec. V we report our results
the df from the g(r ) of the whole system, and include
discussion on the impossibility of obtaining thedf from the
S(q) at not very low concentrations. As experimentalis
want to obtain the fractal dimension precisely from thisS(q)
of the whole system, in Sec. VI we propose a method
approximately invertS(q) to obtain an estimate ofg(r ) at
short distances that in turn can be used to extractdf from
experimental measures. Finally, Sec. VII concludes t
work with a discussion and several concluding remarks.

II. MODEL AND METHODS

A sample ofN colloidal monomers of equal size is dis
tributed at random on the cells of a simple cubic lattice. T
concentration of these monodisperse unaggregated par
is a variable in our simulations. As time goes on, the p
ticles diffuse randomly. When two particles encounter, th
stick forming a dimer. Dimers move slower than the mon
mers. As the aggregation proceeds larger clusters are for
by successive encounters between smaller clusters.
larger the cluster, the slower its diffusion. The simulati
ends when the flocculation limit is attained, that is a sh
time before gelation.

The algorithm used to study the aggregation proces
the diffusion-limited colloidal aggregation~DLCA! is the
same as in Refs.@7,8#. A cluster is selected at random an
moved by one lattice spacinga0 in a random direction, only
if a random numberX uniformly distributed between 0,X
,1 is such thatX,D(s)/Dmax. Here D(s)5s21/df is the
diffusion coefficient for the selected cluster of sizes, Dmax is
the maximum diffusion coefficient of any cluster in the sy
tem, anddf is the value of the fractal dimension at the wor
ing concentrationf. From Ref. @8# the fractal dimension
depends on concentration:df51.79710.913f0.507. Once a
cluster is selected, the time is incremented by 1/@Nc(t)Dmax#
whether the cluster is moved or not. HereNc(t) is the num-
ber of clusters in the system at timet. If a move leads to an
encounter of two clusters, the two clusters stick togethe
form a larger cluster. An encounter is defined by an attem
of one moving cluster to overlap the lattice sites occupied
another. This process is continued until the clusters in
aggregation bath organize themselves into a floc.

Seven different concentrations~volume fraction! f were
considered: 0.0065, 0.008, 0.01, 0.03, 0.05, 0.065, and
corresponding to box sizes 240, 240, 240, 180, 150, 1
130, respectively, wherea0 is the unit of length. Therefore
at each concentration the system contained about 100
particles. For each of these concentrations we performed
simulations. Four different times along the aggregation p
cess were selected. At each of those times we catalogue
larger clusters according to their size~number of particles!
into different sets. For the last time, six size sets were s
ied: clusters containing 2001–2500, 2501–3000, . . . , up to
4501–5000 particles. For each cluster within a size set
calculated the pair correlation function from
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gcluster~r ,t !5
@density of pairs in~r ,r 1dr !#

@density of pairs in~a0 ,a01dr !#
, ~1!

where the denominator stands for the local density of p
within distances of one lattice spacing. This normalizati
was used in order to obtain the same limiting behavior
short and longer distances for all clusters. Thegcluster(r ,t)
decays to zero in a length scale consistent with the size of
cluster. Thereforegcluster(r ,t) was averaged over all cluster
in a given size set. The particle-particle correlation functi
for the entire reaction bath is@17,18#

gtotal~r ,t !5
@density of pairs in~r ,r 1dr !#

~average density of pairs!
. ~2!

This function was calculated at four different times of fiv
simulation runs for each concentration.

The structure function is obtained by Fourier transformi
the pair correlation function. This function for the individu
clusters is given by

Scluster~q,t !5
4pr

q E
0

`

r sin~qr !gcluster~r ,t ! dr, ~3!

wherer is the density of the initial aggregation bath. For t
whole reaction bath the structure function is given by@17,18#

Stotal~q,t !511
4pr

q E
0

`

r sin~qr !@gtotal~r ,t !21#dr.

~4!

The functionsgcluster(r ) and gtotal(r ,t) contain no informa-
tion about the shape of the monodisperse particles. Th
fore, the calculation ofScluster(q,t) and Stotal(q,t) neglects
the form factor, which is responsible for the typical oscill
tions of these functions at large values ofq.

When the clusters are fractal, there is a characteri
length scale in which

gcluster~r !;r df23C~r /j!, ~5!

whereC(r /j) is a scaling cutoff function andj is a quantity
of the order of the radius of gyration of the aggregat
Therefore, in a log-log plot ofg(r ) versus r , the fractal
dimension can be extracted from the slope of the linear
gion. A frequently used function@19–21# for the pair corre-

lation of individual clusters isgcluster(r )5AFBr df
FB

23e2r /jFB
,

first proposed by Fisher and Burford in the context of t
Ising model@22#. We will show that a much better represe
tation for thegcluster(r ) is given by a stretched exponenti
form:

gcluster~r !5Ardf23e2~r /j!a
, ~6!

wherea.1 andj is a characteristic radius of gyration.
The structure function obtained from either the Fish

Burford or the stretched exponential representations
gcluster(r ), in the limit of qj@1, behaves as

Scluster~q!;q2df , ~7!

as shown in Appendix A. A measure of the slope in a log-l
plot reveals the value ofdf . Since the structure function ca
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4522 57LACH-HAB, GONZÁLEZ, AND BLAISTEN-BAROJAS
be measured experimentally by scattering, this is the s
dard approach used to evaluate the fractal dimension
monodisperse systems.

These two ways to evaluatedf , either fromg(r ) or from
S(q), have been exploited repeatedly in the literature@2,23–
25#.

III. SELF-SIMILARITY OF DLCA AGGREGATES

One of the features that would assure the validity of
two methods to obtain the fractal dimension described in
previous section is that the aggregates in the floccula
limit of a DLCA reaction would display simple scaling. I
this is the case, then only one fractal dimension is enoug
describe the fractal characteristics of the aggregates.

Our statistical study of the scaling properties of t
DLCA aggregates is inspired by the recent method of M
delbrotet al. @15#. First we generate the distribution of rad
of gyration of a sample of aggregates containing all the c
ters with more than 2000 particles collected from the
simulations. This distribution is shown in Figs. 1~a! and 1~b!
for two concentrations:f50.008 andf50.08. The mo-
ments of this distribution are defined by

sp~Rgi
!5

1

ni
(
s51

ni

uRgi s
2^Rg&up, ~8!

FIG. 1. Distribution of the radii of gyration of clusters contai
ing more than 2000 particles:~a! f50.008,~b! f50.08. Log-log
plots of two moments of the distribution atf50.008:~c! s3 vs s2 ,
~d! s4 vs s2 .
n-
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e
e
n
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-
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0

whereni is the number of clusters in the binRgi
and^Rg& is

the mean radius of gyration. If the clusters are self-similar
means that they can be characterized with a single param
the fractal dimensiondf . ThenNis;Rgi s

df , whereNis is the

number of particles in clusters entering in Eq.~8!. There-
fore, the momentssp should vary asNi

ap whereap5p/df

@16#. To determine the exponentap , we search for the ratio
of the logarithms of two moments of different order. If th
momentssp ,sq really have a scaling behavior, then th
slope will be equal top/q. Otherwise, the slope will show
deviations from this value indicating a multiscaling regim
Figures 1~c! and 1~d! illustrate the ratiosp/q5 3

2 and 4
2 for the

sample atf50.008. In Table I we give the values of th
slope of similar graphs for severalp,q ratios and for two
concentrations. As is very clear from these results, the ag
gates are indeed fractal objects.

IV. THE FRACTAL DIMENSION FROM SINGLE
CLUSTERS

As mentioned in Sec. II, clusters have been catalogued
size. For each of the six size sets we compute an avera

FIG. 2. Calculated averaged̂gcluster(r )& ~circles! of clusters
with 3001–3500 particles atf50.01. The continuous line corre
sponds to~a! the stretched exponential of Eq.~6! with parameters
from Table II, and~b! the Fisher-Burford approximation with pa
rametersdf

FB51.865,AFB51.606,jFB587.89.

TABLE I. Slope of the log-logsp vs sq for various values ofp,
q and two volume fractions.

p q f50.008 f50.08

3 2 1.5260.05 1.4260.10
4 2 2.0660.11 1.8560.22
4 3 1.3660.03 1.3260.06
5 2 2.6160.17 2.2960.35
5 3 1.7260.06 1.6560.14
5 4 1.2760.02 1.2660.04
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TABLE II. Values ofdf obtained from̂ gcluster(r )& for various volume fractionsf and various cluster size
bins. Fractal dimension values from Ref.@8# are included for comparison. Also reported are the best va
of the parameters in Eq.~6!, obtained from the simulations.

f 0.0065 0.008 0.01 0.03 0.05 0.065 0.08

df ~Ref. @8#! 1.868 1.876 1.885 1.951 1.997 2.025 2.051
bin 3000 df 1.858 1.864 1.865 1.932 1.983 2.042 2.092

A 1.491 1.498 1.512 1.514 1.427 1.442 1.348
j 50.32 48.93 49.50 43.44 41.77 36.77 34.99
a 2.615 2.476 2.626 2.697 2.928 2.746 2.659

bin 3500 df 1.867 1.861 1.873 1.932 1.981 2.054 2.087
A 1.458 1.483 1.472 1.547 1.460 1.439 1.393
j 54.36 54.72 53.92 46.24 44.62 38.60 36.82
a 2.742 2.930 2.911 2.647 3.173 2.630 2.711

bin 4000 df 1.876 1.850 1.879 1.930 1.984 2.046 2.101
A 1.430 1.412 1.468 1.547 1.678 1.444 1.433
j 57.54 62.10 56.61 49.47 42.85 41.26 38.11
a 2.683 3.160 2.725 2.835 2.810 2.619 2.526

bin 4500 df 1.868 1.858 1.869 1.940 1.998 2.050 2.096
A 1.492 1.414 1.532 1.506 1.589 1.461 1.449
j 60.00 64.42 59.79 52.64 43.09 43.58 39.31
a 2.445 3.519 2.638 2.776 1.779 2.541 2.100

bin 5000 df 1.874 1.856 1.873 1.918 2.029 2.038 2.093
A 1.404 1.327 1.374 1.643 1.448 1.510 1.430
j 66.15 70.12 66.69 53.40 50.73 45.91 42.94
a 2.860 3.380 3.064 2.092 2.911 2.467 2.451
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^gcluster(r )&. Next, we perform a multiple parameter fit of E
~6! to ^gcluster(r )& to determine the values of the four param
etersdf , A, a, andj for each size set and for each conce
tration. Figure 2~a! illustrates a typical fitted̂gcluster(r )& for
f50.01 and size set 3001–3500 particles per cluster.
circles correspond to our simulations and the continuous
is the fitted function. As is evident, the fit is excellent. F
this particular case the four parameters aredf51.865, a
52.626, A51.512, andj549.50. In addition, Fig. 2~b!
shows the same simulation points as in Fig. 2~a! compared to
the Fisher-Burford approximation ofg(r ) ~continuous line!
with optimized parametersdf

FB51.865, AFB51.606, and
jFB587.89. Although both approximations give the sam
fractal dimension, clearly the Fisher-Burford approximati
does not reproduce the pair correlation function as closel
the stretched exponential. Table II contains the fitted val
of these parameters for the other concentrations and size
larger than 3000 particles. The first row of this table giv
our predicted values ofdf from Ref. @8#. As is clear, the
value ofdf is independent of the size set within the statisti
error. It is also clear that the new results for the fractal
mension are in perfect agreement with our previous pre
tion, again within the statistical error.

For small clusters the above analysis is not feasible.
reason is that when calculating^gcluster(r )&, many particles
in the cluster surface contribute. Therefore ther df23 depen-
dence is buried into the scaled decaying region. Care sh
be taken when an analysis involves early times during
aggregation because the majority of clusters are small.

In the Appendix A we demonstrate that the structure fu
tion @Eq. ~7!# of the fitted gcluster(r ) @Eq. ~6!# presents a
length scale for whichS(q) is linear in a log-log plot versus
-
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q. This behavior is characteristic at relatively large values
q. In Fig. 3 we show the structure function corresponding
the g(r ) in Fig. 2, obtained numerically from Eqs.~3! and
~6!. This function displays a plateau for smallq values, a
shoulder at intermediateq values due to the stretched exp
nential, and the linear behavior at larger values ofq. From
the slope of the linear region, we can extract once again
value ofdf . The fractal dimension obtained with this proc
dure is the same as the one carried in the correspon
g(r ), as shown in Appendix A. Therefore, the values ofdf in
Table II are reobtained by this method.

V. THE FRACTAL DIMENSION FROM THE WHOLE
AGGREGATION BATH

For each of the seven concentrations we calculated
particle-particle correlation function@Eq. ~2!# of the whole

FIG. 3. Scluster(q) obtained by integration of thêgcluster(r )& of
Fig. 2~a!.
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reaction box. This calculation was done at four differe
times during aggregation process and for five simulatio
Figure 4 illustratesgtotal(r ) from one of these simulations a
the final time forf50.01. The structure displayed by th
function has already been reported@17,18#. The position of
the minimum of this function is associated with half of th
average length of the blobs that will be quenched in
infinite gel. At very short range, the main contribution to th
function comes from pairs of particles within single cluste
However, at longer range, the individual clusters present
decay region associated to the stretched exponential. Th
fore the function decays faster than at short range. In
intermediate range there are also pairs from different clus
that start to contribute significantly to the function. Someh
this effect washes out the sharp decay due to the finite siz
the clusters, which is more pronounced at higher concen
tions. At even longer range, the function includes many
tercluster pairs that are responsible for the minimum and
the further increase of thegtotal(r ). For the earlier times con
sidered, the number of small clusters in the bath is lar
Therefore, an analysis through the pair correlation funct
to obtain thedf is not adequate. This fact was already me
tioned above.

Figure 5 shows the log-log plot of thegtotal(r ) for three
concentrations at the final time. It is possible to extractdf
from the limiting behavior of this function at short distance
and far from the minimum of the function. This is because
short distancesgtotal(r ) behaves asr df23, similar to the cor-
relation function of individual clusters. The continuous lin
in Figs. 5~a! and 5~b! shows the fit to obtain this dimension
For concentrations larger thanf50.05, when the final blob
size is very small@17,18#, we find that the short-range regio
of gtotal(r ) shrinks. An example is provided in Fig. 5~c!
where it is clear that there are too few points to identify
linear behavior. In this case it is not possible to obtaindf
with this method. The second column of Table III contai
the fractal dimension from this method, averaged over
five simulations for each volume fraction up tof50.05.
Within the statistical error,df displays the same behavior a
a function of concentration as reported in Ref.@8#.

In what concerns the method for obtaining the fractal
mension from theStotal(q), there are serious problems for th
finite concentrations used in this work. In Figs. 6~a! and 6~b!
we are showing theStotal(q) for the same simulations as i
Figs. 5~a! and 5~b!. The structure function presents an a

FIG. 4. Calculatedgtotal(r ) at the final time for one simulation
with 138 240 particles and concentrationf50.01.
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FIG. 5. Log-log plot ofgtotal(r ) vs r at the final simulation time
for three volume fractions:~a! f50.0065, ~b! f50.01, ~c! f
50.065. The continuous line shows the region where a fit to ob
df was possible.

TABLE III. Values of df from gtotal(r ) for various volume frac-
tions. Also reported are the slopes in a log-log plot of the line
portion of Stotal(q) vs q.

f df from gtotal(r ) uSlopeu from Stotal(q)

0.0065 1.913 1.996
0.008 1.902 2.030
0.01 1.914 2.051
0.03 1.950 2.064
0.05 2.034
0.065
0.08
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proximately linear behavior shown by the straight line b
tween the pointsA andB. However, the values of the slope
obtained by a linear regression in that region should not
confused with the fractal dimension. In fact these slopes
fer from the fractal dimension determined in Figs. 5~a! and
5~b!. The reason for this discrepancy is thatStotal(q) has a
contribution not only from the short-range behaviorr df23 of
the gtotal(r ), but also from the minimum and neares
neighboring cluster regions. The Fourier transform of t
function gtotal(r ) does not behave as Eq.~7!. In fact, the
length scale on whichStotal(q) roughly presents the linea
behavior does not correspond to the short-range regio
gtotal(r ). The third column of Table III shows averages ov
the five simulations of the magnitude of the slope for tho
concentrations at which it was possible to find a straight l
in the log-log plot ofStotal(q). As it is evident from the table
there are serious discrepancies between the values in the
columns.

FIG. 6. Log-log plot ofStotal(q) vs q obtained from thegtotal(r )
reported in Fig. 5:~a! f50.0065,~b! f50.01. The continuous line
shows a linear region that does not lead todf .
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It is conceivable that for very dilute systems and lo
times, when well separated big clusters have aggrega
there would be a length scale for whichgtotal(r )
→gcluster(r ). If this is the case,Stotal(q) would display the
expected slope as in Eq.~7!, in the correct length scale.

VI. INVERSION OF THE SCATTERING FUNCTIONS

Unfortunately, the experimental way of obtaining thedf
comes precisely fromStotal(q) via its relation to the normal-
ized scattering intensity@26#. We have already mentione
that it is possible that in the limit of a very dilute system a
for long times,Stotal(q) presents a slope proportioning th
correct fractal dimension because of the presence of w
separated big clusters in the DLCA regime. However,
higher concentrations there could be problems in obtain
the cluster fractal dimension from such log-log plots. O
possible way to circumvent the problem is to extract thedf
from the limit of gtotal(r ) for small r ’s. For this purpose, the
experimentalists would need to consider the inversion of
~4!, in the form

gtotal~r ,t !511
1

2p2rr E
0

`

q sin~qr !@Stotal~q,t !21#dq.

~9!

The problem that arises now is that experimentalists do
obtain theS(q) for all q’s to infinity, but only up to a maxi-
mumq defined by the maximum scattering angle of the sc
tering apparatus. Nonetheless, if we only wantgtotal(r ) de-
fined at a set of discrete values ofr , the restriction of an
integration up to infinity can be spared.

From now on we will consider that in Eqs.~4! and~9!, r ,
q, and r are in units of the particle diametera0 ~i.e., r 8
5r /a0→r , q85qa0→q, and r85ra0

3→r!. Let Dn51/n
(n51,2,3, . . . ) be thesize of the bins in which the spatia
coordinater is divided. Letr i5(2i 21)/2n ( i 51,2,3,. . . )
be the centers of those intervals. Letgi be the approxima-
tions to g(r i) such that, for allqP@0,np#, the following
discrete sum replaces Eq.~4!:

4pr

q (
i 51

`

Dnr isin~gri !~gi 21!5Stotal~q!21. ~10!

When the size of the subdivisions tends to zero,gi→g(r i).
In particular, although thegi ’s for r i,1 need not be exactly
zero, they should tend to that value whenn→`. Using the
above equation, we can calculate easily
1

2p2r i
E

0

np

@Stotal~q!21#q sin~qri !dq5
4r

pr i
(
j 51

`

r j~gj21!E
0

p/2

sin@q~2i 21!#sin@q~2 j 21!#dq5r~gi21!, ~11!

where we have used

E
0

p/2

sin@j~2i 21!#sin@j~2 j 21!#dj5
p

4
d i , j , i , j integers>1 . ~12!

Then the approximation forg(r ) at r i is
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gi511
1

2p2rr i
E

0

np

q sin~qri !@Stotal~q!21#dq. ~13!
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As is well known@26#, the scattering vectorq is related to
the scattering angleu by the relation

q5
4p

l
sin~u/2!, ~14!

where l is the wavelength of light used in the scatteri
apparatus. If we want an approximation ofg(r ) defined by
the integern in Eq. ~10!, thena0qmax5np. Since the maxi-
mum value that the sine can take~for backward scattering! is
1, then we should have

nl,4a0 . ~15!

This last relation presents a restriction in the particle dia
eter that the system should fulfill in order to be able to a
proximately invert Eq.~4! in the form of Eq.~13!.

VII. CONCLUSION

We have demonstrated that for the finite concentrati
used in this work we recover the concentration depende
of the fractal dimension of the DLCA aggregates of mon
disperse particles, which we reported in a previous publ
tion @8# using another method. In the present work we ha
obtained thedf via the particle-particle correlation function
of single clusters and of the whole aggregation bath. In
latter case, it was necessary to consider the limiting slop
gtotal(r ) for small r in order to exclude the contribution
from the other clusters in the system. We have also obta
the df from the structure function of single cluste
Scluster(q), defined in Eq.~3! and, as shown in Appendix A, i
gives exactly the same values as those obtained f
gcluster(r ). We have seen, however, that theStotal(q) fails to
produce linear slopes on log-log plots with the correct frac
dimension in the concentration range studied. It was
served that the discrepancy arose from contributions
Stotal(q) coming from the minimum and nearest-neighb
cluster length regions ofgtotal(r ) in Eq. ~4!. Nevertheless, we
-
-

s
ce
-
-

e

e
of

ed

m

l
-

to
r

have shown that theStotal(q) can be approximately inverte
yielding an approximation forg(r ) from where in turn the
fractal dimension could be extracted. Experimenta
Stotal(q) is obtained from the intensity functionI total(q) only
for monodisperse systems. An additional experimental
striction appears now in the formnl,4a0 , wherel is the
wavelength of light used in the scattering apparatus anda0 is
the particle diameter. This restriction would force expe
mentalists to consider the aggregation of larger particles
order to obtain a better approximation tog(r ).
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APPENDIX A

In this appendix we show that the structure function
single clusters behaves asScluster(q);q2df , for sufficiently
large q. In the Fisher-Burford representation ofgcluster(r ),
the proof is done analytically, while for the stretched exp
nential case, it is done numerically.

If the Fisher-Burford expression forgcluster(r ) is used in
Eq. ~3! then

Scluster~q!5BFBq2df
FBE

0

`

r df
FB

22~sin r !e2r /qjFB
dr,

~A1!

where an appropriate change of variables has been perfor
and whereBFB includes all numerical factors independent
q andjFB. This integral is found in the standard tables@27#,
with the result
Scluster~q!5BFBq2df
FB G~df

FB21!

„111/~qjFB!2
…

~df
FB

21!/2
sin@~df

FB21!arctanqjFB#. ~A2!

An expansion in powers of 1/qjFB up to the first order, leads to

Scluster~q!5BFBq2df
FB

G~df
FB21!FsinS p

2
~df

FB21! D2
df

FB21

qjFB cosS p

2
~df

FB21! D G , ~A3!
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assuming thatdf
FBÞ2. Fordf

FB52 there is no first order term
and the correction is second order. For the caseqjFB@1,

Scluster~q!5BFBq2df
FB

G~df
FB21!sinS p

2
~df

FB21! D ,

~A4!

which indicates thatScluster(q);q2df
FB

in this limit.
If the stretched exponential of Eq.~6! is used into Eq.~3!,

then

Scluster~q!5Bq2dfE
0

`

r df22~sin r !e2~r /qj!a
dr. ~A5!

This integral does not appear in the standard tables of i
grals foraÞ1. For a51, it reduces to Eq.~A1! and forqj
@1 becomes independent ofq. On the other hand, fora
@1 the exponential factor becomes a step function with
value of 1 for r ,qj and zero forr .qj. This effectively
cuts the integral off at the upper limitqj:
ll

. B

s.

v

er

s.

i,
e-

e

Scluster~q!5Bq2dfE
0

qj

r df22~sin r !dr. ~A6!

The integral *0
`r df22sin r dr converges very slowly for

1,df,2 and diverges fordf>2 @27#. Therefore the integra
in Eq. ~A6! becomes independent ofq for df,2 and very
large qj. However, this integral depends onq for df>2.
Consequently, there should be a crossover value ofa below
which the integral in Eq.~A5! for df.2 is independent ofq
and above which depends onq. It becomes imperative to tes
the dependency of this integral onq for thedf ’s anda’s that
we have obtained. A look at Table II shows that the values
df involved are in the range 1.85,df,2.10, while the values
of a are mainly between 2.50,a,3.25. We have performed
numerically the integral for the followingqj values: 2n

3100 with n50,1, . . . ,12. Thevalues of df used were
1.80<df<2.25 in increments of 0.05 and, for each of tho
df values, we used the followinga’s: 2.50, 2.75, 3.00, and
3.25. In all cases we checked the constancy of the integ
which becomes independent ofq for high qj. Therefore, we
conclude that in the range of parameter values of interes
this work,Scluster(q);q2df for qj@1, in the stretched expo
nential case also.
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