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Structure function and fractal dimension of diffusion-limited colloidal aggregates

Mohammed Lach-habAgusfn E. Gonzéez?* and Estela Blaisten-Barojab
Ynstitute for Computational Sciences and Informatics, George Mason University, Fairfax, Virginia 22030
2Instituto de Fsica, Universidad Nacional AUtmma de Mgico, Apartado Postal 20-364, 01000  Meo, Distrito Federal, Mexico
(Received 14 October 1997

On a three-dimensional lattice and at different concentrations we perform extensive numerical simulations of
diffusion-limited colloidal aggregatiofDLCA). In a previous work, we showed that the fractal dimensipn
of the DLCA aggregates in the flocculation limit presents a square root type of dependence with the initial
colloidal concentration. Thel; was obtained from the slope of a standard log-log plot of the number of
particles versus size of the formed aggregates. In this work we confirm the concentration dependency using the
particle-particle correlation functiog(r) and the structure functioB(q) of individual aggregates. We dem-
onstrate that thg(r)=Ar%3e~ (9% whereA, a, and& are parameters characteristic of the aggregates, and
a>1. This stretched exponential law gives an excellent fit to the cutoff ofyfing¢. The structure function
reveals thed; from the slope of a log-lot plot 08(q) versusq for high q values. We also analyzg(r) and
S(q), at different times during the reaction, for the whole aggregating system composed of many clusters of
different sizes. We observe that tecalculated from thg(r) agrees well with that obtained from individual
clusters. However, caution should be observed to extradf &#om the corresponding(q). Our results
indicate that for finite concentrationsdy systematically larger than the true value is obtained from such
analysis[S1063-651X%98)12404-3
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I. INTRODUCTION ters in a given set. This averagg(r) behaves according to

, , - I e

In recent years, experimentfd,?] and theoretical3—g]  the following law:g(r) =Ar"""e , whereA, a, and¢
studies of the aggregation processes in colloidal suspensioR€ Parameters characteristic of the aggregates in a given size
have motivated further studies in several areas, such as aer@f!: Thed; can be extracted from this calculation and shows
sols[9,10], and aerogelfl1,12. During the growth process, the concentration depende_nce that we have predicted previ-
and before gelation, monodisperse colloidal particles aggre?Usly[8]. Fourier transforming thg(r) leads to the5(q) for
gate under suitable conditions, leading to the formation ofh® aggregates corresponding to a given set. From this last
clusters of different sizes. The larger aggregates are believeiiantity we obtain another estimate for thethat is in com-
to exhibit scale invariance and self-similarfty3], although plete agreement with the first one. In the second approach we
a hierarchy of exponents might be in ordad—16 to de- consider the full reaction bath in which there are many ag-
scribe the scaling structure of the cluster-cluster aggregate§régates of different sizes, at selected times during the ag-
Cluster-cluster aggregates in the diffusion-limited colloidalgregation process. In this case we calculategfrg for the
aggregatio{DLCA) regime are characterized by their open whole system, much in the same manner as in previous stud-
structure. The outermost region, where aggregation is still in€s [17,18. This g(r) is fundamentally different from the
process, might exhibit other dimensions besides the fractl(r) of individual clusters. Although at short distances it
dimensiond; that relates the number of particles in a clusterPresents the same power law behawiti* as in the first

N to the cluster radius of gyratioRy: N~ RYf Recently we approach, for longer length scales it presents a minimum and
: "

. . . tends to one for infinitely large distances. The estimaté;of
have found that the fractal dimension is concentration depenﬁOW is onlv possible for verv short distances. Once adain
dent[8]. In the infinite dilution limit d;~1.8, but as the y P 4 ' gamn,

. . . . : this estimate compares well with all our previous calcula-
concentration of monodisperse colloidal particles increaseg;, o Finally, we obtain th&(q) for the whole system from
the fractal dimension increases as a square-root-type law. ' '

¢ k ) this g(r). Although this function exhibits, for the lowest
This work is a thorough study of two alternative methods ,ncentrations, a region that could be associated with frac-

to obtain the fractal dimension of aggregates composed %tlity, the slope of the log-log plot a8(q) versusq is dif-

monodisperse particles, which are the particle-particle correferent from and cannot be associated withdhén the range

lation functiong(r) and the structure functio®(q). We  of concentrations studied. These new results open the ques-
analyze the data in two ways. In one we extract from thejon of how adequate are the scattering methods commonly
aggregation bath, at four different times during the aggregaused to determine the fractal dimension at not very low con-
tion, sets of clusters of selected sizes. For each cluster thsentrations.

g(r) is calculated and its average is performed over all clus- This paper is organized as follows: Sec. Il describes the
algorithm used to perform the simulations and includes the
expressions used to compute the particle-particle correlation

*Electronic address: agustin@fenix.ifisicacu.unam.mx functions and the structure functions. In Sec. Ill we demon-
"Electronic address: eblaiste@gmu.edu strate that the clusters generated in the simulations at the

1063-651X/98/5{)/452(08)/$15.00 57 4520 © 1998 The American Physical Society



57 STRUCTURE FUNCTION AND FRACTAL DIMENSION @ . . . 4521
various concentrations used are fractal, using a recently de- [density of pairs in(r,r+6r)]
veloped criterid14—16. Section IV contains our results for Jelustek 1) =
the d; from the g(r) and S(q) of individual clusters, as a

function of concentration. In Sec. V we report our results forwhere the denominator stands for the local density of pairs
the d; from the g(r) of the whole system, and include a within distances of one lattice spacing. This normalization
discussion on the impossibility of obtaining tde from the  was used in order to obtain the same limiting behavior at
S(g) at not very low concentrations. As experimentalistsshort and longer distances for all clusters. Thgse(r,t)
want to obtain the fractal dimension precisely from (s decays to zero in a length scale consistent with the size of the
of the whole system, in Sec. VI we propose a method tcFluster. Therefor@se(r,t) was averaged over all clusters
approximately invertS(q) to obtain an estimate aj(r) at in a given 'size set. The particle-particle correlation function
short distances that in turn can be used to exttadrom  Of the entire reaction bath (47,18

experimental measures. Finally, Sec. VII concludes this

work with a discussion and several concluding remarks. Ootalr 1) =

@

[density of pairs inag,ag+or)]’

[density of pairs in(r,r+dr)]
(average density of pairs °

2

This function was calculated at four different times of five
Il. MODEL AND METHODS simulation runs for each concentration.
A sample ofN colloidal monomers of equal size is dis- The_ structure function_is obta_ined by_ Fourier trqnsfo_rming
tributed at randem on the cells of a simple cubic lattice. Thethe pair (_:orrglatlon function. This function for the individual
, : ._clusters is given by
concentration of these monodisperse unaggregated particles
is a variable in our simulations. As time goes on, the par- A7p (= |
ticles diffuse randomly. When two particles encounter, they Scluste 0, 1) = a fo r sin(gr)geustefr,t) dr,  (3)
stick forming a dimer. Dimers move slower than the mono-
mers. As the aggregation proceeds larger clusters are formavherep is the density of the initial aggregation bath. For the
by successive encounters between smaller clusters. Thehole reaction bath the structure function is givern| by, 1§
larger the cluster, the slower its diffusion. The simulation 4
T . . 7o [
Err:](lsbv;/?oerr; ;heela?ic())(;]c.:ulatlon limit is attained, that is a short Sl Q) =1+ Tp fo F Sin(Qr)[Guo(r,t) — 1]dr.
The algorithm used to study the aggregation process in (4
the diffusion-limited colloidal aggregatio(DLCA) is the
same as in Refd.7,8]. A cluster is selected at random and

moved by one lattice spaciray, in a random direction, only

if a random numbeX uniformly distributed be_t\i\;deepﬂx the form factor, which is responsible for the typical oscilla-
<1 is such thatX<D(S)/Dmax. HereD(s)=s" """ is the  {i5ns of these functions at large valuesepf

diffusion coefficient for the selected cluster of SZ€D mais When the clusters are fractal, there is a characteristic
the maximum diffusion coefficient of any cluster in the sys-|ength scale in which

tem, andd; is the value of the fractal dimension at the work-

ing concentrationg. From Ref.[8] the fractal dimension Gorustef F) ~ 19 3C(r/€), (5)
depends on concentratiod;=1.797+0.913$°%". Once a _ _ _ _ _
cluster is selected, the time is incremented BNL(t) D o whereC(r/¢) is a scalmg_ cutoff funct!on andis a quantity
whether the cluster is moved or not. Hee(t) is the num- of the order of the radius of gyration of the aggregates.

ber of clusters in the system at tirhelf a move leads to an 1 n€refore, in a log-log plot ofy(r) versusr, the fractal

encounter of two clusters, the two clusters stick together t&imension can be extracted from the slope of the linear re-

form a larger cluster. An encounter is defined by an attemp#ion- A frequently used functiof19—-21 for the pair corre-

of one moving cluster to overlap the lattice sites occupied byation of individual clusters igjqse(r) =A™rd 3¢

another. This process is continued until the clusters in théirst proposed by Fisher and Burford in the context of the

aggregation bath organize themselves into a floc. Ising model[22]. We will show that a much better represen-
Seven different concentratiorigolume fraction ¢ were  tation for theggusiefr) is given by a stretched exponential

considered: 0.0065, 0.008, 0.01, 0.03, 0.05, 0.065, and 0.08rm:

corresponding to box sizes 240, 240, 240, 180, 150, 140, a

130, respectively, whera, is the unit of length. Therefore, olusted F) =Ardi—3e (107, (6)

at each concentration the system contained about 100 000 . - . .

particles. For each of these concentrations we performed S\Uherea>1 and¢is a gharactensuc radius Qf gyration.

simulations. Four different times along the aggregation pro- The structure function obtained fr_om either the Flsher—

cess were selected. At each of those times we catalogued tﬁ@rford or the _stfetched exponential representations  of

larger clusters according to their sigeumber of particles Jousee( ). N the limit of g¢>1, behaves as

into different sets. For the last time, six size sets were stud- Suusief @) ~q %, )

ied: clusters containing 2001-2500, 2501-3Q00, up to

4501-5000 particles. For each cluster within a size set was shown in Appendix A. A measure of the slope in a log-log

calculated the pair correlation function from plot reveals the value af; . Since the structure function can

The functionsggysiefr) and gia(r,t) contain no informa-
tion about the shape of the monodisperse particles. There-
fore, the calculation ofS;fq,t) and Sia(d,t) neglects
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— — TABLE I. Slope of the log-logr, vs o, for various values op,
160+ a ¢ 0'008- b N ¢=0.08 g and two volume fractions.

120 i p q ¢=0.008 ¢=0.08
F(Rg) 3 2 1.52+0.05 1.42-0.10
801 . 4 2 2.06:0.11 1.85:-0.22
4 3 1.36-0.03 1.32:0.06
404 - 5 2 2.61+0.17 2.29£0.35
5 3 1.72£0.06 1.65-0.14
0 . | 1 7- | : 5 4 1.27£0.02 1.26-0.04
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wheren; is the number of clusters in the bRy, and(Ry) is

the mean radius of gyration. If the clusters are self-similar, it
means that they can be characterized with a single parameter:
the fractal dimensionl; . ThenN;s~ Ry, di, whereNq is the

number of particles in clustes entering in Eq.(8). There-
fore, the momentsr, should vary asNiap where a,= p/d;
[16]. To determine the exponent,, we search for the ratio
of the logarithms of two moments of different order. If the
momentso,,o, really have a scaling behavior, then the
slope will be equal tqp/q. Otherwise, the slope will show
deviations from this value indicating a multiscaling regime.
Figures 1c) and Xd) illustrate the ratiop/q=3 andj for the
sample at¢p=0.008. In Table | we give the values of the
slope of similar graphs for severalq ratios and for two
concentrations. As is very clear from these results, the aggre-

FIG. 1. Distribution of the radii of gyration of clusters contain- gates are indeed fractal objects.

ing more than 2000 particle$a) ¢»=0.008,(b) ¢#=0.08. Log-log
plots of two moments of the distribution &t=0.008:(c) o3 VS 75,

(d) o4 VS 5.

IV. THE FRACTAL DIMENSION FROM SINGLE
CLUSTERS

be measured experimentally by scattering, this is the stan- As mentioned in Sec. I, clusters have been catalogued by
dard approach used to evaluate the fractal dimension dfize. For each of the six size sets we compute an averaged

monodisperse systems.

These two ways to evaluatk, either fromg(r) or from
S(qg), have been exploited repeatedly in the litera{@@3—

25].

lll. SELF-SIMILARITY OF DLCA AGGREGATES

One of the features that would assure the validity of the

10°

two methods to obtain the fractal dimension described in the
previous section is that the aggregates in the flocculation
limit of a DLCA reaction would display simple scaling. If
this is the case, then only one fractal dimension is enough to
describe the fractal characteristics of the aggregates.

Our statistical study of the scaling properties of the
DLCA aggregates is inspired by the recent method of Man-
delbrotet al.[15]. First we generate the distribution of radii
of gyration of a sample of aggregates containing all the clus-
ters with more than 2000 particles collected from the 50
simulations. This distribution is shown in Figgaland Xb)
for two concentrationsi=0.008 and¢$=0.08. The mo-
ments of this distribution are defined by

1073
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FIG. 2. Calculated averaget.use(r)) (circles of clusters
with 3001-3500 particles ab=0.01. The continuous line corre-
sponds to(a) the stretched exponential of E() with parameters
from Table I, and(b) the Fisher-Burford approximation with pa-
rametersd;°=1.865,A"™=1.606,¢ 5=87.89.
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TABLE II. Values ofd; obtained from(gguswefr)) for various volume fractiong and various cluster size
bins. Fractal dimension values from RE8)] are included for comparison. Also reported are the best values
of the parameters in E@6), obtained from the simulations.

P 0.0065 0.008 0.01 0.03 0.05 0.065 0.08
d; (Ref.[8]) 1.868 1.876 1.885 1.951 1.997 2.025 2.051
bin 3000 d; 1.858 1.864 1.865 1.932 1.983 2.042 2.092
A 1.491 1.498 1.512 1.514 1.427 1.442 1.348
& 5032 48.93 49.50 43.44 4177 36.77 34.99
a 2.615 2.476 2.626 2.697 2.928 2.746 2.659
bin 3500 d; 1.867 1.861 1.873 1.932 1.981 2.054 2.087
A 1.458 1.483 1.472 1.547 1.460 1.439 1.393
¢ 5436 54.72 53.92 4624 4462 38.60 36.82
a 2.742 2.930 2.911 2.647 3.173 2.630 2.711
bin 4000 d; 1.876 1.850 1.879 1.930 1.984 2.046 2.101
A 1.430 1.412 1.468 1.547 1.678 1.444 1.433
¢ 5754 62.10 56.61 49.47 42.85  41.26 38.11
a 2.683 3.160 2.725 2.835 2.810 2.619 2.526
bin 4500 dq 1.868 1.858 1.869 1.940 1.998 2.050 2.096
A 1.492 1.414 1.532 1.506 1.589 1.461 1.449
¢ 60.00 64.42 59.79 52.64  43.09 4358 39.31
a 2.445 3.519 2.638 2.776 1.779 2.541 2.100
bin 5000 ds 1.874 1.856 1.873 1.918 2.029 2.038 2.093
A 1.404 1.327 1.374 1.643 1.448 1.510 1.430
& 66.15 70.12 66.69 53.40 50.73 45091 42.94
a 2.860 3.380 3.064 2.092 2.911 2.467 2.451

(Jeustelr) ). Next, we perform a multiple parameter fit of Eq. d. This behavior is characteristic at relatively large values of
(6) 10 (Jauste(r)) to determine the values of the four param- d. In Fig. 3 we show the structure function corresponding to
etersds, A, a, andé for each size set and for each concen-the g(r) in Fig. 2, obtained numerically from Eq¢3) and
tration. Figure 23) illustrates a typical fittedgy,se(r)) for ~ (6). This function displays a plateau for smajlvalues, a
$=0.01 and size set 3001-3500 particles per cluster. Thehoulder at intermediatg values due to the stretched expo-
circles correspond to our simulations and the continuous lin@€ntial, and the linear behavior at larger valuesjofrom

is the fitted function. As is evident, the fit is excellent. Forthe slope of the linear region, we can extract once again the
this particular case the four parameters gre-1.865, a value ofd;. The fractal dimension obtained with this proce-
—2.626, A=1.512, and¢=49.50. In addition, Fig. @) dure is the same as the one carried in the corresponding

shows the same simulation points as in Fi@) Zompared to _?_(r), as shown in Append|x A Therefore, the valueslpfn
) L ! . able Il are reobtained by this method.

the Fisher-Burford approximation @f(r) (continuous ling
with optimized parametersi;®=1.865, A"®=1.606, and V. THE FRACTAL DIMENSION FROM THE WHOLE
£MB=87.89. Although both approximations give the same AGGREGATION BATH
fractal dimension, clearly the Fisher-Burford approximation .
does not reproduce the pair correlation function as closely as FOf €ach of the seven concentrations we calculated the
the stretched exponential. Table Il contains the fitted valueBarticle-particle correlation functiofEq. (2)] of the whole
of these parameters for the other concentrations and size sets 103
larger than 3000 particles. The first row of this table gives 0
our predicted values ofl; from Ref. [8]. As is clear, the
value ofd; is independent of the size set within the statistical
error. It is also clear that the new results for the fractal di-
mension are in perfect agreement with our previous predic-
tion, again within the statistical error.

For small clusters the above analysis is not feasible. The

)

O

102

)

101

Scluster(q

LELEELILL R L B L L B
(e}

reason is that when calculatif@gysie{r)), many particles 10° =001 K

in the cluster surface contribute. Therefore the  depen- °°°o°
dence is buried into the scaled decaying region. Care should ) | | ' °°op

be taken when an analysis involves early times during the 10 103 102 107 109 10!

aggregation because the majority of clusters are small. q
In the Appendix A we demonstrate that the structure func-

tion [Eq. (7)] of the fitted gousiefr) [EQ. (6)] presents a FIG. 3. Syusieq) Obtained by integration of thégguse(r)) of
length scale for whicls(q) is linear in a log-log plot versus Fig. 2(a).



4524

1.4r =
~12F °
\/‘Tg : .
2 i ®
S 5 oo
1 % B e
: OOOO%%QSOQQ
08-'"""""""""""
-0 25 50 75 100
r

FIG. 4. Calculated);a(r) at the final time for one simulation
with 138 240 particles and concentratign=0.01.

reaction box. This calculation was done at four different
times during aggregation process and for five simulations.
Figure 4 illustrategqa(r) from one of these simulations at
the final time for$=0.01. The structure displayed by this
function has already been reportgi¥,18. The position of
the minimum of this function is associated with half of the
average length of the blobs that will be quenched in the
infinite gel. At very short range, the main contribution to this
function comes from pairs of particles within single clusters.
However, at longer range, the individual clusters present the
decay region associated to the stretched exponential. There-
fore the function decays faster than at short range. In this
intermediate range there are also pairs from different clusters
that start to contribute significantly to the function. Somehow
this effect washes out the sharp decay due to the finite size of
the clusters, which is more pronounced at higher concentra-
tions. At even longer range, the function includes many in-
tercluster pairs that are responsible for the minimum and for
the further increase of thg.,(r). For the earlier times con-
sidered, the number of small clusters in the bath is large.
Therefore, an analysis through the pair correlation function
to obtain thed; is not adequate. This fact was already men-
tioned above.

Figure 5 shows the log-log plot of thegy,(r) for three
concentrations at the final time. It is possible to extréct
from the limiting behavior of this function at short distances,

short distanceg(r) behaves as’ 3, similar to the cor-
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FIG. 5. Log-log plot ofgqa(r) vsr at the final simulation time
and far from the minimum of the function. This is because afor three volume fractions{a) ¢=0.0065, (b) $=0.01, (c) ¢

relation function of individual clusters. The continuous line d; was possible.

in Figs. 5a) and 8b) shows the fit to obtain this dimension.
For concentrations larger thab=0.05, when the final blob
size is very smal[17,18, we find that the short-range region
of Qiota(r) shrinks. An example is provided in Fig(d
where it is clear that there are too few points to identify a
linear behavior. In this case it is not possible to obtdjn

=0.065. The continuous line shows the region where a fit to obtain

TABLE Ill. Values of d; from gyo(r) for various volume frac-

tions. Also reported are the slopes in a log-log plot of the linear
portion of Si;;4(9) Vs g.

with this method. The second column of Table Il contains

df from gtotal(r)

|S|Opé from Stotal(Q)

the fractal dimension from this method, averaged over the
five simulations for each volume fraction up th=0.05.
Within the statistical errorg; displays the same behavior as
a function of concentration as reported in Ré].

In what concerns the method for obtaining the fractal di-
mension from th&S,,(q), there are serious problems for the
finite concentrations used in this work. In Figgaand gb)
we are showing th&,,(q) for the same simulations as in

0.0065
0.008
0.01
0.03
0.05
0.065
0.08

1.913
1.902
1.914
1.950
2.034

1.996
2.030
2.051
2.064

Figs. 5a) and 8b). The structure function presents an ap-




57 STRUCTURE FUNCTION AND FRACTAL DIMENSION @& . .. 4525

103 It is conceivable that for very dilute systems and long
a times, when well separated big clusters have aggregated,
there would be a length scale for whiclya(r)
—ewustek§) - If this is the caseS,(q) would display the
R expected slope as in E(J), in the correct length scale.

T TTTTCH]

VI. INVERSION OF THE SCATTERING FUNCTIONS
o =0.0065

slope = -1.949 Unfortunately, the experimental way of obtaining ttie

comes precisely fron$,,,(q) Via its relation to the normal-
o o ized scattering intensity26]. We have already mentioned

1077 10° that it is possible that in the limit of a very dilute system and

q for long times,S,a(q) presents a slope proportioning the

correct fractal dimension because of the presence of well
b separated big clusters in the DLCA regime. However, for

higher concentrations there could be problems in obtaining
the cluster fractal dimension from such log-log plots. One
possible way to circumvent the problem is to extract dhe
from the limit of g5(r) for smallr’s. For this purpose, the
experimentalists would need to consider the inversion of Eq.
(4), in the form

-
Q
o
™

$=0.01
slope = -2.089 1

; Groaf V=14 577 fo q sin(qr)[ Sera(a,t) —1]dq.
Ll vyl %
10 1 0-1 1 00 ©
q The problem that arises now is that experimentalists do not

FIG. 6. Log-log plot 0fS(q) Vs q obtained from theyg,(r) obtain theS(q) for all g’s to infinity, but only up to a maxi-
reported in Fig. 5(a) ¢=0.0065,(b) #=0.01. The continuous line mumgq defined by the maximum scattering angle of the scat-
shows a linear region that does not leadito tering apparatus. Nonetheless, if we only wagt,(r) de-
fined at a set of discrete values of the restriction of an
integration up to infinity can be spared.

From now on we will consider that in Eqg&}) and(9), r,

proximately linear behavior shown by the straight line be-
tween the point&\ andB. However, the values of the slopes
obtained by a linear regression in that region should not b . : ; : : ;
confused V\)I/ith the fracte?l dimension. In fac?t these slopes dif(-a’ and p are,m units of the p?rt|cle3 diametex, (i.e., r
fer from the fractal dimension determined in Figgasand =~ '/@ ", Q'=03—4q, and p’=pag—p). Let A,=1n
5(b). The reason for this discrepancy is tf&i,(q) has a (n=1:2,3 . .'.) pg thesize of the. bins in W'hICh the spatial
contribution not only from the short-range behawir 3 of ~ coordinater is divided. Letr;=(2i—1)/2n (i=1,2,3,...)
the Quw(r), but also from the minimum and nearest- be the centers of those intervals. Lggtbe the approxima-
neighboring cluster regions. The Fourier transform of thistions to g(r;) such that, for allqe[On], the following
function gy(r) does not behave as E@). In fact, the discrete sum replaces E@):

length scale on whiclB,,,(q) roughly presents the linear 4
behavior does not correspond to the short-range region of smTp . _ B

Jwoa(r). The third column of Table Il shows averages over q .21 AnriSiNgri)(gi-1)=Sea(@)~1. (10
the five simulations of the magnitude of the slope for those

concentrations at which it was possible to find a straight line/Vhen the size of the subdivisions tends to zeje>g(r;).
in the log-log plot 0fS,,i5(q). As it is evident from the table, In particular, although the;’s for r;<<1 need not be exactly
there are serious discrepancies between the values in the twero, they should tend to that value when>o. Using the
columns. above equation, we can calculate easily

0

1 N _ e 4p i w2 _ _ _ dae
ﬁzr_ifo [Sota @) — 119 sin(gri) q—w—njlrj(g;—l)fo sifq(2i—1)JsiMq(2j—-1)]Jda=p(gi—1), (11

where we have used
2 T
f SiMé(2i—1)]siMé(2j—1)]dé= 7 6ij, 1,j integers1. (12
0

Then the approximation fog(r) atr; is
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1 nw
gi:1+mj0 g sin(qr;)[ Spra( @) — 11da. (13

As is well known[26], the scattering vectar is related to  have shown that th8,,12(g) can be approximately inverted
the scattering anglé by the relation yielding an approximation fog(r) from where in turn the
fractal dimension could be extracted. Experimentally
4 Siotal(d) is obtained from the intensity functidi,,(q) only
9=+ sin( 6/2), (14)  for monodisperse systems. An additional experimental re-
striction appears now in the form\ <4a,, where\ is the
wavelength of light used in the scattering apparatusagid
where X is the wavelength of light used in the scatteringthe particle diameter. This restriction would force experi-
apparatus. If we want an approximationgffr) defined by = mentalists to consider the aggregation of larger particles in
the integem in Eq. (10), thenaygna=nm. Since the maxi- order to obtain a better approximationdér).
mum value that the sine can talfer backward scatterings

1, then we should have ACKNOWLEDGMENTS

E.B.B. acknowledges support from NSF Grant No. INT-
9502985 for international travel expenses, and from the In-
stitute for Computational Sciences and Informatics for finan-
This last relation presents a restriction in the particle diamcgjg| support to M.L. and for supplying most of the computing
eter that the system should fuffill in order to be able to aptime used in this work. A.E.G. acknowledges support from
proximately invert Eq(4) in the form of Eq.(13). CONACYT Grant Nos. 4906-E, 3165-PE, and E120.1381,
and from Cray-UNAM Grant No. SC-006096.

n\<4ag. (15

VIl. CONCLUSION

We have demonstrated that for the finite concentrations APPENDIX A
used in this work we recover the concentration dependence |, ihis appendix we show that the structure function for
ST the fractal _d|men5|qn of the DLCA aggregates of MONO-gingle clusters behaves &gqe(a)~a~ %, for sufficiently
isperse particles, which we reported in a previous p”bl'carargeq. In the Fisher-Burford representation gf,c.(r),

tion [8] using another method. In the present work we haveyo" 00t is done analytically, while for the stretched expo-
obtained thel; via the particle-particle correlation functions nential case, it is done numerically

of single clu_sters and of the whole qggregatipn_ l_aath. In the ¢ the Fisher-Burford expression f@gsefr) is used in
latter case, it was necessary to consider the limiting slope oéq_ (3) then

Owta(r) for small r in order to exclude the contributions

from the other clusters in the system. We have also obtained

the df from the structure function of single clusters B (* FB 8

Scustef9), defined in Eq(3) and, as shown in Appendix A, it Sciustef @) =B g~ J rd ~%(sinr)e "% dr,

gives exactly the same values as those obtained from 0 (A1)
Oaustek)- We have seen, however, that t8g,(q) fails to

produce linear slopes on log-log plots with the correct fractal

dimension in the concentration range studied. It was obwhere an appropriate change of variables has been performed
served that the discrepancy arose from contributions t@nd whereB® includes all numerical factors independent of
Sea(d) coming from the minimum and nearest-neighborq and 8. This integral is found in the standard tabJ@F],
cluster length regions @y(r) in Eq.(4). Nevertheless, we with the result

R A

. l/(quB)Z)waB_ o si{ (df®— 1)arctanqéF®). (A2)

Seiustek d) = BFBq

An expansion in powers of £ up to the first order, leads to

Sousief @) =B T(dfP- 1)

T B di°-1 T FB
SN E(df —1) —WCO E(df —1)) ) (A3)
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assuming thatlf®+ 2. Ford®=2 there is no first order term ([,
and the correction is second order. For the @&e>1, Sciustek d) =B ffo ré<(sinr)dr. (A6)

s - The integral fﬁrdfzsinrdr converges very slowly for
Seustef @) =B g% T'(dfB— 1)sin(§ (dfB— 1)), 1<d;<2 and diverges fod,=2 [27]. Therefore the integral
in Eqg. (A6) becomes independent gf for di<2 and very

(Ad) large q¢. However, this integral depends anfor ds=2.

Consequently, there should be a crossover valuz loélow

which indicates thasclusten(Q)“‘qidfFB in this limit. which the integral in Eq(A5) for d;>2 is independent o
If the stretched exponential of E(B) is used into Eq(3), ~ and above which depends gnlt becomes imperative to test

then the dependency of this integral gnfor thed;’s anda’s that

we have obtained. A look at Table Il shows that the values of
d¢ involved are in the range 1.85d;<<2.10, while the values
P P (/)R of a are mainly between 2.50a<3.25. We have performed
Seusiet 4) = B4 fjo ri2(sinre "9 dr. - (AS) numerically the integral for the followingji¢ values: 2
X100 with n=0,1,...,12. Thevalues ofd; used were
o ) . 1.80=d;=2.25 in increments of 0.05 and, for each of those
This integral does not appear in the standard tables of mtedf values, we used the following’s: 2.50, 2.75, 3.00, and
grals fora# 1. Fora=1, it reduces to Eq(Al) and forqé  3.25. In all cases we checked the constancy of the integral,
>1 becomes independent gf On the other hand, foa  which becomes independent@ffor high q¢. Therefore, we
>1 the exponential factor becomes a step function with theonclude that in the range of parameter values of interest to
value of 1 forr<qé and zero forr>q¢. This effectively  this work, Syuse{q) ~q~ 9 for gé>1, in the stretched expo-
cuts the integral off at the upper limité: nential case also.
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