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Diffusing-light spectroscopies beyond the diffusion limit: The role of ballistic transport
and anisotropic scattering

P.-A. Lemieux, M. U. Vera, and D. J. Durian
Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547

~Received 14 October 1997!

Diffuse transmission and diffusing-wave spectroscopy~DWS! can be used to probe the structure and dy-
namics of opaque materials such as colloids, foams, and sand. A crucial step is to model photon transport as a
diffusion process. This approach is acceptable for optically thick samples, far into the limit of strong multiple
scattering; however, it becomes increasingly inaccurate for thinner samples for several reasons. Here, we
correct for two of these defects. By modeling photon propagation by a telegrapher equation with suitable
boundary conditions, we can account for the ballistic transport of photons at finite speed between successive
scattering events. By introducing a discontinuity in the photon concentration at the source point, and then
averaging over a range of penetration depths, we can account for the fact that photons usually scatter aniso-
tropically into the forward direction, rather than being completely randomized at each event. The accuracy of
our approach is tested by comparison both with random walk computer simulations and with experiments on
specially designed suspensions of polystyrene spheres. We find that our predictions extend the utility of diffuse
transmission to slabs of all thicknesses and of DWS to slabs down to about two transport mean free paths.
@S1063-651X~98!11604-5#

PACS number~s!: 82.70.2y, 05.40.1j, 42.62.Fi
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I. INTRODUCTION

One of the hallmark features of soft-condensed matte
the presence of structure at length scales that are interm
ate between the molecular and the macroscopic. Diverse
amples include the arrangement of colloidal particles i
liquid, glassy, or crystalline structures in paint, ink, and da
products; the packing of gas or liquid bubbles inside foa
and emulsions; the arrangement of grains in a pile of sand
the configuration of cells in a tissue@1#. These mesoscopi
structures are interesting both in terms of the microsco
physics underlying their formation, and in terms of the ma
roscopic properties they impart to the material. Since
individual components typically have different refractive i
dices, they can strongly scatter visible light and hence ca
bulk samples to have an opaque, white appearance. P
cally, photons travel ballistically between successive scat
ing events whose cumulative effect is to produce a rand
walk. This can preclude characterization by tradition
means such as video microscopy or angle-resolved static
quasielastic light scattering. Fortunately, experimental te
niques that exploit multiple light scattering have been dev
oped for probing the structure and dynamics of such mat
als @2#. In diffuse-transmission spectroscopy~DTS!, the
transmission probabilityT for incident light to be transmitted
through an opaque slab is measured as a function of w
length and analyzed in terms of the transport mean free p
l * , or step size in the random walk, of the photons@3#.
Structural details are then deduced from the value and w
length dependence ofl * . In diffusing-wave spectroscop
~DWS!, fluctuations in the intensity of a portion of the mu
tiply scattered light are measured and expressed in terms
normalized electric field autocorrelation function,g1(t)
5^E(0)E* (t)&/^uEu2&, as a function of the delay timet
@4–6#. Results are then analyzed in terms of^Dr 2(t)&, the
571063-651X/98/57~4!/4498~18!/$15.00
is
di-
x-

o

s
or

ic
-
e

se
si-
r-
m
l
nd
-

l-
i-

e-
th,

e-

f a

mean-squared change in position of the scattering sites
to thermal motion, flow, or time evolution.

For analysis of both DTS and DWS data, most wide
used theories approximate the propagation of multiply sc
tered photons as a diffusion process. This yields conven
analytic expressions that are reasonably accurate if
sample thickness is much greater thanl * , where the number
of scattering events is large. Unfortunately, however, exp
ments cannot be performed on arbitrarily thick samples
to finite absorption and coherence lengths, and also du
considerations of the signal-to-noise ratio. Consequen
sample thickness is most often chosen in the range
,L/ l * ,20, where the diffusion approximations are on t
verge of being unacceptably inaccurate. For smaller thi
nesses, the failure of diffusion theory predictions has b
observed experimentally@7,8#. Furthermore, the effects o
scattering anisotropy, where photons are not completely
domized at each scattering event~see Fig. 1!, and ballistic
propagation, where photons travel at a finite speed betw
events, can be important for thin samples. Because of
difficulty in accounting for such phenomena in theories

FIG. 1. Transverse coordinates of random walks across a th
dimensional slab of thickness 101* , for isotropic and anisotropic
scattering. In both cases, the walks start inward at the left and
at the right.
4498 © 1998 The American Physical Society
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photon transport, multiple light scattering techniques ha
not yet achieved the same degree of quantitative accurac
the traditional, single-scattering, techniques@9,10#.

Several methods have been proposed to improve upon
diffusion approximations for DWS. MacKintosh and Joh
@11# described an integral formalism for dealing with corr
lations between scattering sites located closer than one tr
port mean free path, where the propagation of light is
diffusive and where wave effects are important. Their a
proach is also capable of dealing with the polarization effe
observed in backscattering experiments@12#. In analogy with
radiative transfer, a correlation transfer formalism has b
proposed by Ackerson, Dougherty, and co-workers@13,14#
for extending the theory of DWS to thinner slabs. Both
these approaches, however, require either numerical solu
or systematic expansion with the assumption that the di
sion approximation is nearly correct. An alternative approa
by Middleton and Fisher@15# employs random-walk simula
tions, and hence avoids transport approximations altoge
Simulation results that demonstrate the limitations of dif
sion approximations have been reported for both backsca
ing @15# and transmission@10# geometries. This approach
computationally intensive and does not yield closed-fo
predictions that can readily be used for data analysis.

Recently we have developed an exactly soluble theory
DTS and DWS that does not rely on diffusion approxim
tions but instead models photon transport in terms of t
counter-propagating streams@16#. This approach follows es
tablished procedures from the astrophysics literature for
proximating transport in three dimensions from exact res
for transport in a truly one-dimensional space. It provide
straightforward means of incorporating boundary reflectiv
scattering anisotropy, and ballistic propagation. The resul
predictions are more accurate, and have a greater rang
validity, than those from diffusion theory. Unfortunatel
however, the two-stream theory applies only to sample
illumination geometries that have a one-dimensional sym
try, has the wrong photon diffusion coefficient, and can
account for the effects of angle-dependent wall reflectiv
@16#. To address these problems, we have proposed an a
native means of generalizing upon the exact one-dimensi
theory @17#. This yields a telegrapher equation for the to
photon concentration, complete with specifications for
boundary conditions and the emerging flux. This theory
duces to standard diffusion theory for long times and d
tances, and in cases of weak absorption, where ball
propagation is unimportant, and significantly improves up
it otherwise. Since the fundamental quantity is the total nu
ber of photons per volume, rather than per unit direction
per stream, it cannot account explicitly for scattering anis
ropy.

In this paper, we report on how to incorporate scatter
anisotropy into telegrapher and diffusion theories of pho
transport. Physical arguments, and exact results from o
dimensional transport, are used to demonstrate that a dis
tinuity in the total photon concentration at the source poin
opened up in proportion to the degree of scattering ani
ropy. Averaging such results over a continuous range
source points, to mimic an incident laser beam, leads to
proved predictions for DTS and DWS. We begin in Secs
and III, respectively, by reviewing the diffusion and telegr
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pher theories of photon transport. In Sec. IV, where n
material starts, we argue that anisotropy is accounted fo
a discontinuity at the source, and we develop diffusing-lig
spectroscopy predictions for slablike geometries. In Secs
and VI, respectively, we test these predictions by rando
walk computer simulations and by experiment on dilute s
pensions of colloidal particles.

II. DIFFUSION APPROACH TO TRANSPORT

The diffusion theory predictions for photon transpo
through a slab of thicknessL are summarized here, both fo
later comparison and to introduce notation. Throughout,
illumination and detection optics are taken such that ther
no discrimination on the basis of the net lateral motion
photons within the sample, thus ensuring an effectively o
dimensional symmetry. Ignoring absorption, three transp
parameters enter into the theory: the photon transport m
free pathl * , defined such that the photon diffusion consta
is cl* /3, the penetration depthzpl * , defined as the distanc
into the slab at which diffusing photons are assumed to
created, and the extrapolation lengthzel * , defined as the
distance outside the slab at which the diffuse photon conc
tration is assumed to extrapolate to zero. These definiti
for the penetration depth and extrapolation length ratios
depicted graphically in the top plot of Fig. 2. The value

FIG. 2. Photon concentration vs distance into the sample
slabs of thicknessL̃510 for photons that begin their random walk
at zp51, where all lengths are measured in units ofl * , the photon
transport mean free path. The top plot shows graphically the d
nitions of the penetration depth and extrapolation length ratios
the bottom three plots, solid curves represent histogram data f
random-walk simulations for different values of the average cos
of the scattering angleg, and boundary reflectivityR, as labeled.
The dashed curves represent the predictions of Eq.~4.1!, which has
a discontinuity atzp and vanishes atz52ze and z5L1ze . The
size of the discontinuity is fixed by the value of the transmiss
probability, and seen here to be given byD0Dw>g.
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the transport mean free path is given by

l * 5
l s

^12cosu&
5

l s

12g
, ~2.1!

where l s is the scattering length, equal to the average d
tance between scattering events and also by which the in
sity in a ballistic beam is exponentially attenuated, andg
5^cosu& is the average cosine of the scattering an
@18,19#. The values of the penetration depth and extrapo
tion length ratios,zp and ze , respectively specify the treat
ment of the source and boundary conditions, and are bot
order one. In reality, diffusing photons are introduced in
the sample over a continuous range of depths as pho
scatter out of an incident beam; however, the penetra
depth is usually set to its average value assuming the s
tering to be isotropic:zp51. The extrapolation length ratio
on the other hand, is much better specified. It is set by
angle-dependent reflectivityRw(m) of the sample wall ac-
cording to

ze5
2

3 S 11R2

12R1
D with Rn5E

0

1

~n11!mnRw~m!dm,

~2.2!

where the angle cos21 m is measured with respect to th
interior normal@20,21#. Numerical results for many cases
experimental interest are given in Ref.@21# and confirmed by
their connection to the angular dependence with which
fusely transmitted photons emerge from a slab.

For diffuse transmission spectroscopy, the average tr
mitted intensity is measured and analyzed in terms of
photon transport mean free path. Since the value ofl * is
determined by the nature and spatial arrangement of sca
ing sites, this gives a measure of the structure of the mate
Given the above ingredients, the transmission probability
diffuse photons created atzpl * is predicted by diffusion
theory to be

Tzp
5

zp1ze

L̃12ze

, ~2.3!

whereL̃5L/ l * is the dimensionless optical thickness of t
slab. This can be shown either by solution of the diffusi
equation for a steady, time-independent source or by us
Green’s function techniques. This result withzp51 is widely
used to analyze experimental data. Random-walk simulat
show that it describes the total diffuse transmission proba
ity to within a few percent, for arbitrary scattering anisotro
and boundary reflectivity, as long as the sample thickn
exceeds about 5l * andze is taken according to Eq.~2.2! @9#.

In diffusing-wave spectroscopy, fluctuations in the d
tected intensity are measured and then analyzed in term
the time dependence of the dimensionless mean-squared
placement of the scattering sites,x[k2^Dr 2(t)& wherek is
the wave vector of light inside the material. The normaliz
electric field autocorrelation function that describes th
fluctuations is given by a weighted average of the single-p
correlation function, exp(2xY/3), according to the probabil
ity density P(Y) for the total dimensionless square wa
vector transfer of the photon path to be
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n

~12cosu i !, ~2.4!

whereqi is the change in wave vector for scattering at siti
by angleu i , for any total numbern of scattering events in
the path@4,15#. This assumes that scattering events and p
ticle motions are uncorrelated, and thatl * is larger than the
wavelength of light. The benchmark for predicting the d
tected correlation function is thus given by

g1Y~x!5E
0

`

P~Y!e2xY/3dY. ~2.5!

Unfortunately, since the number of scattering events in
given path is discrete, this expression can only be evalua
by computer via random-walk simulations@15,10#. To make
analytic progress, the so-called continuum approximat
must be invoked to relate total square wave vector transfe
path length. If the numbern of scattering events in a path i
large, thenY may be approximated accurately by averagi
over the scattering form factor:

Y>n^12cosu&5
nls
l *

5
s

l *
[S, ~2.6!

wheres5Sl* is the total length of the light path. The ap
proximate expression used to compute the normalized e
tric field autocorrelation function is thus

g1S~x!5E
0

`

P~S!e2xS/3dS, ~2.7!

whereP(S) is the probability density for a detected photo
to have a total path length ofSl* inside the sample. Since th
speed of light is constant, this expression is a Laplace tra
form with respect to time of the detected pulse resulting fr
an instantaneous source, and can thus be evaluated u
Green’s function techniques@5,2#. For the slab geometry
with one-dimensional incident-collection optics, the corre
tion function in transmission is found to be

g1T,xp
~x!5

sinh@zpAx#1zeAx cosh@zpAx#

Tzp
$~11ze

2x!sinh@ L̃Ax#12zeAx cosh@ L̃Ax#%
.

~2.8!

This result withzp51 is widely used to analyze experimen
tal data. It reasonably reproduces simulation results of
benchmarkg1Y(x) of Eq. ~2.5!, for arbitrary scattering an-
isotropy and boundary reflectivity, as long as the sample
sufficiently thick and the valueze is taken according to Eq
~2.2! @10#.

For the same geometry, but for backscattered light,
correlation function is obtained simply by replacingzp by
L̃2zp in Eq. ~2.8!. In the semi-infinite limit,L̃→`, and for
smallx, this prediction is close to the experimental@12# and
simulation@15,16# result of

g1B~x!5exp~2gAx!, ~2.9!
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whereg is a number close to 2 that depends on bound
reflectivity and scattering anisotropy. This result is wide
used to analyze experimental data.

The central predictions of diffusion theory, Eqs.~2.3! and
~2.8! with zp51 for DTS and DWS, respectively, rely upo
several approximations that are valid only for thick sla
Besides ignoring any direction dependence in the pho
concentration field, they do not account for ballistic prop
gation or scattering anisotropy, and hence become incr
ingly inaccurate, and eventually fail altogether, for slabs
decreasing thickness. This is unfortunate because most
are obtained for rather thin slabs, 5,L/ l * ,20, where the
effects of absorption and laser coherence can be negle
and where better correlation function statistics can be
tained due to higher count rates and slower decay times

III. TELEGRAPHER APPROACH TO TRANSPORT

This section reviews a recently reported theory of pho
transport that we have developed to account for the balli
nature of photon propagation between successive scatte
events @17#. Solutions relevant to diffusing light spec
troscopies are developed in the following section, explic
including the influence of scattering anisotropy.

A. Telegrapher equation

A complete description of photon transport, neglecti
polarization and interference effects, requires that the n
ber density of photons be tracked as a function of time,
sition, and direction. It is straightforward to develop such
theory of radiative transfer simply by considering all the po
sible ways for this density to change by the ballistic flow
photons, by the scatter of photons in and out from differ
directions, and by absorption@22,18,19#. However, the re-
sulting Boltzmann equation is difficult to solve, even nume
cally, and this difficulty ultimately originates in the fact th
there is a continuum of directions in three-dimensio
space. Diffusion theory, by contrast, is much simpler sinc
neglects the direction dependence and thus deals only
the total photon density and how it changes by scattering
absorption. As a comparably simple alternative to the
transport theory, we have recently proposed a telegrap
equation for the photon density that improves upon diffus
theory by incorporating ballistic propagation effects for is
tropic and anisotropic scattering alike. The physical moti
tion comes from the exact model of transport in a truly on
dimensional space, which can be written down and sol
without approximation@23,16#. The following telegrapher
equation for the total photon densityw(r ,t) in three dimen-
sions was proposed by assuming only that it be identica
form to the exact telegrapher equation for one-dimensio
transport, but with numerical coefficients guaranteeing
correct ballistic and diffusive limits for three dimensions:

¹2w5
]2w

c2]t2 1S 2

l a
1

3

l * D ]w

c]t
1

1

l a
S 1

l a
1

3

l * Dw, ~3.1!

where c is the speed of light in the medium,l * 5 l s /(1
2g) is the photon transport mean free path,l s is the scatter-
ing length,g is the average cosine of the scattering ang
and l a is the absorption length. Note that the wave equat
y
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with the correct speedc is recovered at short times and tha
ignoring absorption, the standard diffusion equation with
correct diffusion coefficientD5cl* /3 is recovered at long
times. Furthermore, the treatment of absorption is s
consistent sincew(r ,t)5exp(2z/la) is a solution in the case
of negligible scattering,l * @ l a , and since w(r ,t)5exp
(2ct/la) is a solution in general. The accuracy of Eq.~3.1! in
describing transport in three dimensions was verified
comparison of its Green’s function with random-walk sim
lation results for the spreading of an instantaneous puls
an infinite three-dimensional medium with varying degre
of scattering anisotropy and absorption@17#. It should be
emphasized that Eq.~3.1! describes photon concentratio
away from a source, independent of the degree of scatte
anisotropy; as will be shown in Sec. IV, anisotropy plays
important role only in thetreatmentof the source.

Since the values ofc andl * set the scales for ballistic an
diffusive behavior, it is convenient to work in a dimensio
less system of units where all lengths are measured in u
of l * and all times are measured in units ofl * /c. The result-
ing dimensionless telegrapher equation is thus

¹2w5
]2w

]t2 1S 2ma1
1

D0
D ]w

]t
1maS ma1

1

D0
Dw,

~3.2!

wherema5 l * / l a is the dimensionless absorption coefficie
andD051/3 is the dimensionless diffusion coefficient.

B. Boundary conditions and observable flux

To complement the telegrapher equation for predict
photon transport within and out of a finite medium, it
necessary to specify boundary conditions forw(r ,t) and a
prescription for deducing the observable flux of exiting ph
tons. We obtained these@17# again by considering the result
of the exact description of the one-dimensional problem.
the same dimensionless system of units as for Eq.~3.2!, the
result for the boundary conditions is

05F11
ze

11D0ma
n̂•“1

D0

11D0ma

]

]t Gw~r ,t !U
boundary

,

~3.3!

where n̂ points normal to the boundary away from the m
dium and whereze is given by the boundary reflectivity ac
cording to Eq.~2.2!. This is similar to the usual extrapolatio
length boundary conditions of diffusion theory, except f
thema and]/]t terms that arise from absorption and ballis
transport, respectively. Note, also, that for time-independ
problems the extrapolation length decreases with increa
absorption. The result for the exiting flux at some point
the boundary is found similarly as

J~r ,t !5
D0

ze
w~r ,t !U

boundary

, ~3.4!

which would be identical to Fick’s law if the absorption an
ballistic terms in the boundary conditions were dropped.

The complete telegrapher theory of three-dimensio
photon transport, except for the specification of the sou
consists of Eqs.~3.2!–~3.4!. It is of comparable simplicity to
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diffusion theory, but is much more accurate at short tim
and distances and in cases of strong absorption. This
verified by comparison of analytic solutions for a pla
source with the results of random-walk simulations for sla
of varying optical thickness and absorption@17#. The teleg-
rapher theory is also superior to the 2-stream theory of R
@16# because the latter applies only to geometries that ha
one-dimensional symmetry, has the wrong diffusion coe
cient, and cannot incorporate the effects of angle-depen
wall reflectivity.

IV. PREDICTIONS

We now begin presenting new material. In this secti
solutions to the telegrapher theory are found for the geo
etry of greatest experimental interest for diffusing light sp
troscopies: a three-dimensional slab with illumination a
detection optics arranged such that there is no discrimina
against photons according to their lateral motion within
sample. Absorption is not explicitly considered, but can
incorporated easily based on the results presented.

A. Steady plane source

The solution for the concentration profile when a stea
source of strengthw0 is located at the planezpl * in from the
edge of a nonabsorbing slab of thicknessL5L̃ l * is given by

w~z!5
w0

D0
H ~z1ze!~12Tzp

!, z,zp

~ L̃2z1ze!Tzp
, z.zp,

~4.1!

where the transverse coordinatez is measured in units ofl * ,
andTzp

is the transmission probability. This obviously sat
fies the time-independent telegrapher equation with no
sorption,¹2w50. It also satisfies the boundary condition
Eq. ~3.3!, by vanishing at distancezel * outside the sample
Furthermore, it correctly gives the diffusely backscatte
and transmitted fluxes according to Eq.~3.4! as

~D0 /ze!w~0!5~12Tzp
!w0 ,

~D0 /ze!w~L !5Tzp
w0 . ~4.2!

Curiously, however, the value of the transmission probabi
has not yet been specified even though all the ingredient
the theory have been used. To determine the value ofTzp

requires physical arguments outside of the standard tele
pher model, just as was required to specify the value ofze .
To begin, first note that the size of the discontinuity per u
incident flux at the source point, Dw[@w(zp

1)
2w(zp

2)#/w0 , has also not been specified, and that fixi
the value of eitherTzp

or Dw determines the value of th

other. Evaluating the discontinuity atzp according to the
profile of Eq. ~4.1! and then solving for the transmissio
probability gives the key result:

Tzp
5

~zp1D0Dw!1ze

L̃12ze

. ~4.3!
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Accordingly, the usual diffusion theory prediction for th
transmission probability, Eq.~2.3!, is recovered by forcing
the profile to be continuous atzp , while an increase inDw
leads to an increase in transmission probability. A nonz
value of the discontinuity can be understood physically
arising from anisotropic scattering. First, if the scattering
anisotropic, then photons first scattered away from an in
dent beam atzp will be preferentially directed deeper into th
sample; therefore, the concentration forz.zp should be
greater than forz,zp in proportion to the extent of the an
isotropy. Second, the transmission probability should
crease as photons begin scattering from deeper within
sample, again in proportion to the extent of the anisotro
This intuitive connection between the concentration disc
tinuity at the source point and the extent of scattering anis
ropy can also be seen mathematically from the exact
stream theory of transport in a truly one-dimension
medium. There, Eq.~13! of Ref. @16# shows that the trans
mission probability has the form of Eq.~4.3! but with D0Dw
replaced by 2pf21, wherepf is the probability for scattering
forward without changing streams. For one dimension,
D0Dw term appearing in Eq.~4.3! is thus given by the aver
age cosine of the scattering angle,g5(11)(pf)1(21)(1
2pf)52pf21. As shown next, the relationD0Dw5g also
turns out to be obeyed for thick samples in higher dime
sions.

In general, the size of the discontinuity can be deduced
terms of the scattering anisotropy by requiring sensible
havior of the transmission probability in the diffusive an
single-scattering limits. For very thick slabs, the total diffu
transmission probability should depend only on the transp
mean free path, independent of scattering anisotropy. A
aging Tzp

over an exponential distribution of penetratio
depths according to the scattering length gives the total
fuse transmission probability as

lim
L→`

Td5E
0

`

Tzp
e2zpl* / l sdzpl * / l s5

~ l s / l * 1D0Dw!1ze

L̃12ze

,

~4.4!

assuming that the discontinuity is independent of penetra
depth. This averaging procedure will be discussed more f
in Sec. IV C. Since the scattering and transport lengths
related byl s / l * 5(12g), the diffuse transmission is inde
pendent of anisotropy only if the discontinuity is given by

D0Dw5g for L@ l * . ~4.5!

As the scattering anisotropy increases, the average pen
tion depth decreases and the discontinuity increases in su
way that their sum, (l s / l * 1D0Dw)51, remains a constan
equal to one. Therefore, the total diffuse transmission pr
ability for thick slabs is simplyTd5(11ze)/(L̃12ze) inde-
pendent of anisotropy. This solves the old puzzle as to w
the ad hoc procedure of settingzp51 in Eq. ~2.3! yields
good results for any degree of scattering anisotropy.

In the opposite limit of very thin slabs, where photo
scatter not more than once, the diffuse transmission proba
ity can be calculated directly and used to deduce the disc
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tinuity. Summing all the probabilities for a singly scatter
photon to reflect any number of times, and then be trans
ted, gives

Tzp
5E

0

1S F~m!1F~2m!R~m!

11R~m!
D dm ~4.6!

after averaging over forward scattering angles;F(m) is the
scattering form factor andR(m) is the boundary reflectivity.
To agree with theL̃→0 limit of Eq. ~4.3!, the discontinuity
must be taken as

D0Dw52zeE
0

1S F~m!1F~2m!R~m!

11R~m! Ddm2ze

[g8 for L! l * . ~4.7!

If the scattering is isotropic,F(m)5F(2m), this reduces to
zero. If the boundary reflectivity is independent of angle, t
reduces tog85 2

3 (2pf21) where pf is the probability of
scattering into the forward direction with a deflection ang
of less than 90°. In general, however, it must be evalua
numerically.

In summary, the discontinuity in diffuse photon conce
tration at the source plane for a three-dimensional sla
fixed by requiring that sensible limits be obtained for ve
thick and very thin samples. In both the diffusive and sin
scattering limits, the discontinuity is zero for isotropic sc
tering and increases as the scattering becomes more a
it-

s

d

-
is

e
-
iso-

tropic according to Eqs.~4.5! and~4.7!. In Sec. V A we will
demonstrate explicitly by simulation that a discontinuity
the concentration profile exists and is consistent with th
expectations.

B. Instantaneous plane source

For many problems of interest, including DWS, it is ne
essary to consider the time-dependent response to an in
taneous pulse. Boundary conditions are most easily im
mented using Laplace transform methods. In the telegrap
model, the Laplace transform with respect to time of a pu
of strengthw0 introduced at depthzpl * into a slab is pre-
dicted to have the general form

w̄~z,v!5
w0

2 SAa

v
6Dw D e2Aauz2zpu1c1eAaz1c2e2Aaz,

~4.8!

where v is the transform variable conjugate to time,a
5v(v11/D0), z is the transverse coordinate, and the p
and minus signs are forz greater and less thanzp , respec-
tively. As before, lengths are measured in units ofl * and
times in unitsl * /c. It is straightforward to verify that this
satisfies the telegrapher equation, Eq.~3.2!, and that the dis-
continuity per unit source is of sizeDw. The first term rep-
resents the source, while the amplitudesc1 and c2 of the
subsidiary terms are chosen in order to satisfy the bound
conditions, Eq.~3.3!. Using the prescription of Eq.~3.4! for
the exiting flux, the Laplace transform with respect to time
the transmitted pulse is found to be
ion result
gral

ility
the
influence

analysis

prevents
D0

ze

w̄~L,v!5w0

@11~D01Dwze!v#sinh@zpAa#1~ze1D0Dw!Aa cosh@zpAa#

@11~ze
21D0

2!v/D0#sinh@ L̃Aa#12zeAa cosh@ L̃Aa#
. ~4.9!

The Laplace transform of the backscattered pulse can be found similarly; it can also be obtained from the transmiss
simply by replacingzp by L̃2zp andDw by 2Dw. As a check, note that the transmission probability is equal to the inte
of the transmitted pulse over all time, and is hence given byw̄(L,0)D0 /ze5w0Tzp

. The value thus obtained from thev→0
limit of Eq. ~4.9! is clearly equal to the previous result, Eq.~4.3!, found for the steady source. The backscattering probab
can be shown, similarly, to be 12Tzp

. This provides an important, nontrivial, check on the internal consistency of
telegrapher equation, boundary conditions, and treatment of the discontinuity at the source. As an aside, note that the
of absorption on both the pulse shape and transmission probability is found by takingv→v1ma .

Besides giving transmission probabilities with and without absorption, the Laplace transform results are useful for
of other experimental data as well. For instance, they can be inverted for the time dependence of emerging pulses@17#. And,
according to Eq.~2.7! for the theory of DWS, they can be evaluated atv5D0x, and hencea5x(11D0

2x), then normalized,
to approximate the electric field autocorrelation function. For transmission, the result is

g1T,zp
~x!5

@11~D0
21gze!x#sinh@zpAa#1~ze1g!Aa cosh@zpAa#

Tzp
$@11~ze

21D0
2!x#sinh@ L̃Aa#12zeAa cosh@ L̃Aa#%

. ~4.10!

For backscattering, the result can be generated from this as before. Since the failure of the continuum approximation
application to very thin samples, we have set the discontinuity to the thick-sample limit ofD0Dw5g. Note that Eq.~4.10!
bears similarity to the diffusion theory prediction, Eq.~2.8!, which indeed is recovered by setting bothD0

2 andg to zero. The
differences due to theD0

2 terms indicate the influence of ballistic propagation, while the differences due to theg terms indicate
the influence of scattering anisotropy.
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C. Collimated beam

The expressions found above for the transmission probability and DWS correlation functions are not quite ready fo
data analysis. First, they must be averaged over a distribution of penetration depths according to the scattering length
reflectivity. Considering all multiple reflections of the collimated incident beam from the sample boundaries, the totaldiffuse
transmission probability is found as

Td5
1

12F2 E0

L̃
@Tzp

1F~12Tzp
!#e2zp /~12g!dzp /~12g!

5
@~12g1D0Dw!~12F !1ze~11F !#~12e2 L̃ /~12g!!2L̃~12Rb!e2 L̃ /~12g!

@ L̃12ze#~12F2!
, ~4.11!

whereF[Rbe2L/ l s5Rbe2L̃/(12g) is the probability for an incident to cross the sample without scattering and then reflec
Tzp

andF(12Tzp
) terms in the integral represent the contribution from photons that reflect an even and odd number o

respectively, before being scattered out of the incident beam atzp ~see Fig. 3!. The result, Eq.~4.11!, is the central new
prediction intended for analysis of diffuse transmission data. For thick samples, it reduces to the usual diffusion predic
~2.3! with zp set to one. For thinner samples, its behavior and accuracy will be considered in Secs. V and VI; there,
also recommend an empirical interpolation scheme between the two limits of Eqs.~4.5! and ~4.7! for the magnitude of the
discontinuity.

Similar averages must be performed for DWS. In backscattering, taking theL→` limit and then averaging over a
exponential distribution ofzp according to the scattering length gives

g1B~x!5E
0

`

g1B,zp
~x!e2zp /~12g!dzp /~12g!

5
11~D0

22gze!x1~ze2g!Aa

@11~12g!Aa#@11~D0
21ze

2!x12zeAa#
, ~4.12!

where, recall,x5k2^Dr 2(t)&, a5x(11D0
2x), D051/3, andg is the average cosine of the scattering angle. For DWS

transmission, the result for a plane source must be averaged overzp as well as summed over multiple reflections of t
unscattered beam:

g1T~x!5

E
0

L̃
@Tzp

g1T,zp
~x!1F~12Tzp

!g1B,zp
~x!#e2zp /~12g!dzp

Td~12F2!~12g!
. ~4.13!

Note that diffusely transmitted photons that remain in the incident beam for an odd number of reflections all con
according tog1B,zp

(x), since they are traveling away from the transmission boundary when first scattered~see Fig. 3!. This
integral is straightforward to evaluate, but the answer is rather cumbersome. To obtain a reasonably convenient expre
setF50 and thus restrict our attention to thicknesses well outside the single-scattering regime. This is not an unne
severe restriction since, by contrast with the diffuse transmission probability, the DWS prediction must fail in the th
limit because of the continuum approximation. Evaluating Eq.~4.13! without the multiple reflections and with the discon
nuity set toD0Dw5g then gives the central prediction intended for use in analysis of actual data:

g1T~x!5
~AC1B!2$~A1BC!sinh@ L̃Aa#1~AC1B!cos@ L̃Aa#%exp@2L̃/~12g!#

Td8~12C2!$@11~ze
21D0

2!x#sinh@ L̃Aa#12zeAa cosh@ L̃Aa#%
, ~4.14!
ity
where the coefficients are defined as

A511~D0
21gze!x,

B5~ze1g!Aa,

C5~12g!Aa,
Td85
~11ze!2~11ze1L̃ !exp@2L̃/~12g!#

L̃12ze

. ~4.15!

This result includes the effects of boundary reflectiv
through ze , scattering anisotropy throughg512( l s / l * ),
and ballistic propagation throughD0

2, all of which are impor-
tant for typical slabs of thicknessL,15l * . For thick slabs, it
reduces to the usual diffusion theory prediction, Eq.~2.8!
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with zp set to one. The effects of absorption on both t
transmission probability and the DWS signal can be obtai
by takingx→x1ma /D0 and then normalizing.

To examine the influence of anisotropic scattering a
ballistic propagation, we investigate the approach of the p
diction, Eq. ~4.14!, to the thick-sample limit g1(x)
5L̃Ax/sinh(L̃Ax). We thus define an expansion b
ln@g1(x)#52(G1x)11

5A(G1x)21O(x3), whereG1 is the first cu-
mulant controlling the decay rate, andA is a shape paramete
specifying the initial curvature on a semilogarithmic plo
Straightforward manipulation gives

G15
L̃ 2

6
F116zeL̃

2126~12ze
22D0

2!L22212zeL̃
23

112zeL̃
21 G

1
g~21ze2g1D0

2!2D0
2

11ze

1O„L̃3 exp@2L̃/~12g!#…,

~4.16!

A51112F ~11ze
2!2

g~21ze2g1D0
2!1D0

2~517ze!/2

11ze
G

3L̃221O~ L̃23!.

The leading thick-slab behaviors areG1>L̃ 2/6, since trans-
mitted photons typically take this number of completely ra
dom steps of sizel * in crossing a slab, andA>1, by defini-
tion. According to Eq.~4.16!, the first correction to the
cumulant scales asL̃21 and depends only on boundary r
flectivity; anisotropy and ballistic effects are relatively unim
portant even for rather thin slabs. The leading correction
the shape, by contrast, scales asL̃22 and depends crucially
on all these quantities. In particular, the degree of upw
curvature increases for largerze and for smallerg. Physi-
cally, according to the fundamental DWS equation~2.7!, this
can be understood in terms of an increase in the width of
photon path length distributionP(S). If the scattering is
highly anisotropic, then all photons scatter out of the ballis
incident beam very close to the boundary and hence b
diffusing at the same location. If the scattering is isotrop
by contrast, then photons scatter out of the incident be
over a broader range of distances and this leads to a bro
distribution of diffusive path lengths. The influence of ba

FIG. 3. Diffusing photons are created by scattering away fr
the incident beam. The complete source is thus constructed b
tegrating the plane-source results over the penetration depthzp ,
and summing over all multiple reflections.
e
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listic transport can be similarly understood. The telegrap
theory obeys causality by forcingP(S)50 for S,L̃2zp

@17#. The standard diffusion theory, recovered by takingD0
2

50, does not exclude these short paths and hence giv
broader distribution of diffusive path lengths and more u
ward curvature.

V. SIMULATIONS

The remainder of the paper presents various tests of
above predictions, in this section by random-walk simulat
and in the next by experiment. Here, random walkers
launched in from the edge of a slab and allowed to wan
until exiting from either the transmission or backscatteri
sides. Following the methods of Refs.@9,10#, steps are
generated with an exponential distribution of sizes accord
to the scattering length,l s , and a distribution of direc-
tions given by the Henyey-Greenstein scatteri
form factor, F(m)5 1

2 (12g2)(11g222mg)23/2, where g
5*21

1 mF(m)dm is the average cosine of the scattering an
@24#. When a walker encounters the boundary at either e
of the slab, it either exits or is reflected specularly back in
the sample according to an angle-independent reflec
probability,R. Isotropic and anisotropic random walks ge
erated by this procedure are compared in Fig. 1.

A. Concentration profile

The treatment of scattering anisotropy by a discontinu
in photon concentration at the source point is the key th
retical idea in this paper, and the size of the discontinu
Eq. ~4.5! or ~4.7!, is a crucial input to DTS and DWS pre
dictions. Therefore, we first use random-walk simulations
study the existence and magnitude of the discontinuity
relation to scattering anisotropy. We proceed by collect
statistics for the diffuse transmission probability and the p
file of photon concentration versus distance. To mimic sc
tering away from a normally incident beam at a distancezpl *
in from the edge of the sample, as in the predictions to
tested, the very first step starts atzpl * and is directed away
from the 1z direction according to the form factor. Alto
gether, then, four inputs must be specified: the value of
slab thickness,L/ l * , the boundary reflectivityR, the scatter-
ing anisotropyg, and the penetration depth ratiozp . For
each choice, results for the transmission probabilityTzp

are
obtained by tallying the number of transmitted walkers. R
sults for the steady, time-averaged concentration profile
obtained by binning up the amount of time each walk
spends at a given depth in the sample. Example data
shown in Fig. 2 for a penetration depth ofzp51 into slabs of
thicknessL/ l * 510 for six different combinations of scatte
ing anisotropy,gP$0, 0.5, 0.9%, and boundary reflectivity,
RP$0,1/2%. For comparison, the prediction of Eq.~4.1! is
also plotted in Fig. 2, whereTzp

is taken from the simulation

value, ze is taken from Eq.~2.2!, and w0 is the total time
spent by all walkers inside the slab; there are no free par
eters in the comparison. In all cases, the predicted and s
lated profiles agree very well throughout the entire slab,
cept very close to the source. In particular, the profiles are
nearly linear on each side of the source plane and extrapo
to zero atze52/3 and 2 outside the sample forR50 and 1/2,

in-
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respectively. But more importantly, it also shows how t
profiles are not necessarily continuous atzp . The size of the
discontinuity can be read straight off the plots to beD0Dw
>0, 0.5, and 0.9 for the three casesg50, 0.5, and 0.9, re-
spectively, independent of wall reflectivity. This provid
strong confirmation of the expectationD0Dw5g of Eq. ~4.5!
for thick samples.

Next, the behavior of the discontinuity at the source
examined as a function of slab thickness. It is also import
to examine the behavior of the discontinuity as a function
zp , since in a real experiment diffusing photons are int
duced over an exponential range of penetration depth
photons are scattered out of the incident beam. Thus Fi
displays statistics for the average and rms deviation of
discontinuity as a function of slab thickness, for two diffe
ent values of wall reflectivity and several degrees of scat
ing anisotropy. The averages shown are defined as foll
by exponential weighting according to the scattering leng
as would occur in experiment:

^D0Dw&5

E
0

L/ l*
~D0Dwzp

!e2zpl* / l sdzpl * / l s

E
0

L/ l*
e2zpl* / l sdzpl * / l s

, ~5.1!

whereD0Dwzp
is the discontinuity atzp as deduced from the

simulation result forTzp
using Eq.~4.3!. The simulation re-

sults for the rms deviation, defined similarly ass^D0Dw&

5A^(D0Dw)2&2^D0Dw&2, show that the discontinuity is
independent ofzp to a good approximation, more so fo
stronger anisotropy. So it is enough to consider the aver
discontinuity as a function of slab thickness and anisotro
without regard tozp . The results for̂ D0Dw& versusL/ l *
displayed in the top plot of Fig. 4 also conform very well
the expectations of Eqs.~4.5! and ~4.7! independent of wall
reflectivity. This is illustrated by close agreement of t

FIG. 4. Average size and rms deviation of the discontinuity,
defined by the weighting overzp in Eq. ~5.1! vs slab thickness for
several degrees of anisotropy as labeled. Results are seen
independent of boundary reflectivity, open circles forR50 and
crosses forR51/2, and to agree well with the limiting values o
Eqs.~4.5! and ~4.7!; the solid curves represent the empirical inte
polation of Eq.~5.2!.
s
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simulation data with the solid curves that interpolate exp
nentially between the expected small and thick slab lim
according to

^D0Dw&5g1~g82g!exp~2L/ l * !. ~5.2!

This empirical relationship works well for all reflectivitie
and anisotropies examined. As long as the slab thicknes
greater thanL52l * , the discontinuity can therefore be take
as ^D0Dw&5g. And as long as the thickness is less thanL
50.1l * , the discontinuity can be taken as^D0Dw&5g8. It is
curious that the thin slab limit, and the crossover between
two regimes, is set by the value ofl * rather than by the
scattering length.

In the cases of constant reflectivity simulated above,
discontinuity in the single scattering regime is simplyg8
5 2

3 (2pf21). In many experiments, the scattering mediu
is a liquid suspension held in a glass cell and measured in
or an index-matching bath. In these cases, the discontin
must be calculated numerically using the angle-depend
Fresnel reflectivity of both interior-wall and wall-exterior in
terfaces. Results for a variety of liquid refractive indices a
shown in Fig. 5 for a glass index of 1.5 and the Henye
Greenstein form factor. For any set of refractive indices
the boundary, note that the discontinuity approaches
constant-reflectivity valueg8→ 2

3 (2pf21)5g2O(g3) for
smallg. Thus, for weak anisotropy,g,0.4, excellent results
should be obtained by treating the discontinuity as a cons
independent of thickness; this can be seen in Fig. 4.

B. Diffuse transmission

With the foundation now established, we may begin te
ing the predictions for diffusing-light spectroscopies. T
only difference in simulation procedure is that now the loc
tion of the first scattering event away from the incident be
is not specified, but is rather taken at random for each wa

s

be FIG. 5. Required discontinuity in diffuse-photon concentrati
in the single-scattering limit, Eq.~4.7!, vs scattering anisotropy fo
samples held on glass cells and measured in air~top! or water
~bottom!. In both cases, the dashed curve is the constant reflect
limit and the solid curves are for interior indices of 1.0 through 1
from bottom to top. The open points represent values for the
tropic and anisotropic samples described in Sec. VI.
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according to the scattering length and wall reflectivity. R
sults for the total diffuse transmission probability as a fun
tion of optical thickness are shown as symbols in Fig. 6
four different combinations of boundary reflectivity,R
P$0,1/2%, and scattering anisotropy,gP$0,0.9%; the corre-
sponding predictions from Eq.~4.11! are shown as curves. I
the single scattering regime,L! l s , the diffuse transmission
increases linearly with thickness and depends on both
reflectivity and the anisotropy. Throughout this regime,
simulation data and the telegrapher predictions are in per
agreement, as expected by the choice of discontinuity. In
diffuse regime,L@ l * , the transmission decreases with thic
ness in proportion toL21 and depends strongly on reflectiv
ity, but not on anisotropy. This is seen in both the simulat
data and in the predictions of Eq.~4.11!, which are indistin-
guishable to within about61% for L/ l * >2. The deviation
of simulation from prediction is greatest in between the t
limiting regimes, but, as seen in Fig. 6, is never more tha
few percent. Thus, by properly including boundary reflect
ity through an extrapolation length and scattering anisotr
through a discontinuity at a source that is exponentially d
tributed according to the scattering length, the transmiss
probability can be predicted from one simple theory w
great accuracy in both the single- and multiple-scatter
limits as well as in the difficult region in between.

C. Diffusing-wave spectroscopy

The accuracy of the DWS correlation function pred
tions, Eq.~4.12! for backscattering and Eq.~4.14! for trans-
mission, can be also be gauged by comparison with rand
walk simulations. As walkers wander through the slab, b
their total square wave-vector transfer and their total p
length are measured, and the results are used respective
compute the correlation function according to the ben
mark,g1Y(x) of Eq. ~2.5!, and the continuum approximation
g1S(x) of Eq. ~2.7!.

1. Backscattering

Simulation results of the DWS correlation function in th
backscattering geometry are shown in Fig. 7 for four diff
ent combinations of boundary reflectivity,RP$0,1/2%, and
scattering anisotropy,gP$0,0.9%, along with the telegraphe
prediction of Eq.~4.12!. As observed previously@15,10#, the

FIG. 6. Total diffuse transmission vs slab thickness for fo
combinations of boundary reflectivity and scattering anisotropy
labeled. Symbols represent results of random-walk simulations
curves represent the prediction of Eq.~4.11! using the average dis
continuity given by Eq.~5.2!.
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benchmarkg1Y(x) and the approximationg1S(x) agree very
well for smallx ~early times!, where the signal is dominate
by photons with long paths, but disagree for largex ~late
times!, where the signal is dominated by photons that ha
short paths. This is because the continuum approximatio
valid only for long paths consisting of many scatterin
events. For smallx, whereg1Y(x) andg1S(x) are in agree-
ment, the telegrapher prediction is also quite accur
Namely, the initial decay is nearly exponential inAx and
depends on reflectivity but not on anisotropy, while f
slightly larger x the decay rate increases slightly with in
creasingg. This can be seen both in Fig. 7 and in the sma
x expansion of the backscattering prediction, Eq.~4.12!:

g1~x!512~11ze!Ax1~12g1ze1ze
2!x1O~x3/2!.

~5.3!

For even largerx, beyond aboutx51 where g1Y(x) has
decayed to about 0.2, the continuum approximation fails
together since, as seen in Fig. 7, there is no longer any q
titative similarity ofg1S(x) to g1Y(x). In this regime, neither
diffusion theory nor telegrapher theory approximations
g1S(x) can hope to capture the true behavior ofg1Y(x); and
indeed, the telegrapher predictions shown in Fig. 7 br
down, especially for strong anisotropy. In short, there are
yet no truly satisfactorypredictions for the backscattering
correlation function based on Eq.~2.7! for g1S(x), since the
continuum approximation breaks down for short paths a
since short paths dominate the signal forg1(x),0.2. The
best means of analyzing data may still be the empirical fo

r
s

nd

FIG. 7. Normalized electric field correlation function forback-
scatteringfrom a semi-infinite slab for four combinations of boun
ary reflectivity and scattering anisotropy, as labeled. The top
shows simulation results for the benchmark,g1Y(x) of Eq. ~2.5!,
based on momentum transfer; the middle plot shows simula
results forg1S(x) of Eq. ~2.7!, based on path length; and the botto
plot shows the telegrapher predictions of Eq.~4.12!. The empirical
resultg1(x)5exp@2(11ze)Ax#, based on the smallx expansion in
Eq. ~5.3!, is shown in all plots by symbols, open squares forR
50 and plusses forR51/2, independent of scattering anisotropy
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g1(x)5exp(2gAx) whereg is an unknown, adjustable pa
rameter close to 11ze . This form is shown by symbols in
Fig. 7 for the two casesg55/3 and 3, corresponding throug
the first term in Eq.~5.3! to ze52/3 and 2, respectively. This
of course, fails to capture the anisotropy dependence of
decay; it also does not provide good agreement withg1Y(x)
beyond aboutx51. Since the second term in the expansi
in Eq. ~5.3! seems reliable, it may be possible to concoct
even better empirical form using this as a guide.

2. Transmission

In the transmission geometry, there is a well-defined ty
cal photon path consisting of roughly (L/ l * )2 completely
random steps of average sizel * . This implies that the decay
of the correlation function is nearly exponential in (L/ l * )2x.
It also implies that failure of the continuum approximation
a concern only for thin slabs, and can never be as severe
backscattering. As found previously@10# the difference be-
tween the average dimensionless path length^S& and the
average dimensionless momentum transfer^Y&, whose val-
ues determine the initial decay rates ofg1S(x) and g1Y(x),
respectively, vanishes for thick slabs and is never gre
than about 7% even for slabs as thin asL52l * . Therefore,
the prediction of Eq.~4.14! is tested in Fig. 8 by compariso
with g1Y(x), only, as a function of (L/ l * )2x. Simulation
results and telegrapher predictions for the transmission
relation function are displayed for three different slab thic

FIG. 8. Normalized electric field correlation function fortrans-
missionthrough slabs of various optical thicknesses and bound
reflectivities, as labeled. Simulation results for the benchma
g1Y(x) of Eq. ~2.5!, based on momentum transfer, are shown
symbols. The telegrapher prediction of Eq.~4.14! is shown by solid
and dashed curves. The diffusion theory prediction of Eq.~2.8!,
which does not distinguish between different levels of scatter
anisotropy, is shown by dotted curves.
he
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nesses,L/ l * 55, 10, and 20, with four different combina
tions of boundary reflectivity,RP$0,1/2%, and scattering
anisotropy,gP$0,0.9%. For small (L/ l * )2x, the initial decay
is nearly exponential in (L/ l * )2x with a rate that depend
significantly on reflectivity, but not much on anisotrop
such that the sensitivity to a change in reflectivity increa
for thinner slabs. This can be seen both by careful inspec
of the figure and of the small-x cumulant expansion of the
transmission prediction in Eq.~4.16!. For larger (L/ l * )2x,
the correlation functions all exhibit upward curvature by
amount that depends on thickness, reflectivity, and ani
ropy, such that the sensitivity to a change in anisotropy
creases for thinner slabs. For very thick slabs,L@ l * , the
behavior reduces to the limiting form g1(x)
5L̃Ax/sinh(L̃Ax) independent of reflectivity and anisotrop
For slabs of intermediate thickness, 20,L/ l * ,100, the be-
havior depends noticeably on reflectivity but not on anis
ropy. For thinner slabs,L/ l * ,15, where most experiment
are performed, the behavior depends significantly on b
reflectivity and anisotropy. As evident in Fig. 8, the telegr
pher prediction of Eq.~4.14! captures this entire range o
behavior and is quantitatively accurate to a remarkably h
degree. By contrast, the diffusion theory prediction of E
~2.8!, also shown in Fig. 8, fails to distinguish the cruci
differences due to scattering anisotropy, and thus beco
only qualitatively correct for thinner slabs. Curiously, as n
ticed earlier in Ref.@8#, it works best for strong anisotropy
the very case for which its transport approximations are m
inaccurate.

The differences between the simulated and predicted
relation functions observed in Fig. 8 are difficult to full
quantify. Two reasonable means are shown in Fig. 9 t
may be useful to experimentalists for knowing and minim
ing the systematic error introduced by analysis of data w

ry
,

s

g

FIG. 9. Quantitative differences between the telegrapher pre
tion of g1(x) in transmission, Eq.~4.14!, and the benchmark trans
mission correlation function,g1Y(x) of Eq. ~2.5!, vs slab thickness.
The top plots show the fractional cumulant difference, and the b
tom plots show the average absolute shape deviation, Eq.~5.4!.
Boundary reflectivity and scattering anisotropy are labeled. The
two plots are for the full telegrapher prediction, while the right plo
with D0

250 show that better agreement can be obtained by neg
ing ballistic propagation effects.
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the telegrapher prediction. The top plot shows the fractio
cumulant difference,DG1 /G1[(G12G1Y)/G1Y , between
the initial decay rates of Eq.~4.14! and the benchmark
g1Y(x), for the usual four combinations of boundary refle
tivity and scattering anisotropy. The differences all decre
with increasing thickness, as expected, and even in the w
cases are less than 10% for thicknesses greater thaL
54l * . In the case of moderate reflectivity and anisotropy,
in a typical experiment, the difference is less than a f
percent even in slabs as thin asL52l * . While the cumulant
difference serves to quantify the accuracy of the decay r
the following absolute difference serves to quantify the
curacy of theshape:

^uDg1u&[E ug1~xG1Y /G1!2g1Y~x!ud ln x/ ln 10.

~5.4!

Since the predicted and benchmark correlations functi
both decay nearly exponentially from one to zero, their d
ference is greatest over about one decade inx; therefore, Eq.
~5.4! is an indicator of the average difference@10#. Further-
more, since the decay rates have been matched, this qua
solely reflects differences in shape. Simulation results for
~5.4! are shown in the bottom plot of Fig. 9. As expected,
decrease with thickness, and even in the worst cases ar
low 0.1 for thickness greater thanL53l * . Since the error in
the prediction becomes comparable to the benchmark w
the correlation function decays below^uDg1u&, a simple rule
for avoiding undue systematic error would be to restr
analysis to the portion of the decay satisfyingg1(t)
.^uDg1u&. Since it is routine to measureg1(t) down to
0.03, the results in Fig. 9 show that even in the worst case
data need be discarded if the thickness is greater than a
L57l * . For moderate reflectivity and anisotropy, as in
typical experiment, no data need be discarded if the th
ness is greater than aboutL54l * , and more than a full de
cade of decay is available even for slabs as thin asL
52l * .

VI. EXPERIMENTS

While the above random-walk simulations are useful
cleanly isolating and testing the influence of scattering
isotropy, they fail to account for potentially important ph
nomena that occur in real experiments. This includes
field properties of light, i.e., polarization and interference,
well as angle-dependent behavior in the boundary reflecti
and scattering form factor that are not accounted for by
average quantitiesze andg, respectively. Therefore, we hav
performed a series of diffuse transmission and DWS exp
ments on colloidal suspensions of polystyrene spheres~poly-
balls!. The heart of our approach is to design two susp
sions such that, except for scattering anisotropy, their opt
and dynamical properties are as much alike as possible.

A. Sample design

Polystyrene spheres were chosen because the deta
their light scattering behavior and their thermal motion a
both well known, and can thus be suitably tailored. For
low concentrations employed here, the former are given
al
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Mie theory in terms of the dielectric constants of the ma
rials and the ratio of the wavelength of light to sphere s
@25,26#. We use stock polystyrene spheres with diameters
93 and 653 nm, each with less than 10% polydispers
~Duke Scientific, Palo Alto CA!, and coherent light from an
Ar1 laser with a wavelength ofl5514.5 nm in air. Since the
93-nm spheres are much smaller than the wavelength
light, they scatter photons with approximately equal pro
ability into the forward and backward directions according
a simple Rayleigh form factor. Even though the scattering
polarization dependent, especially near 90°, we will refer
these as our ‘‘isotropic’’ samples. By contrast, since the 6
nm spheres are larger than the wavelength of light, they s
ter photons preferentially into the forward direction acco
ing to a complicated Mie scattering form factor, we call the
our ‘‘anisotropic’’ samples. In both cases, the importa
length scales are the scattering and transport mean free p
given, respectively, by

l s5
1

rns
and l * 5

l s

12g
, ~6.1!

whererN is the number density of spheres,s is the scattering
cross section, and, as usual,g is the average cosine of th
scattering angle that parametrizes the degree of scatte
anisotropy.

The thermal Brownian motion of the spheres in susp
sion is approximately diffusive, so the dynamical variab
appearing in DWS predictions is

x5k2^Dr 2~t!&>6t/t0 with t051/Dk2, ~6.2!

wherek is the wave vector of light in the medium,^Dr 2(t)&
is the average mean-squared displacement of the spher
time t, D is the sphere self-diffusion coefficient, andt0 is
the characteristic time scale required for the spheres to
fuse across one wavelength. Because of hydrodynamic in
actions that depend on the volume fractionf occupied by
spheres, the diffusion coefficient is smaller than the Stok
Einstein value according toD5D0(121.83f) @27–29#.
And because of the hydrodynamic self-interaction, there
long-time tail in the decay of the velocity autocorrelatio
function. The detailed functional form ofx(t) is found @30#
to be given by Hinch’s prediction@31,8# with the above dif-
fusion coefficient and with a self-interaction time oftn5(1
22.5f)a2r/h wherea is the sphere radius,r is the liquid
density, andh is the liquid viscosity. The limit of truly dif-
fusion motion described byt0 in Eq. ~6.2! is attained only
for t@tn .

With these well-established ingredients, we may now
gineer our samples. First, stock solutions of the 653
spheres are diluted with sufficient water that the transp
mean free path is predicted to have a convenient value
l * 50.52 mm. As recorded in Table I, this produces samp
with a large anisotropy parameter ofg50.90 and a charac
teristic diffusion time oft055.7 ms. Next, stock solutions o
the 93 nm spheres are mixed with carefully chosen volum
of water and glycerol so that the resulting suspensions
predicted to have the same values of bothl * and t0 . This
produces samples with a small anisotropy parameter og
50.11, but with optical and dynamical properties that a
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otherwise very similar to the anisotropic samples. While
two samples have the samel * , note that their scattering
lengthsl s5(12g) l * differ by a factor of ten.

After mixing, the suspensions are sealed into two sets
sample cells. The first set consists 10 borosilicate c
~Corning 7740,n51.474! with rectangular cross section an
with nominal thicknesses ranging from 1 to 10 mm. The
were made by extrusion and the actual thickness was ta
as the average found along the cell width. The second
consists of 5 cylindrical spectrophotometer-type cells~NSG
Precision Cells, Farmingdale, NY! with accurately con-
structed thicknesses of 0.1, 0.2, 0.5, 1, and 2 mm. In
cases, the width of the cells is sufficiently great that ess
tially no photons escape from the sides.

Because of uncertainties in the concentrations and in
liquid and sphere properties, the values ofl * andt0 may not
be precisely matched for our actual isotropic and anisotro
samples. Reasonable estimates for the errors are give
Table I, and were obtained as follows. First, the polyb
diameters are reported by the manufacturer, and their ref
tive indices are taken from the literature@32#. The mass and
volume fractions are obtained by weighing. As a check,
liquid refractive indices are measured with an Abbe refr
tometer and compared to Ref.@33#; liquid viscosities and
densities are taken from the same source. These uncerta
combine to give the expected errors forg, l * , and t0 re-
ported in Table I. In addition, two other aspects of the is
tropic and anisotropic samples are not identical. First,
hydrodynamic self-interaction times quoted in Table I a
different. This is unavoidable since the 93 nm spheres
smaller and since their solution has a higher viscosity; the
fore, theirtn is much smaller and their motion is more nea
diffusive over the time scales of our experiments. Seco
the extrapolation length ratios that describe the diffuse p
ton boundary conditions are different. This is unavoida
since the two suspensions have different refractive indic

TABLE I. Sample characteristics at a temperature of 21 °C
light at an incident wavelength of 514.5 nm in air. The polyball a
glycerol fractions are chosen so that the values ofl * andt0 are the
same for both the isotropic and anisotropic samples. The manu
turer’s reported error in the polyball diameter is61 nm; the re-
ported polydispersities are much larger, as quoted below.

Designed Isotropic Anisotropic

Polyball diameter~nm! 9368 653612
Polyball volume fraction~%! 1.86660.002 0.413460.0004
Polyball refractive index 1.6060.01 1.6060.01
Glycerol mass fraction~%! 53.060.1
Liquid refractive index 1.40760.003 1.33460.001
Liquid viscosity ~g/cm-s! 0.075260.0005 0.009960.0003
Liquid density~g/cm3! 1.13560.003 0.99860.003

Calculated

g 0.1160.02 0.89860.004
l * ~mm! 0.5260.17 0.5260.05
t0 ~ms! 5.760.5 5.760.3
tn ~ns! 0.3160.06 10768
ze for glass cell in air bath 2.0360.05 1.7660.02
ze for glass cell in water bath 0.8160.01 0.7160.01
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and hence different angle-dependent photon reflectivitie
the suspension-wall interface. Values forze are quoted in
Table I for cases that the glass sample cells are held in
and in a water bath, where reflections at the wall-exter
interface are reduced. In spite of uncertainties inl * andt0 ,
and of differences intn andze , the largest and most impor
tant difference between the 93 nm and 653 nm suspensio
their degree of scattering anisotropy. In analyzing data,
approach will be to treat onlyl * as an adjustable paramete
assuming that all other parameters in Table I are exact.

B. Ballistic transmission

Before examining the influence of scattering anisotro
on diffusing light spectroscopies, we further characterize
optical properties of the suspensions by measurements o
ballistic transmission probability. For this, we gently foc
the collimated laser beam through samples contained in
precision spectrophotometer cells. A pinhole is placed at
focus so that scattered light is blocked and only the uns
tered, ballistic component may reach the detector. The
listic transmission probability is then obtained by normal
ing to the signal from a cell containing pure water. T
results displayed on semilogarithmic axes in Fig. 10~a! ex-
hibit a clear exponential dependence on thickness,Tb
5exp(2L/ls); this form neglects the contribution of ballisti
photons, which reflect an even number of times before be
transmitted since they are down by more than the squar
boundary reflectivity at normal incidence, which is insigni
cant here. The fits shown in Fig. 10~a! give scattering lengths
for the isotropic and anisotropic samples that differ by

r

c-

FIG. 10. Ballistic~top! and diffuse~bottom! transmission prob-
ability as a function of cell thickness. Triangles and circles resp
tively denote data for 93 nm spheres, which scatter light alm
isotropically with g50.11, and for 653 nm spheres, which scat
light very anisotropically withg50.90. Open symbols are for rela
tive measurements with an integrating sphere, and solid symbol
absolute; for all, the sample cells are held in air. The lines thro
the data in the upper plot represent fits to an exponential for
scattering length,l S , while the curves through the data in the low
plot represent the prediction, Eq.~4.11!. The small symbols are for
random walk simulations with appropriate form factor and ang
dependent boundary reflectivity.
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57 4511DIFFUSING-LIGHT SPECTROSCOPIES BEYOND THE . . .
factor of nearly ten, as expected by design. Using the ca
lated value ofg, the transport mean free path may then
estimated asl * 5 l s /(12g); the results quoted in Table I
are approximately equal and are close to the design valu

C. Diffuse transmission

We now consider the total diffusion transmission pro
ability that a photon scattered out of the incident beam w
exit, after any number of scattering events, from the oppo
face of the sample. This can be measured absolutely, wit
reference to a control sample. Following our previous wo
@21#, the illumination and collection optics are arranged
that the detection probability is independent of where on
sample face the transmitted or backscattered photons ha
to emerge, as assumed in our predictions for the slab ge
etry. The measured light intensity is then recorded at fin
spaced angles around the entire sample; the total transm
and backscattered intensities,I T and I B , may thus be found
by integrating the resulting angular distributions. The fin
result for the diffuse transmission probability,Td5I T /(I T
1I B), is displayed as solid symbols for both isotropic a
anisotropic samples in Fig. 10~b!. For thick samples, it de
creases with increasing thickness in accord with the pre
tion Td'(11ze)/(L/ l * 12ze). Inverting this expression fo
l * using data from the five thickest samples,L>6 mm, and
averaging, gives an alternative characterization of the tra
port mean free path. The resulting values ofl * shown in
Table II are slightly smaller than those obtained from bal
tic transmission, but are consistent with expectations.

To examine the thin samples contained in spectrophot
eter cells, where anisotropy effects dominate the behavio
the diffuse transmission probability, we must employ a re
tive measuring scheme because the cell design preven
multaneous observation of both transmitted and backs
tered distributions. This is accomplished using a la
diameter integrating sphere~Labsphere, North Sutton, NH!.
Samples are mounted at the input port, and the illumina
beam is gently focused so that unscattered light exits
sphere through a pinhole on the opposite side. The meas
intensity at a photocell mounted on a third port is thus p
portional to the diffuse transmission probability. The norm
ization constant is found by comparing results forL51 and
2 mm cells with the absolute diffuse transmission probab
ties obtained for rectangular cells of the same thickness.

The experimental results forTd are shown as open sym
bols in Fig. 10~b!. For thick slabs, the isotropic and anis

TABLE II. Experimental values forl * , given in units of mm;
the quoted error bars arise from uncertainties in fitting and norm
ization procedures.

Method Bath Isotropic Anisotropic

Designed 0.52 0.52
Ballistic transmission Air 0.6660.02 0.5860.02
Diffuse transmission Air 0.5960.02 0.5260.01
telegrapher DWS Water 0.6760.01 0.6060.01

Air 0.6860.01 0.6260.01
Standard DWS Water 0.6860.01 0.6060.01

Air 0.6960.01 0.6260.01
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tropic samples exhibit nearly identical behavior,Td'(1
1ze)/(L/ l * 12ze), since their values ofl * and ofze are so
similar. For thin slabs,L,2 mm, by contrast, they have ver
different diffuse transmission probabilities, reaching a ma
mum nearL52l s and decreasing for thinner slabs. This
similar to what was seen previously in the simulation test
Fig. 6, and is due to the great difference in their degrees
scattering anisotropy. In particular, thin anisotropic samp
have a significantly largerTd both because their scatterin
length is ten times smaller, so that more photons scatter
of the incident beam, and because scattered photons are
erentially directed into the forward direction. For thin isotr
pic samples, by contrast, fewer photons scatter away f
the incident beam, and those that do are as likely to be ba
scattered as transmitted. This behavior is captured very
by the prediction of Eq.~4.11!, based on the treatment o
scattering anisotropy by a discontinuity in diffuse phot
concentration at the penetration point. These predictions
shown as curves in Fig. 10~b!, using thick-sample inversion
results for l * and numerically calculated values forg, g8,
Rb , andze using the sample design parameters in Table
None of these parameters is adjusted to fit the data. Sim
tion results using the appropriate Henyey-Greenstein fo
factor and angle-dependent boundary reflectivity are also
cluded. For anisotropic samples, the prediction, simulati
and experiment are nearly indistinguishable as the slab th
ness is varied widely from the single-scattering regime i
the diffusive regime. For isotropic samples, similar agre
ment is found except that the experimental data are too
for the two thinnest slabs. This discrepancy is highly rep
ducible; given the close agreement between theory and s
lation, we speculate that there remains an unknown sourc
systematic experimental error.

D. Diffusing-wave spectroscopy

We now turn to the main experiments for which o
samples were designed: diffusing-wave spectroscopy s
of intensity fluctuations caused by motion of the scatter
sites. As for the diffuse transmission experiments, we w
first analyze data from thick samples using traditional dif
sion theory and then proceed to thin samples to observe
influence of scattering anisotropy. These measurements
performed using standard methods for samples containe
the extruded rectangular glass cells. Samples are illumin
with coherent light from the Ar1 ion laser at near-norma
incidence with no focusing. The diffusely transmitted
backscattered light is detected without imaging by a pho
multiplier tube placed behind a 50mm diameter pinhole ap-
proximately 1 m from the sample. These scales were cho
so that the speckle and pinhole sizes are comparable; rel
motion of the scattering sites then produces large fluctuat
in the detected intensity. Our experimental geometry
equivalent to the traditional case of illuminating with a pla
wave and imaging light, which emerges from a point@5#, but
it is much simpler and wastes far fewer photons@34#. Since
neither geometry discriminates against photons accordin
lateral motion within the sample, they are both equivalen
the one-dimensional ‘‘plane-wave-in–everything-out’’ g
ometry assumed in our analysis. The PMT signal is amplifi
and discriminated so that each detected photon produc

l-
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square, TTL, pulse which can be fed directly to digital co
relator board~ALV-5000, Langen/Hessen Germany! for real-
time computation of the intensity autocorrelation functi
^I (0)I (t)&. The result is related to the normalized elect
field autocorrelation function,g1(t), by the Siegert relation
@35,36#

^I ~0!I ~t!&

^I &2 5B1bug1~t!u2, ~6.3!

where B is the baseline, which equals one if there are
drifts in the incident laser intensity, andb is the intercept,
which is less than one but increases with decreasing pin
size and laser coherence.

It is common practice to test theories of DWS by nonl
ear least-square fits to data in which bothl * as well as the
baseline and intercept are simultaneously adjusted@5,8,34#.
This leads to outstanding fits but with results that vary w
fitting interval @34#, suggesting that errors in the predicte
rate or shape of the correlation function are being masked
compensating errors in choice of fitting parameters. Here,
adopt a conservative approach in which the intercept
baseline are chosen once and for all without bias by pre
tions. In particular, the interceptb is estimated by fitting the
early-time data to a second degree polynomial. The base
B is estimated by averaging slightly less than one decad
data after the correlation disappears into the noise. The
malized field correlation function, and the corresponding s
tistical errors arising from uncertainties in baseline and in
cept, are then found using the Siegert relation Eq.~6.3!. To
improve the signal-to-noise ratio, and to keep the baselin
close to one as possible, a line filter and polarizer orien
90° out of phase with respect to the incident beam are pla
in front of the pinhole.

As a final experimental note, our DWS measureme
were performed for samples either submerged in
temperature-controlled water bath,T52160.2 °C, or held
in air at room temperature,T52161 °C. Besides stabilizing
the particle dynamics, the water bath serves to reduce bo
ary reflections so thatze for the isotropic and anisotropi
samples becomes smaller and more nearly equal. This
be important since, according to Eq.~4.16!, both the rate of
decay and the curvature of the correlation function dep
on the value ofze .

After subtracting the baseline and dividing by the inte
cept, essentially raw correlation data are displayed in F
11~a! for both transmission and backscattering geometr
As expected, by design, the results for isotropic and an
tropic samples exhibit nearly the same shapes and nearl
same time scales for decay. Also as expected, due to
DWS equation~2.7! and differences in path length distribu
tions, only one decade in delay time is required for the p
mary decay of transmission data, while more than two
cades are required for backscattering. Over these time sc
the particle motion is nearly diffusive, more so for the sm
spheres. This is seen in Fig. 11~b! by comparing the full
Hinch prediction described above forx5k2^Dr 2(t)& with its
diffusive limit, 6t/t0 , using the calculated values fort0 and
tn in Table I.

All further analysis of the correlation data will be done
terms of behavior as a function ofx, rather than oft, using
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the Hinch prescription shown in Fig. 11~b!. In other words,
we assume that the designed polyball diameters and liq
viscosities, and hence the calculated values fort0 and tn ,
are all correct. This assumption can be tested two ways,
by fitting the correlation function in backscattering from th
L510 mm samples, in air, to the approximate empiric
form g1(x)}exp(2gAx1x0); the x0 term accounts for
rounding at smallx due to loss of very long paths from eithe
the finite size of the sample, absorption, or imperfect la
coherence. Since we havex>6t/t0 , any error in our as-
sumption fort0 would appear as an error in the fitted valu
of g. Reasonable fits are found withg51.4060.02 for the
isotropic samples, g51.8060.05 for the anisotropic
samples, andx050.015 for both. These values forg are
smaller than the expectationg511ze of Eq. ~5.3!, but are in
good agreement with published experimental results
aqueous suspensions@12#. They are also in accord with th
simulations results in Fig. 7, where anisotropic scatter
leads to a faster decay.

We can further test the basic assumptions in our anal
by examining the early-time behavior in the transmiss
correlation functions,2 ln@g1(x)#5G1x1O(x2). Experimental
values of the first cumulant,G1 , with respect tox, are thus
deduced from asymptotic fits of ln@g1(x)# to a second degree
polynomial with an intercept of zero. These are displayed
Fig. 12~a! asAG1

21L2/6, because according to Eq.~5.2! this
combination converges tol * in the limit of very thick slabs.
Making this extrapolation with the predicted form ofG1 ver-
susL gives thel * values quoted in Table II. The results a
independent of whether the diffusion or telegraphers pre
tions are used, since these theories agree for very t
samples. More significantly, the results are the same for d
obtained for samples held in air and water baths, are con
tent with the designed values, and happen to be in very c
accord with the ballistic transmission measurements. Si
we have x>6t/t0 and G1>L̃2/6, giving 2 ln@g1(x)#

FIG. 11. DWS correlation function data vs delay time~upper
plot! for isotropic and anisotropic samples. Note that the two tra
mission and the two backscattering correlation functions resp
tively decay with roughly the same shapes and time scales, as
signed. The lower plot illustrates how the particle dynamicsx
5k2^Dr 2(t)&, exhibit a size-dependent long-time tail in the cros
over to purely diffusive motion, 6t/t0 , at long times.
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>(tL2)/(t0l*
2), any error in our assumption fort0 would

appear as an error in the extrapolated values ofl * . Together
with the backscattering and static transmission tests,
gives confidence in our analysis procedures and sample c
acterization.

Now that the samples are fully characterized, we m
begin testing the telegrapher theory of DWS for th
samples. First consider again the cumulant data in Fig. 12~a!.
Both the telegrapher and diffusion predictions provide
good description forL>5 mm, or L/ l * >8. For thinner
samples, the data and the two predictions progressively
verge. Note that our telegrapher theory more successf
captures the monotonic trend, and that the agreement is
pecially good for the anisotropic sample. This same comp
son can be seen equivalently in the other two plots of F
12, where we also include data for samples held in air. In
middle plot, we show an effectivel * obtained by inverting
the cumulant data using the telegrapher prediction. This
play is most similar in spirit to previous experimental tests
DWS, e.g., Ref.@8# where an effectivel * was obtained by
fitting Eq. ~2.8! to the entire decay. Here, we see that inv
sion results converge to a constant value ofl * for thick
samples. For thin samples, the results develop a systemaL

FIG. 12. First cumulantG1 and corresponding inversion resul
for l * as a function of cell thickness; symbols denote data for
ferent sphere size and bath conditions, as labeled by extrapol
length ratio. The value ofG1 is deduced from fits to2 ln@g1(x)#
5G1x1O(x2) for small x, while the value ofl * displayed in the
middle plot is deduced fromG1 using the telegrapher prediction o
Eq. ~4.14!; error bars represent uncertainties from the cumulant
The dotted lines represent the average values ofl * for L.4 mm,
while the solid and dashed curves give the corresponding pre
tions forAG1

21L2/6 based on the telegrapher and diffusion mode
note thatAG1

21L2/6 converges tol * for very thick samples (L
@ l * ). The bottom plot shows the fractional deviation of the p
dicted and measured cumulants.
is
ar-

y

a

i-
lly
es-
i-
.
e

s-
f

-

dependence as the theory becomes less accurate. ThisL de-
pendence is noticeably greater for the isotropic samp
whether or not submerged in a water bath. Lastly, the bot
plot in Fig. 12 shows the fractional deviation of the predict
cumulant from the measured one. Since the telegrapher
dictions are evaluated using the average values ofl * ex-
tracted from the upper and middle plots, the deviations
Fig. 12~c! all vanish, to within a systematic error of abo
60.03, for very thick samples. For thin slabs, the isotro
samples develop a significant deviation as the theory
comes less accurate. Note that this display is most simila
spirit to the simulation test of Fig. 9. Furthermore, in fact,
is nearly identical in quantitative detail, except for the is
tropic sample measured in air. This suggests that polariza
and interference effects are negligible, and that the c
tinuum approximation is therefore the dominant source
error in the telegrapher theory of DWS.

The final test of the telegrapher prediction concerns
shape, rather than the initial decay rate, of the correla
function. In Fig. 13, we displayg1(x) data versusG1x for
isotropic and anisotropic samples submerged in a water b
along with predictions from telegrapher and diffusion theo
This is done on semilogarithmic axes for three differe
thicknesses. For smallx, the data and predictions all matc
by construction, ln@g1(x)#>2G1x. For largerx, the correla-
tion functions all deviate from a simple exponential wi
some degree of upward curvature that is the actual quan

-
on

.

ic-
;

-

FIG. 13. DWS correlation function in transmission vsG1x for
three slab thicknesses; error bars arise from uncertainty in the b
line. Plotted in this manner, the data~symbols! and predictions
~curves! all exhibit the same small-x behavior, ln@g1(x)#52G1x
1O(x2). For largerx, the upward curvature is greater for isotrop
than for anisotropic samples. This distinction vanishes with incre
ing slab thickness in accord with the telegrapher model. Note
the curvature is slightly affected by the extrapolation length ra
but opposite to the observed trends.
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being tested in these plots. First observe that with increa
thickness, the data and predictions all converge to a sh
with the same degree of curvature, as expected. We em
size that the near-perfect agreement in Fig. 13 between
oretical and experimental shapes for thick samples, and
between telegrapher theory and experiment for thin samp
is not by fit: we have only matched the initial decay rates

For thinner samples, the correlation function shapes
Fig. 13 depend increasingly both on the value of the bou
ary reflectivity, or equivalently on the extrapolation leng
ratio, ze , and on the degree of scattering anisotropy,g. Note
that the boundary reflectivities of the isotropic and ani
tropic samples are close, but not equal; however, this ca
account for the observation that the isotropic samples h
greater upward curvature. This is because the isotro
sample has the larger value ofze , but according to both
diffusion and telegrapher predictions with everything e
being equal, this should lead to less curvature. The differe
in degrees of scattering anisotropy is the real reason tha
correlation functions for isotropic and anisotropic samp
exhibit different curvatures; the difference in boundary
flectivity merely reduces this effect. We therefore belie
that the shape differences apparent in Fig. 13 are the
experimental demonstration of the influence of scattering
isotropy. The observed trend is, of course, not accounted
or correctly predicted by, standard diffusion theory. It
however, captured quantitatively to a high degree by
telegrapher theory. As seen in Fig. 13, the predicted cu
ture is systematically not quite as great as measured. A s
lar deviation was also seen in the simulation results of Fig
and is thus attributed to the continuum approximation.

VII. CONCLUSIONS

It is now straightforward to estimate the influence of b
listic transport and of anisotropic scattering within an an
lytically tractable transport theory. As argued earlier@17#, the
former is accomplished for scattered photons by a tele
pher equation with suitable prescriptions for boundary c
ditions and the emerging flux. As argued here, it is acco
plished for unscattered photons within the incident beam
integrating over source planes and summing over reflecti
Also as argued here, the influence of scattering anisotrop
estimated by introducing a discontinuity in photon conce
tration at the source plane in proportion to the degree
scattering anisotropy. We have demonstrated the validity
this approach by random walk simulations, and the accur
of
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of the resulting DTS and DWS predictions by both simu
tion and experiment.

The bottom line for DTS is that we can now predict th
diffuse transmission probability through a slab to an ac
racy of better than a few percent. This is true for any deg
of scattering anisotropy, i.e., for any angle-dependent s
tering form factor, and for any angle-dependent bound
reflectivity. Furthermore, it is true for any slab thicknes
from single scattering, through intermediate, and into the
fusive regimes. To our knowledge, this is unprecedented
an exactly solvable theory. Here we have considered only
case of normal incidence with no absorption, but these va
tions are straightforward to include within our approac
other geometries can also be handled. This should be us
for analyzing transmission data in terms of the three fun
mental optical length scales,l * , l s , andl a , set by the struc-
ture of the medium.

The bottom line for DWS is that we can now predict th
influence of scattering anisotropy on the shape of the co
lation function. This extends the utility of DWS to thinne
samples and to deeper decays ofg1(x), and should thus be
useful for more accurately analyzing data in terms of
time-dependent dynamicŝDr 2(t)& of the scattering sites
While our photon transport theory may be accurate, for v
thin slabs the continuum approximationY>S of Eq. ~2.6!
fails altogether because of the presence of snakelike ph
paths crossing the slab withS>L but with Y>0 @10#. There-
fore, by contrast with DTS, our predictions for DWS cann
be applied for thicknesses belowL>2l * . The primary
symptom is a greater upward curvature in the shape ofg1(x)
than predicted, becauseP(Y) is broader thanP(S). To arti-
ficially introduce more small paths into the theoretical pa
length distribution, we propose simply to setD0

250 in Eq.
~4.14!. This means purposely neglecting causality and
influence of ballistic propagation in order to compensate
error in the continuum approximation. The DWS predictio
are then simpler and, as seen in Fig. 9, even more accu
Until the continuum approximation can be improved upo
we therefore recommend Eq.~4.14! with D0

250 as the best
analytic means of analyzing DWS data.
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