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Diffusing-light spectroscopies beyond the diffusion limit: The role of ballistic transport
and anisotropic scattering
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Diffuse transmission and diffusing-wave spectrosc@pWsS) can be used to probe the structure and dy-
namics of opague materials such as colloids, foams, and sand. A crucial step is to model photon transport as a
diffusion process. This approach is acceptable for optically thick samples, far into the limit of strong multiple
scattering; however, it becomes increasingly inaccurate for thinner samples for several reasons. Here, we
correct for two of these defects. By modeling photon propagation by a telegrapher equation with suitable
boundary conditions, we can account for the ballistic transport of photons at finite speed between successive
scattering events. By introducing a discontinuity in the photon concentration at the source point, and then
averaging over a range of penetration depths, we can account for the fact that photons usually scatter aniso-
tropically into the forward direction, rather than being completely randomized at each event. The accuracy of
our approach is tested by comparison both with random walk computer simulations and with experiments on
specially designed suspensions of polystyrene spheres. We find that our predictions extend the utility of diffuse
transmission to slabs of all thicknesses and of DWS to slabs down to about two transport mean free paths.
[S1063-651%98)11604-3

PACS numbes): 82.70-y, 05.40:+], 42.62.Fi

I. INTRODUCTION mean-squared change in position of the scattering sites due
to thermal motion, flow, or time evolution.

One of the hallmark features of soft-condensed matter is For analysis of both DTS and DWS data, most widely
the presence of structure at length scales that are intermedised theories approximate the propagation of multiply scat-
ate between the molecular and the macroscopic. Diverse efered photons as a diffusion process. This yields convenient
amples include the arrangement of colloidal particles into@nalytic expressions that are reasonably accurate if the
liquid, glassy, or crystalline structures in paint, ink, and dairySample thickness is much greater than where the number
products; the packing of gas or liquid bubbles inside foam®f scattering events is large. Unfortgnat_ely, however, experi-
and emulsions; the arrangement of grains in a pile of sand; JP€NtS cannot be performed on arbitrarily thick samples due
the configuration of cells in a tissya]. These mesoscopic to finite absorption and coherence lengths, and also due to

structures are interesting both in terms of the microscopicf‘:ons'derat'.Ons of t_he signal-to-noise ratlo._ Consequently,
sample thickness is most often chosen in the range 5

physics underlying their formation, and in terms of the mac- + e o
roscopic properties they impart to the material. Since the" L/I" <20, where the diffusion approximations are on the

individual components typically have different refractive in- verge of being unacceptably inaccurate. For smaller thick-
: P ypically hay . nesses, the failure of diffusion theory predictions has been
dices, they can strongly scatter visible light and hence cau

. SGbserved experimentallfj7,8]. Furthermore, the effects of
bulk samples to have an opaque, white appearance. I:)hysa"(:attering anisotropy, where photons are not completely ran-
cally, photons travel ballistically between successive scattelyomized at each scattering evesee Fig. 1 and ballistic
ing events whose cumulative effect is to produce a randomygpagation, where photons travel at a finite speed between
walk. This can preclude characterization by traditionaleyents, can be important for thin samples. Because of the
means such as video microscopy or angle-resolved static arfificulty in accounting for such phenomena in theories of
guasielastic light scattering. Fortunately, experimental tech-

niques that exploit multiple |Ight scattering have been devel- | — =1 isotropic scattering —— [*=10l: anisotropic scattering
oped for probing the structure and dynamics of such materi- AR

als [2]. In diffuse-transmission spectroscogpTS), the
transmission probability for incident light to be transmitted
through an opaque slab is measured as a function of wave-
length and analyzed in terms of the transport mean free path,
[*, or step size in the random walk, of the photdi3g.
Structural details are then deduced from the value and wave- -
length dependence dff. In diffusing-wave spectroscopy
(DWS), fluctuations in the intensity of a portion of the mul-
tiply scattered light are measured and expressed in terms of a F|G. 1. Transverse coordinates of random walks across a three-
normalized electric field autocorrelation function,(7) dimensional slab of thickness 01for isotropic and anisotropic
=(E(0)E*(7))/{|E|?), as a function of the delay time  scattering. In both cases, the walks start inward at the left and exit
[4—6]. Results are then analyzed in terms(afr?(7)), the  at the right.
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photon transport, multiple light scattering techniques have
not yet achieved the same degree of quantitative accuracy as
the traditional, single-scattering, techniqueslO].

Several methods have been proposed to improve upon the
diffusion approximations for DWS. MacKintosh and John
[11] described an integral formalism for dealing with corre-
lations between scattering sites located closer than one trans-
port mean free path, where the propagation of light is not
diffusive and where wave effects are important. Their ap-
proach is also capable of dealing with the polarization effects
observed in backscattering experimdritg]. In analogy with
radiative transfer, a correlation transfer formalism has been
proposed by Ackerson, Dougherty, and co-workier3,14]
for extending the theory of DWS to thinner slabs. Both of

slab: 0<z<L.

o(2)

D o(z)/¢,

D o(2)/¢,

these approaches, however, require either numerical solution o bl
or systematic expansion with the assumption that the diffu- PN I
sion approximation is nearly correct. An alternative approach S oSl
by Middleton and Fishefr15] employs random-walk simula- @ 2.0r
tions, and hence avoids transport approximations altogether. S 13:
Simulation results that demonstrate the limitations of diffu- R ost
0 L

sion approximations have been reported for both backscatter- P
ing [15] and transmissiof10] geometries. This approach is
computationally intensive and does not yield closed-form
predictions that can readily be used for data analysis.

FIG. 2. Photon concentration vs distance into the sample for

Recently we have developed an exactly soluble theory o§Iabs of thicknest = 10 for photons that begin their random walks
atz,=1, where all lengths are measured in unitd %of the photon

DTS and DWS that does not rely on diffusion approxima-
y PP transport mean free path. The top plot shows graphically the defi-

tions but instead models photon transport in terms of tWonitions of the penetration depth and extrapolation length ratios. In
counter-propagating strearfis6]. This approach follows es- P 1ep p . 9 ‘

. . . the bottom three plots, solid curves represent histogram data from
tablished procedures from the astrophysics literature for ap-

- . . - . random-walk simulations for different values of the average cosine
proximating transport in three dimensions from exact result%f the scattering anglg, and boundary reflectivitR, as labeled.

for t_ransport in a truly on_e-dimensi(_)nal space. It provid_e_s 8rhe dashed curves represent the predictions of£d), which has
straightforward means of incorporating boundary reflectivity, discontinuity atz, and vanishes at= -z, andz=L+z,. The

scattering anisotropy, and ballistic propagation. The resultingze of the discontinuity is fixed by the value of the transmission
predictions are more accurate, and have a greater range @fbability, and seen here to be given ByA p=g.
validity, than those from diffusion theory. Unfortunately,
however, the two-stream theory applies only to sample an@her theories of photon transport. In Sec. IV, where new
illumination geometries that have a one-dimensional symmematerial starts, we argue that anisotropy is accounted for by
try, has the wrong photon diffusion coefficient, and cannoty discontinuity at the source, and we develop diffusing-light
account for the effects of angle-dependent wall reflectivityspectroscopy predictions for slablike geometries. In Secs. V
[16]. To address these problems, we have proposed an alteind VI, respectively, we test these predictions by random-
native means of generalizing upon the exact one-dimensiongalk computer simulations and by experiment on dilute sus-
theory[17]. This yields a telegrapher equation for the total pensions of colloidal particles.
photon concentration, complete with specifications for the
boundary conditions .and_the emerging flux. This theory re- Il. DIFEUSION APPROACH TO TRANSPORT
duces to standard diffusion theory for long times and dis-
tances, and in cases of weak absorption, where ballistic The diffusion theory predictions for photon transport
propagation is unimportant, and significantly improves uporthrough a slab of thickneds are summarized here, both for
it otherwise. Since the fundamental quantity is the total numlater comparison and to introduce notation. Throughout, the
ber of photons per volume, rather than per unit direction oillumination and detection optics are taken such that there is
per stream, it cannot account explicitly for scattering anisotfo discrimination on the basis of the net lateral motion of
ropy. photons within the sample, thus ensuring an effectively one-
In this paper, we report on how to incorporate scatteringdimensional symmetry. Ignoring absorption, three transport
anisotropy into telegrapher and diffusion theories of photorparameters enter into the theory: the photon transport mean
transport. Physical arguments, and exact results from ondree pathl*, defined such that the photon diffusion constant
dimensional transport, are used to demonstrate that a discois-cl*/3, the penetration depth,|*, defined as the distance
tinuity in the total photon concentration at the source point ignto the slab at which diffusing photons are assumed to be
opened up in proportion to the degree of scattering anisotereated, and the extrapolation lengtll*, defined as the
ropy. Averaging such results over a continuous range oflistance outside the slab at which the diffuse photon concen-
source points, to mimic an incident laser beam, leads to imtration is assumed to extrapolate to zero. These definitions
proved predictions for DTS and DWS. We begin in Secs. lIfor the penetration depth and extrapolation length ratios are
and I, respectively, by reviewing the diffusion and telegra-depicted graphically in the top plot of Fig. 2. The value of
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n

the transport mean free path is given by n
Y=> qg%2k?=2, (1-cos6,), (2.4)
=1

|S ls =1

- (1—cos 6) T 1-g’

I*

(2.1

wheregq; is the change in wave vector for scattering at site
wherel, is the scattering length, equal to the average disby angled;, for any total numben of scattering events in
tance between scattering events and also by which the intethe path[4,15]. This assumes that scattering events and par-
sity in a ballistic beam is exponentially attenuated, and ticle motions are uncorrelated, and thatis larger than the
=(cos#) is the average cosine of the scattering ang|gNaveIength of light. The benchmark for predicting the de-
[18,19. The values of the penetration depth and extrapolatected correlation function is thus given by
tion length ratiosz, and z,, respectively specify the treat-
ment of the source and boundary conditions, and are both of [~ —xY3
order one. In reality, diffusing photons are introduced into le(X)_JO P(Y)e "dY. 29
the sample over a continuous range of depths as photons

scatter out of an incident beam; however, the penetratiognfortunately, since the number of scattering events in a
depth is usually set to its average value assuming the scagiven path is discrete, this expression can only be evaluated
tering to be isotropicz,=1. The extrapolation length ratio, by computer via random-walk simulatiofs5,10. To make

on the other hand, is much better specified. It is set by th@nalytic progress, the so-called continuum approximation
angle-dependent reflectivit®, () of the sample wall ac-  must be invoked to relate total square wave vector transfer to

cording to path length. If the number of scattering events in a path is
large, thenY may be approximated accurately by averaging
2(1+Rp) ! the scattering form factor:
Ze== with Rn:f (I’H— 1)Man(M)de over the scattering rorm factor:
3 1_ Rl 0
(2.2 nlg s
YEh(l—COSH}le:r*ES, (2.6)

where the angle co$ u is measured with respect to the
interior normal[20,21]. Numerical results for many cases of . _
experimental interest are given in REZ1] and confirmed by ~Wheres=SI* is the total length of the light path. The ap-

their connection to the angular dependence with which difProximate expression used to compute the normalized elec-

fusely transmitted photons emerge from a slab. tric field autocorrelation function is thus

For diffuse transmission spectroscopy, the average trans- .
mitted intensity is measured and an_alyzed in terms of the 91s(X):f P(S)e *S3ds, 2.7
photon transport mean free path. Since the valué*ofs

determined by the nature and spatial arrangement of scatter-

ing sites, this gives a measure of the structure of the materialyhere P(S) is the probability density for a detected photon
Given the above ingredients, the transmission probability foko have a total path length &1* inside the sample. Since the
diffuse photons created &,|* is predicted by diffusion speed of light is constant, this expression is a Laplace trans-
theory to be form with respect to time of the detected pulse resulting from
an instantaneous source, and can thus be evaluated using
Green’s function techniquekb,2]. For the slab geometry
with one-dimensional incident-collection optics, the correla-
tion function in transmission is found to be

whereL=L/I* is the dimensionless optical thickness of the

slab. .Thisf can be sdhown eit_hgr by 3olution of the (tj:)iffusionOg (x)= sinl[zp\/;]+ze\/; cosr[zp\/;]

equation for a steady, time-independent source or by use d#17,x,\*) = P = :

Green’s function techniques. This result with=1 is widely sz{(1+ Zex)sinf L \/;] * Zze\/; coshL \/;]}

used to analyze experimental data. Random-walk simulations 2.9

show that it describes the total diffuse transmission probabil-_ . . )

ity to within a few percent, for arbitrary scattering anisotropy 1his result withz,=1 is widely used to analyze experimen-

and boundary reflectivity, as long as the sample thicknest@l data. It reasonably reproduces S|_mulat|on reSl_JIts of the

exceeds aboutls andz, is taken according to Eq2.2) [9].  Penchmarkgay(x) of Eq. (2.9, for arbitrary scattering an-
In diffusing-wave spectroscopy, fluctuations in the de-iSOtropy and boundary reflectivity, as long as the sample is

tected intensity are measured and then analyzed in terms 8¢fficiently thick and the value, is taken according to Eq.

the time dependence of the dimensionless mean-squared di-2) [10]. )

placement of the scattering sites=k%(Ar?(7)) wherek is For t.he same ge(_)metry,. but fgr backscattereq light, the

the wave vector of light inside the material. The normalizedcorrelation function is obtained simply by replaciag by

electric field autocorrelation function that describes thesd-—2, in Eq.(2.8). In the semi-infinite limitL —cc, and for

fluctuations is given by a weighted average of the single-patBmallx, this prediction is close to the experimenita?| and

correlation function, exp{xY/3), according to the probabil- Simulation[15,16 result of

ity density P(Y) for the total dimensionless square wave

vector transfer of the photon path to be g1s(X)=exp — y\X), (2.9

Z,+ 2,

P L+2z

z
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where y is a number close to 2 that depends on boundaryvith the correct speed is recovered at short times and that,
reflectivity and scattering anisotropy. This result is widelyignoring absorption, the standard diffusion equation with the
used to analyze experimental data. correct diffusion coefficienD=cl*/3 is recovered at long
The central predictions of diffusion theory, E¢®.3) and  times. Furthermore, the treatment of absorption is self-
(2.8) with z,=1 for DTS and DWS, respectively, rely upon consistent sincep(r,t)=exp(—zl,) is a solution in the case
several approximations that are valid only for thick slabs.of negligible scattering,|*>1,, and since ¢(r,t)=exp
Besides ignoring any direction dependence in the photoi—ct/l,) is a solution in general. The accuracy of E8.1) in
concentration field, they do not account for ballistic propa-describing transport in three dimensions was verified by
gation or scattering anisotropy, and hence become increasemparison of its Green’s function with random-walk simu-
ingly inaccurate, and eventually fail altogether, for slabs oflation results for the spreading of an instantaneous pulse in
decreasing thickness. This is unfortunate because most dada infinite three-dimensional medium with varying degrees
are obtained for rather thin slabs<&/l* <20, where the of scattering anisotropy and absorptiph7]. It should be
effects of absorption and laser coherence can be neglecteeinphasized that Eq3.1) describes photon concentration
and where better correlation function statistics can be obaway from a source, independent of the degree of scattering
tained due to higher count rates and slower decay times. anisotropy; as will be shown in Sec. IV, anisotropy plays an
important role only in théreatmentof the source.
IIl. TELEGRAPHER APPROACH TO TRANSPORT Since the values af andl* set the scales for ballistic and
diffusive behavior, it is convenient to work in a dimension-

This section reviews a recently reported theory of photoness system of units where all lengths are measured in units
transport that we have developed to account for the ballistigf |* gnd all times are measured in unitsldfc. The result-

nature of photon propagation between successive scatterifgy gimensionless telegrapher equation is thus
events [17]. Solutions relevant to diffusing light spec-

troscopies are developed in the following section, explicitly ) L 1)\ do 1
including the influence of scattering anisotropy. Vép=—7 +| 2uat 5| o+ Ma| Hat 57| @
ot Do/ dt Do

(3.2
A. Telegrapher equation
L . whereu,=1*/1, is the dimensionless absorption coefficient
A complete description of photon transport, neglectingynqp =13 is the dimensionless diffusion coefficient.
polarization and interference effects, requires that the num-

ber density of photons be tracked as a function of time, po-
sition, and direction. It is straightforward to develop such a
theory of radiative transfer simply by considering all the pos- To complement the telegrapher equation for predicting
sible ways for this density to change by the ballistic flow of photon transport within and out of a finite medium, it is
photons, by the scatter of photons in and out from differennecessary to specify boundary conditions {g(r,t) and a
directions, and by absorptioj22,18,19. However, the re- prescription for deducing the observable flux of exiting pho-
sulting Boltzmann equation is difficult to solve, even numeri-tons. We obtained the$&7] again by considering the results
cally, and this difficulty ultimately originates in the fact that of the exact description of the one-dimensional problem. In
there is a continuum of directions in three-dimensionalthe same dimensionless system of units as for(B®), the
space. Diffusion theory, by contrast, is much simpler since itesult for the boundary conditions is
neglects the direction dependence and thus deals only with

B. Boundary conditions and observable flux

the total photon density and how it changes by scattering and 0=|1+ Ze AV 4+ Do ﬂ o(r 1)
absorption. As a comparably simple alternative to the full 1+Dou, 1+Dou, ot ' boundary’
transport theory, we have recently proposed a telegrapher (3.3

equation for the photon density that improves upon diffusion R

theory by incorporating ballistic propagation effects for iso-wheren points normal to the boundary away from the me-
tropic and anisotropic scattering alike. The physical motiva-dium and wherez, is given by the boundary reflectivity ac-
tion comes from the exact model of transport in a truly one-cording to Eq(2.2). This is similar to the usual extrapolation
dimensional space, which can be written down and solvedength boundary conditions of diffusion theory, except for
without approximation[23,16. The following telegrapher the u, andd/dt terms that arise from absorption and ballistic
equation for the total photon densigy(r,t) in three dimen- transport, respectively. Note, also, that for time-independent
sions was proposed by assuming only that it be identical iproblems the extrapolation length decreases with increasing
form to the exact telegrapher equation for one-dimensionaibsorption. The result for the exiting flux at some point on
transport, but with numerical coefficients guaranteeing théhe boundary is found similarly as

correct ballistic and diffusive limits for three dimensions:

Do
o2 a2<p+ 2 8)de 11 - J(Ir,t)=z—eqo(r,t)b L (3.4
= J— _] — — | — _ oundar
=\ e T e G g

which would be identical to Fick’s law if the absorption and
where ¢ is the speed of light in the mediun} =I1./(1 ballistic terms in the boundary conditions were dropped.
—Q) is the photon transport mean free pdthis the scatter- The complete telegrapher theory of three-dimensional
ing length,g is the average cosine of the scattering anglephoton transport, except for the specification of the source,
andl, is the absorption length. Note that the wave equatiorconsists of Eqs(3.2—(3.4). It is of comparable simplicity to
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diffusion theory, but is much more accurate at short timesAccordingly, the usual diffusion theory prediction for the
and distances and in cases of strong absorption. This wdsansmission probability, Eq2.3), is recovered by forcing
verified by comparison of analytic solutions for a planethe profile to be continuous at,, while an increase i ¢
source with the results of random-walk simulations for slabdeads to an increase in transmission probability. A nonzero
of varying optical thickness and absorptifti/]. The teleg- value of the discontinuity can be understood physically as
rapher theory is also superior to the 2-stream theory of Refarising from anisotropic scattering. First, if the scattering is
[16] because the latter applies only to geometries that have anisotropic, then photons first scattered away from an inci-
one-dimensional symmetry, has the wrong diffusion coeffi-dent beam at, will be preferentially directed deeper into the
cient, and cannot incorporate the effects of angle-dependestmple; therefore, the concentration forz, should be
wall reflectivity. greater than foz<z, in proportion to the extent of the an-
isotropy. Second, the transmission probability should in-
IV. PREDICTIONS crease as p.hot.ons begin scattering from deeper v_vithin the
sample, again in proportion to the extent of the anisotropy.
We now begin presenting new material. In this section,This intuitive connection between the concentration discon-
solutions to the telegrapher theory are found for the geomtinuity at the source point and the extent of scattering anisot-
etry of greatest experimental interest for diffusing light specropy can also be seen mathematically from the exact 2-
troscopies: a three-dimensional slab with illumination andstream theory of transport in a truly one-dimensional
detection optics arranged such that there is no discriminatiomedium. There, Eq(13) of Ref. [16] shows that the trans-
against photons according to their lateral motion within themission probability has the form of E¢4.3) but with DA ¢
sample. Absorption is not explicitly considered, but can bereplaced by p;— 1, wherep; is the probability for scattering

incorporated easily based on the results presented. forward without changing streams. For one dimension, the
DoA ¢ term appearing in Eq4.3) is thus given by the aver-
A. Steady plane source age cosine of the scattering angées (+1)(pr) +(—1)(1

Th lution for th . il h d —p;)=2p;—1. As shown next, the relatioByA ¢=g also
e solution for the concentration profi ‘i when a steady, g oyt to be obeyed for thick samples in higher dimen-
source of strengtlp, is located at the plang,|* in from the sions.

edge of a nonabsorbing slab of thicknéssLI* is given by In general, the size of the discontinuity can be deduced in
. terms of the scattering anisotropy by requiring sensible be-
(2+2)(1-Tz), 2<z, havior of the transmission probability in the diffusive and
single-scattering limits. For very thick slabs, the total diffuse
transmission probability should depend only on the transport

here the t dinati di its oF mean free path, independent of scattering anisotropy. Aver-
where the transverse coordinalés measured in units or, aging sz over an exponential distribution of penetration

andT, is the transmission probability. This obviously satis- . . . .
i P . . depths according to the scattering length gives the total dif-
fies the time-independent telegrapher equation with no abr

sorption, V2¢=0. It also satisfies the boundary conditions, use transmission probability as

Eq. (3.3, by vanishing at distance.l* outside the sample.

Furthermore, it correctly gives the diffusely backscattered im T _f“_l_ o2 sz ] _(Is/1*+DoA )+ 2,
and transmitted fluxes according to E§.4) as Lo = J, % protisT L+ 22,

¢o

— 3 ~ 4.1
Do (L—z+ze)sz, 2>z, @D

¢(2)=

(4.4
(Do/2e)¢(0)=(1-T, )0,
assuming that the discontinuity is independent of penetration
(Do/Ze)cp(L)=TZp(p0. 4.2 depth. This averaging procedure will be discussed more fully
in Sec. IV C. Since the scattering and transport lengths are

Curiously, however, the value of the transmission probability€/ated byls/I*=(1—g), the diffuse transmission is inde-
has not yet been specified even though all the ingredients gendent of anisotropy only if the discontinuity is given by

the theory have been used. To determine the valuézé)f

requires physical arguments outside of the standard telegra- DoAp=g for L>I*. (4.9

pher model, just as was required to specify the value,of

To begin, first note that the size of the discontinuity per unitAs the scattering anisotropy increases, the average penetra-
incident flux at the source point, A(pE[(p(Zp+) tion depth decreases and the discontinuity increases in such a
—¢(zy,7) ]/ ¢g, has also not been specified, and that fixingway that their sum, I¢/1* + DoA¢) =1, remains a constant
the value of either‘l’Zp or Ag determines the value of the equal to one. Therefore, the total diffuse transmission prob-
other. Evaluating the discontinuity a, according to the ability for thick slabs is simplyl'y= (1+z¢)/(L +22) inde-
profile of Eq. (4.1) and then solving for the transmission pendent of anisotropy. This solves the old puzzle as to why

probability gives the key result: the ad hoc procedure of setting,=1 in Eq. (2.3 yields
good results for any degree of scattering anisotropy.
(z,+DoAg)+2 In the opposite limit of very thin slabs, where photons
p e

4.3 scatter not more than once, the diffuse transmission probabil-

% L+2z, ity can be calculated directly and used to deduce the discon-
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tinuity. Summing all the probabilities for a singly scatteredtropic according to Eqg4.5 and(4.7). In Sec. V A we will

photon to reflect any number of times, and then be transmitdemonstrate explicitly by simulation that a discontinuity in
ted, gives the concentration profile exists and is consistent with these

expectations.
1
),

after averaging over forward scattering anglegy) is the taneous pulse. Boundary conditions are most easily imple-

scattering form factor anB(x) is the boundary reflectivity. 004 ysing Laplace transform methods. In the telegraphers
To agree with thee—0 limit of Eq. (4.3), the discontinuity model, the Laplace transform with respect to time of a pulse
must be taken as of strengthe, introduced at deptiz,|* into a slab is pre-

dicted to have the general form
L F()+F(—p)R(w) g
DoAp=2z, . du—2z.

1+R(u) Ja

—+Ag|e Velzmzl 4 g ez g e V07
w

=g’ for L<I*. 4.7 (4.9

F(u)+F(—u)R(w)

du (4.6) B. Instantaneous plane source
1+R(w)

For many problems of interest, including DWS, it is nec-
essary to consider the time-dependent response to an instan-

If the scattering is isotropid; (1) =F(— ), this reduces to where w is the transform variable conjugate to time,
zero. If the boundary reflectivity is independent of angle, this= w(w+1/Dy), z is the transverse coordinate, and the plus
reduces tog’=2(2p;—1) wherep; is the probability of and minus signs are far greater and less tham,, respec-
scattering into the forward direction with a deflection angletively. As before, lengths are measured in unitsl bfand

of less than 90°. In general, however, it must be evaluatetimes in unitsl*/c. It is straightforward to verify that this
numerically. satisfies the telegrapher equation, E}2), and that the dis-

In summary, the discontinuity in diffuse photon concen-continuity per unit source is of siz&¢. The first term rep-
tration at the source plane for a three-dimensional slab isesents the source, while the amplitudgsand c, of the
fixed by requiring that sensible limits be obtained for verysubsidiary terms are chosen in order to satisfy the boundary
thick and very thin samples. In both the diffusive and singleconditions, Eq(3.3). Using the prescription of Eq3.4) for
scattering limits, the discontinuity is zero for isotropic scat-the exiting flux, the Laplace transform with respect to time of
tering and increases as the scattering becomes more anigbe transmitted pulse is found to be

Do _(L ) [1+(D0+A¢>Ze)w]sini{zp\/;]+(ze+ DOAQD)\/; Cosmzp\/;]
Dol )= ] o |
2 ° 20 11 (21 D2 w/DyJsin L Va] + 22, Ve coshiL V]

4.9

The Laplace transform of the backscattered pulse can be found similarly; it can also be obtained from the transmission result
simply by replacingz, by L —z, andA¢ by —A¢. As a check, note that the transmission probability is equal to the integral
of the transmitted pulse over all time, and is hence giverpfly,0)Dy/z.= <pOTZp. The value thus obtained from the— 0
limit of Eq. (4.9) is clearly equal to the previous result, E4.3), found for the steady source. The backscattering probability
can be shown, similarly, to be—lTZp. This provides an important, nontrivial, check on the internal consistency of the
telegrapher equation, boundary conditions, and treatment of the discontinuity at the source. As an aside, note that the influence
of absorption on both the pulse shape and transmission probability is found by taking+ w1, .

Besides giving transmission probabilities with and without absorption, the Laplace transform results are useful for analysis
of other experimental data as well. For instance, they can be inverted for the time dependence of emergihtj7hulsed;
according to Eq(2.7) for the theory of DWS, they can be evaluatedvat DX, and hencer=x(1+ DSX), then normalized,
to approximate the electric field autocorrelation function. For transmission, the result is

_ [1+(D3+gz)x]sin 2\ a] + (zo+g) Va costiza]
T, {[1+(Z+ D2)x]sini L Var]+ 2oV cosiL Va]}

(4.10

ng,zp(X

For backscattering, the result can be generated from this as before. Since the failure of the continuum approximation prevents
application to very thin samples, we have set the discontinuity to the thick-sample lidig&f=g. Note that Eq(4.10

bears similarity to the diffusion theory prediction, Eg.8), which indeed is recovered by setting bcﬁlﬁ andg to zero. The
differences due to tthz, terms indicate the influence of ballistic propagation, while the differences due ¢ptérens indicate

the influence of scattering anisotropy.
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C. Collimated beam

The expressions found above for the transmission probability and DWS correlation functions are not quite ready for use in
data analysis. First, they must be averaged over a distribution of penetration depths according to the scattering length and wall
reflectivity. Considering all multiple reflections of the collimated incident beam from the sample boundaries, théftstel
transmission probability is found as

1
1-F2

Ty= F[sz+ F(1-T,)le »/4"9dz,/(1-g)
0

[(1-g+DoAe)(1-F)+2,(1+F)](1-e Y1 9)-T(1-Ry)e /10
a [L+22](1—F?)

, 4.1)

whereF=Rye Y's=R,e Y(*79 is the probability for an incident to cross the sample without scattering and then reflect. The

sz andF(l—TZp) terms in the integral represent the contribution from photons that reflect an even and odd number of times,

respectively, before being scattered out of the incident beam &ee Fig. 3 The result, Eq(4.11), is the central new
prediction intended for analysis of diffuse transmission data. For thick samples, it reduces to the usual diffusion prediction, Eq.
(2.3) with z, set to one. For thinner samples, its behavior and accuracy will be considered in Secs. V and VI; there, we will
also recommend an empirical interpolation scheme between the two limits of£fsand (4.7) for the magnitude of the
discontinuity.

Similar averages must be performed for DWS. In backscattering, taking.theo limit and then averaging over an
exponential distribution of, according to the scattering length gives

g18(X) = fo ng,zp(X)efzp/(lfg)de/(1_g)

_ 1+(D§-gz)x+(ze—g)Va
[1+(1—g)Val[1+(D3+Z2)x+2z¢\e]’

where, recallx=k*(Ar?(7)), a=x(1+ Déx), Dy=1/3, andg is the average cosine of the scattering angle. For DWS in
transmission, the result for a plane source must be averagedzg\as well as summed over multiple reflections of the
unscattered beam:

(4.12

JE[TZ 0112, (X) TF(1-T, )01p ., (X)]e /17 9dz,
0 P P p “p
9ur(0= T{1-F)(1-9) : 4.13

Note that diffusely transmitted photons that remain in the incident beam for an odd number of reflections all contribute
according tong,Zp(x), since they are traveling away from the transmission boundary when first scageee#fig. 3. This

integral is straightforward to evaluate, but the answer is rather cumbersome. To obtain a reasonably convenient expression, we
setF=0 and thus restrict our attention to thicknesses well outside the single-scattering regime. This is not an unnecessarily
severe restriction since, by contrast with the diffuse transmission probability, the DWS prediction must fail in the thin slab
limit because of the continuum approximation. Evaluating @dl3 without the multiple reflections and with the disconti-

nuity set toDyA ¢ =g then gives the central prediction intended for use in analysis of actual data:

x (AC+B)—{(A+BC)sinL Va]+(AC+B)cog L Vallexd —L/(1-g)]
X)= = =
= Ti(1—C?){[1+(22+D2)x]sinH L Va]+ 22,V costil Va]}

(4.19

where the coefficients are defined as ’ (1+2o)— (1+2ze+L)exd —L/(1—g)]
d:

= (4.19
) L+2z,
A=1+(D§+gzo)X,
This result includes the effects of boundary reflectivity
B=(z +g)\ﬂ through z., scattering anisotropy througg=1—(l¢/I*),
¢ ' and ballistic propagation throudh?, all of which are impor-
tant for typical slabs of thickneds<15*. For thick slabs, it
C=(1—g)\/;, reduces to the usual diffusion theory prediction, E2.8)
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listic transport can be similarly understood. The telegrapher
theory obeys causality by forcing(S)=0 for S<L-z
[17]. The standard diffusion theory, recovered by tal@%

ballistically =0, does not exclude these short paths and hence gives a
light broader distribution of diffusive path lengths and more up-
ward curvature.
incident
beam
— ] I 1 diffusely transmitted light: V. SIMULATIONS
Z, Zp . :
oT., g]r,z[,(X) The remainder of the paper presents various tests of the

above predictions, in this section by random-walk simulation
and in the next by experiment. Here, random walkers are
launched in from the edge of a slab and allowed to wander
FIG. 3. Diffusing photons are created by scattering away fromyntj| exiting from either the transmission or backscattering
the inf:ident beam. The complete source is thus con§tructed by in:‘}ides. Following the methods of Reff9,10], steps are
tegrafing the plane-source results over the penetration depth,  generated with an exponential distribution of sizes according
and summing over all multiple reflections. to the scattering lengthls, and a distribution of direc-

. . tions iven by the Henyey-Greenstein scatterin
with z, set to one. The effects of absorption on both thef m fagtor, F(M)L%(l—gz)(lggg— 21g)~ %2 whereg g

transmission probability and the DWS signal can be obtainedj 1 : : :
by takingX—x-+ s, /D, and then normalizing. S~ uF(w)du is the average cosine of the scattering angle

To examine the influence of anisotropic scattering ano[24]' When a walker encounters the boundary at either edge

ballistic propagation, we investigate the approach of the pre(-)f the slab, it either exits or is reflected specularly back into

diction, Eq. (4.14, to the thick-sample limit g;() the sample according to an angle-independent reflection

, i : probability, R. Isotropic and anisotropic random walks gen-
=L \x/sinh(LX). We tzhus define an expansion by grateq by this procedure are compared in Fig. 1.
In[g;(X)]= — (T'X)+ A X)?+O(<%), wherel ' is the first cu-
mulant controlling the decay rate, aAds a shape parameter
specifying the initial curvature on a semilogarithmic plot.
Straightforward manipulation gives The treatment of scattering anisotropy by a discontinuity
in photon concentration at the source point is the key theo-
retical idea in this paper, and the size of the discontinuity,
Eqg. (4.5 or (4.7), is a crucial input to DTS and DWS pre-
dictions. Therefore, we first use random-walk simulations to
study the existence and magnitude of the discontinuity in
+O(E3 exp{—t/(l—g)]), relation to scattering anisotropy. We proceed by collecting
1+2z statistics for the diffuse transmission probability and the pro-
(416 file of photon concentration versus distance. To mimic scat-
g(2+z,—g+ D%) + D§(5+ 726)/2 tering away from a normally incident beam at a distargé
1tz in from the edge of the sample, as in the predictions to be
© tested, the very first step startszgt* and is directed away
XL 2+0(L"3). from the +z direction according to the form factor. Alto-
gether, then, four inputs must be specified: the value of the

The leading thick-slab behaviors aFg=L %6, since trans- Slab thickness,/I*, the boundary reflectivitR, the scatter-
mitted photons typically take this number of completely ran-INg anisotropyg, and the penetration depth rati. For
dom steps of siz&* in crossing a slab, and=1, by defini- €ach choice, results for the transmission probalei{B/ are

tion. According to Eq.(4.16), the first correction to the obtained by tallying the number of transmitted walkers. Re-
cumulant scales as~! and depends only on boundary re- sults for the steady, time-averaged concentration profile are
flectivity; anisotropy and ballistic effects are relatively unim- obtained by binning up the amount of time each walker
portant even for rather thin slabs. The leading correction tgpends at a given depth in the sample. Example data are
the shape, by contrast, scaleslas’ and depends crucially Shown in Fig. 2 for a penetration depthzy=1 into slabs of

on all these quantities. In particular, the degree of upwardhicknessL/I™ =10 for six different combinations of scatter-
curvature increases for largeg and for smallerg. Physi- N anisotropy,ge{0, 0.5, 0.9, and boundary reflectivity,
cally, according to the fundamental DWS equati@r), this ~ R<1{0,1/2;. For comparison, the prediction of EG.1) is

can be understood in terms of an increase in the width of th@!so plotted in Fig. 2, wherg,_is taken from the simulation
photon path length distributio®(S). If the scattering is value, z. is taken from Eq.(2.2), and ¢, is the total time
highly anisotropic, then all photons scatter out of the ballisticspent by all walkers inside the slab; there are no free param-
incident beam very close to the boundary and hence begieters in the comparison. In all cases, the predicted and simu-
diffusing at the same location. If the scattering is isotropic,lated profiles agree very well throughout the entire slab, ex-
by contrast, then photons scatter out of the incident beamept very close to the source. In particular, the profiles are all
over a broader range of distances and this leads to a broadeearly linear on each side of the source plane and extrapolate
distribution of diffusive path lengths. The influence of bal- to zero atz,=2/3 and 2 outside the sample fl@=0 and 1/2,

— = . @ 1~sz, ng’Zp(x)

A. Concentration profile

“L’z
ary

1+62,L 1—6(1-22—D3)L"2— 127, 3
142zl 1

. 9(2+2z,—g+D%)—D}

A=1+1z{(1+z§)—
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FIG. 4. Average size and rms deviation of the discontinuity, as 0 0.2 0.4 g 06 08 1

defined by the weighting over, in Eq. (5.1) vs slab thickness for

several degrees of anisotropy as labeled. Results are seen to beFIG. 5. Required discontinuity in diffuse-photon concentration

independent of boundary reflectivity, open circles ®=0 and in the single-scattering limit, Eq4.7), vs scattering anisotropy for

crosses folR=1/2, and to agree well with the limiting values of samples held on glass cells and measured in(tajp) or water

Egs.(4.9 and(4.7); the solid curves represent the empirical inter- (bottom). In both cases, the dashed curve is the constant reflectivity

polation of Eq.(5.2). limit and the solid curves are for interior indices of 1.0 through 1.6
from bottom to top. The open points represent values for the iso-

respectively. But more importantly, it also shows how thetropic and anisotropic samples described in Sec. VI.

profiles are not necessarily continuouggt The size of the ) ) ] ] )
discontinuity can be read straight off the plots to bgA ¢ simulation data with the solid curves that interpolate expo-
=0, 0.5, and 0.9 for the three casgs 0, 0.5, and 0.9, re- nentially between the expected small and thick slab limits

spectively, independent of wall reflectivity. This provides according to

fs(;rrotrk]]?cﬁosnglr;r;ﬁat;c.)n of the expectati@yA ¢ =g of Eq. (4.5 (DoAY =g+ (g’ —g)exp —L/I*). 5.2
ex:n?i):;[é(;haes gezji\gt(i);nOI)ftZIeal;ji;(i:((:)cr:i(?:sit.yltai‘ts g}gosi(;}n]p;gﬁcairs]-rhis empirica! relationghip works well for all reflegtivities '
to examine the behavior of the discontinuity as a function oé?ﬁa?erllfﬁ;rigzﬁ *%Xﬁglggibﬁ?ng?f cgsn tt?]irselfa(‘)tr)et?gix:i '°

z,, since in a real experiment diffusing photo_ns are 'ntro'as<DoA<p):g. And as long as the thickness is less than
duced over an exponential range of penetration depths a5 1* the discontinuity can be taken 88,A @) =g'. Itis
. . . - U. y 0 - .
photons are .sc.attered out of the incident beam._ Thus Fig. éurious that the thin slab limit, and the crossover between the

displays statistics for the average and rms deviation of th

. o ; . . 0 regimes, is set by the value of rather than by the
discontinuity as a function of slab thickness, for two differ- scattering length.

ent values of wall reflectivity and several degrees of scatter- In the cases of constant reflectivity simulated above, the
Ing anlsotropy. Th_e averages shown are deflned_ as fOIIOV\’aiscontinuity in the single scattering regime is simp}jy’
by exponential weighting according to the scattering Iength,:%(zpf_l). In many experiments, the scattering medium

as would occur in experiment: . T . ; .
is a liquid suspension held in a glass cell and measured in air

L% . or an index-matching bath. In these cases, the discontinuity
(Dkozp)e‘Zp' Nsdzpl* /1 must be calculated numerically using the angle-dependent
(DoAg)= . (5.0 Fresnel reflectivity of both .interiorjwa_ll and wgll—exte_rior in-
fu'*e‘zp'*“sdz /1 terfaces. Results for a variety of liquid refractive indices are
0 petls shown in Fig. 5 for a glass index of 1.5 and the Henyey-

Greenstein form factor. For any set of refractive indices at
_ _ o the boundary, note that the discontinuity approaches the
whereDyA z is the discontinuity az, as deduced from the constant-reflectivity valueg_’—>§(2pf— 1)=g—0(g® for
simulation result fofT, using Eq.(4.3). The simulation re- smallg. Thus, for weak anisotropy< 0.4, excellent results
sults for the rms de{J/iation defined similarly asp ., should be obtained by treating the discontinuity as a constant
’ 0l e

— [(Dob9)5 —(Doh o), show that the discontinuity is independent of thickness; this can be seen in Fig. 4.
independent ofz, to a good approximation, more so for
stronger anisotropy. So it is enough to consider the average
discontinuity as a function of slab thickness and anisotropy, With the foundation now established, we may begin test-
without regard toz,. The results fokDoA¢) versusL/I* ing the predictions for diffusing-light spectroscopies. The
displayed in the top plot of Fig. 4 also conform very well to only difference in simulation procedure is that now the loca-
the expectations of Eq$4.5 and(4.7) independent of wall tion of the first scattering event away from the incident beam
reflectivity. This is illustrated by close agreement of theis not specified, but is rather taken at random for each walker

B. Diffuse transmission
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FIG. 6. Total diffuse transmission vs slab thickness for four 1 e ——
combinations of boundary reflectivity and scattering anisotropy, as NG
labeled. Symbols represent results of random-walk simulations and 8 ! \\ :
curves represent the prediction of E4.11) using the average dis- b \\\ ~
continuity given by Eq(5.2). 0.1F T i
) . o b prediction \X oL
according to the scattering length and wall reflectivity. Re- P R LR B
sults for the total diffuse transmission probability as a func- 0 0.5 Vop ! 2
tion of optical thickness are shown as symboils in Fig. 6 for X
four different combinations of boundary reflectivityR FIG. 7. Normalized electric field correlation function foack-

€1{0,1/2}, and scattering anisotropg,e {0,0.9}; the corre-  scatteringfrom a semi-infinite slab for four combinations of bound-
sponding predictions from E¢4.11) are shown as curves. In ary reflectivity and scattering anisotropy, as labeled. The top plot
the single scattering regime<lg, the diffuse transmission shows simulation results for the benchmagk,(x) of Eq. (2.5),
increases linearly with thickness and depends on both thieased on momentum transfer; the middle plot shows simulation
reflectivity and the anisotropy. Throughout this regime, theresults forg,5(x) of Eq.(2.7), based on path length; and the bottom
simulation data and the telegrapher predictions are in perfegiot shows the telegrapher predictions of E4.12). The empirical
agreement, as expected by the choice of discontinuity. In theesultg;(x) =exf —(1+2z)x], based on the smatl expansion in
diffuse regimeL>1*, the transmission decreases with thick- Ed. (5.3), is shown in all plots by symbols, open squares Ror
ness in proportion th. ~* and depends strongly on reflectiv- =0 and plusses foR=1/2, independent of scattering anisotropy.
ity, but not on anisotropy. This is seen in both the simulation

data and in the predictions of E(t.11), which are indistin- benchmarlg,;y(x) and the approximatiog;s(x) agree very
guishable to within about- 1% for L/I*=2. The deviation ~Well for smallx (early time$, where the signal is dominated
of simulation from prediction is greatest in between the twoby photons with long paths, but disagree for lasgélate
limiting regimes, but, as seen in Fig. 6, is never more than dmes, where the signal is dominated by photons that have
few percent. Thus, by properly including boundary reflectiv-short paths. This is because the continuum approximation is
ity through an extrapolation length and scattering anisotropyalid only for long paths consisting of many scattering
through a discontinuity at a source that is exponentially disevents. For smak, whereg;y(x) andg;g(x) are in agree-
tributed according to the scattering length, the transmissioment, the telegrapher prediction is also quite accurate.
probability can be predicted from one simple theory withNamely, the initial decay is nearly exponential ifx and
great accuracy in both the single- and multiple-scatteringlepends on reflectivity but not on anisotropy, while for

limits as well as in the difficult region in between. slightly largerx the decay rate increases slightly with in-
creasingg. This can be seen both in Fig. 7 and in the small-
C. Diffusing-wave spectroscopy x expansion of the backscattering prediction, Eq12:
The accuracy of the DWS correlation function predic- —1—(1+ T (1—g+ 7.+ 22 )%+ 3/2
tions, Eq.(4.12 for backscattering and Eg4.14) for trans- 9100 (1+20)\x+ (1= g+ ze+ 2D+ O(x )'(5 3

mission, can be also be gauged by comparison with random-
walk simulations. As walkers wander through the slab, bothgq, even largerx, beyond aboutk=1 whereg,y(x) has
their total square wave-vector transfer and their total paﬂ&iecayed to about 0.2, the continuum approximation fails al-
length are measured, and the results are used respectively{@yether since, as seen in Fig. 7, there is no longer any quan-
compute the correlation function agcordlng to th_e b?”ChTitative similarity ofg;5(X) to gyv(x). In this regime, neither
mark,g;v(x) of Eq.(2.9), and the continuum approximation, gjffusion theory nor telegrapher theory approximations of
9:5(X) of Eq.(2.7). g:15(X) can hope to capture the true behavioge§(x); and
indeed, the telegrapher predictions shown in Fig. 7 break
down, especially for strong anisotropy. In short, there are as
Simulation results of the DWS correlation function in the yet no truly satisfactorypredictionsfor the backscattering
backscattering geometry are shown in Fig. 7 for four differ-correlation function based on E.7) for g,5(x), since the
ent combinations of boundary reflectivitRe {0,1/2}, and  continuum approximation breaks down for short paths and
scattering anisotropyg €{0,0.9}, along with the telegrapher since short paths dominate the signal fpi(x)<0.2. The
prediction of Eq.(4.12. As observed previousiyl5,10, the  best means of analyzing data may still be the empirical form

1. Backscattering
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) 11 FIG. 9. Quantitative differences between the telegrapher predic-
tion of g;(x) in transmission, Eq4.14), and the benchmark trans-
0.1¢ Elg E mission correlation functiorg,y(x) of Eq. (2.5, vs slab thickness.
[ 3 r ] The top plots show the fractional cumulant difference, and the bot-
TR & MR SR tom plots show the average absolute shape deviation,(&4).

0 5 10 125 20 0 5 10 125 20 25 Boundary reflectivity and scattering anisotropy are labeled. The left
(L1%)*x (LN*)“x two plots are for the full telegrapher prediction, while the right plots
) o ] ] with DS 0 show that better agreement can be obtained by neglect-
FIG. 8. Normalized electric field correlation function fvans- ing ballistic propagation effects.

missionthrough slabs of various optical thicknesses and boundary

reflectivities, as labeled. Simulation results for the benchmark, . . . )
g1y(X) of Eq. (2.5, based on momentum transfer, are shown asnessesJ_/I =5, 10, and 20, with four different combina-

symbols. The telegrapher prediction of E4.14 is shown by solid  tions of boundary reflectivityRe {0,1/2}, and scattering
and dashed curves. The diffusion theory prediction of €@,  anisotropyge {0,0.9. For small (/I*)?x, the initial decay
which does not distinguish between different levels of scatteringS nearly exponential inl(/I*)?x with a rate that depends
anisotropy, is shown by dotted curves. significantly on reflectivity, but not much on anisotropy,

such that the sensitivity to a change in reflectivity increases
for thinner slabs. This can be seen both by careful inspection
of the figure and of the smal-cumulant expansion of the
transmission prediction in Eq4.16). For larger {/1*)?x,

the correlation functions all exhibit upward curvature by an
amount that depends on thickness, reflectivity, and anisot-
ropy, such that the sensitivity to a change in anisotropy in-

g1(x) =exp(—yyX) wherey is an unknown, adjustable pa-
rameter close to +z,. This form is shown by symbols in
Fig. 7 for the two caseg=>5/3 and 3, corresponding through
the first term in Eq(5.3) to z,=2/3 and 2, respectively. This,
of course, fails to capture the anisotropy dependence of the

decay; it also does n_ot provide good agree_ment Yi(x) . _creases for thinner slabs. For very thick slabs;|*, the
beyond abouk=1. Since the second term in the expansion S
behavior reduces to the limiting form g4(x)

in Eq. (5.3) seems reliable, it may be possible to concoct an ~ _ . ;
ever? tfettgr empirical form usmgyth|s gs a guide. L\/—/smha__\/i) independent of reflectivity and anisotropy.
For slabs of intermediate thickness,<20/1* <100, the be-
havior depends noticeably on reflectivity but not on anisot-
ropy. For thinner slabd,/I* <15, where most experiments
In the transmission geometry, there is a well-defined typi-are performed, the behavior depends significantly on both
cal photon path consisting of roughly-{*)? completely reflectivity and anisotropy. As evident in Fig. 8, the telegra-
random steps of average size This implies that the decay pher prediction of Eq(4.14) captures this entire range of
of the correlation function is nearly exponential io/(*)?x. behavior and is quantitatively accurate to a remarkably high
It also implies that failure of the continuum approximation is degree. By contrast, the diffusion theory prediction of Eq.
a concern only for thin slabs, and can never be as severe as(2.8), also shown in Fig. 8, fails to distinguish the crucial
backscattering. As found previous[§0] the difference be- differences due to scattering anisotropy, and thus becomes
tween the average dimensionless path len@h and the only qualitatively correct for thinner slabs. Curiously, as no-
average dimensionless momentum trangiér, whose val- ticed earlier in Ref[8], it works best for strong anisotropy,
ues determine the initial decay ratesgf(x) andg;v(X), the very case for which its transport approximations are most
respectively, vanishes for thick slabs and is never greatdnaccurate.
than about 7% even for slabs as thinlas 21*. Therefore, The differences between the simulated and predicted cor-
the prediction of Eq(4.14) is tested in Fig. 8 by comparison relation functions observed in Fig. 8 are difficult to fully
with g;v(x), only, as a function of I(/I*)?x. Simulation  quantify. Two reasonable means are shown in Fig. 9 that
results and telegrapher predictions for the transmission comay be useful to experimentalists for knowing and minimiz-
relation function are displayed for three different slab thick-ing the systematic error introduced by analysis of data with

2. Transmission
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the telegrapher prediction. The top plot shows the fractionaMie theory in terms of the dielectric constants of the mate-
cumulant difference, AT /T'1=(I';—T'1y)/T'1y, between rials and the ratio of the wavelength of light to sphere size
the initial decay rates of Eq4.14 and the benchmark, [25,26. We use stock polystyrene spheres with diameters of
g1v(x), for the usual four combinations of boundary reflec-93 and 653 nm, each with less than 10% polydispersity
tivity and scattering anisotropy. The differences all decreaséDuke Scientific, Palo Alto CA and coherent light from an
with increasing thickness, as expected, and even in the worgtr* laser with a wavelength of=514.5 nm in air. Since the
cases are less than 10% for thicknesses greater than 93-nm spheres are much smaller than the wavelength of
=41*. In the case of moderate reflectivity and anisotropy, adight, they scatter photons with approximately equal prob-
in a typical experiment, the difference is less than a fewability into the forward and backward directions according to
percent even in slabs as thinlas 21*. While the cumulant a simple Rayleigh form factor. Even though the scattering is
difference serves to quantify the accuracy of the decay rategolarization dependent, especially near 90°, we will refer to
the following absolute difference serves to quantify the acthese as our “isotropic” samples. By contrast, since the 653
curacy of theshape nm spheres are larger than the wavelength of light, they scat-
ter photons preferentially into the forward direction accord-
. ing to a complicated Mie scattering form factor, we call these
<|Agl|>=f |91(xT'1y/T'1) = gay(x)|d In x/In 10. our “anisotropic” samples. In both cases, the important
(5.9 length scales are the scattering and transport mean free paths,

) _ _ _given, respectively, by
Since the predicted and benchmark correlations functions

both decay nearly exponentially from one to zero, their dif- 1 . ls
ference is greatest over about one decads iherefore, Eq. 's:pna and |*= 1-g’ (6.2)
(5.4) is an indicator of the average differencH|. Further-

more, since the decay rates have been matched, this quantijyerep, is the number density of spheresis the scattering
solely reflects differences in shape. Simulation results for Edeross section. and. as usugljs the average cosine of the

(5.4) are shown in the bottom plot of Fig. 9. As expected, allgcattering angle that parametrizes the degree of scattering
decrease with thickness, and even in the worst cases are bﬁiisotropy.

low 0.1 fpr_thickness greater than=3I*. Since the error in The thermal Brownian motion of the spheres in suspen-
the prediction becomes comparable to the benchmark whegjon, is approximately diffusive, so the dynamical variable
the correlation function decays beldg;|), a simple rule appearing in DWS predictions is

for avoiding undue systematic error would be to restrict

analysis to the portion of the decay satisfyirgy(7) x=k2(Ar%(7))=67/7, with 7o=1/DK?, (6.2
>(|Ag4]). Since it is routine to measurg,(7) down to

0.03, the results in Fig. 9 show that even in the worst case nQarek is the wave vector of light in the mediurtAr2(7))

data need be discarded if the_thickness is_greater than_abolgtthe average mean-squared displacement of the spheres in
L=71*. For moderate reflectivity and anisotropy, as in ame 7, D is the sphere self-diffusion coefficient, ang is

typical experiment, no data need be discarded if the thickihe characteristic time scale required for the spheres to dif-

ness is greater than abdut=41*, and more than a full de- g6 across one wavelength. Because of hydrodynamic inter-
cad(i of decay is available even for slabs as thinLas 4.tions that depend on the volume fractignoccupied by
=2I*. spheres, the diffusion coefficient is smaller than the Stokes-
Einstein value according td=Dy(1—1.83$) [27-29.
VI. EXPERIMENTS And because of the hydrodynamic self-interaction, there is a
long-time tail in the decay of the velocity autocorrelation

Wh'le. the above rando_m-walk_smulatlons are usgful forfunction. The detailed functional form of 7) is found[30]
cleanly isolating and testing the influence of scattering an-

isotropy, they fail to account for potentially important phe- to be given by Hinch's predictiof81,8) with the above dif-

nomena that occur in real experiments. This includes th(I:USIOn coefficient and with a self-interaction time gf= (1

-~ 2 - . - - .
field properties of light, i.e., polarization and interference, as 2.5¢)a"p/n wherea is the sphere radius is the liquid

well as angle-dependent behavior in the boundary reflectivitgensny’ andy is the liquid viscosity. The limit of truly dif-

and scattering form factor that are not accounted for by th gf'oi motion described by, in Eq. (6.2 is attained only

" : T=T,.
average quantities, andg, respectively. Therefore, we have v . . .
performed a series of diffuse transmission and DWS experi-. With these Well-estal_allshed mgredler_lts, we may now en-
ments on colloidal suspensions of polystyrene sphgrely- gineer our Sa'_“p'es- First, st_opk solutions of the 653 nm
bally. The heart of our approach is to design two SlJSIOen_spheres are diluted with sufficient water that the transport
sions such that, except for scattering anisotropy, their opticgl'c2" re€ path is predicted to have a convenient value of

and dynamical properties are as much alike as possible. .:0'52 mm. A.‘S recorded in Table |, this produces samples
with a large anisotropy parameter g&=0.90 and a charac-

teristic diffusion time ofr,=5.7 ms. Next, stock solutions of
the 93 nm spheres are mixed with carefully chosen volumes
Polystyrene spheres were chosen because the details @f water and glycerol so that the resulting suspensions are
their light scattering behavior and their thermal motion arepredicted to have the same values of bbthand ro. This
both well known, and can thus be suitably tailored. For theproduces samples with a small anisotropy parameteg of
low concentrations employed here, the former are given by=0.11, but with optical and dynamical properties that are

A. Sample design
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TABLE |. Sample characteristics at a temperature of 21 °C for 1 —— T3
light at an incident wavelength of 514.5 nm in air. The polyball and N E
glycerol fractions are chosen so that the valuek*cdind 7, are the 10° ’;—°\ Zom 3
same for both the isotropic and anisotropic samples. The manufac- Tb _25 & 1
turer's reported error in the polyball diameter isl nm; the re- 10 3 \\653 om 3
ported polydispersities are much larger, as quoted below. 1oL \ _
E \ T
Designed Isotropic Anisotropic 10-4: R S R (?)|b.a”.|8t.lc. 1]
0 0.5 1 1.5 2
Polyball diametefnm) 93+8 653+12 S —
Polyball volume fraction(%) 1.866+0.002 0.4134:0.0004 f //”” T ey - (b) diffuse
Polyball refractive index 1.600.01 1.60-0.01 T [ 653 nm
Glycerol mass fractiori%) 53.0+0.1 d t
Liquid refractive index 1.40%0.003 1.3340.001
Liquid viscosity (g/cm-9 0.0752:0.0005 0.0099:0.0003
Liquid density(g/cm3 1.135+0.003 0.9980.003 0-1F
Calculated 0.1 L (I1nm) 10
+
?* (mm) 8;;82? 00855;;8824 b.:_:IG. 10. Ballistic(top) and diffuse(bottom transmission prob-
ms 57405 57:0.3 a ility as a function of cell thickness. Trlangles and C|rc.les respec-
7o tively denote data for 93 nm spheres, which scatter light almost
7, (N9 o 0.31-0.06 1078 isotropically withg=0.11, and for 653 nm spheres, which scatter
Z, for glass cell in air bath 2.080.05 1.76:0.02 light very anisotropically witrg=0.90. Open symbols are for rela-
z, for glass cell in water bath ~ 0.810.01 0.71-0.01 tive measurements with an integrating sphere, and solid symbols for

absolute; for all, the sample cells are held in air. The lines through

otherwise very similar to the anisotropic samples. While the "¢ data in the upper plot represent fits to an exponential for the

- . ttering lengthl,s, while the curves through the data in the lower
two samples have the sant&, note that their scattering sca o
lengths! .= (1—g)I* differ by a factor of ten. plot represent the prediction, E@.11). The small symbols are for

LN . . random walk simulations with appropriate form factor and angle-
After mixing, the suspensions are sealed into two sets of pprop g

. . - ependent boundary reflectivity.
sample cells. The first set consists 10 borosilicate cells P Y y

(Corning 7740n=1.474 with rectangular cross section and 5nq hence different angle-dependent photon reflectivities at
with nominal thicknesses ranging from 1 to 10 mm. Thes&ne syspension-wall interface. Values fry are quoted in
were made by extrusion and the actual thickness was takepyple | for cases that the glass sample cells are held in air
as the average found along the cell width. The second sgfyq in a water bath, where reflections at the wall-exterior
consists of 5 cylindrical spectrophotometer-type c@SG  jpterface are reduced. In spite of uncertaintietirand =,
Precision Cells, Farmingdale, NYwith accurately con- 5.4 of gifferences im, andz,, the largest and most impor-
structed thicknesses of 0.1, 0.2, 0.5, 1, and 2 mm. In alfy; itference between the 93 nm and 653 nm suspensions is
cases, the width of the cells is sufficiently great that essengeir degree of scattering anisotropy. In analyzing data, our
tially no photons escape from the sides. approach will be to treat only* as an adjustable parameter,

Because of uncertainties in the concentrations and in thﬁssuming that all other parameters in Table | are exact
liguid and sphere properties, the values®fand r, may not '

be precisely matched for our actual isotropic and anisotropic
samples. Reasonable estimates for the errors are given in
Table I, and were obtained as follows. First, the polyball Before examining the influence of scattering anisotropy
diameters are reported by the manufacturer, and their refraeon diffusing light spectroscopies, we further characterize the
tive indices are taken from the literatur@2]. The mass and optical properties of the suspensions by measurements of the
volume fractions are obtained by weighing. As a check, théallistic transmission probability. For this, we gently focus
liguid refractive indices are measured with an Abbe refracthe collimated laser beam through samples contained in the
tometer and compared to Rdf33]; liquid viscosities and precision spectrophotometer cells. A pinhole is placed at the
densities are taken from the same source. These uncertaintifsscus so that scattered light is blocked and only the unscat-
combine to give the expected errors fgy 1*, and ry re-  tered, ballistic component may reach the detector. The bal-
ported in Table I. In addition, two other aspects of the iso-listic transmission probability is then obtained by normaliz-
tropic and anisotropic samples are not identical. First, théng to the signal from a cell containing pure water. The
hydrodynamic self-interaction times quoted in Table | areresults displayed on semilogarithmic axes in Fig(al@x-
different. This is unavoidable since the 93 nm spheres arbibit a clear exponential dependence on thicknebg,
smaller and since their solution has a higher viscosity; there=exp(—L/ly); this form neglects the contribution of ballistic
fore, theirr, is much smaller and their motion is more nearly photons, which reflect an even number of times before being
diffusive over the time scales of our experiments. Secondiransmitted since they are down by more than the square of
the extrapolation length ratios that describe the diffuse phoboundary reflectivity at normal incidence, which is insignifi-
ton boundary conditions are different. This is unavoidablecant here. The fits shown in Fig. (0 give scattering lengths
since the two suspensions have different refractive indicedpr the isotropic and anisotropic samples that differ by a

B. Ballistic transmission
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TABLE II. Experimental values fot*, given in units of mm;  tropic samples exhibit nearly identical behavidry~(1

the quoted error bars arise from uncertainties in fitting and normal-- 7 )/(L/I* + 2z,), since their values df and ofz, are so

ization procedures. similar. For thin slabs,. <2 mm, by contrast, they have very

different diffuse transmission probabilities, reaching a maxi-

Method Bath Isotropic Anisotropic mum nearL=2l; and decreasing for thinner slabs. This is
Designed 0.52 0.52 similar to what was seen previously in the simulation test of
Ballistic transmission  Air 0.660.02 0.58-0.02 Fig. 6, and is due to the great difference in their degrees of
Diffuse transmission Air 0.590.02 0.52-0.01 scattering anisotropy. In particular, thin anisotropic samples
telegrapher DWS Water 0.670.01 0.63-0.01 have a significantly largefy both because their scattering

Air 0.68+0.01 0.62-0.01 length is ten times smaller, so that more photons scatter out
Standard DWS Water 0.680.01 0.66-0.01 of the incident beam, and because scattered photons are pref-
Air 0.69+0.01 0.62-0.01 erentially directed into the forward direction. For thin isotro-

pic samples, by contrast, fewer photons scatter away from

the incident beam, and those that do are as likely to be back-

factor of nearly ten, as expected by design. Using the calcuscattered as transmitted. This behavior is captured very well

lated value ofg, the transport mean free path may then beby the prediction of Eq(4.11), based on the treatment of

estimated as* =14/(1—g); the results quoted in Table Il scattering anisotropy by a discontinuity in diffuse photon

are approximately equal and are close to the design valuesoncentration at the penetration point. These predictions are
shown as curves in Fig. 10), using thick-sample inversion

C. Diffuse transmission results forl* and numerically calculated values fgr g’,
Ry, andz, using the sample design parameters in Table I.
None of these parameters is adjusted to fit the data. Simula-

ability that a photon scattered out of the incident beam will.. / ) :
tion results using the appropriate Henyey-Greenstein form

exit, after any number of scattering events, from the opposm? ctor and angle-dependent boundary reflectivity are also in-

face of the sample. This can be measured absolutely, withou ; . L . .
: ; cluded. For anisotropic samples, the prediction, simulation,

reference to a control sample. Following our previous work . ST :
and experiment are nearly indistinguishable as the slab thick-

[21], the illumination and collection optics are arranged SOness is varied widely from the single-scattering regime into

that the detection probability is independent of where on th(:fhe diffusive regime. For isotropic samples, similar agree-
sample face the transmitted or backscattered photons happen ’ ’

) > ment is found except that the experimental data are too low
to emerge, as assumed in our predictions for the slab geom
etry. The measured light intensity is then recorded at finely{j
spaced angles around the entire sample; the total transmitt(it-a
and backscattered intensitidg,and |z, may thus be found
by integrating the resulting angular distributions. The final
result for the diffuse transmission probabilityg=1+/(1
+1g), is displayed as solid symbols for both isotropic and
anisotropic samples in Fig. Ui). For thick samples, it de- We now turn to the main experiments for which our
creases with increasing thickness in accord with the predicsamples were designed: diffusing-wave spectroscopy study
tion Ty~ (1+z)/(L/1* +2z.). Inverting this expression for of intensity fluctuations caused by motion of the scattering
I* using data from the five thickest samplész6 mm, and  sites. As for the diffuse transmission experiments, we will
averaging, gives an alternative characterization of the trandirst analyze data from thick samples using traditional diffu-
port mean free path. The resulting valuesldfshown in  sion theory and then proceed to thin samples to observe the
Table Il are slightly smaller than those obtained from ballis-influence of scattering anisotropy. These measurements are
tic transmission, but are consistent with expectations. performed using standard methods for samples contained in
To examine the thin samples contained in spectrophotonthe extruded rectangular glass cells. Samples are illuminated
eter cells, where anisotropy effects dominate the behavior ofith coherent light from the Af ion laser at near-normal
the diffuse transmission probability, we must employ a relaincidence with no focusing. The diffusely transmitted or
tive measuring scheme because the cell design prevents $iackscattered light is detected without imaging by a photo-
multaneous observation of both transmitted and backscatnultiplier tube placed behind a 50m diameter pinhole ap-
tered distributions. This is accomplished using a largeproximatey 1 m from the sample. These scales were chosen
diameter integrating sphefeabsphere, North Sutton, NH  so that the speckle and pinhole sizes are comparable; relative
Samples are mounted at the input port, and the illuminatingnotion of the scattering sites then produces large fluctuations
beam is gently focused so that unscattered light exits then the detected intensity. Our experimental geometry is
sphere through a pinhole on the opposite side. The measuredjuivalent to the traditional case of illuminating with a plane
intensity at a photocell mounted on a third port is thus pro-wave and imaging light, which emerges from a pdmy; but
portional to the diffuse transmission probability. The normal-it is much simpler and wastes far fewer phot¢84]. Since
ization constant is found by comparing results for 1 and  neither geometry discriminates against photons according to
2 mm cells with the absolute diffuse transmission probabili-lateral motion within the sample, they are both equivalent to
ties obtained for rectangular cells of the same thickness. the one-dimensional “plane-wave-in—everything-out” ge-
The experimental results fafy are shown as open sym- ometry assumed in our analysis. The PMT signal is amplified
bols in Fig. 1@b). For thick slabs, the isotropic and aniso- and discriminated so that each detected photon produces a

We now consider the total diffusion transmission prob-

r the two thinnest slabs. This discrepancy is highly repro-
cible; given the close agreement between theory and simu-
ion, we speculate that there remains an unknown source of
systematic experimental error.

D. Diffusing-wave spectroscopy
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square, TTL, pulse which can be fed directly to digital cor- 1 s

relator board ALV-5000, Langen/Hessen Germarfyr real- o 08 ™ backscattering
time computation of the intensity autocorrelation function = ‘*§
(I(0)I(7)). The result is related to the normalized electric :& 0-8L i ansmission 3 \

L/I*=16 %

field autocorrelation functiong,(7), by the Siegert relation
(35,36

% ?,
2, *,
3 653%,%493 nm
)

65;% 93 nm 5 ]
T M h
T

0.2 =
1(0)I(7 0 = :

—< © 2 ) =B+ 8|g1(7)|?, (6.3 1 T —— k

<I> . 0'9:_ 93 nm Ph 3

_ _ _ _ ©° ok . 3

where B is the baseline, which equals one if there are no g o7t . 3

drifts in the incident laser intensity, an8l is the intercept, Z o06F L7653 nm E

which is less than one but increases with decreasing pinhole % o5k n 3

size and laser coherence. 0.4E°

It is common practice to test theories of DWS by nonlin- T S N N R

ear least-square fits to data in which béthas well as the T (s)

baseline and intercept are simultaneously adjuffe8,34.

This leads to outstanding fits but with results that vary with FIG. 11. DWS correlation function data vs delay tirfugper
fitting interval [34], suggesting that errors in the predicted plot) for isotropic and anisotropic samples. Note that the two trans-
rate or shape of the correlation function are being masked bpission and the two backscattering correlation functions respec-
compensating errors in choice of fitting parameters. Here, wévely decay with roughly the same shapes and time scales, as de-
adopt a conservative approach in which the intercept analgrzled. 2The Iowe_r _plot .|Ilustrates how the partlclg _dynamvcs,
baseline are chosen once and for all without bias by predic=K (Ar“(r)), exhibit a size-dependent long-time tail in the cross-
tions. In particular, the intercept is estimated by fitting the ~©Ver to purely diffusive motion, &7, at long times.

early-time data to a second degree polynomial. The baselin e Hinch prescription shown in Fig. @. In other words,

B is estimated by averaging slightly less than one decade . . o
data after the correlation disappears into the noise. The nolye as;tpme thgththe detshlgnec: p?'¥b§|| dllameters dand liquid
malized field correlation function, and the corresponding staY!Scosilies, and hence ihe calcuiated va uessipand 7,

tistical errors arising from uncertainties in baseline and interr€ all correct. This assumption can be tested two ways, first

cept, are then found using the Siegert relation @c@). To by fitting the correlation function in backscattering from the
improve the signal-to-noise ratio, and to keep the baseline ls: 10 mm samples,\/mr,l to the approximate empirical
close to one as possible, a line filter and polarizer orientedP™M 91(X)=€XP(=yyX+Xo); the X, term accounts for
90° out of phase with respect to the incident beam are placelUnding at smalk due to loss of very long paths from either
in front of the pinhole. the finite size of the sample, absorption, or imperfect laser

As a final experimental note, our DWS measurement&onerence. Since we have=617/7y, any error in our as-
were performed for samples either submerged in @umption forrg would appear as an error in the fitted value

temperature-controlled water bathi=21+0.2 °C, or held ©f 7. Reasonable fits are found witp=1.40+0.02 for the

in air at room temperaturd,= 21+ 1 °C. Besides stabilizing 1SOtropic samples, y=1.80x0.05 for the anisotropic
the particle dynamics, the water bath serves to reduce boun§@mples, anck,=0.015 for both. These values for are

ary reflections so that, for the isotropic and anisotropic Smaller than the expectation=1+z, of Eq. (5.3, butare in
samples becomes smaller and more nearly equal. This wifo0d agreement with published experimental results on
be important since, according to E@.16), both the rate of 2dquUeous suspensiofis2]. They are also in accord with the

decay and the curvature of the correlation function depengimulations results in Fig. 7, where anisotropic scattering
on the value ofz,. leads to a faster decay.

After subtracting the baseline and dividing by the inter- W& can further test the basic assumptions in our analysis
cept, essentially raw correlation data are displayed in FigPy examining the early-time behavior n the transmission
11(a) for both transmission and backscattering geometriesSorrelation functions;-In[gy(x)]=I"yx+0(x’). Experimental
As expected, by design, the results for isotropic and anisovalues of the first cumulant;;, with respect tox, are thus
tropic samples exhibit nearly the same shapes and nearly tiduced from asymptotic fits offlgy(x)] to a second degree
same time scales for decay. Also as expected, due to tHeolynomial with an intercept of zero. These are displayed in
DWS equation(2.7) and differences in path length distribu- Fig. 12a) as{I'; "L*/6, because according to EG.2) this
tions, only one decade in delay time is required for the pri-<combination converges 13 in the limit of very thick slabs.
mary decay of transmission data, while more than two deMaking this extrapolation with the predicted form Ibf ver-
cades are required for backscattering. Over these time scale®)sL gives thel* values quoted in Table II. The results are
the particle motion is nearly diffusive, more so for the smallindependent of whether the diffusion or telegraphers predic-
spheres. This is seen in Fig. (bl by comparing the full tions are used, since these theories agree for very thick
Hinch prediction described above for=k?(Ar?(7)) withits ~ samples. More significantly, the results are the same for data
diffusive limit, 67/ 7, using the calculated values fog and  obtained for samples held in air and water baths, are consis-
7, in Table I. tent with the designed values, and happen to be in very close

All further analysis of the correlation data will be done in accord with the ballistic transmission measurements. Since

terms of behavior as a function &f rather than ofr, using we have x=67/7, and FIEEZIG, giving —In[g;(X)]
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. . . ) .
for I as a function of cell thickness; symbols denote data for dif-y, e g1an thicknesses: error bars arise from uncertainty in the base-
ferent sphere size and bath conditions, as labeled by extrapolathn.le_ Plotted in this manner, the dataymbol$ and predictions
length ratio. The value of'; is deduced from fits to-In[g;(X)] (curves all exhibit the same smallx behavior, Ifig(X)]=—Tx
— H * H H !
—_1“1x+0(x2)_ for small x, while the value ofl* displayed in the | 5,2 For jargerx, the upward curvature is greater for isotropic
middle plot is deduced frorli; using the telegrapher prediction of ., for anisotropic samples. This distinction vanishes with increas-
Eq. (4.14); error bars represent uncertainties from the cumulant fltsing slab thickness in accord with the telegrapher model. Note that

Th? dotted Iines represent the average valueks' dbr L>4_ MM, the curvature is slightly affected by the extrapolation length ratio,
while the solid and dashed curves give the corresponding predigs, ¢ opposite to the observed trends.

tions for \/F[ILZIG based on the telegrapher and diffusion models;
note that\/Fl’ILZIG converges td* for very thick samples I
>1*). The bottom plot shows the fractional deviation of the pre-
dicted and measured cumulants.

dependence as the theory becomes less accuratel Tdes
pendence is noticeably greater for the isotropic samples,
whether or not submerged in a water bath. Lastly, the bottom
plot in Fig. 12 shows the fractional deviation of the predicted
=(7L2)/()*?), any error in our assumption for, would  cumulant from the measured one. Since the telegrapher pre-
appear as an error in the extrapolated valudg ofTogether  dictions are evaluated using the average value$* oéx-
with the backscattering and static transmission tests, thigacted from the upper and middle plots, the deviations in
gives confidence in our analysis procedures and sample chafig. 12c) all vanish, to within a systematic error of about
acterization. +0.03, for very thick samples. For thin slabs, the isotropic
Now that the samples are fully characterized, we maysamples develop a significant deviation as the theory be-
begin testing the telegrapher theory of DWS for thincomes less accurate. Note that this display is most similar in
samples. First consider again the cumulant data in Fig)12 spirit to the simulation test of Fig. 9. Furthermore, in fact, it
Both the telegrapher and diffusion predictions provide ais nearly identical in quantitative detail, except for the iso-
good description forL=5mm, or L/I*=8. For thinner tropic sample measured in air. This suggests that polarization
samples, the data and the two predictions progressively dand interference effects are negligible, and that the con-
verge. Note that our telegrapher theory more successfullfinuum approximation is therefore the dominant source of
captures the monotonic trend, and that the agreement is esrror in the telegrapher theory of DWS.
pecially good for the anisotropic sample. This same compari- The final test of the telegrapher prediction concerns the
son can be seen equivalently in the other two plots of Figshape, rather than the initial decay rate, of the correlation
12, where we also include data for samples held in air. In théunction. In Fig. 13, we displag,(x) data versud';x for
middle plot, we show an effectivie’ obtained by inverting isotropic and anisotropic samples submerged in a water bath,
the cumulant data using the telegrapher prediction. This disalong with predictions from telegrapher and diffusion theory.
play is most similar in spirit to previous experimental tests of This is done on semilogarithmic axes for three different
DWS, e.g., Ref[8] where an effectivé* was obtained by thicknesses. For smal, the data and predictions all match
fitting Eq. (2.8) to the entire decay. Here, we see that inver-by construction, Ifg,(X)]=—-TI'1x. For largerx, the correla-
sion results converge to a constant valuelbffor thick  tion functions all deviate from a simple exponential with
samples. For thin samples, the results develop a systematicsome degree of upward curvature that is the actual quantity
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being tested in these plots. First observe that with increasingf the resulting DTS and DWS predictions by both simula-
thickness, the data and predictions all converge to a shag®n and experiment.
with the same degree of curvature, as expected. We empha- The bottom line for DTS is that we can now predict the
size that the near-perfect agreement in Fig. 13 between théliffuse transmission probability through a slab to an accu-
oretical and experimental shapes for thick samples, and alg@cy of better than a few percent. This is true for any degree
between telegrapher theory and experiment for thin sample8f scattering anisotropy, i.e., for any angle-dependent scat-
is not by fit: we have only matched the initial decay rates. tering form factor, and for any angle-dependent boundary
For thinner samples, the correlation function shapes iféflectivity. Furthermore, it is true for any slab thickness,
Fig. 13 depend increasingly both on the value of the boundlrom single scattering, through intermediate, and into the dif-
ary reflectivity, or equivalently on the extrapolation length fUSive régimes. To our knowledge, this is unprecedented in

ratio, z, and on the degree of scattering anisotrapyNote an exactly solvable theory. Here we have considered only the

that the boundary reflectivities of the isotropic and aniso o0 of normal incidence with no absorption, but these varia-

tions are straightforward to include within our approach;

tropic samples are close, but not equal; however, this cannQlher geometries can also be handled. This should be useful

account for the observation that the isotropic samples havg,, analyzing transmission data in terms of the three funda-

greater upward curvature. This is because_ the isotropig,antal optical length scale, |, andl,, set by the struc-
sample has the larger value af, but according to both ;e of the medium.

diffusion and telegrapher predictions with everything else The pottom line for DWS is that we can now predict the
being equal, this should lead to less curvature. The differencgqyence of scattering anisotropy on the shape of the corre-
in degrees of scattering anisotropy is the real reason that thgtion function. This extends the utility of DWS to thinner
correlation functions for isotropic and anisotropic Samplessamples and to deeper decaysgefx), and should thus be
exhibit different curvatures; the difference in boundary re-seful for more accurately analyzing data in terms of the
flectivity merely reduces this effect. We therefore be”evetime—dependent dynamic&Ar2(7)) of the scattering sites.
that the shape differences apparent in Fig. 13 are the firgjyjle our photon transport theory may be accurate, for very
experimental demonstration of the influence of scattering ang,in sjabs the continuum approximatiofe= S of Eq. (2.6)
isotropy. The observed trend is, of course, not accounted fokgji5 ajtogether because of the presence of snakelike photon
or correctly predicted by, standard diffusion theory. It is, yoihe crossing the slab wieL but with Y=0 [10]. There-

however, captured quantitatively to a high degree by ougyre py contrast with DTS, our predictions for DWS cannot
teleg_rapher thec_)w. As seen in Fig. 13, the predicted CUNV&e anplied for thicknesses below=2I*. The primary
ture is systematically not quite as great as measured. A_S'mEymptom is a greater upward curvature in the shag 0f)
lar d(_aV|at|on was also seen in the_S|muIat|on resultslof Fig. 8 an predicted, becaus(Y) is broader thaP(S). To arti-
and is thus attributed to the continuum approximation.  fieially introduce more small paths into the theoretical path
length distribution, we propose simply to sDﬁ:O in Eq.
(4.14). This means purposely neglecting causality and the
influence of ballistic propagation in order to compensate for
It is now straightforward to estimate the influence of bal-éerror in the continuum approximation. The DWS predictions
listic transport and of anisotropic scattering within an ana-are then simpler and, as seen in Fig. 9, even more accurate.
lytically tractable transport theory. As argued eadiEf], the ~ Until the continuum approximation can be improved upon,
former is accomplished for scattered photons by a telegrawe therefore recommend E¢#.14) with D=0 as the best
pher equation with suitable prescriptions for boundary conanalytic means of analyzing DWS data.
ditions and the emerging flux. As argued here, it is accom-
plished for unscattered photons within the incident beam by
integrating over source planes and summing over reflections.
Also as argued here, the influence of scattering anisotropy is Helpful conversations with B. J. Ackerson, A. D. Gopal,
estimated by introducing a discontinuity in photon concen-D. J. Pine, J. Rudnick, D. A. Weitz, and A. G. Yodh are
tration at the source plane in proportion to the degree ofratefully acknowledged. This work was supported in part by
scattering anisotropy. We have demonstrated the validity oNASA Grant No. NAG3-1419 and by NSF Grant No. DMR-
this approach by random walk simulations, and the accurac9623567.

VII. CONCLUSIONS
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