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Permeability of three-dimensional fracture networks
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The permeability of a three-dimensional network of polygonal fractures is determined by triangulating the
network and solving the two-dimensional Darcy equation in each fracture. The general triangulation method-
ology and the numerical solution are presented. Networks of regular hexagonal fractures are detailed; finite-
size scaling is used to analyze the data relative to the percolation threshold, but the conduction exponentt is
found close to its classical value in three dimensions; for large fracture densities, permeability is shown to tend
towards the mean-field model of Snow@Water Resour. Res.5, 1273~1969!#. Finally, the influence of the shape
of the fracture is studied and can be rationalized by means of the excluded volume.@S1063-651X~98!07504-7#

PACS number~s!: 47.55.Mh, 05.40.1j, 47.11.1j
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I. INTRODUCTION

During the past decade, underground waste reposi
projects and exploitation of hot, dry, rock geothermal ene
have spurred studies in fracture networks transport pro
ties. Many site-specific studies have flourished around v
ous projects~see, e.g.,@1#!, which are generally based on
careful characterization of the structure of the fractured r
mass, with the classical difficulty of deducing thre
dimensional information from one- or two-dimensional fie
data~e.g., @2#!. Then the hydraulic properties are comput
by using reconstructed model networks, based on the exp
mental geometrical characteristics, and various flow mod
The applications of these site-specific models were restri
to particular situations, mimicking realistic but specific ne
work structures and boundary conditions. Apparently, th
were not applied to a systematic parametric study of the
fluence of the various structural characteristics on the la
scale hydraulic properties.

The major purpose of the present paper is to develo
full solution of the steady flow problem in a general thre
dimensional network made of two-dimensional polygon
fractures as illustrated in Fig. 1. A literature survey sho
that in most cases, the description is two dimensional@3# or
that the three-dimensional network is replaced by a capil
model. The intersection of two fractures is schematized b
channel that joins their centers with an effective hydrau
conductivity that results from simple geometric argumen
this model is improved@1,4,5# by introducing flow channels
in the fractures, which results in complex capillary networ
Nordqvist et al. @6# went one step further by building th
network from a library of fractures with spatially variab
apertures for which flow was solved beforehand. Howev
again, the final representation is a tube model. These c
lary models suffer two main flaws. First, the assignment
the bond conductivities is somewhat arbitrary and the
sumption that the fluid flows from center to center is unre
istic. Second, only pair intersections are taken into acco
To the best of our knowledge, the only truly thre
dimensional flow model is due to Andersson and Dverst
571063-651X/98/57~4!/4466~14!/$15.00
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@7#. The flow is solved in each fracture via a boundary e
ment method, while accounting for all its intersections. Ho
ever, it is again a case-specific study, with adjusted geom
cal parameters to match observed data, and the numbe
fractures in a sample is very limited.

The only attempts to relate geometric and hydraulic pr
erties by general parametric laws were conducted in
framework of percolation theory. Berkowitz and Balberg@8#
reviewed the critical behavior near the percolation thresho
Hestir and Long@9# showed that connectivity is a relevan
parameter, as already noticed by Rouleau and Gale@3#, and
successfully modified its definition to obtain a predicti
equation for the large-scale permeability of random pla
networks of linear fractures. The computer-controlled tw
dimensional experiments of Balberget al. @10# are an inter-
esting alternative approach.

FIG. 1. Example of a three-dimensional fracture network ma
of identical polygons. The volume of sizeL3 contains 495 hexa-
gons; L512R, where R is the radius of the circle in which the
hexagon is inscribed.
4466 © 1998 The American Physical Society
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57 4467PERMEABILITY OF THREE-DIMENSIONAL FRACTURE . . .
Our numerical approach involves three main ste
namely, the generation of random fracture networks,
meshing of the network by triangulation, and the solution
the local flow equations with computation of the macr
scopic flow properties. The generation procedure and s
geometric characterization tools derive from the numer
code of Huseby, Thovert, and Adler@11#. The network tri-
angulation is by far the most difficult task due to the rand
character of the fracture geometries and of their inters
tions. Once it is completed, the flow equations are ea
obtained by a finite-volume formulation and solved.

This paper is organized as follows. Section II is devo
to the geometrical aspects. The network generation, with
scribed statistical and geometrical parameters such as de
of fractures, size, and shape of the fractures, is prese
first. The fractures are plane polygons, inscribed in a cir
The triangulation procedure is an advancing front techni
@12#, which is applied independently to all the fractures, af
a few preliminary operations; it is able to operate on a
polygonal fracture shape.

Section III is devoted to the flow problem. The flow
ruled by the stationary Reynolds equation at the fract
scale; it is discretized on the triangular mesh by means
finite-volume formulation and solved under prescribed m
roscopic pressure gradients. The global permeability of
fracture network is obtained by integration of the local flo
field. Due to the stochastic nature of the generated netwo
the generation and solution steps are repeated for a larg
of random realizations.

The results are presented and discussed in Sec. IV. As
is a systematic study on this topic, its numerical applicatio
were restricted to networks that are supposed to be sta
cally homogeneous at a scale much larger than the typ
fracture dimension and modeled as spatially periodic, w
the fracture locations distributed according to a Poisson l
An illustrative example is treated first and three-dimensio
graphical visualizations of the network geometry and fl
map are presented. The statistical distribution of the lo
velocities is determined in a few samples with various d
sities. Then a wide range of fracture densities is scanned
a particular fracture shape and varying cell sizes, in orde
identify the various regimes and characterize the size effe
The vicinity of the percolation threshold is considered s
cifically. For moderate or large densities, it is shown that
same kind of power-law holds, with a lower exponent.
linear increase of the permeability with density is reach
only for very large densities.

We end the paper with some concluding remarks in S
V. Since the numerical tools could handle equally well a
orientation distribution, fractures with spatially varying ape
tures, moderate size distributions, and even specific nonp
odic boundary conditions if needed for a particular ca
study, various extensions including the interesting case
fractal structures are presented in Sec. V.

II. FRACTURE NETWORKS: GENERATION,
CHARACTERIZATION, AND TRIANGULATION

A. Geometry of the fracture network

The fracture networks considered in this work are ma
of plane polygonal fractures. This assumption is the o
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requirement to apply the generation, characterization,
triangulation procedures described below and eventually
solve the transport equations. Individual fracture shap
sizes, or permeabilities and positional or orientational dis
butions are arbitrary. However, in order to limit this im
mense field of investigation, we restrict ourselves in this
per to a specific class of fracture networks, which
described now.

The network generator has been detailed by Huse
Thovert, and Adler@11#. Plane polygonal fractures are in
serted in a cellt0 of sizeL.

Unless otherwise stated, the following properties ho
throughout this paper. The fracture normal vectors are r
domly and isotropically distributed and their centers obe
Poisson distribution. The contour of a fracture is a conv
polygon, inscribed in a circle of radiusR ~see Fig. 2!. Its Nn

vertices are evenly~for regular polygons! or randomly dis-
tributed on this circle. The polygon orientation within i
plane is random with uniform distribution.Nn and R are
identical for all the fractures in the network andR is taken as
the length unit.

Within this framework, a network is entirely characterize
by a fracture shape (Nn , regular or random!, the normalized
cell sizeL/R, and the number of fractures per unit volum
This last quantity can be modified by using the exclud
volumeVex introduced by Balberget al. @13#; Vex is defined
as the surrounding volume into which the center of anot
object may not enter if overlap is to be avoided. For e
ample, in a monodisperse population of spheres,Vex is obvi-
ously 8 times the sphere volume. For nonspherical obje
the influence of the orientation has to be taken into acco
in the determination ofVex.

Hencer8 can be defined as the number of objects p
volume Vex; note that in@13# and subsequent papers, th
notationVex refers to the total excluded volume denotedr8
here and in@11#. In addition, from the definition ofVex, r8 is
also equal to the average numberB of intersections per ob-
ject. r8 proved very successful in gathering the results

FIG. 2. ~a! Definition of the geometry of a polygon inscribed i
a circle. Regular polygons such as~b! hexagons and~c! rectangles
can be created using appropriate fixed values of the angles.
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4468 57KOUDINA, GONZALEZ GARCIA, THOVERT, AND ADLER
various geometrical quantities in the class of fracture n
works considered here@11#.

Analytical expressions ofVex are available only for a few
simple shapes. Since for randomly oriented monodispe
disks with radiusR in a three-dimensional space,Vex5p2R3

is the half product of the disk area and perimeter@14# and
Vex was modeled for polygons in@11# as

Vex5
1
2 ApPp , ~1!

whereAp and Pp are the polygon area and perimeter. Th
model yields a good unified description in terms ofr8 and
indeed Eq.~1! is an exact result for a wide class of objec
that includes most of the fracture shapes considered h
namely, randomly oriented polygons inscribed in a circle a
containing its center.

In addition to the network generator, several geometr
characterization tools from the software developed
Huseby, Thovert, and Adler@11# are applied prior to the
triangulation described in the following subsection. First,
fracture intersections are determined. The intersection l
are characterized by their end-point coordinates. Tri
points ~intersections of three fractures! are also detected. In
the applications, there is an important particular case wh
the network is statistically homogeneous at some ma
scopic scale much larger than the typical fracture dimens
in such cases, it is customary to apply periodic bound
conditions to the cellt0 of sizeL; the whole network results
from the periodic juxtaposition in space of infinitely man
replicas oft0. A detailed description of spatially periodi
media is given by Adler@15#. In such a case, the percolatio
of the fracture network is checked along thex, y, andz axes.
This is done using a pseudodiffusion algorithm@16#. Since
the network is periodic, percolation occurs when two h
mologous fractures in two different unit cells are connec
together. Individual connected components in the netw
are identified and fractures isolated from the percolat
cluster, if any, are labeled and ignored in the solution of
flow problem.

B. Triangulation

In order to solve the flow problem, the fracture netwo
has to be discretized. Since the fractures have polygo
shapes, possibly random, and intersect randomly, the m
natural discretization is an unstructured triangulation. T
triangulation must obey a fewa priori constraints: All the
original polygon vertices, intersection end points, and tri
points~intersections of intersection lines! must coincide with
vertices of the triangular mesh; all the original polygon b
derlines and fracture intersections must coincide with
angle edges; and the triangulations of two intersecting fr
tures must match along their intersection line. Except for
last requirement, since the network is a collection of tw
dimensional objects, all the fractures may be triangula
independently by any standard two-dimensional algorit
once its initial contour definition has been supplemen
with a description of its intersections with other fractures

A comprehensive review of the existing triangulatio
methods can be found in@12#. The technique that can compl
with the previous limitations the most easily seems to be
advancing front technique, whose application to the pres
t-
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situation is now briefly summarized.
As illustrated in Fig. 3, consider the very simple case o

plane convex polygonal contour, which corresponds to
isolated fracture~i.e., a fracture without any intersection with
any other fracture!. The initial domain is calledV0 andV is
the part ofV0 not yet triangulated (V,V0 andV5V0 ini-
tially!. Their contours are]V0 and ]V, respectively@Fig.
3~a!#. ]V is the advancing front. The two basic operation
are the junction of two second-neighbor points of the fro
@Figs. 3~c! and 3~e!#, if the resulting triangle is acceptable
and the insertion of a new point withinV, which constitutes
a new triangle when connected with the two facing points
]V @Fig. 3~d!#. During these operations, the front]V is up-
dated by removal or insertion of points. As can be seen
Fig. 3, ]V shrinks progressively. The process stops wh
]V reduces to an acceptable triangle.

Now consider the general case where the fracture conta
many additional features due to its intersections with oth
fractures, as displayed in Fig. 4~a!. An intersection line may
cross the contour only once or twice, thus splitting the fra
ture into two disjoint domains. It may also lie entirely withi
the fracture, without any connection with the contour. Se
eral intersection lines, themselves intersecting one anot
may enclose internal subdomains with or without conne
tions with the outer contour.

It would of course be possible to handle these subdoma
as independent polygonal plane regions and to subseque
assemble their triangulations. Another way was chos

FIG. 3. Typical steps of the triangulation of simple domains b
an advancing front method:~a! initial domainV0 with Nn54 initial
vertices, ~b! splitting into segments shorter thandM with the
N0512 points ofV0, basic operations of~c! and~e! junction and~d!
and~e! insertion, and~f! final stage. The heavy line is the front]V.
The domainV still to be triangulated is white, while the par
V02V of the domain already triangulated is shaded.
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57 4469PERMEABILITY OF THREE-DIMENSIONAL FRACTURE . . .
here, which allows us to triangulate the whole fracture
once. First, all the internal features are connected to the o
boundary of the fracture@Fig. 4~b!#; all these elements ar
also split into smaller segments with length smaller tha
given valuedM . Then a cycle]V0 that describes the fractur
boundary and all its internal features is constructed
treated as the outer contour of a single simply connec
~nonconvex! polygon @Fig. 4~c!#.

The first set of points to which the advancing front tec
nique is applied consists of the splitted cycle]V0. Two re-
marks are necessary. First, the same rule~with the samedM)
is applied in all the fractures of the network; a unique sp
ting is applied to the intersection line of two fractures. Se
ond, during the insertion operation, which consists of thro
ing a new pointvNp11 from a segment (v i ,v i 11) of ]V to
create a new triangle@Fig. 3~d!#, vNp11 is set so that

uuv ivNp11uu5uuv i 11vNp11uu5d I . ~2!

Initially, d I is equal todM , but this value is modified as th
process goes. Additional conditions are imposed on this
serted point, e.g., the edges (v i ,vNp11) and (v i 11 ,vNp11)
must not cross any existing edge; for sake of clarity, th
conditions are not detailed here. Two intermediate stages
the final result for the example of Fig. 4 are displayed
Figs. 4~d!–4~f!.

FIG. 4. Successive steps of the triangulation of a complex fr
ture: ~a! initial geometry, which may include intersections lines a
inner subdomains~shaded!; ~b! splitting of the edges into segmen
shorter thandM and connection of all internal features;~c! initial
front ]V0 ~the arrows correspond to the spanning cycle!. ~d! and~e!
intermediate and~f! final stages of the triangulation.
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The procedure above yields for each fracture a collect
of triangles, defined by their three vertices. The triangulat
of the whole network is the union of all these collection
Recall that the triangulation of intersecting fractures ma
along their intersection line since the same rule was app
to split it in its two embedding planes. The nodes of t
global triangulation are also the union of the points defin
in each fracture.

Each triangle belongs to a single fracture, although
edges may belong to two fractures and its vertices to o
two, or three. Note that the fractures that do not belong t
percolating connected component are not triangulated@11#.
Thus all the triangles in the list may play a role in the flo
at least for one direction of the pressure gradient.

Whenever necessary, the periodicity of the fracture n
work ~see Sec. II A! is taken into account. Hence the positio
of each triangle relative to the boundary]t0 of the unit cell
t0 needs to be determined. A set of nine integersj na
(n51,2,3 anda5x,y,z) is associated with each triangle.
vertexn of a triangle is withint0, then j n5 j ny5 j nz50. If it
is not beyond the cell boundary in the direction of increas
~decreasing! x, then j nx511 (21), and similarly for the
directionsy andz.

To summarize, the output of the triangulation procedure
made of two unstructured lists, which are the list of nod
defined by their three-dimensional coordinates, and the lis
triangles, defined by their vertices, together with the jum
conditions mentioned above. In addition, a value of the fr
ture permeabilitys ~see Sec. III A! is associated with each
triangle.

III. FLOW PROBLEM

A. General equations

The solid matrix containing the fractures is assumed to
impervious. The flow of a Newtonian fluid at low Reynold
number is governed by the Stokes equations within a fr
ture, i.e., at a local scale characterized by a typical aper
b0. Because of the classical Poiseuille law, the typical p
meability s08 of a fracture is expected to be of the order o

s085
b0

3

12
. ~3!

Moreover,b0 is assumed to be much smaller than the typi
lateral extent 2R05D0 of the fracture

b0!D0 . ~4!

In contrast to@17#, the flow is described at a scaleL that is
intermediate betweenb0 andD0,

b0!L!D0 . ~5!

At this scale, the flow is governed by the Darcy equation

q852
1

m
s•“8p . ~6!

-
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4470 57KOUDINA, GONZALEZ GARCIA, THOVERT, AND ADLER
q and¹8p are the locally averaged flow rate per unit wid
@L2T21# and pressure gradient, ands@L3# is the fracture
permeability tensor. The mass conservation equation
comes

“S8•q850, ~7!

where“8S is the two-dimensional gradient operator in t
mean fracture plane; it is defined by@18#

“8S5~ I2nn!•“8, ~8!

wheren is the outer unit normal to the fracture plane andI is
the unit tensor. The dependence ofs8 upon the fracture char
acteristics was investigated by Mourzenko, Thovert, a
Adler @17#.

Any standard boundary condition can be applied to t
network. For instance, pressures or fluxes could be app
along some inlet and outlet linesLi andLo drawn on some
fractures of the network, for instance

p5pi along Li ,

p5po along Lo . ~9!

In the particular case where the fracture networks are st
tically homogeneous at the field scaleL, which is assumed to
be large with respect to the lateral dimensionsD0 of the
fractures,L@D0, the infinite medium can be represented
the periodic juxtaposition of identical unit cellst0 in the
three directions of space. When a macroscopic pressure
dient“8p is applied upon this unbounded medium, the flu
flow is described by Eqs.~6! and ~7!, together with period-
icity conditions forv8, q8, and¹8p8 and

“8p5
1

t0
E

]t0

p8ds8. ~10!

The seepage velocityv̄8 can be evaluated as

v̄85
1

t0
E

t f

v8dt85
1

t0
E

Sf

q8ds8, ~11!

where t f is the interstitial volume of the fractures andSf
their projection on their mean planes. This flux is related
the pressure gradient by Darcy’s law@15#

v̄852
1

m
K8•“8p . ~12!

K8 is the permeability tensor@L2#, to be determined from
Eqs. ~11! and ~12! once the problem~6! and ~7! has been
solved. Alternatively, Eqs.~6! and ~7! can be solved with a

prescribed velocityv̄8. The“8p is evaluated by Eq.~10! and
v8 is deduced from Eq.~12!.

In this papers8 is taken to be uniform over each fractu
and identical for all fractures. Permeability variations with
the fractures will be addressed in future works. Since all
networks considered here are isotropic,K8 is a spherical ten-
sor

K85K8I . ~13!
e-

d

s
d

is-

ra-

o

e

B. Dimensionless formulation

The hydraulic apertureb ~or a typical valueb0 if all the
fractures are not identical! is a characteristic length scale fo
the fracture aperture. On the other hand,R is the typical
fracture extent. These two length scales, together with a
erence pressurep0, can be used to recast the equations in
dimensionless form. Define

s05
b0

3

12
, q05

s0p0

mR
, U05

s0p0

mR2 , K05
s0

R
. ~14!

The dimensionless parameters~without primes! are defined
by

p85p0p, ¹85
1

R
¹,

v85U0v8, q85q0q, ~15!

s85s0s, K85K0K.

All the following developments use this dimensionle
formulation. For isotropic networks,K is a spherical tensor
K5KI , and our results will be presented in terms of t
dimensionless permeabilityK.

C. Discretization of the transport equation
and numerical implementation

The value of the pressurep must be determined at each o
the Nv points m of the triangular mesh. TheNv unknown
pressures are determined fromNv equations, i.e., one equa
tion per mesh point, obtained from a flux balance conditi
via a second-order finite volume scheme.

The dimensionless Reynolds equation is integrated o
nonoverlapping domainsVm that surround the mesh pointm,
as illustrated in Fig. 5. Ifm belongs to the intersection of tw
fractures, or even if it is a triple point~intersection of three
fractures!, Vm is simply the union of the two or three do
mains obtained as above in each fracture@Fig. 5~c!#.

In this second-order formulation, boths and¹p are con-
sidered piecewise constant on each triangle. In addition,s is
assumed to be isotropic.

Of course, the driving force in these equations is the m
roscopic pressure gradient“p. This quantity occurs when a
triangle crosses the boundary]t0 of the unit cell; the pres-
sures at two neighboring nodes that do not belong to
same unit cell have to be corrected by the pressure d
across the unit cell@15#.

Finally, the discretized transport equation can be
pressed as the linear system

A•p2B50, ~16!

whereB corresponds to the macroscopic pressure drop.
easily shown that the matrixA is symmetric. Equation~16! is
solved iteratively by a conjugate gradient algorithm. An i
tegral convergence criterion is used:

uuA•p2Buu<huuBuu, ~17!

whereuu uu denotes the standard Cartesian norm.
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D. Validation and accuracy of the numerical scheme

Only two nonphysical parameters were introduced in
numerical scheme, namely, the mesh coarsenessdM and the
convergence criterionh. Their influence on the compute
permeability should vanish as each of them tends toward

A few simple tests were successfully passed by the
merical code, such as the insensitivity to a shift of the un
cell boundaries or a permutation of the axes of coordina
Then the numerical results were compared to a few ana
cal solutions. Unfortunately, situations where exact soluti
can be obtained are very limited. Networks where the per
lating component reduces into strips of constant width, m
of one or several fractures intersecting at arbitrary ang
can be worked out, with or without simple permeabili
variations inside the fractures. The relative departures of
numerical permeabilities from the theoretical predictions
not exceed 0.6% or 1.5%, withdM /R5 1

4.
A more complex configuration is made of four families

parallel plane channels, with their intersections on a fa
centered-cubic lattice. The unit cell, of sizeL3, contains four
mesh points and 32 triangles. The numerical calculati
yield the exact analytical solution@see Eq.~31! and the re-
lated comments#

K85
8

A3L
sI . ~18!

While these tests show that the numerical scheme is b
cally correct, such simple situations cannot be used to qu
tify the influence of the mesh coarseness. Therefore, ano
series of tests was conducted with random networks of re
lar hexagonal fractures. Several samples were built w
L/R54 andr852.5 or 4. These two densities are repres
tative of near-critical and well-connected networks, resp
tively.

The typical mesh sizedM was varied fromR to R/10. In
all cases, all the components of the permeability tensor

FIG. 5. Finite volumeVm surrounding a pointm ~a! neither on
a fracture boundary nor on an intersection,~b! on a fracture bound-
ary, and~c! on a fracture intersection. In~c! the two fractures have
been separated for clarity.
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crease as the resolution is improved. The variations are fa
linear when plotted againstdM /R, as done in Fig. 6, for the
average traceT of K. In this plot, the values ofK are nor-
malized by the linear extrapolationK` when dM vanishes.
As a rule of thumb, a permeability tensor componentKi j

` can
be deduced from the computed resultKi j for finite dM /R by

Ki j 5Ki j
`S 11

dM

2RD . ~19!

In all the cases considered here, the application of Eq.~19! to
all the results fordM<R/2 yields the correspondingKi j

`

within 63%.
It is apparent from Eq.~19! that a 5% accuracy require

dM /R'0.1. Unfortunately, such a resolution is unaffordab
in many applications, in terms of both computation time a
memory requirement. Typical values for a small case~64
regular hexagons withr854 and L/R54) are given in
Table I for various coarsenesses. The computation time
measured on a powerful IBM RISC station. These valu
refer only to the triangulation step. It should be noted that

FIG. 6. Normalized traceT of the mean permeability tensor o
random networks of regular hexagons as a function ofdM /R, with
L/R54 andr852.5 ~broken line! or 4 ~solid line!. The dotted line
is Eq. ~19!. The symbolsh (s) refer to networks of rectangula
fractures, with aspect ratiosf 54 ~6!, densityr854 ~3!, and con-
taining 219~434! fractures.

TABLE I. Typical number of trianglesNtr , computation timeT
in minutes, and memory requirementM in megabytes for the trian-
gulation of a network containing 64 regular hexagons withr854
andL/R54 for various coarsenessesdM /R.

dM /R Ntr T M

2
3 1900 1

2 5
1
3 2700 1 6
1
2 5000 4 11
1
4 8200 10 18
1
5 12 000 30 30
1
8 28 000 230 110
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solution of the flow problem is less demanding since
required memory is less and the computation time is ab
five times shorter.

Clearly, the requirements fordM/R51/8 are very de-
manding. It was also felt that tripling the time and doubli
the memory was not worth the gain in accuracy from 12%
10% as expected from Eq.~19!. Therefore, unless otherwis
stated, all the data given in this paper were obtained w
DM /R5 1

4. Most of the systematic 12–15 % systematic er
would be compensated by applying Eq.~19!. Furthermore,
since Eq.~19! applies fairly well for various fracture shape
and densities, our discussions relative to the exponents in
limit cases or the comparison of various fracture shapes
unaffected by the mesh coarseness effects.

Two additional remarks can be made before closing
discussion. On the one hand, the triangulation step could
significantly speeded up by use of a hierarchical algorith
A coarse triangular mesh could be built first and then refin
until the desired mesh density is reached instead of build
directly a fine mesh by using the advancing front method.
the other hand, the key to an accurate solution of the fl
problem does not necessarily lie in a very fine but unifo
mesh. Great improvements can be expected instead by
ditional local refinements of an otherwise coarse mesh,
cording to criteria derived from the flow field. These tw
features will be implemented in the near future.

Note also that in its current implementation, the triang
lation procedure fails for very dense networks, without a
influence of the sample size. WithL/R54, 100% of the
samples are successfully triangulated forr8<6 and 90% for
r8510. For larger densities, the success rates drops dram
cally from 40% forr8512 and down to 0.5% forr8516. In
the latter case, it is almost certain~probability>99%) that at
least one fracture in the network intersects at least 24 o
ones. This unfortunately restricts the range of densities
can be addressed. These limitations should be removed i
near future.

IV. RESULTS

Three main subjects are addressed in this section. Fir
very simple illustrative example is presented. Second, so
velocity histograms are discussed. Third, the influence
density of the permeability of networks of monodisper
regular hexagons is analyzed. Finally, in order to check
relevance of the normalized densityr8 to characterize the
hydraulic properties of a fracture network, a wide variety
polygon shapes are investigated for two constant densiti

A. Illustrative example

Prior to systematic data, a complete graphical illustrat
of a very simple case is given here. In order to obtain re
able pictures, a small sample of six fractures was taken, w
L/R53. The unit cell is displayed in Figs. 7~a! and 7~b! with
various viewing angles. In Fig. 7~c! four unit cells are dis-
played in order to make the percolating path more visib
The fractures in Fig. 7 are triangulated withdM /R5 1

2. The
connections between the fractures are sketched in Fig. 7~d!.

The fracture network was triangulated and the flow fie
was computed fordM /R5 1

2,
1
3,

1
4,

1
5, and 1

8. Figures 8~a!–8~e!
e
ut

o

h
r

he
re

is
be
.
d
g
n
w

n-
c-

-
y

ti-

er
at
the

, a
e
f

e

f
.

n
-

th

.

display the results relative to the various values ofdM /R for
fracture 4. The flow features in Fig. 8~f! are very clear. The
fluid enters the fracture from fractures 2 and 3 on the left a
leaves it towards fractures 5 and 1 on the right. Some a
are nearly stagnant, while in others most of the total flux
concentrated. The flux field is discontinuous across the in
section lines. All the features in Fig. 8~f! are visible in Figs.
8~a!–8~e! with less resolution. The total fluxes across t
network computed for increasing resolution, normalized
the value fordM/R5 1

8, are 1.113, 1.051, 1.033, 1.018, and
Note that fracture 4, like fracture 1 but unlike 2, 3, 5, and
is critical for percolation. Therefore, the whole flux throug
the network crosses the critical midsection of fracture 4
Fig. 8. The triangulation sizedM /R5 1

4 used in all subse-
quent computations corresponds to Fig. 8~c!.

B. Local velocity distribution

The visualizations in the preceding paragraph show t
intense flow and quasistagnant zones coexist in the fract
that belong to the percolating component. This feature is
crucial importance for the dispersion of a convected spec
such as heat or a Brownian solute. It can be illustrated furt
by use of the histograms of the local fluid velocities. S
networks were considered, with various densities rang
from r85rc8 to 8. Their characteristics are summarized
Table II. They contain 128–320 fractures. The triangulat
was performed withdM /R5 1

4, which yielded 18 000–33 000
triangles. For the lower densities, many fractures are not c
nected to a percolating cluster; only 1.5% remain isolated
r854 and the network is totally connected forr8>6.

Figure 9 displays the histograms of the local flow rateq in
the triangles~left column! or averaged over the fracture
~right column!, normalized by the normalq* 5 v̄/S of the
average ofq over all the fractures.S is the volumetric frac-
ture surface areaS5Sf /t0. Note that the histograms ave

FIG. 7. Example of network of six equisized regular hexago
fractures withL/R53: ~a! and ~b! unit cell from two different
viewing angles,~c! four neighboring unit cells, and~d! sketch of the
fracture connections. The fractures are triangulated withdM5R/2.
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aged over the fractures are more noisy because of the
tively small number of fractures.

The apparently bimodal distribution for the lower den
ties is an artifact due to the global convergence criter
~17!. All these computations were run withh51025. For

FIG. 8. Fracture 4 in the network of Fig. 7 for various triang
lations dM /R5

1
2 ~a!, 1

3 ~b!, 1
4 ~c!, 1

5 ~d!, and 1
8 ~e! and ~f!. In each

upper picture, the triangulation is displayed and black dots are m
points common with another fracture. The arrow lengths are p
portional to the local flux density. In the lower pictures, the gr
levels are proportional to the flux intensity, normalized by its ma
mum value within the fracture.~f! is similar to~e!, but the triangu-
lation is not displayed. The heavy lines are the intersection w
other fractures.

TABLE II. Characteristics of the networks in Fig. 9: densityr8,
sample sizeL/R, number of fractures in the networkNfr and in the
percolating componentNfr,c , and number of triangles in the con
nected fracturesNtr .

Fig. 9 r8 L/R Nfr Nfr,c Ntr

~a! 2.3 10 295 118 14 842
~b! 2.5 10 320 209 26 549
~c! 3 8 197 168 21 408
~d! 4 8 262 258 33 342
~e! 6 6 196 166 22 267
~f! 8 5 128 128 18 372
la-

n

low densities, many fractures that are connected to the
colating component are actually dead ends and carry no fl
hence a small erratic random number is obtained in the
merical resolution. This was confirmed by solving the flo
problem in the network withr852.3 with a finer conver-
gence criterionh51027; as expected, the peak for the low
flow rates is shifted by two orders of magnitude@Fig. 9~a!#.

Thus the leftmost peak should be ignored and a unimo
distribution, though asymmetric with a very long tail, is o
tained in all cases. As the densityr8 grows, the quiescen
zones disappear and the histogram tail shortens accordin
Simultaneously, new flow paths are opened to the flow a
the highest velocities, which correspond to flow amplific
tions in a few critical areas, disappear also. The veloc
distribution becomes narrower and the peak more ac
though it never becomes log-normal; instead, it seems to
very close to the distribution

f S q

q* D5
2

3

2q

3q*

A12~2q/3q* !2
, 0<

q

q*
<

3

2
, ~20!

as expected in Snow’s@19# model, made of infinite randomly
oriented plane channels~see Sec. IV C!.

All these comments hold for both sets of histograms
the local velocities in the triangles or for the average velo
ties in the fractures. However, the convergence towards

sh
-

-

h

FIG. 9. Histograms of the normalized flow rateq/q* in the
triangles~left! or averaged in the fractures~right!, in the networks
of Table II with the same conventiona,b, . . . ,f ~gray bars!. The
abscissas are decimal logarithms.dM /R5

1
4 and h51025. The

curves in~a! were obtained withh51027. The curves in~f! are the
distribution ~20!.
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4474 57KOUDINA, GONZALEZ GARCIA, THOVERT, AND ADLER
~20! is more visible for the averages over the fractures~right
column in Fig. 9! because the largest and lowest local valu
of q are filtered out by the averaging.

C. Influence of the fracture density
for monodisperse hexagons

Let us recall first the results relative to the determinat
of the percolation threshold by Huseby, Thovert, and Ad
@11# for monodisperse polygons. Of course, the critical d
sity rc depends upon the shape of the fractures; howe
when the excluded volumeVex is used, the critical threshold
rc8 , which is the critical number of fractures per exclud
volume, was shown to be a constant equal to 2.22–2.30 f
wide range of polygons.

The permeability of networks of regular monodisper
hexagonal fractures was systematically investigated for
sizes ranging fromL54R to 10R and for normalized densi
ties ranging from slightly below the percolation thresho
rc852.3 up tor8512. The specific valuerc852.3 obtained
for regular hexagons is used here.

All the data forr8<2.4 are statistical averages over 4
random realizations. All the results forr8.2.4 are averages
over 100 samples. The average permeabilityK in the follow-
ing plots is defined as one-third of the trace of the aver
permeability tensor, which is always close to isotropy as
pected since no anisotropy is introduced in the stocha
network construction procedure.

The whole data set is displayed in various representat
in Figs. 10, 11, and 14. Figure 10 provides a Cartesian
of the average permeabilityK against the densityr8, which
provides a general view of the variations. Two zones
clearly visible on this plot; close to the percolation thresho
K tends towards zero, with an influence of the size of the u
cell, as discussed below. At large density, the variations oK
are a linear function ofr8. It will be seen that there might b
a third region that does not show up in this representat
this intermediate region ranges fromr8;3 up to r8;12.

FIG. 10. Dimensionless permeabilityK of networks of mono-
disperse regular hexagonal fractures as a function of the densir8
~Cartesian plot!. Data are forL/R54 ( d ), 5 (••• d •••),
6 ( – – –d – – – ), 8 ( –• –d –• – ), and 10 ( s ). The
heavy broken line is Eq.~34!.
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These distinctions will be used to split the discussion of
results into three parts as density increases.

1. Permeability exponent at the percolation threshold

Let us start with the analysis of this interesting regio
which is seen better in Fig. 11. Close to the percolat
threshold, the conductivityS of a site or bond lattice is
known to vanish according to a power law@20#:

S}~p2pc!
t, ~21!

wherep is the site- or bond-occupancy probability andpc its
critical value. The correlation lengthj ~mean size of a con-
nected cluster! is also ruled by a power law

j}~p2pc!
2n. ~22!

The exponentst and n are believed to be universal, i.e., t
depend only on the space dimensionalityd, but not on the
underlying lattice properties. In three dimensions, the follo
ing values are generally accepted@20#:

n50.88, t52.0. ~23!

The percolation theory for lattices can be applied to co
tinuum percolation. It has been established over the pas
years that the proper equivalent to the probabilityp is the
mean number of intersections per object. Therefore, sca
laws similar to Eqs.~21! and ~22! are expected

K}~r82rc8!, j}~r82rc8!2n. ~24!

However, it has been argued~see@21,8,14# and references
therein! that in continuum percolation, the exponentt might
depend upon the geometrical model. The reason is tha
contrast to lattice systems, the conductances of bonds
continuous network may be determined by the geometry a
indeed, models have been designed where the distributio
bond conductances yields a nonuniversal behavior.

FIG. 11. Dimensionless permeabilityK of networks of mono-
disperse regular hexagonal fractures as a function of the densitr8
~log-log plot!. Data are forL/R54 ( d ), 5 (••• d •••), 6
( – – –d – – – ), 8 ( –• – d –• – ), and 10 ( s ). The heavy
broken line is Eq.~34!.
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The finite-size scaling technique@22,20# has been applied
here to determine the permeability exponent for random
works of regular hexagonal fractures. At the percolat
threshold,j is larger than any finite cell size and the perm
ability scales as

K~rc8 ,L !}L2t/v. ~25!

Because of the divergence ofj, K depends upon the rati
L/R, close torc8 , as it is illustrated by Fig. 11, where sig
nificant finite-size effects start occurring atr8;4.

K was computed for networks atr85rc8 for cell sizes
ranging fromL54R to 10R. The permeability was average
over 400 realizations in each case. The number of fractu
in the unit cell ranged from 18 to about 300. Since the nu
ber of fractures in a finite cell is necessarily an integer, it w
not possible to set exactlyr8 to rc8 , especially for the small-
est cells. For instance, withL54R, 18 and 19 fractures cor
respond tor852.19 and 2.31, respectively. Therefore,K
was computed for two values ofr8 equal tor82 and r81

below and aboverc8 ; the corresponding values are denot
K2 andK1; K(rc8 ,L) was estimated from a linear interpo
lation between these two values.

The results are displayed in Fig. 12. The straight line
the least-squares fit of the interpolated values

K~rc8 ,L !50.23L22.23, r 50.999 92. ~26!

A small digression about the equality ofr8 and the mean
number of intersections per fracture has to be made her
the fractures were truly distributed according to a Pois
law, the total number of intersectionsNI and the number of
fractures Nfr in a large enough domain would verif
2NI5r8Nfr if r8 is defined as the number of fractures p
excluded volume. However, the representation of the n
work by the periodic juxtaposition of finite unit cells intro
duces a cutoff that makes the distribution only approximat
Poissonian since the content of a unit cell is prescribed to
expected value for a domain with the same volume instea

FIG. 12. Dimensionless permeabilityK at the percolation
thresholdrc852.3 in networks of monodisperse regular hexago
fractures as a function of the sample sizeL/R (d), deduced by
linear interpolation from the permeabilitiesK2 and K1 for r82

(n) andr81 (,). The dashed line is the least-squares fit~26!.
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being a random variable with the same average. This
some consequences for the number of fracture intersecti
For instance, if the unit cell contains a single fracture,
intersection is possible andNI50; if it contains two frac-
tures,NI5Vex/L3. More generally,NI , Nfr , andr8 are re-
lated by 2NI5r8(Nfr21), as illustrated in Fig. 13. This de
viation from a true Poisson distribution has little effect wh
the cell size or the fracture density is large, but whenNfr is as
low as 20,r8 and the number of intersections per fractu
may differ by a few percent.

The fit ~26! was obtained by using the actual avera
value of 2NI /(Nfr21) in the networks for interpolating
K(rc8 ,L) betweenK2 andK1. If the number of fractures pe
excluded volume (r8) is used instead, we get

K~rc8 ,L !50.20 L22.14, r 50.998. ~27!

Finally, if we use the quantity 2NI /Nfr , we obtain

K~rc8 ,L !50.30 L22.30, r 50.9992. ~28!

The comparison of Eqs.~26!–~28! provides an estimate o
the accuracy of the determination oft/n,

t/n52.2260.08. ~29!

It is in very good agreement with the universal val
t/n'2.3 in three dimensions from@20#. A universal behavior
was also observed in the computer-controlled tw
dimensional experiments of Balberget al. @10#.

Let us conclude this subsection by recalling that the n
works are three-dimensional structures made of special t
dimensional objects that are flat polygons~see Fig. 1!. The
previous result shows that these networks still belong to
same universality class as standard percolation netw
made of sites or bonds@20#.

l

FIG. 13. Ratio (Nfr21)r8/2NI in fractures networks versus th
number of fracturesNfr . Data are for monodisperse regular hexag
nal fractures withL/R54, 5, 6, 8, and 10 (s); monodisperse ran-
dom quadrilaterals, hexagons, and dodecagons withL/R54 or 5
(d); and monodisperse rectangles with aspect ratiosf 52 ~1!, 4
(*), 6 (3), and 8 (h).
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2. Scalings for intermediate and high densities

Because of the classical scaling law~24!, a log-log plot of
K againstr82rc8 is displayed in Fig. 14. The finite-size e
fects are again visible at low densities, but it might be int
esting to note that the data for dense networks fall very
curately on a straight line that corresponds to a power law
least-squares fit of all the data forr8>3.5, with the largest
cell sizes available, yields

K50.0455~r82rc8!1.57, r 50.9994. ~30!

However, such a fitting is largely empirical and represe
some sort of transition from the critical region to the hig
density region, which will now be analyzed.

Snow@19# considered networks where all the fractures
infinite plane channels, with an arbitrary orientation distrib
tion. This is equivalent to assuming that the whole surface
all the fractures in the network may contribute to the flo
and can be valid only in the limit of very dense networks.
the plane orientation is characterized by its normal vecton

FIG. 14. Dimensionless permeabilityK of networks of mono-
disperse regular hexagonal fractures as a function ofr82rc8 ~log-
log plot!. Data are forL/R54 ( d ), 5 (••• d •••), 6
( – – –d – – – ), 8 ( –• – d –• – ), and 10 ( s ). The heavy
broken line is Eq.~34! and the symbolsL andh are the original
and modified data of Cacas@23#, together with the fits~35! and~36!,
in arbitrary units.
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and the fracture density per direction by the surface are
fracture per unit volumeS8(n), the permeability tensor is
given by

KSn8 5s8E S8~n!~ I2nn!dn. ~31!

For instance, Eq.~18! is a particular application of Eq.~31!
where the vectorn takes only four discrete values, wit
S8(n)5A3/L. For an isotropic network,S8(n)5S8/4p,
whereS8 is the total volumetric surface area andn is evenly
distributed on the unit sphere. Therefore,

KSn
iso85

2

3
s8S8I . ~32!

In our random networks,S8 is given by

S85rAp5
r8Ap

Vex
5

2r8

Pp
. ~33!

Finally, the dimensionless permeability in Snow’s mod
network with same surface density is

KSn
iso5

4

3

R

Pp
r8. ~34!

For regular hexagons,Pp56R and KSn
iso reduces to 2r8/9;

this expression is plotted in Figs. 10, 11, and 14 and is
deed a likely asymptote for very large densities. However
still overestimatesK by a factor 2 atr8510. One may guess
from Fig. 14 that Eq.~30! should become invalid forr8'20
since then it would exceed Eq.~34!. Unfortunately, such
densities could not be investigated because the triangula
becomes exceedingly difficult, but a negative inflection
the curveK(r8) is visible in Fig. 14 forr8>12.

Hence it seems that the range of validity of Eq.~30!,
though very large, is a transition zone between the criti
power law near the percolation threshold~24! and the linear
growth ~34! and that maybe Eq.~30! as no substantiation. I
is still of interest, however, for practical purposes, in view
its successful fit over the range of the most common fract
densities.

3. Comparison with other data

As mentioned in the Introduction, we could not find in th
literature any systematic study of the dependence ofK upon
TABLE III. Three types of monodisperse and two types of polydisperse fracture geometries.

Number of fractures
Polygon type r853, L/R56 r854, L/R55

regular polygons,Nn54,5,6,8,12,20 67–114 51–88
random polygons,Nn54,6,12 84–273 65–211
rectangles, aspect ratiof 51,2,4,6,8 83–589 64–454

regular hexagons, radiusP@
R
2 ,R# or @

R
4 ,R# 146–234

random quadrilaterals,a i ,i 115p/2

and random radiiuuOv i uuP@
R
2 ,R# or @

R
4 ,R# 207–350
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FIG. 15. Dimensionless permeability~a! and ~b!K or ~c! K* in
the fracture networks of Table III versus 1/Nv . In ~a!, r853 and
L/R56 and in~b! and~c!, r854 andL/R55. In ~a! and~b!, some
abscissas are slightly shifted to make the statistical error bars
ible. Data are for monodisperse regular polygons (s), random
polygons (d), and rectangles with aspect ratiof 52 ~1!, 4 (*),
6 (3), and 8 (h).
the fracture density, out of the critical regionr8'rc8 . The
only set of data, due to Cacas@23#, was intended to test he
numerical code in a simple case before she proceeded
more complex but specific networks, with matched in
vidual fracture permeability distributions.

In this test, Cacas considered random networks of mo
dispersed and randomly oriented circular fractures. In
flow model, the fracture network was assimilated to a ca
lary network, with linear bonds joining the centers of inte
secting disks. The hydraulic resistances of these bonds w
proportional to the center-to-center distance along the fr
tures, regardless of the width of the intersection line.

The densityr8 ~called heren) and the disk radiusR were
varied simultaneously, withr8 proportional toR. Five values
of r8 were considered: 4.8, 8, 9, 15, and 25. When norm
ized according to Eq.~15! the permeability follows very ac-
curately a power law

K}~r82rc8!1.067 ~r 50.9998!. ~35!

It is impossible to relate the prefactor in Eq.~35! with the
fracture permeabilitys because of the arbitrary definition o
the bond conductances. If they are assumed to be funct
of the center-to-center distance only, this is equivalent
assuming implicitly that the flow from one fracture to a
other neighboring one takes place in discrete chann
whose number does not depend on the fracture or inter
tion linear sizes. Alternatively, one may suppose that
number of channels scales as the disk radiusR or even that
all the fracture surface contributes to the flow, as in o
simulations. With this correction, the data of Cacas@23# fol-
low again a power law ofr82rc8 , but with a different expo-
nent

K}~r82rc8!1.804 ~r 50.9994!. ~36!

It is interesting to note that in both cases the best fitt
function is a power law ofr82rc8 . Correlations with a
power ofr8 are less successful. Cacas’s data and the fits~35!
and ~36! are plotted in Fig. 14, with an arbitrary prefacto
equal to 0.001.

The difference between Eqs.~35! and ~36! illustrates the
sensitivity of the capillary models on the mean-field arg
ments used to assign the bond conductivities. The comm
solution, applied by Cacas@23# and most other authors~see
the Introduction!, is to assign the bond conductivities ra
domly, with ana priori distribution function~generally log-
normal!, and to fit its parameters in order to match the resu
of experimental hydraulic measurements. Recall that if fi
data relative, e.g., to the fracture aperture~uniform or vari-
able! or permeability distributions are actually availabl
they can straightforwardly be included in the present sim
lations.

D. Influence of the fracture shape

The preceding subsection was devoted to a thoro
study of a particular fracture shape. Data were obtained o
the whole density range and asymptotic laws for low a
high densities. We try here to determine whether these
sults can be applied to any fracture shape, in the general c

is-
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described in Sec. II A, if the network is characterized by
densityr8 and a characteristic length scale.

To this end, we consider two particular densitiesr853
and 4 with cell sizesL56R and 5R, respectively. A set of
100 random realizations was generated for each partic
case.

Several types of fractures shapes were considered. T
are summarized in Table III. The first one consists in regu
monodisperse polygons, withNn54, 5, 6, 8, 12, or 20 ver-
tices. The networks in Sec. IV C~regular hexagons! belong
to this class, as the limiting case of circular fractures. T
second one consists of random polygons withNn54, 6, or
12 vertices, with a constant circumscribed circle radiusR.
The third class is made of regular monodisperse rectang
with aspect ratiof 52, 4, 6, and 8. The square fractures a
belong to this class withf 51.

The dimensionless permeabilitiesK are plotted in Fig. 15
versus 1/Nn , together with the statistical standard deviatio
The results forr853 are given in Fig. 15~a!. The data for
regular polygons are fairly constant; a slight increase is
ible as the polygons become more circular (Nn→`), but
these variations are much smaller than the statistical e
bars. Furthermore, the permeabilities for the random po
gons are quasi-identical to those for the regular ones. On
other hand, the permeabilities of the networks of rectang
are significantly larger than the values for square fracture
f >4. It was checked~see Fig. 6! that this does not resul
from the triangulation coarseness, as could have been
pected sincedM is commensurable with the smaller side
the most slender rectangles.

It is difficult to elaborate much further on these data
networks near the percolation threshold. Althoughrc8 should
not depend on the polygon shape and was actually foun
the narrow range 2.22<rc8<2.30 by Huseby, Thovert, an
Adler @11# for most polygons in Fig. 15~a! ~except for the
most anisotropic rectangles, which were not investigate!,
the finite-size effects could be shape dependent and a
differently the various networks.

The data forr854 in Fig. 15~b! are less sensitive to thi
artifact. Indeed, the permeabilities for regular and rand
polygons are all identical within65%. However, the rect-
angles still yield much larger permeabilities. It was check
again for the rectangles that the triangulation coarsenes
not responsible for the difference~Fig. 6!. This discrepancy
is probably due to the definition of the characteristic len
scale used in Eq.~15! to normalize the permeability. WhileR
is obviously an adequate choice for regular polygons,
may question its relevance for slender rectangles.

Several other length scales may be used instead ofR. The
most obvious ones arêAp&

1/2 andVex
1/3. The former is sug-
u,
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e

gested by Snow’s@19# model @cf. Eq. ~31!#, whose main
parameter is the volumetric fracture surface area, while
latter is introduced naturally in the percolation theory a
proach. In the present situation, they yield almost identi
results. Define the dimensionless permeabilityK* by

K85
s

Vex
1/3

K* I . ~37!

The data of Fig. 15~b! are recast in these terms in Fig. 15~c!.
It appears that the results forK* are less scattered than fo
K.

To summarize, all the results obtained in Sec. IV C
monodisperse regular hexagons should be transposab
networks of fractures with any monodisperse shapes. For
isotropic polygons,K* in Eq. ~37! is a better invariant than
K.

V. CONCLUDING REMARKS

A systematic study of the permeability of fracture ne
works has been initiated in this work. It might be more us
ful to emphasize here the various points that still dese
further studies.

The first one is the practical limitation of the triangulatio
process to a densityr8;10. The causes of this restrictio
should be found in order to increase the range of our co
putations to larger densities. The interest of such an ex
sion lies mostly in the validation or lack thereof of th
asymptotic regime~34!.

Second, the numerical study of more complex structu
should be done. The important practical case of polydispe
fractures should be addressed. Probably still more import
many field works as discussed by Sahimi@24,14# indicate
that the fracture network of a rock may be fractal; this
confirmed by numerical simulations of rock fracturatio
hence the investigations of the present tool should be
tended as well in this direction.

Finally, the program has been devised to be able to c
with any fracture network. A direct comparison betwe
some experimental data with a well-characterized fract
network and the output of the tool presented here would
of a very high interest.
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