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Permeability of three-dimensional fracture networks
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The permeability of a three-dimensional network of polygonal fractures is determined by triangulating the
network and solving the two-dimensional Darcy equation in each fracture. The general triangulation method-
ology and the numerical solution are presented. Networks of regular hexagonal fractures are detailed; finite-
size scaling is used to analyze the data relative to the percolation threshold, but the conduction exisonent
found close to its classical value in three dimensions; for large fracture densities, permeability is shown to tend
towards the mean-field model of SngWater Resour. Re$, 1273(1969]. Finally, the influence of the shape
of the fracture is studied and can be rationalized by means of the excluded vo&1063-651X98)07504-7

PACS numbd(s): 47.55.Mh, 05.40tj, 47.11+]j

I. INTRODUCTION [7]. The flow is solved in each fracture via a boundary ele-
ment method, while accounting for all its intersections. How-

During the past decade, underground waste repositorgver, it is again a case-specific study, with adjusted geometri-
projects and exploitation of hot, dry, rock geothermal energycal parameters to match observed data, and the number of
have spurred studies in fracture networks transport propefractures in a sample is very limited.
ties. Many site-specific studies have flourished around vari- The only attempts to relate geometric and hydraulic prop-
ous projectssee, e.g.[1]), which are generally based on a erties by general parametric laws were conducted in the
careful characterization of the structure of the fractured rocramework of percolation theory. Berkowitz and Balbé&j
mass, with the classical difficulty of deducing three- reviewed the critical behavior near the percolation threshold.
dimensional information from one- or two-dimensional field Hestir and Long[9] showed that connectivity is a relevant
data(e.g.,[2]). Then the hydraulic properties are computedParameter, as already noticed by Rouleau and G@leand
by using reconstructed model networks, based on the experfliccessfully modified its definition to obtain a predictive
mental geometrical characteristics, and various flow modelsgguation for the large-scale permeability of random plane
The applications of these site-specific models were restricte@etworks of linear fractures. The computer-controlled two-
to particular situations, mimicking realistic but specific net- dimensional experiments of Balbeeg al. [10] are an inter-
work structures and boundary conditions. Apparently, theyesting alternative approach.
were not applied to a systematic parametric study of the in-
fluence of the various structural characteristics on the large-
scale hydraulic properties.

The major purpose of the present paper is to develop a
full solution of the steady flow problem in a general three-
dimensional network made of two-dimensional polygonal
fractures as illustrated in Fig. 1. A literature survey shows
that in most cases, the description is two dimensi¢&hbr
that the three-dimensional network is replaced by a capillary
model. The intersection of two fractures is schematized by a
channel that joins their centers with an effective hydraulic
conductivity that results from simple geometric arguments;
this model is improved1,4,5 by introducing flow channels
in the fractures, which results in complex capillary networks.
Nordgvist et al. [6] went one step further by building the
network from a library of fractures with spatially variable
apertures for which flow was solved beforehand. However,
again, the final representation is a tube model. These capil-
lary models suffer two main flaws. First, the assignment of
the bond conductivities is somewhat arbitrary and the as-
sumption that the fluid flows from center to center is unreal- F|G. 1. Example of a three-dimensional fracture network made
istic. Second, only pair intersections are taken into accounif identical polygons. The volume of side® contains 495 hexa-
To the best of our knowledge, the only truly three- gons;L=12R, whereR is the radius of the circle in which the
dimensional flow model is due to Andersson and Dverstorfhexagon is inscribed.
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Our numerical approach involves three main steps,
namely, the generation of random fracture networks, the
meshing of the network by triangulation, and the solution of
the local flow equations with computation of the macro-
scopic flow properties. The generation procedure and some
geometric characterization tools derive from the numerical
code of Huseby, Thovert, and Adlg¢t1]. The network tri-
angulation is by far the most difficult task due to the random
character of the fracture geometries and of their intersec-
tions. Once it is completed, the flow equations are easily
obtained by a finite-volume formulation and solved.

This paper is organized as follows. Section Il is devoted

to the geometrical aspects. The network generation, with pre- T
scribed statistical and geometrical parameters such as density

of fractures, size, and shape of the fractures, is presented * 3
first. The fractures are plane polygons, inscribed in a circle. ‘

The triangulation procedure is an advancing front technique
[12], which is applied independently to all the fractures, after
a few preliminary operations; it is able to operate on any
polygonal fracture shape. FIG. 2. (a) Definition of the geometry of a polygon inscribed in
Section Il is devoted to the flow problem. The flow is a circle. Regular polygons such @ hexagons andc) rectangles
ruled by the stationary Reynolds equation at the fracturéan be created using appropriate fixed values of the angles.
scale; it is discretized on the triangular mesh by means of a
finite-volume formulation and solved under prescribed maCTequirement to app|y the generation, characterization, and
roscopic pressure gradients. The global permeability of theiangulation procedures described below and eventually to
fracture network is obtained by integration of the local flow solve the transport equations_ Individual fracture ShapeS,
field. Due to the stochastic nature of the generated networksjzes, or permeabilities and positional or orientational distri-
the generation and solution steps are repeated for a large sglitions are arbitrary. However, in order to limit this im-
of random realizations. mense field of investigation, we restrict ourselves in this pa-
The results are presented and discussed in Sec. IV. As thiser to a specific class of fracture networks, which is
is a systematic study on this topic, its numerical applicationgjescribed now.
were restricted to networks that are supposed to be statisti- The network generator has been detailed by Huseby,

cally homogeneous at a scale much larger than the typicathovert, and Adlef11]. Plane polygonal fractures are in-
fracture dimension and modeled as spatially periodic, withserted in a cellr, of sizel.

the fracture locations distributed according to a Poisson law. ynless otherwise stated, the following properties hold
An illustrative example is treated first and three'dimenSionathroughout this paper. The fracture normal vectors are ran-
graphical visualizations of the network geometry and flowgomly and isotropically distributed and their centers obey a
map are presented. The statistical distribution of the locapoisson distribution. The contour of a fracture is a convex
velocities is determined in a few samples with various denpglygon, inscribed in a circle of radit® (see Fig. 2 ItsN,
sities. Then a wide range of fracture densities is scanned, fqfertices are evenlyfor regular polygonsor randomly dis-
a particular fracture shape and varying cell sizes, in order tgiputed on this circle. The polygon orientation within its
identify the various regimes and characterize the size effectg)ane is random with uniform distributioN, and R are
The vicinity of the percolation threshold is considered speigentical for all the fractures in the network aRds taken as
cifically. For moderate or large densities, it is shown that thene |ength unit.
same kind of power-law holds, with a lower exponent. A \jithin this framework, a network is entirely characterized
linear increase of the permeability with density is reachedy 3 fracture shapeN,, regular or random the normalized
only for very large densities. _ _ cell sizeL/R, and the number of fractures per unit volume.
We end the paper with some concluding remarks in Secthjs |ast quantity can be modified by using the excluded
V. Since the numerical tools could handle equally well anyy,olumev,, introduced by Balbergt al. [13]; V., is defined
orientation distribution, fractures with spatially varying aper- a5 the surrounding volume into which the center of another
tures, moderate size distributions, and even specific nonpergpiect may not enter if overlap is to be avoided. For ex-
odic boundary conditions if needed for a particular cas&mpje, in a monodisperse population of spheves;s obvi-
study, various extensions including the interesting case °6usly 8 times the sphere volume. For nonspherical objects,

fractal structures are presented in Sec. V. the influence of the orientation has to be taken into account
in the determination o¥/,.
Il. FRACTURE NETWORKS: GENERATION, Hencep’' can be defined as the number of objects per
CHARACTERIZATION, AND TRIANGULATION volume Ve,; note that in[13] and subsequent papers, the

notationV,, refers to the total excluded volume denojed

here and iff11]. In addition, from the definition o¥,, p’ is
The fracture networks considered in this work are madelso equal to the average numiiof intersections per ob-

of plane polygonal fractures. This assumption is the onhject. p’ proved very successful in gathering the results for

A. Geometry of the fracture network
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various geometrical quantities in the class of fracture net v3 v2 v3 Vo Y8 W

works considered here 1]. <5
Analytical expressions df ., are available only for a few Qo Vio 7

simple shapes. Since for randomly oriented monodispers

disks with radiusR in a three-dimensional spadé,,= m°R3 i

is the half product of the disk area and perimdte4] and r_ DQO Vi Vi

Ve Wwas modeled for polygons ifl1] as Yo oo va Vs

Vex= % Appp ) 1

whereA, and P, are the polygon area and perimeter. This
model yields a good unified description in termsgdfand
indeed Eq.(1) is an exact result for a wide class of objects
that includes most of the fracture shapes considered her
namely, randomly oriented polygons inscribed in a circle anc \
containing its center. % OF V4 OrVs  OfVi
In addition to the network generator, several geometrica d
characterization tools from the software developed by
Huseby, Thovert, and Adlef11] are applied prior to the
triangulation described in the following subsection. First, the
fracture intersections are determined. The intersection line
are characterized by their end-point coordinates. Triple
points (intersections of three fractuneare also detected. In
the applications, there is an important particular case wher
the network is statistically homogeneous at some macra o ¢
scopic scale much larger than the typical fracture dimension;
in such cases, it is customary to apply periodic boundary FIG. 3. Typical steps of the triangulation of simple domains by
conditions to the celk, of sizeL; the whole network results an advancing front methoda) initial domain{ with N, =4 initial
from the periodic juxtaposition in space of infinitely many vertices, (b) splitting into segments shorter tha#y, with the
replicas of 7o. A detailed description of spatially periodic No=12 points ofV,, basic operations dt) and(e) junction and(d)
media is given by Adlef15]. In such a case, the percolation and(e) insertion, andf) final stage. The heavy line is the fronf).
of the fracture network is checked along they, andz axes. The domainQ still to be triangulated is white, while the part
This is done using a pseudodiffusion algorithi6]. Since (o~ of the domain already triangulated is shaded.
the network is periodic, percolation occurs when two ho- . . . . .
mologous fractures in two different unit cells are c:onnecteoSltuatlon is now briefly summarized.

together. Individual connected components in the network |aﬁ2'!git\£2§<ed (')T F'gr']jl’ ggr?ts(;ﬂ?r wﬁgﬁrgosr'rrgspliﬁgg’et(?f;
are identified and fractures isolated from the percolatin Polyg : P

cluster, if any, are labeled and ignored in the solution of th solated fracturéi.e., a fracture without any intersection with
flow prbblem ’ any other fracture The initial domain is called), and() is

the part ofQ)y not yet triangulatedQ CQ, and Q= ini-
tially). Their contours are)(), and 9Q), respectively[Fig.
3(a)]. 9Q is the advancing front. The two basic operations
In order to solve the flow problem, the fracture networkare the junction of two second-neighbor points of the front
has to be discretized. Since the fractures have polygonaFigs. 3c) and 3e)], if the resulting triangle is acceptable,
shapes, possibly random, and intersect randomly, the mosnd the insertion of a new point withid, which constitutes
natural discretization is an unstructured triangulation. Thisa new triangle when connected with the two facing points of
triangulation must obey a few priori constraints: All the 9Q [Fig. 3(d)]. During these operations, the froff) is up-
original polygon vertices, intersection end points, and tripledated by removal or insertion of points. As can be seen in
points(intersections of intersection linesust coincide with ~ Fig. 3, Q) shrinks progressively. The process stops when
vertices of the triangular mesh; all the original polygon bor-9€) reduces to an acceptable triangle.
derlines and fracture intersections must coincide with tri- Now consider the general case where the fracture contains
angle edges; and the triangulations of two intersecting fracmany additional features due to its intersections with other
tures must match along their intersection line. Except for thdractures, as displayed in Fig(al. An intersection line may
last requirement, since the network is a collection of two-cross the contour only once or twice, thus splitting the frac-
dimensional objects, all the fractures may be triangulatedure into two disjoint domains. It may also lie entirely within
independently by any standard two-dimensional algorithnthe fracture, without any connection with the contour. Sev-
once its initial contour definition has been supplementeceral intersection lines, themselves intersecting one another,
with a description of its intersections with other fractures. may enclose internal subdomains with or without connec-
A comprehensive review of the existing triangulation tions with the outer contour.
methods can be found [A2]. The technique that can comply It would of course be possible to handle these subdomains
with the previous limitations the most easily seems to be thas independent polygonal plane regions and to subsequently
advancing front technique, whose application to the preserdassemble their triangulations. Another way was chosen

B. Triangulation



57 PERMEABILITY OF THREE-DIMENSIONAL FRACTURE . .. 4469

[~ [ The procedure above yields for each fracture a collection
e = of triangles, defined by their three vertices. The triangulation
of the whole network is the union of all these collections.
Recall that the triangulation of intersecting fractures match
along their intersection line since the same rule was applied
to split it in its two embedding planes. The nodes of the
global triangulation are also the union of the points defined
in each fracture.

Each triangle belongs to a single fracture, although its
edges may belong to two fractures and its vertices to one,
two, or three. Note that the fractures that do not belong to a
percolating connected component are not triangulatéd
Thus all the triangles in the list may play a role in the flow,
at least for one direction of the pressure gradient.

Whenever necessary, the periodicity of the fracture net-
work (see Sec. Il Ais taken into account. Hence the position
of each triangle relative to the boundary, of the unit cell
To heeds to be determined. A set of nine integggs
(n=1,2,3 anda=x,y,2) is associated with each triangle. If
vertexn of a triangle is withinry, thenj,=j,,=j,,=0. If it
is not beyond the cell boundary in the direction of increasing
(decreasing x, thenj,,=+1 (—1), and similarly for the
directionsy andz.

To summarize, the output of the triangulation procedure is
made of two unstructured lists, which are the list of nodes,
defined by their three-dimensional coordinates, and the list of
triangles, defined by their vertices, together with the jump
conditions mentioned above. In addition, a value of the frac-

. . . r rm ili A i with h
FIG. 4. Successive steps of the triangulation of a complex frac:[u e permeabilityo (see Sec A is associated with eac

ture: (a) initial geometry, which may include intersections lines and triangle.
inner subdomaingshaded (b) splitting of the edges into segments

shorter thand,, and connection of all internal feature®) initial ll. FLOW PROBLEM
front Q) (the arrows correspond to the spanning cydi@ and(e) )
intermediate andf) final stages of the triangulation. A. General equations

The solid matrix containing the fractures is assumed to be
here, which allows us to triangulate the whole fracture atimpervious. The flow of a Newtonian fluid at low Reynolds
once. First, all the internal features are connected to the out@fumber is governed by the Stokes equations within a frac-
boundary of the fracturgFig. 4(b)]; all these elements are ture, i.e., at a local scale characterized by a typical aperture
also split into smaller segments with length smaller than &,. Because of the classical Poiseuille law, the typical per-

given valuesy . Then a cyclei(}, that describes the fracture meability o) of a fracture is expected to be of the order of

boundary and all its internal features is constructed and

treated as the outer contour of a single simply connected . bg

(nonconvex polygon[Fig. 4(c)]. T0= 15 Q)
The first set of points to which the advancing front tech-

nigue is applied consists of the splitted cyél@,. Two re- ) )

marks are necessary. First, the same (wiéh the samesy,) Moreover,b, is assumed to be much smaller than the typical

is applied in all the fractures of the network; a unique split-lateral extent R,=D of the fracture

ting is applied to the intersection line of two fractures. Sec-

ond, during the insertion operation, which consists of throw- bo<Dy. (4)

ing a new pointvy ., from a segmentd; , ;1) of 9 to

create a new trianglEFig. 3(d)], vnp+1 is set so that In contrast t[17], the flow is described at a scalkthat is

wivnpsal| =|l@is10npral[= 8- (2)  intermediate betweeh, and Do,

Initially, &, is equal tody,, but this value is modified as the bo<L<Dy. (5)
process goes. Additional conditions are imposed on this in-

serted point, e.g., the edges;(unp+1) and @i+1.Unp+1) At this scale, the flow is governed by the Darcy equation
must not cross any existing edge; for sake of clarity, these
conditions are not detailed here. Two intermediate stages and

the final result for the example of Fig. 4 are displayed in 1 -

Figs. 4d)—4(f). q=——0V'p. ®)
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q andV'p are the locally averaged flow rate per unit width B. Dimensionless formulation

[L?T~'] and pressure gradient, angL°] is the fracture The hydraulic aperture (or a typical valueb, if all the
permeability tensor. The mass conservation equation beractures are not identicais a characteristic length scale for
comes the fracture aperture. On the other ham,s the typical
. fracture extent. These two length scales, together with a ref-
Vsa'=0, @) erence pressurgy, can be used to recast the equations in a

where V' is the two-dimensional gradient operator in the dimensionless form. Define

mean fracture plane; it is defined by8] b3
0 _00Po _ 00Po KOZE. (14

(0] R

V'e=(I—nn)-V’, 6) 120 BTuR YO LRT
wheren is the outer unit normal to the fracture plane drid  The dimensionless parametdxgithout primesg are defined
the unit tensor. The dependenceodfupon the fracture char- by
acteristics was investigated by Mourzenko, Thovert, and
Adler [17].

Any standard boundary condition can be applied to this
network. For instance, pressures or fluxes could be applied
along some inlet and outlet lingg and £, drawn on some v'=Ug', g =qoq, (15
fractures of the network, for instance

1
P'=pop, V =§V,

o =o0q0, K=K
p=p; along £,
All the following developments use this dimensionless
p=p, along L,. (9)  formulation. For isotropic networkss is a spherical tensor,
=KI, and our results will be presented in terms of the

K
In the particular case where the fracture networks are statiggimensionless permeability.

tically homogeneous at the field scélewhich is assumed to
be large with respect to the lateral dimensiddg of the
fractures,L> Dy, the infinite medium can be represented by
the periodic juxtaposition of identical unit cellg in the
three directions of space. When a macroscopic pressure gra- The value of the pressugemust be determined at each of

dientV'p is applied upon this unbounded medium, the fluidthe N, points m of the triangular mesh. Thal, unknown

flow is described by Eqg6) and (7), together with period- Pressures are determined frd#y equations, i.e., one equa-
icity conditions forv’, g, andV'p’ and tion per mesh point, obtained from a flux balance condition,

via a second-order finite volume scheme.
The dimensionless Reynolds equation is integrated over
'p= ol p'ds'. (100 nonoverlapping domairQ , that surround the mesh poimt,

oo as illustrated in Fig. 5. I belongs to the intersection of two
fractures, or even if it is a triple poiriintersection of three
fractures, Q,, is simply the union of the two or three do-

1 1 mains obtained as above in each fractifig. 5(c)].

v =— v'dr’ = g'ds’, (11 In this second-order formulation, bothandVp are con-
077 0 Sy sidered piecewise constant on each triangle. In additiois,

where 7 is the interstitial volume of the fractures a8l assumed to be Isotropic. . . .
their projection on their mean planes. This flux is related to Of course, the d”‘"”g force |n.these eguanons is the mac-
the pressure gradient by Darcy’s 14d5] roscopic pressure gradieNtp. This quantlty occurs when a
triangle crosses the bounda#y, of the unit cell; the pres-
R sures at two neighboring nodes that do not belong to the

C. Discretization of the transport equation
and numerical implementation

<

The seepage velocity’ can be evaluated as

5'2—;K"V'D- (120 same unit cell have to be corrected by the pressure drop
across the unit ce(l15].
K’ is the permeability tensdrL?], to be determined from Finally, the discretized transport equation can be ex-

Egs. (11) and (12) once the problent6) and (7) has been Pressed as the linear system
solved. Alternatively, Egs(6) and (7) can be solved with a A-p—B=0 (16)

prescribed velocitp’. TheV'p is evaluated by Eq10) and

v’ is deduced from Eq12). whereB corresponds to the macroscopic pressure drop. It is
In this papero’ is taken to be uniform over each fracture easily shown that the matri& is symmetric. Equatiolil6) is

and identical for all fractures. Permeability variations within solved iteratively by a conjugate gradient algorithm. An in-

the fractures will be addressed in future works. Since all theegral convergence criterion is used:

networks considered here are isotrop{¢,is a spherical ten-

sor ||A-p—Bl[<ql|B|l, 17)

K'=K'l. (13)  where|| || denotes the standard Cartesian norm.
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0.6 0.8 5 / R1
m

FIG. 6. Normalized trac& of the mean permeability tensor of
random networks of regular hexagons as a functiodpfR, with
L/R=4 andp’'=2.5 (broken ling or 4 (solid line). The dotted line
is Eg. (19). The symbold] (O) refer to networks of rectangular
fractures, with aspect ratiods=4 (6), densityp’=4 (3), and con-
taining 219(434) fractures.

FIG. 5. Finite volumeQ},,, surrounding a poinin (a) neither on
a fracture boundary nor on an intersecti@), on a fracture bound-
ary, and(c) on a fracture intersection. Ift) the two fractures have
been separated for clarity.

D. Validation and accuracy of the numerical scheme
crease as the resolution is improved. The variations are fairly

numerical scheme, namely, the mesh coarsefigsand the finear when plotted agamgtM /R, as done In Fig. 6, for the
average tracd of K. In this plot, the values oK are nor-

convergence criteriom. Their influence on the computed malized by the linear extrapolatioki* when 8, vanishes.

permeability should vanish as each of them tends toward O .
A few simple tests were successfully passed by the nufs @ rule of thumb, a permeability tensor comporifitcan

merical code, such as the insensitivity to a shift of the unit—be deduced from the computed reskijf for finite 5 /R by
cell boundaries or a permutation of the axes of coordinates.
Then the numerical results were compared to a few analyti-
cal solutions. Unfortunately, situations where exact solutions
can be obtained are very limited. Networks where the perco-

lating component reduces Into strips c_)f constant width, mad?n all the cases considered here, the application of E9).to
of one or several fractures intersecting at arbitrary angles

can be worked out, with or without simple permeability all the results fordy<R/2 yields the corresponding;;

variations inside the fractures. The relative departures of th@”tn'n *3%. tf Eq(19) that a 5% .

numerical permeabilities from the theoretical predictions did is apparent from Eq(19) that a 5% accuracy requires

not exceed 0.6% or 1.5%, withy, /R= . _5M/R~0.1. U_nfo_rtuna_tely, such a resolution is qnaff_ordable
A more complex configuration is made of four families of in many applications, in terms of both computation time and

parallel plane channels, with their intersections on a faceMemory requirement. Typical values for a small c48é

centered-cubic lattice. The unit cell, of siké, contains four regular hexagpns witlp’=4 and L/R=4) are given 1n
mesh points and 32 triangles. The numerical calculation;l,-able | for various coarsenesses. The computation time was

ield th vtical soluti Eq(31 h ~ measured on a powerful_ IBM RISC station. These values
?/z;fe?j tcoemen)q(gﬁasana ytical solutiofsee Eq.(31) and the re refer only to the triangulation step. It should be noted that the

Only two nonphysical parameters were introduced in th

2R

P
Kij:Kfj(H—M . (19

8 TABLE I. Typical number of triangle®N;,, computation timer
K'=——ol. (18 in minutes, and memory requiremevit in megabytes for the trian-
\/§|- gulation of a network containing 64 regular hexagons vyt 4

. . . andL/R=4 for various coarsenesség /R.
While these tests show that the numerical scheme is basi- W

cally correct, such simple situations cannot be used to quan- 5 /g Ny T M

tify the influence of the mesh coarseness. Therefore, another M

series of tests was conducted with random networks of regu- 5 1900 3 5

lar hexagonal fractures. Several samples were built with 3 2700 1 6

L/R=4 andp’'=2.5 or 4. These two densities are represen- 3 5000 4 11

tative of near-critical and well-connected networks, respec- 3 8200 10 18

tively. : 12 000 30 30
The typical mesh sizé,, was varied fromR to R/10. In : 28 000 230 110

all cases, all the components of the permeability tensor de
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solution of the flow problem is less demanding since the

required memory is less and the computation time is about B
five times shorter. %
Clearly, the requirements fob,,/R=1/8 are very de- ,A
i inli i i A AV
manding. It was also felt that tripling the time and doubling 0«‘1&'&:\
the memory was not worth the gain in accuracy from 12% to &_\\ﬁﬁt\\ 4
10% as expected from E@L9). Therefore, unless otherwise X

stated, all the data given in this paper were obtained with
Ay /R=13. Most of the systematic 12—15 % systematic error

would be compensated by applying E49). Furthermore, () (b)
since Eq.(19) applies fairly well for various fracture shapes < e
and densities, our discussions relative to the exponents in the %/ %/

limit cases or the comparison of various fracture shapes are
unaffected by the mesh coarseness effects.

Two additional remarks can be made before closing this
discussion. On the one hand, the triangulation step could be
significantly speeded up by use of a hierarchical algorithm.
A coarse triangular mesh could be built first and then refined
until the desired mesh density is reached instead of building
directly a fine mesh by using the advancing front method. On (©) (d)
the other hand, the key to an accurate solution of the flow
problem does not necessarily lie in a very fine but uniform FIG. 7. Example of network of six equisized regular hexagonal
mesh. Great improvements can be expected instead by coffactures withL/R=3: (&) and (b) unit cell from two different
ditional local refinements of an otherwise coarse mesh, ac4ewing angles(c) four neighboring unit cells, an@) sketch of the
cording to criteria derived from the flow field. These two fracture connections. The fractures are triangulated Wk R/2.
features will be implemented in the near future.

Note also that in its current implementation, the triangu-
lation procedure fails for very dense networks, without an
influence of the sample size. With/R=4, 100% of the
samples are successfully triangulated go=6 and 90% for
p'=10. For larger densities, the success rates drops drama
cally from 40% forp’ =12 and down to 0.5% fop’ =16. In

display the results relative to the various value$gf/R for
fracture 4. The flow features in Fig(f8 are very clear. The
Yfluid enters the fracture from fractures 2 and 3 on the left and
leaves it towards fractures 5 and 1 on the right. Some areas
are nearly stagnant, while in others most of the total flux is
Ebncentrated. The flux field is discontinuous across the inter-
the latter case, it is almost certdjprobability =99%) that at g?a(;tl(g(]el)lnﬁﬁhﬁgézer;esiﬁﬂii)sn!nT';Ig(Egef?ﬂig)sleégr;%&the
least one fracture in the network intersects at least 24 oth etwork computed for increasing resolution, normalized by
ones. This unfortunately restricts the range of densities th%e value fors,/R=1, are 1.113, 1.051 1_033’ 1.018. and 1.
can be addressed. These limitations should be removed in the o that fracture 4?'Iike fractur’e 1 but’ unlike'2, 3, 5" and 6,

near future. is critical for percolation. Therefore, the whole flux through
the network crosses the critical midsection of fracture 4 in
IV. RESULTS Fig. 8. The triangulation sizé,,/R=3 used in all subse-

guent computations corresponds to Fi¢r)8
Three main subjects are addressed in this section. First, a

very simple illustrative example is presented. Second, some B. Local velocity distribution

velocity histograms are discussed. Third, the influence of ) o ) )

density of the permeability of networks of monodisperse The visualizations in the preceding paragraph show that

regular hexagons is analyzed. Finally, in order to check thdtense flow and quasistagnant zones coexist in the frac_tures
relevance of the normalized density to characterize the that bélong to the percolating component. This feature is of

hydraulic properties of a fracture network, a wide variety ofcrucial importance for the dispersion of a convected species,

polygon shapes are investigated for two constant densities SUCh a@s heat or a Brownian solute. It can be illustrated further
by use of the histograms of the local fluid velocities. Six

networks were considered, with various densities ranging
A. lllustrative example from p’=p/ to 8. Their characteristics are summarized in

Prior to Systematic data, a Comp|ete graphica| i||ustrati0nTa.b|e 1. They contain 128-320 fractures. The triangulation
of a very simple case is given here. In order to obtain readwas performed withs, /R=, which yielded 18 000-33 000
able pictures, a small sample of six fractures was taken, witffiangles. For the lower densities, many fractures are not con-
L/R=3. The unit cell is displayed in Figs(& and 7b) with nected to a percolating cluster; only 1.5% remain isolated for
various viewing angles. In Fig.(@ four unit cells are dis- p' =4 and the network is totally connected fot=6.
played in order to make the percolating path more visible. Figure 9 displays the histograms of the local flow mqie
The fractures in Fig. 7 are triangulated wifly /R=1. The the triangles(left column or averaged over the fractures
connections between the fractures are sketched in Fify. 7 (right column, normalized by the normad* =v/S of the

The fracture network was triangulated and the flow fieldaverage ofj over all the fracturesS is the volumetric frac-
was computed foby /R=3, 3, 3, £, and}. Figures §3)—8(e)  ture surface are&=S;/7,. Note that the histograms aver-
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FIG. 9. Histograms of the normalized flow ratgg* in the
triangles(left) or averaged in the fracturgsght), in the networks
of Table Il with the same conventioa,b, . .. ,f (gray bar$. The
abscissas are decimal Iogarithm&v,,/R=%1 and »=10"5. The
curves in(a) were obtained withy=10"". The curves in(f) are the

FIG. 8. Fracture 4 in the network of Fig. 7 for various triangu- distribution (20).
lations 8y /R=73 (a), 3 (b), 3 (¢), = (d), and 5 (¢) and (f). In each
upper picture, the triangulation is displayed and black dots are mesfy,,, densities, many fractures that are connected to the per-
points common with another fracture. The arrow lengths are pro-co|ating component are actually dead ends and carry no flow;
portional to the local flux density. In the lower pictures, the gray ponce 3 small erratic random number is obtained in the nu-
levels are proportional to the flux intensity, normalized by its maxi- o oo resolution. This was confirmed by solving the flow
mum value within the fracturdf) is similar to(e), but the triangu- : . . .
lation is not displayed. The heavy lines are the intersection meroblem .m Fhe ”et‘"’,‘%r,k witlp’ =2.3 with a finer conver-
other fractures. gence criteriony= 10" /; as expected, the pe'ak fc_>r the lower

flow rates is shifted by two orders of magnitudeg. a)].

) Thus the leftmost peak should be ignored and a unimodal
aged over the fractures are more noisy because of the relgistribution, though asymmetric with a very long tail, is ob-
tively small number of fractures. _tained in all cases. As the density grows, the quiescent

The apparently bimodal distribution for the lower densi- zones disappear and the histogram tail shortens accordingly.
ties is an artifact due to the global convergence criterionsimultaneously, new flow paths are opened to the flow and
(17). All these computations were run with=10"°. For  the highest velocities, which correspond to flow amplifica-

tions in a few critical areas, disappear also. The velocity

TABLE II. Characteristics of the networks in Fig. 9: density,  distribution becomes narrower and the peak more acute,
sample sizé./R, number of fractures in the netwoN, and in the  though it never becomes log-normal; instead, it seems to be
percolating componeriY;, ., and number of triangles in the con- very close to the distribution
nected fracturedl, .

(d) (e) (f)

29
Fig. 9 p’' L/R Ny Nt Ny q 2 3q* g 3
fl 7|=5 —7—x, 0=s—F=<2, (20
@ 2.3 10 295 118 14 842 q 3 J1-(2q/3q*)2 q* 2
(b) 2.5 10 320 209 26 549
(¢ 3 8 197 168 21 408 as expected in Snow[4.9] model, made of infinite randomly
(d) 4 8 262 258 33342 oriented plane channe(see Sec. IV ¢
G 6 6 196 166 22 267 All these comments hold for both sets of histograms for
(f) 8 5 128 128 18 372 the local velocities in the triangles or for the average veloci-

ties in the fractures. However, the convergence towards Eg.
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FIG. 10. Dimensionless permeability of networks of mono- 10 10 p’ 10
disperse regular hexagonal fractures as a function of the derisity . ) -~
(Cartesian plot Data are folL/R=4 (—@—), 5 (- @ --*) FIG. 11. Dimensionless permeabiliy of networks of mono-

6 (———@———), 8 (——@—-—), and 10 t—O—). The disperse regular hexagonal fractures as a function of the depisity
(log-log ploy. Data are fol.,/R=4 (—@®—),5(---@®---), 6
(———®——-),8(——@®—--),and 10 t—O—). The heavy
broken line is Eq(34).

heavy broken line is Eq34).

(20) is more visible for the averages over the fracturéght
column in Fig. 9 because the largest and lowest local valuesThese distinctions will be used to split the discussion of the
of g are filtered out by the averaging. results into three parts as density increases.

1. Permeability exponent at the percolation threshold
C. Influence of the fracture density

: Let us start with the analysis of this interesting region,
for monodisperse hexagons

which is seen better in Fig. 11. Close to the percolation
Let us recall first the results relative to the determinatiorthreshold, the conductivitg, of a site or bond lattice is

of the percolation threshold by Huseby, Thovert, and Adleknown to vanish according to a power 1a20]:

[11] for monodisperse polygons. Of course, the critical den- S ot (p—po)t 21

sity p. depends upon the shape of the fractures; however, (P=Pc) @D

when the excluded volum¥,, is used, the critical threshold wherep is the site- or bond-occupancy probability gudits
p¢., which is the critical number of fractures per excludedcritical value. The correlation length (mean size of a con-
volume, was shown to be a constant equal to 2.22-2.30 for gected clustéris also ruled by a power law
wide range of polygons.

The permeability of networks of regular monodisperse Ex(p—pc) " (22
hexagonal fractures was systematically investigated for cell ) ) ,
sizes ranging front. =4R to 10R and for normalized densi- The exponent$ and v are believed to be universal, i.e., to

ties ranging from slightly below the percolation thresholdd&pend only on the space dimensionatitybut not on the
pl=2.3 up top’ =12. The specific valup,=2.3 obtained underlying lattice properties. In three dimensions, the follow-
e=2. . .

for regular hexagons is used here. ing values are generally acceptd]:

All the data forp’<2.4 are statistical averages over 400 =088 t=20 (23)
random realizations. All the results fpr >2.4 are averages o o
over 100 samples. The average permeabkity the follow- The percolation theory for lattices can be applied to con-

ing plots is defined as one-third of the trace of the averag@nuum percolation. It has been established over the past 15
permeability tensor, which is always close to isotropy as eXyears that the proper equivalent to the probabifitys the
pected since no anisotropy is introduced in the stochastigyean number of intersections per object. Therefore, scaling

network construction procedure. _ ~ laws similar to Eqs(21) and(22) are expected
The whole data set is displayed in various representations
in Figs. 10, 11, and 14. Figure 10 provides a Cartesian plot Ko(p' —pl), &x(p'—pl)~" (24)

of the average permeabilitg against the density’, which

provides a general view of the variations. Two zones arHowever, it has been arguddee[21,8,14 and references
clearly visible on this plot; close to the percolation threshold therein that in continuum percolation, the exponénhight

K tends towards zero, with an influence of the size of the unitiepend upon the geometrical model. The reason is that in
cell, as discussed below. At large density, the variatiort§ of contrast to lattice systems, the conductances of bonds in a
are a linear function gb’. It will be seen that there might be continuous network may be determined by the geometry and,
a third region that does not show up in this representationindeed, models have been designed where the distribution of
this intermediate region ranges fropi~3 up top’~12.  bond conductances yields a nonuniversal behavior.
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FIG. 12. Dimensionless permeabilitit at the percolation
thresholdp.=2.3 in networks of monodisperse regular hexagonal
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fr

fractures as a function of the sample siz&R (@), ddeCEd by FIG. 13. Ratio N;—1)p’/2N, in fractures networks versus the
linear mtereolatlon from the permeabilities™ and K™ for p number of fracturedl;, . Data are for monodisperse regular hexago-
(A) andp’™ (V). The dashed line is the least-squaresZ8). nal fractures withlL/R=4, 5, 6, 8, and 10Q); monodisperse ran-

dom quadrilaterals, hexagons, and dodecagons Wik=4 or 5

The finite-size scaling techniqyig2,2q has been applied (@); and monodisperse rectangles with aspect ratiog (+), 4
here to determine the permeability exponent for random nete), 6 (x), and 8 ().

works of regular hexagonal fractures. At the percolation
threshold £ is larger than any finite cell size and the perme-being a random variable with the same average. This has
ability scales as some consequences for the number of fracture intersections.
, —th For instance, if the unit cell contains a single fracture, no
K(pe,L)oL . (29 intersection is possible and,=0; if it contains two frac-
tures,N,=V,,/L3. More generallyN,, Ny, andp’ are re-
lated by N,=p’'(Ns—1), as illustrated in Fig. 13. This de-
viation from a true Poisson distribution has little effect when
the cell size or the fracture density is large, but whinis as

K was computed for networks at'=pc for cell sizés |, a5 50 5" and the number of intersections per fracture
ranging fromL=4R to 10R. The permeability was averaged may differ by a few percent.

over 400 realizations in each case. The number of fractures Thq it (26) was obtained by using the actual average

in the unit cell ranged from 18 to about 300. Since the nums 4 e of N, /(N;—1) in the networks for interpolating

ber of fractures in a finite cell is necessarily an integer, it wa§<(p, L) betweerk ~ andK ™. If the number of fractures per
c! '

. , )
not possible tg set exactlz?/ to p. , especially for the small- excluded volume ') is used instead, we get
est cells. For instance, with=4R, 18 and 19 fractures cor-

respond top’=2.19 and 2.31, respectively. Therefol¢, K(pl,L)=0.20 L~2% r=0.998. (27)
was computed for two values @f equal top’~ andp’*

below and above, ; the corresponding values are denotedFinally, if we use the quantity I2, /N, we obtain

K™ andK™; K(p.,L) was estimated from a linear interpo-

Because of the divergence ¢f K depends upon the ratio
L/R, close top,, as it is illustrated by Fig. 11, where sig-
nificant finite-size effects start occurring @t~4.

lation between these two values. K(pl,L)=0.30 L~ 2% r=0.9992. (28)
The results are displayed in Fig. 12. The straight line is . ) )
the least-squares fit of the interpolated values The comparison of Eqg26)—(28) provides an estimate of

the accuracy of the determination w6,
K(pl,L)=0.237223 r=0.999 92. (26)
t/v=2.22+0.08. (29
A small digression about the equality pf and the mean
number of intersections per fracture has to be made here. If is in very good agreement with the universal value
the fractures were truly distributed according to a Poisson/v~2.3 in three dimensions frofi20]. A universal behavior
law, the total number of intersectiody and the number of was also observed in the computer-controlled two-
fractures Ny, in a large enough domain would verify dimensional experiments of Balbeeg al. [10].
2N,=p'Ny, if p’ is defined as the number of fractures per Let us conclude this subsection by recalling that the net-
excluded volume. However, the representation of the networks are three-dimensional structures made of special two-
work by the periodic juxtaposition of finite unit cells intro- dimensional objects that are flat polygofsee Fig. 1L The
duces a cutoff that makes the distribution only approximatelyprevious result shows that these networks still belong to the
Poissonian since the content of a unit cell is prescribed to theame universality class as standard percolation networks
expected value for a domain with the same volume instead ahade of sites or bond20].
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10’ ; . : and the fracture density per direction by the surface area of
fracture per unit volumeS’(n), the permeability tensor is
given by

Kg= a"f S’ (n)(I—=nn)dn. (31

For instance, Eq(18) is a particular application of Eq31)
where the vectom takes only four discrete values, with
S'(n)=+3/L. For an isotropic networkS’(n)=S"/4,
whereS’ is the total volumetric surface area ands evenly

j distributed on the unit sphere. Therefore,

2
KSY =§a’5’|. (32

I‘ ’ ’ 2 . .
Wp-p, 10 In our random networksS’ is given by

FIG. 14. Dimensionless permeability of networks of mono- p'Ay 2p'

disperse regular hexagonal fractures as a functiop’efp. (log- S =pAy=— =5
c Ve Po

log plot). Data are forL/R=4 (—@®—), 5 (---@®---), 6
(-—-@---),8(——-@--—), and 10 —O——). The heavy  Finglly, the dimensionless permeability in Snow's model
broken line is Eq(34) and the symbols> and are the original network with same surface density is
and modified data of Cac$23], together with the fit$35) and(36),
in arbitrary units. R

4
Iso_ _ /. (34)
"3 P,

(33

2. Scalings for intermediate and high densities
iso

Because of the classical scaling 1424), a log-log plot of ~ For regular hexagons?,=6R and Kg, reduces to a'/9;
K againstp’ — p/. is displayed in Fig. 14. The finite-size ef- this expression is plotted in Figs. 10, 11, and 14 and is in-
fects are again visible at low densities, but it might be inter-d€ed a likely asymptote for very large densities. However, it
esting to note that the data for dense networks fall very acstill overestimateX by a factor 2 ap’=10. One may guess
curately on a straight line that corresponds to a power law; #om Fig. 14 that Eq(30) should become invalid fop’ ~20

least-squares fit of all the data fpf =3.5, with the largest Since then it would exceed Eq34). Unfortunately, such
cell sizes available, yields densities could not be investigated because the triangulation

becomes exceedingly difficult, but a negative inflection of
. 157 the curveK(p') is visible in Fig. 14 forp'=12.
K=0.0458p" —p¢)™~, r=0.9994. (30 Hence it seems that the range of validity of HO),
though very large, is a transition zone between the critical
However, such a fitting is largely empirical and represent?OWer law near the percolation thresh¢k#) and the linear

some sort of transition from the critical region to the high- 9rowth (34) and that maybe E(30) as no substantiation. It
density region, which will now be analyzed. is still of interest, however, for practical purposes, in view of

Snow[19] considered networks where all the fractures ardts successful fit over the range of the most common fracture

infinite plane channels, with an arbitrary orientation distribu-densities.
tion. This is equivalent to assuming that the whole surface of

all the fractures in the network may contribute to the flow

and can be valid only in the limit of very dense networks. If ~ As mentioned in the Introduction, we could not find in the
the plane orientation is characterized by its normal vegtor literature any systematic study of the dependencié apon

3. Comparison with other data

TABLE lll. Three types of monodisperse and two types of polydisperse fracture geometries.

Number of fractures

Polygon type p'=3,L/IR=6 p'=4,LIR=5
regular polygonsN,=4,5,6,8,12,20 67-114 51-88
random polygonsN,=4,6,12 84-273 65-211
rectangles, aspect ratie=1,2,4,6,8 83-589 64—454
regular hexagons, radius[ 5 ,R] or [§ ,R] 146-234

random quadrilateralsy; ;. ;= 7/2
and random radii|Ov;|| e[ 5 ,R] or [§ ,R] 207-350
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0-&3 T " T T T the fracture density, out of the critical regigri~p.. The
007k ] only set of data, due to Cacéd3], was intended to test her

! numerical code in a simple case before she proceeded with
0.08} 1 more complex but specific networks, with matched indi-

vidual fracture permeability distributions.

In this test, Cacas considered random networks of mono-
0.04} 1 dispersed and randomly oriented circular fractures. In the
flow model, the fracture network was assimilated to a capil-
lary network, with linear bonds joining the centers of inter-
.02} 4 secting disks. The hydraulic resistances of these bonds were
proportional to the center-to-center distance along the frac-
tures, regardless of the width of the intersection line.

0 . . . : . The densityp’ (called heren) and the disk radiuR were
0 005 0T oIS 02 03 4N 02 varied simultaneously, with’ proportional toR. Five values
of p’ were considered: 4.8, 8, 9, 15, and 25. When normal-
ized according to Eq(15) the permeability follows very ac-
(a) curately a power law

0.05f

0.03f

03 . . , . . Koc(p'—pl)+%7  (r=0.9998. (35

0.25¢ 1 It is impossible to relate the prefactor in E@5) with the

fracture permeabilityr because of the arbitrary definition of

0.2} 1 the bond conductances. If they are assumed to be functions
of the center-to-center distance only, this is equivalent to

015} i ] assuming implicitly that the flow from one fracture to an-

other neighboring one takes place in discrete channels,

o *) #) whose number does not depend on the fracture or intersec-
tion linear sizes. Alternatively, one may suppose that the

number of channels scales as the disk radRuzr even that

all the fracture surface contributes to the flow, as in our

) ) . . ) simulations. With this correction, the data of Caf283] fol-

0 0.05 01 0.15 02 025 1/N 03 low again a power law op’ — p/, but with a different expo-

nent

0.05F

(b) Koc(p' —pl)18%  (r=0.9994. (36)

038 " " " " " It is interesting to note that in both cases the best fitting
K function is a power law ofp’ —p/. Correlations with a
0251 1 power ofp’ are less successful. Cacas’s data and thé3fis
o and (36) are plotted in Fig. 14, with an arbitrary prefactor
0.2t o % 1 equal to 0.001.
The difference between Eq&35) and (36) illustrates the

0.15} 1 sensitivity of the capillary models on the mean-field argu-
ments used to assign the bond conductivities. The common
04} 4 solution, applied by Cacd®3] and most other autholsee
the Introduction, is to assign the bond conductivities ran-
0.05k | domly, with ana priori distribution function(generally log-
norma), and to fit its parameters in order to match the results
. . . ) ) of experimental hydraulic measurements. Recall that if field
0 0.05 0.1 015 02 025 1/N 03 data relative, e.g., to the fracture apert(uaiform or vari-

able or permeability distributions are actually available,

they can straightforwardly be included in the present simu-
(c) lations.

FIG. 15. Dimensionless permeabilitg) and (b)K or (c) K* in
the fracture networks of Table Il versusNy/. In (a), p'=3 and ) )
L/R=6 and in(b) and(c), p' =4 andL/R=5. In (a) and(b), some The preceding subsection was devoted to a thorough
abscissas are slightly shifted to make the statistical error bars vistudy of a particular fracture shape. Data were obtained over
ible. Data are for monodisperse regular polygoris)( random the whole density range and asymptotic laws for low and
polygons @), and rectangles with aspect ratie=2 (+), 4 (*), high densities. We try here to determine whether these re-
6 (X), and 8 (). sults can be applied to any fracture shape, in the general class

D. Influence of the fracture shape
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described in Sec. Il A, if the network is characterized by itsgested by Snow’§19] model [cf. Eq. (31)], whose main
densityp’ and a characteristic length scale. parameter is the volumetric fracture surface area, while the
To this end, we consider two particular densitjgs=3 latter is introduced naturally in the percolation theory ap-
and 4 with cell sized =6R and IR, respectively. A set of proach. In the present situation, they yield almost identical
100 random realizations was generated for each particulaesults. Define the dimensionless permeabiity by
case.
Several types of fractures shapes were considered. They LT
are summarized in Table Ill. The first one consists in regular K :V_llsK I (37
monodisperse polygons, wit,=4, 5, 6, 8, 12, or 20 ver- &x
tices. The networks in Sec. IV Gegular hexagonsbelong
to this class, as the limiting case of circular fractures. Thel'he data of Fig. 1&) are recast in these terms in Fig.(¢b
second one consists of random polygons wWith=4, 6, or It appears that the results f&r* are less scattered than for
12 vertices, with a constant circumscribed circle radtus K.
The third class is made of regular monodisperse rectangles, T0 summarize, all the results obtained in Sec. IV C for
with aspect ratid =2, 4, 6, and 8. The square fractures alsomonodisperse regular hexagons should be transposable to
belong to this class witti=1. networks of fractures with any monodisperse shapes. For an-
The dimensionless permeabilitigsare plotted in Fig. 15 isotropic polygonsK* in Eq. (37) is a better invariant than
versus 1N, , together with the statistical standard deviations.K-
The results forp’ =3 are given in Fig. 1&). The data for
regular polygons are fairly constant; a slight increase is vis-
ible as the polygons become more circuld, (=), but
these variations are much smaller than the statistical error A systematic study of the permeability of fracture net-
bars. Furthermore, the permeabilities for the random polyworks has been initiated in this work. It might be more use-
gons are quasi-identical to those for the regular ones. On thiell to emphasize here the various points that still deserve
other hand, the permeabilities of the networks of rectanglefurther studies.
are significantly larger than the values for square fractures if The first one is the practical limitation of the triangulation
f=4. It was checkedsee Fig. 6 that this does not result process to a density’ ~10. The causes of this restriction
from the triangulation coarseness, as could have been sushould be found in order to increase the range of our com-
pected sincedy, is commensurable with the smaller side of putations to larger densities. The interest of such an exten-

V. CONCLUDING REMARKS

the most slender rectangles. sion lies mostly in the validation or lack thereof of the
It is difficult to elaborate much further on these data forasymptotic regime34).
networks near the percolation threshold. Althoyghshould Second, the numerical study of more complex structures

not depend on the polygon shape and was actually found iahould be done. The important practical case of polydisperse
the narrow range 2.22p.<2.30 by Huseby, Thovert, and fractures should be addressed. Probably still more important,
Adler [11] for most polygons in Fig. 1B) (except for the ~many field works as discussed by Sahif@#,14 indicate
most anisotropic rectangles, which were not investigated that the fracture network of a rock may be fractal; this is
the finite-size effects could be shape dependent and affegpnfirmed by numerical simulations of rock fracturation;
differently the various networks. hence the investigations of the present tool should be ex-
The data forp’ =4 in Fig. 15b) are less sensitive to this tended as well in this direction.
artifact. Indeed, the permeabilities for regular and random Finally, the program has been devised to be able to cope
polygons are all identical within=5%. However, the rect- With any fracture network. A direct comparison between
angles still yield much larger permeabilities. It was checkedsome experimental data with a well-characterized fracture
again for the rectangles that the triangulation coarseness Retwork and the output of the tool presented here would be
not responsible for the differend€ig. 6). This discrepancy ©f a very high interest.
is probably due to the definition of the characteristic length
scale used in Eq15) to normalize the permeability. While
is obviously an adequate choice for regular polygons, one
may question its relevance for slender rectangles. Most of the computations were performed at CNUSC
Several other length scales may be used inste&® ®he  (subsidized by the MENESRwhose support is gratefully
most obvious ones ar(eAp>1’2 and VX2, The former is sug- acknowledged.
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