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Models of stress fluctuations in granular media
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~Received 19 November 1997!

We investigate in detail two models describing how stresses propagate and fluctuate in granular media. The
first one is a scalar model where only the vertical component of the stress tensor is considered. In the
continuum limit, this model is equivalent to adiffusion equation~where the role of time is played by the
vertical coordinate! plus a randomly varying convection term. We calculate the response and correlation
function of this model and discuss several properties, in particular related to the stress distribution function. We
then turn to the tensorial model, where the basic starting point is a wave equation that, in the absence of
disorder, leads to a raylike propagation of stress. In the presence of disorder, the rays acquire a diffusive width
and the angle of propagation is shifted. A striking feature is that the response function becomes negative, which
suggests that the contact network is mechanically unstable to very weak perturbations. The stress correlation
function reveals characteristic features related to the raylike propagation, which are absent in the scalar
description. Our analytical calculations are confirmed and extended by a numerical analysis of the stochastic
wave equation.@S1063-651X~98!07004-4#

PACS number~s!: 81.05.Rm, 46.10.1z, 05.40.1j, 83.70.Fn
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I. INTRODUCTION

Granular media are materials where stress fluctuations
large, even on scales much larger than the grain size. Re
edly pouring the very same amount of powder in a silo
sults in fluctuations of the weight supported by the bott
plate of 20% or more@1,2#. This weight furthermore change
very abruptly when temperature changes by only a few
grees Celsius, which induces only very small changes of
size of each grain@2,3#.

More quantitative experiments were recently perform
by Liu et al. @4#, Brockbank, Huntley, and Ball@5#, and
Mueth, Jaeger, and Nagel@6#, where the local fluctuations o
the normal stress deep inside a silo or at the base of a s
pile were measured~see also@7# and for early qualitative
experiments@8#!. It was found that the stress probability di
tribution is rather broad~i.e., the relative fluctuations are o
order one!, decaying exponentially for large stresses.
simple ‘‘scalar’’ model for stress propagation was introduc
and studied in detail@4,9#, which predicts a stress probabilit
distribution in good agreement with experimental~and nu-
merical! data. However, this model considers only theverti-
cal normal component of the stress tensor and discards
the other components: In this sense the model is scalar.

A fully ‘‘tensorial’’ model for stress propagation in ho
mogeneous granular media was proposed in@10–12# to ac-
count for the pressure ‘‘dip’’ that is observed experimenta
below the apex of conical sandpiles. The most striking f
ture of this model is that the stress propagation equation
wave equation, with the vertical axis playing the role of time
Correspondingly, the stress propagates~in two dimensions;
see@10#! along two rays, which makes a certain angle w
the vertical axis~the ‘‘light cone’’!. This must be contraste
with the scalar model, where stresses travel essentially
571063-651X/98/57~4!/4441~17!/$15.00
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tically, which predicts a central pressure ‘‘hump’’~rather
than a dip!.

It is thus a priori not obvious that the scalar model is
suitable starting point for the description of fluctuation
Conversely, the influence of local randomness within the t
sorial model was not yet investigated and is very interest
per se. In particular, it is important to know if and how th
idea of a light cone survives in the presence of disorder
how the stress fluctuations develop.

The aim of the present paper is to calculate analytica
~in two dimensions! the average response function~Green’s
function! and the two-point correlation function for the ten
sorial model in the presence of disorder and to compare
results with those obtained within a scalar description. W
find that the cone survives at small disorder~although the
cone angle is shifted and acquires a nonzero width, which
compute!. More surprisingly, the Green’s function take
negative values, a feature that we checked numericall
which we discuss in detail in terms of the essential ‘‘frag
ity’’ of the contact network.~That the Green’s function can
take negative values in the presence of inhomogeneities
already noticed within the fixed principal axis~FPA! model
in @12#.! We show that the two-point correlation functio
keeps a signature of this conelike propagation. For large
order, however, the theory suggests that the structure of
large-scale equations could change drastically, from ahyper-
bolic wave equation to anelliptic equation, akin to~but dis-
tinct from! those appearing in elasticity theory. The interpr
tation of the equations, however, suggests that by the t
this happens, the pile is unstable to any perturbations
spontaneously rearranges.

The tensorial stress probability distribution is investigat
numerically, with certain results that are close to those of
scalar model. We explain this by showing that a special c
4441 © 1998 The American Physical Society
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4442 57CLAUDIN, BOUCHAUD, CATES, AND WITTMER
of the tensorial model actually reduces to the superposi
of two independent scalar models.

This paper is constructed as follows. In Sec. II we revi
the properties of the scalar model, including results that
peared in the literature in very different contexts~scalar dif-
fusion in turbulence and localization!. In Sec. III the random
wave equation for the tensorial case is motivated by a mic
scopic model and simulations and studied using perturba
theory in the strength of the disorder. We discuss how
line shape of the response function distorts from twod peaks
to ~eventually! one broad peak as disorder increases. So
generalizations of the random wave equation are consid
in Sec. IV. In Sec. V we present numerical results for t
stress distribution function and compare them with the p
dictions of the scalar model and also of direct simulations
sphere packings@13,14#. We discuss a limit where the tw
models can be quantitatively compared. Finally, in Sec. V
summary of the most interesting results is given, with s
gestions of future experiments and open questions.

II. THE SCALAR MODEL

A. The discrete version

1. Definition

The main assumption of the scalar model is that only
vertical normal component of the stress tensorw5szz ~the
‘‘weight’’ ! needs to be considered. If the grains reside on
nodes of a two-dimensional lattice~see Fig. 1!, the simplest
model for weight propagation down the pile is

w~ i , j !5wg1q1~ i 21,j 21!w~ i 21,j 21!

1q2~ i 11,j 21!w~ i 11,j 21!, ~1!

wherewg is the weight of each grain andq6( i , j ) are ‘‘trans-
mission’’ coefficients giving the fraction of weight that th
grain (i , j ) transmits to its right~left! neighbor immediately
below. Mass conservation imposes thatq1( i , j )1q2( i , j )
51 for all i , j . The case of an ordered pile of identical grai
would correspond toq65 1

2 . The authors of@4,9# proposed
to take into account~in a phenomenological way! the local
disorder in packing, grain sizes, shapes, etc., by choo
q1( i , j ) to be independent random numbers~except for the
above constraint!, for example, uniformly distributed be
tween 0 and 1. This model, which we shall call the Liuet al.

FIG. 1. The Liuet al. model with two neighbors.q6’s are in-
dependent random variables, except for the weight conserva
constraintq1( i , j )1q2( i , j )51.
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model~or q model!, was originally written with an arbitrary
number N of downward neighbors~N52 in the example
above! and can thus be~in principle! generalized to three
dimensions.

2. Results on the stress distribution: Universality?

The case of a uniform distribution of theq’s is interesting
because it leads to an exact solution for the local wei
distributionP(w). In this limit, the correlation between two
neighboring sites at the same altitudej is zero for all j . For
more generalq distributions, this is true only whenj is large
~see below!. ThusP(w) obeys the mean-field equation

Pj 11~w!5E
0

1

dq1dq2r~q1!r~q2!E
0

`

dw1dw2

3Pj~w1!Pj~w2!d„w2~w1q11w2q21w0!…,

~2!

wherer(q) is the distribution ofq, here taken to ber(q)
51. In the limit j→`, the stationary distributionP* of this
equation is given by

P* ~w!5
w

W2 expS 2
w

WD , ~3!

where 2W5 jwg is the average weight. ForNÞ2, the distri-
bution is instead aG distribution of parameterN; its small-w
behavior iswN21, while the large-w tail is exponential. Liu
et al. @4,9# have argued that this behavior is generic: F
example, the condition for the local weightw to be small is
that all theN q’s reaching this site are themselves small; t
phase-space volume for this is proportional towN21 if the
distributionr(q) is regular aroundq50. However, if instead
r(q)}qg21 whenq is small, one expectsP* (w) to behave
for small w asw2a, with a512Ng,0. Similarly, the ex-
ponential tail at largew is sensitive to the behavior ofr(q)
aroundq51. In particular, if the maximum value ofq is
qM,1, one can easily show by taking the Laplace transfo
of Eq. ~2! that P* (w) decaysfaster than an exponential:

ln P* ~w! }
w→`

2wb with b5
ln N

ln~NqM !
. ~4!

~Notice thatb51 wheneverqM51 and thatb→` when
qM51/N.!

In this sense, the exponential tail ofP* (w) is not univer-
sal: It requires the possibility that one of theq can be arbi-
trarily close to 1. This implies that all otherq’s originating
from that point are close to zero, i.e., that there is a nonz
probability density that one grain is entirely bearing on o
of its downward neighbors.

Note that ifq can only take the values 0 or 1, the distr
bution P(w) becomes a power lawP* (w)}w2a, with
a54/3 for N52 @9#. This power law is, however, truncate
for largew as soon as values forq different from 0 and 1 are
allowed.

How well does the simple distribution~3! compare to ex-
periments and numerical simulations? The exponential de
for large w appears in some cases to overestimate both

on
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57 4443MODELS OF STRESS FLUCTUATIONS IN GRANULAR MEDIA
experimental@5# and numerical tail@4# ~see also Sec. V!,
suggesting a value ofb somewhat larger than 1. On the oth
hand, the probability to observe very smallw is very under-
estimated by Eq.~3!: See@5,13,6# and Sec. V. This might be
due to the fact thatarching effects are absent in this scal
model. A generalization of the Liuet al. model allowing for
arching was suggested in@3#, which generates sites wher
q151 andq250 ~or vice versa!. This indeed leads to muc
higher probability density for small weights,P* (w)}w2a,
as argued in@9#; see also@15#.

B. Continuous limit of the scalar model

Let us focus on the caseN52 and definev to be such that
q6( i , j )5@16v( i , j )#/2. If v is small, the local weight is
smoothly varying and the discrete equation~1! can then be
written in the differential form

] tw1]x~vw!5r1D0]xxw, ~5!

wherex5 ia and t5 j t are the horizontal and~downward!
vertical variables corresponding to indicesi and j of Fig. 1
and a and t are of the order of the size of the grains. T
vertical coordinate has been calledt for its obvious analogy
with time in a diffusion problem.r is the density of the
material~the gravityg is taken to be equal to 1! and D0 a
‘‘diffusion’’ constant, which depends on the geometry of t
lattice on which the discrete model has been defined. F
rectangular lattice as shown in Fig. 1,D05a2/2t. More gen-
erally, the diffusion constant is of the order of magnitude
the size of the grainsa.

In this model and in the following, we shall assume th
the densityr is not fluctuating. Density fluctuations could b
easily included; it is, however, easy to understand that
resulting relative fluctuations of the weight at the bottom
the pile decrease with the height of the pileH asH21/2 and
are thus much smaller than those induced by the rando
fluctuating direction of propagation, encoded byq ~or v!,
which remain of order 1 asH→`. Two interesting quanti-
ties to compute are the average ‘‘response’’G(x,tux0 ,t0) to
a small density change at point (x0 ,t0), measured at poin
(x,t), and the correlation function of the force fie
C(x,t,x8,t8)5^w(x,t)w(x8,t8)&c ~connected part!, where
the averaging is taken over the realization of the no
v(x,t).

Equation~5! shows that the scalar model of stress pro
gation is identical to that describing tracer diffusion in
~time-dependent! flow v(x,t). This problem has been th
subject of many recent works in the context of turbulen
@16,17#; we believe that interesting qualitative analogies w
that field can be made. In particular, ‘‘intermittent’’ bunc
ing of the tracer field corresponds in the present contex
patches of large stresses, which may induce anomalous
ing for higher moments of the stress field correlation fun
tion. We refer the reader to@16,17# for further details.

1. Statistics of the noisev„x,t…

The noise termv represents the effect of local heterog
neities in the granular packing. Its mean value is taken to
zero and its correlation function is chosen for simplicity
be of the factorable form ^v(x,t)v(x8,t8)&5s2gx(x
a
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2x8)gt(t2t8), wheregx andgt are noise correlation function
along thex and t axes. We shall takegx andgt to be short
ranged~although this may not be justified; fluctuations in th
microstructure of granular media may turn out to be lon
ranged due to, e.g., the presence of long stress path
arches!, with correlation lengthsl x and l t . Our aim is to
describe the system at a scaleL much larger than both the
lattice and the correlation lengths:a,t,l x ,l t!L. This
will allow us to look for solutions in the regimek,E→0,
wherek and E are the conjugate variables forx and t, re-
spectively, in Fourier-Laplace space. However, we shall
below that the limita,t,l x ,l t→0 can be tricky and must be
treated with care: This is because the noise appears
multiplicative manner in Eq.~5!. ~In the tensorial case, the
limit l t→0 actually makes the problem trivial, for a reaso
that will become clear below.! For computational purposes
we shall often implicitly assume that the probability dist
bution of v is Gaussian; this might, however, introduce ar
facts, which we discuss.

2. Fourier transforms

The limit wherea,l x→0 is ill defined and leads to a
divergence of the perturbation theory ins for large wave
vectors k. We thus choose to regularize the problem
working within the first Brillouin zone, i.e., we keep a
wave-vector components within the intervalI5@2L,
1L#, whereL5p/a. Our Fourier conventions for a give
quantity f will then be

f ~x,t !5E
2L

L dk

2p
eikxf ~k,t !, ~6!

f ~k,t !5l x (
x52`

1`

e2 ikxf ~x,t !. ~7!

One has to be particularly careful when computing convo
tion integrals, such as*(dq/2p) f 1(q) f 2(k2q), which must
be understood with limits2L1k andL ~2L andL1k! if
k>0 (k<0). An important example, which will appear i
the response function calculations, is

E
q,k2qPI

dq

2p
q5

Lk

2p
1O~k2!. ~8!

Let us then take the Fourier transform of Eq.~5! alongx, to
obtain

~] t1D0k2!wk5rk1 ikE dq

2p
wqvk2q . ~9!

Our aim is to calculate, in the small-k limit, the average
response~or Green’s! function G(k,t2t8), defined as the
expectation value of the functional derivativ
^dw(k,t)/dr(k,t8)&, and the two-point correlation function
of w, ^w(k,t)w(k8,t)&[2pd(k1k8)C(k,t).
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3. The noiseless Green’s function

The noiseless~bare! Green’s function~or ‘‘propagator’’!
G0 is the solution of the equation where the ‘‘velocity’’ com
ponents vq are identically zero, (] t1D0k2)G0(k,t2t8)
5d(t2t8), which is

G0~k,t2t8!5u~ t2t8!e2D0k2~ t2t8! ~10!

or, in real space,

G0~x,t2t8!5
u~ t2t8!

A4pD0~ t2t8!
e2x2/4D0~ t2t8!. ~11!

4. Ambiguities due to multiplicative noise: Ito vs Stratonovitch

In Eq. ~9! we have omitted to specify the dependence
the variablet. There is actually an ambiguity in the produ
term wqvk2q . In the discrete Liuet al. model @4#, the q6’s
emitted from a given site are independent of the value of
weight on that site. In the continuum limit, this correspon
to choosingwq(t) to be independent ofvk2q(t) or that the
v ’s must be thought of as slightly posterior to thew’s @i.e.,
the product is read aswq(t20)vk2q(t10)#. In this case, the
average of Eq.~9! is trivial and coincides with the noiseles
limit; henceG5G0 . This can be understood directly on th
discrete model by noticing that the Green’s functi
G( i , j u0,0) can be expressed as a sum over paths, all sta
at site~0,0!, and ending at site (i , j ):

G~ i , j u0,0!5 (
pathsP

)
~k,l !PP

q6~k,l !, ~12!

where theq6(k,l ) are eitherq1(k,l ) or q2(k,l ), depending
on the path. Since each bondq6(k,l ) appears only once in
the product, the averaging overq is trivial and leads to

G~ i , j u0,0!5 (
pathsP

22 j[G0~ i , j u0,0!. ~13!

~Note that this argument fails for the computation of t
correlation functionC since paths can ‘‘interfere.’’ We sha
return later to this calculation.!

The above choice corresponds to Ito’s prescription in s
chastic calculus. Another choice~i.e., Stratonovitch’s pre-
scription! is possible, however, which corresponds to t
proper continuum time limit in the case where the correlat

FIG. 2. Correlation function of the noise alongt axis. The re-
sults presented below would hold for an arbitrary, symmetric, sh
range function.
n
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lengthl t is very small, but not smaller thana ~see Fig. 2!. In
this case, thew’s and thev ’s cannot be taken to be indepen
dent. This is the choice that we shall make in the followin

C. Calculation of the average response and correlation
functions

Two approaches will be presented. The first one, based
Novikov’s theorem, leads to exact~in the small-k limit ! dif-
ferential equations forG andC, which can be fully solved.
The second one is a mode-coupling approximation~MCA!,
based on a resummation of perturbation theory. It happ
that, for this particular model where the noise is Gauss
and short-range correlated in time, both approaches give
same results because perturbation theory is trivial. In ot
cases, though, where exact solutions are no longer availa
the MCA is in general very useful to obtain nonperturbati
results~see@18#!. We shall see that the effect of the noise
to widen the diffusion peak: D0 is renormalized by an ad
ditional term proportional to the variance of the noisev.

1. Novikov’s theorem: Exact equations for G

Novikov’s theorem provides the following identity, vali
if the v are Gaussian random variables:

^w~k,t !v~k8,t !&5E
0

t

dt8E dq

2p K dw~k,t !

dv~q,t8!L
3^v~q,t8!v~k8,t !&. ~14!

Such a term actually appears in Eq.~9!, after transformation
into an equation forG:

~] t1D0k2!G~k,t2t8!5d~ t2t8!2 ik
d

dr~k,t8!

3E dq

2p
^v~q,t !w~k2q,t !&.

~15!

In the limit wherel x5a→0, the noise correlation is of the
form ^v(q,t)v(q8,t8)&52ps2d(q1q8)g̃x(q)gt(t2t8),
with gt peaked int5t8 such thatf (t8)gt(t2t8). f (t)gt(t
2t8) for any functionf . In all of Sec. II we takeg̃x(q)51.
From formally integrating Eq.~9! betweent8 andt, one can
express the equal-time derivativedw/dv as

dw~k,t !

dv~k8,t8!
U

t85t20

52 ikw~k2k8,t ! ~16!

and thus obtain

~] t1D0k2!G~k,t2t8!5d~ t2t8!2s2kG~k,t2t8!

3E
0

t

dt8gt~ t2t8!E dq

2p
~k2q!.

~17!

Using the shape of the functiongt ~see Fig. 2!, the first
integral is1

2 . The second one is a convolution integral and
value isLk/2p1O(k2) @see Eq.~8!#. The final differential

t-



i
a

ve

ld

e
Ta

ly

tie

e
.
n-

.
it

,

ad.

d.

57 4445MODELS OF STRESS FLUCTUATIONS IN GRANULAR MEDIA
equation forG is then, in the small-k limit, a diffusion equa-
tion with a renormalized diffusion constant

DR5D01
s2L

4p
. ~18!

It is interesting to note that the model remains well defined
the limit where the ‘‘bare’’ diffusion constant is zero since
nonzero diffusion constant is induced by the fluctuating
locity v. This would not be true if Eq.~5! was interpreted
with the Ito convention, where the fluctuating velocity wou
not lead to any spreading of the average density.

The most important conclusion is thus that, in the pres
scalar model, stresses propagates essentially vertically:
ing l ;a, the response at depthH to a small perturbation is
confined within a distance proportional toADRH from the
vertical. SinceDR.l 2/a, ADRH is much less thanH in the
limit where H@l 2/a, i.e., when the height of the assemb
of grains is much larger than the grain size.

2. Exact equations for C

Exact equations can also be derived forC in the limit k
→0, following very similar calculations. From Eq.~9! one
can deduce the corresponding one forw(k,t)w(2k,t). Upon
averaging, Novikov’s theorem has to be used on quanti
such aŝ w(k,t)v(q,t)w(2k2q,t)&, finally leading to

~] t12DRk2!C~k,t !5s2k2E dq

2p
C~q,t !. ~19!

One can formally integrate Eq.~19!. It gives

C~k,t !5C~k,0!e22DRk2t1s2k2E
0

t

dt8e22DRk2~ t2t8!C̃~ t8!,

~20!

whereC̃(t8)5*(dk/2p)C(k,t8). Let us specify at this stag
two specific initial conditionsC(k,0) that can be of interest
We consider, for simplicity, a random packing of ‘‘table te
nis’’ balls with no mass (r50), but subject to a random
overload of zero mean (^w(x,0)w(x8,0)&5A0

2d(x2x8)) or
to a constant overload@w(x,t50)5B0#. Therefore,C(k,0)
5A0

2 in the first case andC(k,0)5B0
2d(k) in the second one

Equation~20! is then solved in two steps. We first integrate
overk and find a closed equation forC̃, which can be solved
in Laplace transform.@Note that this is an approximation
since Eq.~20! is only valid fork→0.] We callE the conju-
gate variable oft. From C̃(E), we getC̃(t) and then finally
computeC(x,t).

(a) Random overload.In the small-E ~large-t! limit, we
get C̃(E);1/AE, meaningC̃(t)5a0 /At, with

a05
DR

2D02DR

A0

A8pDR

.

It finally leads to the following expression forB(x,t)
[C(0,t)2C(x,t)5 1

2 ^@w(x,t)2w(0,t)#2&:
n

-

nt
k-

s

B~x50,t !50,

B~x@a,t !5
A0

2

A8pDRT
F12e2x2/8DRt

1
s2

2@D02DR#

3S 1

a
1

x

8DRt
e2x2/8DRtD G , ~21!

which is shown in Fig. 3.
(b) Constant overload.In the same limit, we getC̃(E)

;1/E or C̃(t)5b0 , where

b05B0
2 DR

2p@2D02DR#
.

Hence

B~x50,t !50,

B~x@a,t !5
s2B0

2

4p@2D02DR# F1

a
2

12e2x2/8DRt

A8pDRt
G , ~22!

FIG. 3. Correlation function for the case of a random overlo
B has been rescaled by the factorA0

2/@8pDRt#1/2.

FIG. 4. Correlation function for the case of a uniform overloa
B has been rescaled by the factors2B0

2/@4p(2D02DR)#.
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4446 57CLAUDIN, BOUCHAUD, CATES, AND WITTMER
which has a form similar to that above; see Fig. 4.
One could have performed the calculation with the

convention~corresponding to the Liuet al. model!. The final
results for the correlation function are actually very simi
to those above. The main point is that the correlation
rather structureless. Equation~22! shows that the correlation
function C(x.a,t) becomes zero for large times, a res
that was used to establish Eq.~2!.

3. Perturbation theory

The above method gives exact results, essentially bec
v(x,t) is short-range correlated in time:dv/dv is then only
needed at coinciding times, where it is exactly known. T
would not be true in general; furthermore, Novikov’s the
rem requiresv to be Gaussian. It is thus interesting to sho
how a systematic perturbation scheme can be made to w
by the use of diagrams to represent Eq.~9!. The MCA is then
a particular resummation scheme of this set of diagra
which was discussed in detail in@18#, which sometimes pro-
vide interesting nonperturbative results.

Equation~9! is multiplied on the left by the operatorG0
@see Eq.~10!# and then reexpressed as

w~k,t !5G0~k,t ! ^ r~k,t !2 ikG0~k,t !

^ E dq

2p
w~q,t !v~k2q,t !, ~23!

^ meaning at-convolution product. This equation can b
represented with diagrams as follows: As shown in Fig.
we represent the sourcer by a cross, the bare propagatorG0
by a plain line, and the noisev by a dashed line. The firs
term of Eq.~23!, which is the noiseless solutionw0 , is then
obtained as the juxtaposition of a plain line and a cross.
arrow flows against time~i.e., it is directed fromt to t8,t!.
The juxtaposition of two objects means at-convolution prod-
uct. By definitionw is represented by the juxtaposition of
bold line and a cross~this is consistent with the identificatio
of a bold line with the full propagatorG!. The diagrammatic
version of Eq.~23! is then

~24!

The ‘‘vertex’’ stands for2 ik*(dq/2p), the two emerging
wave vectors beingq and k2q ~node law!. One can now
iterate this equation. To second order, one obtains

FIG. 5. Definition of various diagrams.
r
s

t

se

s
-

rk

s,

,

e

~25!

The corresponding equation forG is obtained by taking the
derivatived/dr and averaging over the noisev. Since ^v&
50, the second diagram vanishes. We represent the n
correlator by a dashed line with a centered circle~see Fig. 5!
and obtain

~26!

or G5G01G0SG0 , whereS is called the self-energy~see
Fig. 5!. Actually, one can resum exactly all the diagram
corresponding toG0SG0 and G0SG0SG0 to obtain the
Dyson equationG5G01G0SG.

The MCA amounts to replacing the bare propagator in
diagram forS by the full propagatorG. ~Note that the MCA
is of course exact to second order in perturbation theory!. We
then obtain a self-consistent equation forG:

~27!

Diagrams like the one drawn in Fig. 6 are now also includ

The self-energySMCA can be easily computed; we get

SMCA~k,t2t8!5s2kE dq

2p
qGMCA~q,t2t8!

3gt~ t2t8!. ~28!

In the special case wheregt is peaked aroundt5t8, we can
make the approximationG(q,t2t8)gt(t2t8).G(q,0)gt(t
2t8)5gt(t2t8) @since by definitionG(q,0)51]. We thus
get, using Eq. ~8!, SMCA(k,t2t8)52s2Lk2gt(t
2t8)/(2p). The expression forGMCA

21 is thus identical to the
one obtained with the exact approach, as can be see
comparing Eq.~17! andG0

21G511SG.
Note that one can also calculate the influence of a nonz

kurtosis k of the noisev, which is its normalized fourth
cumulant. In this case, four dashed lines~corresponding tov!
can be merged, leading to a contribution toD, of the order of
ks4.

Let us turn now to the calculation of the correlation fun
tion ^w(k,t)w(k8,t)&[2pd(k1k8)C(k,t). The basic object

FIG. 6. Example of a diagram included in the MCA.
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57 4447MODELS OF STRESS FLUCTUATIONS IN GRANULAR MEDIA
that corresponds to the self-energy is now the ‘‘renormali
source’’ spectrumS(k,t,t8) defined asC5G^ S^ G. The
quantityS is drawn as a filled square.S0 ~empty square! is
the correlation function source term, which encodes the
tial conditions~see below!. The two first terms of the expan
sion are

~29!

Here again we transform the perturbative expansion int
closed self-consistent equation forS by replacingG0 andS0
in Eq. ~29! by G andS, respectively. The final equation fo
C reads

~30!

or, written explicitly,

C~k,t !5E
0

t

dt8E
0

t

dt9G~k,t2t8!S0~k,t8,t9!G~2k,t2t9!

1s2k2E
0

t

dt8E
0

t

dt9G~k,t2t8!

3E dq

2p
C~q,t8,t9!gt~ t82t9!G~2k,t2t9!.

~31!

If we choose the source term to be an overload localize
t50, we get S05^r(k,t8)r(2k,t9)&5C(k,0)d(t8)d(t9).
Using the fact thatgt is peaked aroundt85t9, we again
recover exactly Eq.~19!, showing again that the MCA is
exact~in the limit k→0) in this special case.

D. Further results: The unaveraged response function

The averageGreen’s function described above is thus
Gaussian of zero mean and of width growing asADRt. How-
ever, for agiven environment, the Green’s function is no
Gaussian, presenting sample-dependent peaks~see Fig. 7!.
Note, however that, contrarily to what we shall find belo
for the tensorial case, the unaveraged Green’s func
remains everywhere positive. Furthermore, the quan
@x#(t), defined as the displacement of the centroid of
weight distribution beneath a point source in a given reali
tion,

@x#~ t !5E
2`

1`

dx8x8
dw~x8,t !

dr~0,0!
, ~32!

typically grows witht. More precisely, one can show that

^@x#~ t !&50 but ^@x#2~ t !&}t1/2, ~33!
d

i-

a

at

n
y
e
-

meaning that the ‘‘center’’ of Green’s function wande
away from the origin in a subdiffusive fashion, ast1/4. This
behavior has actually been obtained in an another cont
that of a quantum particle interacting with a time-depend
random environment. Physically, the Liuet al. model can
indeed be seen as a collection of time-dependent scatte
converting incoming waves into outgoing waves with a c
tain partition factorq1512q2 ~see the discussion in@19#!.
In two dimensions~plus time!, the wandering of the packe
center@x#(t) is only logarithmic~and disappears in highe
dimensions@19#!.

E. The scalar model with bias: Edwards’s picture of arches

Up to now, we have considered the mean value ofv to be
zero, which reflects the fact that there is no preferred dir
tion for stress propagation. In some cases, however, this
not be true. Consider, for example, a sandpile built from
point source: The history of the grains will certainly inprint
certain oriented ‘‘texture’’ to the contact network, which ca
be modeled, within the present scalar model, as a non
value of^v&, the sign of which depends on which side of th
pile is chosen. Let us callV0 the average value ofv on the
x>0 side of the pile and2V0 on the other side. The differ
ential equation describing propagation now reads, in the
sence of disorder,

] tw1]x@V0sgn~x!w#5r1D0]xxw. ~34!

~An extra noise can be handled as above.! For a constant
densityr5r0 and forD050, the weight distribution is then

w~x,t !5
r0x

V0
for 0<x<V0t,

w~x,t !5
r0~ct2x!

c2V0
for V0t<x<ct, ~35!

FIG. 7. Averaged~bold line! and unaveraged~thin line! re-
sponse functions of the scalar model, obtained numerically by si
lating the Liu et al. model. The average is performed over 50
samples. One can notice how ‘‘non-self-averaging’’ the respo
function is, i.e., how different it is for a given environment as co
pared to the average. Note also that the unaveraged Green’s
tion is everywhere positive.
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4448 57CLAUDIN, BOUCHAUD, CATES, AND WITTMER
wherec51/tan(f) ~f is the angle made by the slope of th
pile with the horizontalx axis!. For D0Þ0, the above solu-
tion is smoothed~see Fig. 8!. In any case, the local weigh
reaches aminimumaroundx50. Equation~34! gives a pre-
cise mathematical content to Edwards’ model of arching
sandpiles@20#, as the physical mechanism leading to a dip
the pressure distribution@21#. As discussed elsewher
@11,12#, this can be taken much further within a tensor
framework~see Sec. III!.

The scaling of the stress at the center of the pilew(0,t)
can be understood simply in terms of random walks sub
to a biasV0 . The region contributing tow(0,t) is then found
to be of finite volume, independent oft, and of the order of
D0 /V0

2, as shown on the two top pictures of Fig. 8.

Equation~34! with noise can in fact be obtained natural
within an extended Liuet al. model, with an extra rule ac
counting for the fact that a grain can slide and lose con
with one of its two downward neighbors@3#. This generically
leads to arching; in the sandpile geometry and for abov
certain probability of~local! sliding, the effective velocityV0
becomes nonzero and the weight profile~35! is recovered
@3#. However, this extra sliding rule implicitly refers to th
existence of shear stresses, which are absent in the s
model but are crucial to obtain symmetry-breaking effe
modeled by a nonzeroV0 . It is thus important to conside
from the start the fact that stress has a tensorial, rather
scalar, nature. This is what we investigate in the followi
section.

III. THE TENSORIAL MODEL

A. The wave equation

It is useful to start with a simple ‘‘toy’’ model for stres
propagation, which is the analog of the model presente
Fig. 1. We now consider the case of three downward ne

FIG. 8. On the main graph the solution of Eq.~34! for V0 /c
50.4 is plotted. The dashed line is for a diffusion constantD0 ten
times smaller than the solid one. The bold line is forD050. Stress
values are rescaled by the height of the pilet. The left inset shows
thatw(0,t) scales like 1/V0

2 at smallV0 , while the right inset shows
thatw(0,t) is constant for larget. Note that for very small values o
V0 , the 1/V0

2 scaling becomes invalid for finite-size reasons.
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bors ~see Fig. 9!, for a reason that will become clear below
Each grain transmits to its downward neighbors not one,
two force components: one along the vertical axist and one
along x, which we call, respectively,Ft( i , j ) and Fx( i , j ).
~We will restrict attention, in the following to two-
dimensional piles, leaving extensions to three dimensions
further investigations.! For simplicity, we assume that th
‘‘legs’’ emerging from a given grain can only transport th
vector component of the force parallel to itself~but more
general rules could be invented!. Assuming that the transmis
sion rules are locally symmetric and that a fractionp<1 of
the vertical component travels through the middle leg,
find

Fx~ i , j !5 1
2 @Fx~ i 21,j 21!1Fx~ i 11,j 21!#

1 1
2 ~12p!tan c@Ft~ i 21,j 21!2Ft~ i 11,j 21!#,

~36!

Ft~ i , j !5w01pFt~ i , j 21!

1 1
2 ~12p!@Ft~ i 21,j 21!1Ft~ i 11,j 21!#

1
1

2 tanc
@Fx~ i 21,j 21!2Fx~ i 11,j 21!#,

~37!

wherec is the angle between grains, defined in Fig. 9. Ta
ing the continuum limit of the above equations leads to

] tFt1]xFx5r, ~38!

] tFx1]x@c0
2Ft#50, ~39!

wherec0
2[(12p)tan2 c. Eliminating ~say! Fx between the

above two equations leads to awave equationfor Ft , where
the vertical coordinatet plays the role of time andc0 is the
equivalent of the ‘‘speed of light.’’ In particular, the stres
does not propagate vertically, as it does in the scalar mo
but rather at anonzero anglew such thatc05tanw. Note that
wÞc in general~unlessp50!; the angle at which stres
propagates has nothing to do with the underlying latt
structure and can in principle be arbitrary. We chose a thr
leg model to illustrate this particular point.

The above derivation can be reformulated in terms
classical continuum mechanics as follows. Considering
stress tensor componentss i j , the equilibrium equation read

FIG. 9. Three-neighbor configuration. Each grain transmits t
force components to its downward neighbors. A fractionp of the
vertical component is transmitted through the middle leg and a f
tion (12p)/2 through each of the external legs.
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57 4449MODELS OF STRESS FLUCTUATIONS IN GRANULAR MEDIA
] ts tt1]xsxt5r, ~40!

] ts tx1]xsxx50. ~41!

Identifying the local average ofFt with s tt and that ofFx
with s tx , we see that Eqs.~38! and~39! are actually identi-
cal to Eqs.~40! and ~41! provided s tx5sxt ~which corre-
sponds to the absence of local torque! andsxx5c0

2s tt . This
relation between normal stresses was postulated in@10# as
the simplest constitutive relation obeying the correct symm
tries that enables one to lift the indeterminacy of Eqs.~40!
and ~41!; it can be seen as alocal Janssen approximation
@22#. c0

2 should encode the relevant information of the loc
geometry of the packing, friction, shape of grains, etc., a
should thus depend on the construction history of the gr
assembly. For example, in the sandpile geometryc0

2 is re-
lated to the angle of frictionf of the material by the relation
c0

251/(112 tan2 f) @10#. This approach can be generalize
to take into account a local asymmetry in the packing textu
~which one expects, for example, in the case of a sandp
constructed from a point source! by allowingc0

2 to depend on
sxt /s tt @10–12#. If this dependence is linear, this is equiva
lent to a coordinate rotation inx,t @12#.

B. A stochastic wave equation

The starting point of the scalar model is thus essentia
the diffusion equation, which one perturbs by adding a ra
dom convective term. As the preceding subsection shows
more natural starting point is the wave equation. The t
model presented above, however, suggests that, provided
cal conservation laws are obeyed~i.e., those arising from
mechanical equilibrium!, many local rules for force trans-
mission are compatible with the contact conditions@14#. It is
thus natural to encode the disorder of the packing or mo
the indeterminacy of the contact conditions as a random
varying speed of lightc0 ~reflecting the fact that, for ex-
ample, the parameterp can vary from grain to grain!. Two
recent numerical simulations@14,23# actually suggest that
this should be a good first approximation. In Fig. 10 we sho

FIG. 10. Relation betweensxx ands tt from a microscopic nu-
merical simulation of grains forming a heap in two dimensions@23#.
These data are compatible with a stochastic constitutive relat
sxx5c0

2@11v(x,t)#s tt , wherev is the random noise.
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a scatter plot ofsxx versuss tt , measured as averages of th
local forces over a small box centered around different po
within a heap~from Ref.@23#!. This plot clearly shows that a
linear relation is indeed acceptable, leading in this case
c0

2;0.5660.03@23#. There are, however, significant fluctua
tions, reflecting some disorder in the packing, which are f
thermore uncorrelated from point to point. The histogram
v defined as

sxx5c0
2@11v~x,t !#s tt , ^v~x,t !&50, ~42!

is found to be roughly Gaussian, of relative widths;0.3.
This corresponds to a locally varying angle of stress pro
gation, which varies around the mean angle 54° by
amount;10.8°.

Motivated by the simulations results, we now investiga
a model~called the random symmetric model in the follow
ing! with the inhomogeneous constitutive relation~42!,
which leads to the following stochastic wave equation
stress propagation:

] tts tt5]xx$c0
2@11v~x,t !#s tt%, ~43!

where the random noisev is assumed to be correlated a
^v(x,t)v(x8,t8)&5s2gx(x2x8)gt(t2t8). The correlation
lengthsl x andl t are again kept finite and of the same ord
of magnitude. In a Fourier transform, this relation can a
be written ^v(k,t)v(k8,t8)&52ps2d(k1k8)g̃x(k)gt(t
2t8). It turns out that the final shape of the averaged
sponse function depends on the sign ofg̃x(L). In Sec. II we
implicitly made the choiceg̃x(k)51, which corresponds to
gx(x50)51/a and gx(x.0)50. We will keep this choice
for the following calculations, but note that another form f
gx could lead to sgn@g̃x(L)#521.

In the following,s tt will be again denoted byw. After a
Fourier transform along thex axis, we get, from Eq.~43!,

~] tt1c0
2k2!w5] tr2c0

2k2E dq

2p
w~q,t !v~k2q,t !.

~44!

Note that the ‘‘source’’ term of this equation is now] tr
rather thanr itself. Therefore, if we callG the Green’s func-
tion ~or propagator! of this equationG5^dw/d] tr&; the re-
sponse functionR5^dw/dr& of our system is now actually
the time derivative ofG: R(k,t)5] tG(k,t).

The noiseless propagatorG0 is the solution of the ordi-
nary wave equation (] tt1c0

2k2)G0(k,t2t8)5d(t2t8) and
can be easily calculated:

G0~k,t !5
1

2ic0k
@eic0kt2e2 ic0kt#u~ t !, ~45!

which leads to the response functionR0 ,

R0~x,t !5 1
2 @d~x2c0t !1d~x1c0t !#u~ t !. ~46!

Equation~46! sums up one of the major results of@10# ~see
also @11–12#!: In two dimensions, stress propagates alo
two characteristic rays.@Note that the corresponding re
sponse function in three dimensions~where a secondary clo
sure is needed, for instance,sxx5syy , y being the third
n
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4450 57CLAUDIN, BOUCHAUD, CATES, AND WITTMER
coordinate! reads R0(x,t)}(c0
2t22x2)21/2 for uxu

,c0t and zero otherwise@10##. A relevant question is now to
ask how these rays survive in the presence of disorder.
will show that for weak disorder, thed peaks acquire a finite
~diffusive! width and that the speed of light is renormaliz
to a lower value. Not surprisingly, the effect of disorder c
be described by an ‘‘optical index’’n.1. For a strong dis-
order, however, we find~within a Gaussian approximatio
for the noisev! that the speed of light vanishes and th
becomes imaginary. The ‘‘propagative’’ nature of the stre
transmission disappears and the system behaves more li
elastic body, in a sense clarified below.

C. Calculation of the average response function

One can again use Novikov’s theorem in the present c
if the noise is Gaussian and short-range correlated in ti
However, the same results are again obtained within the
grammatic approach explained in Sec. II, which can be ea
transposed to the present case, and is more general.
propagatorG is a now represented as a line, the source] tr a
cross and the vertex meaning2c0

2k2*(dq/2p). Within the
MCA, the self-consistent equation@analogous to Eq.~27! in
the scalar case# is

~] tt1c0
2k2!H~k,t !5d~ t !1E

0

t

dt8SMCA~k,t8!H~k,t2t8!,

~47!

where H is defined byG(k,t)5H(k,t)u(t) and the self-
energySMCA is given as

SMCA~k,t2t8!5c0
4s2k2E dq

2p
q2gt~ t2t8!

3g̃x~k2q!H~q,t2t8!. ~48!

Equation~47! can be solved using a standard Laplace tra
form along thet axis ~E is the Laplace variable!. Using the
fact that H(k,t)5t in the limit wheret→0, we find, for
small k,E ~corresponding to scalesL such thatl x ,l t!L!,
H21(k,E)5E21bE1cR

2k2, where

cR
2~k!5c0

22
c0

4s2L3l t

12p S 12
3uku
2L D1O~k2!, ~49!

b~k!5
c0

4s2k2L3l t
2

18p
1O~k3!. ~50!

We notice here that in the limitl t→0, the effect of the
randomness completely disappears, as in the scalar m
with the Ito convention.@Technically, this is due to the fac
that G(k,t50)[0 in the present problem.# In order to cal-
culate the inverse Laplace transform, we need to know
roots of the equationH21(k,E)50. This leads to severa
phases, depending on the strength of the disorder.

1. The weak-disorder limit

For weak disorder,cR
2(k) is always positive. We can the

definecR5cR(k50). As we will show now,cR is the shifted
cone angle along which stress propagates asymptoticallycR
e
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se
e.
a-
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e

is a decreasing function ofs, meaning that the peaks of th
response function get closer together as the disorder
creases.@As a technical remark, let us note that ifgt5gx , the
problem is symmetric in the changex→t, c0

2(x,t)
→1/c0

2(x,t). It thus looks as if the cone should both narro
or widen, depending on the arbitrary choice ofx andt. There
is, however, no contradiction with the above calculati
since we assumed thatv has zero mean, while 1/(11v)
21 has a positive mean value, of orders2.# For a critical
values5sc , cR vanishes and becomes imaginary for stro
ger disorder. Forl t5l x51 andc0

250.6 ~corresponding to
f530°!, one findssc.1.42.

In the limit of larget, the propagator reads

G~k,t !5
1

cRk
sin@cRkt~11auku!#e2gk2tu~ t !, ~51!

where the following constants have been introduced@note
that the sign ofa is dictated by the sign ofg̃x(L)#:

a5
3

4L S c0
2

cR
221D , ~52!

g5
b~k!

2k2 5
s2L3l t

2

36p
. ~53!

From Eq.~51! the response functionR, in the limit of small
k and larget, is given by

R~k,t !5cos@cRkt~11auku!#e2gk2tu~ t ! ~54!

or in real space

R~x,t !5
1

2A4puĝu~ t !
ReH e2j1

2 /b

Ab
F12FS 2 i

j1

Ab
D G

1Abe2bj2
2
@12F~2 iAbj2!#J , ~55!

where the scaling variablesj6 , measuring distances relativ
to the two peaks, are defined by

j65
x6cRt

A4uĝut
~56!

and whereĝ5g2 icRa and b5ei argĝ. F is the standard
error function. Figure 11 showsR as given by expression
~55!. Interestingly, this propagator not only has a finite d
fusive width proportional toAt, but is also asymmetric
around its maxima. Surprisingly, and in sharp contrast to
scalar case discussed above, the response function bec
negativein certain intervals~although its integral is of course
equal to one because of weight conservation!. This means
that pushing on a given point actually reduces the downw
pressure on certain points. This can be interpreted as s
kind of arching: Increasing the shear stress does affect
propagation of the vertical stress and may indeed lead
reduction in its local value that is redistributed elsewhere.
we shall see in Sec. V, the unaveraged response func
indeed takes negative~and rather large! values. This is a very
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57 4451MODELS OF STRESS FLUCTUATIONS IN GRANULAR MEDIA
significant result since it suggests that granular mater
may be susceptible to rearrangement under extremely w
external perturbations. Suppose indeed that as a result o
perturbation a grain receives a negative force larger than
preexisting vertical pressure. This grain will then move an
local rearrangement of contacts will occur, inducing a var
tion of c0(x,t) as to reduce the cause of the instability. Th
the stochastic wave equation implicitly demands rules si
lar to those introduced in@3# to describe extreme sensitivit
to external perturbations in silos. The present model, wh
is purely static, does not say what to do when a local re
rangement occurs, but certainly suggests that small pertu
tions will induce such rearrangements.

It is interesting to note that this response function w
numerically measured in Ref.@14#; its shape is compatible
with the above expression; in particular, the two peaks w
found to be asymmetric with a longer ‘‘tail’’ extending in
ward, as we obtain here. Note, however, that forg̃x(L),0,
the shape of the peaks is reversed: The small dips are loc
inside the peaks and the longer tail extends outward. Th
actually what we obtain numerically in Sec. V.

2. Shear response function

Equation~40! provides a straightforward way to calcula
the shear response functionRs in terms ofR. Indeed, one has
ikRs(k,t)5d(t)2] tR(k,t). We thus get, in the limit of
small k and larget,

Rs~k,t !52 icRsin@cRkt~11auku!#e2gk2tu~ t !, ~57!

This shear response function is very similar toR, except that
it is, as expected, an odd function ofx.

3. Effective large-scale equations

It is interesting to know of which differential equation
the response functionsR andRs are solutions. These effec

FIG. 11. Response function for weak disorder (s/sc;0.13).
The two curves have been rescaled by the factor 2@4pug̃ut#1/2. The
main graph shows the general double-peaked shape of the res
of the system when subjected to a peaked overload atx50, t50.
The inset gives details the right-hand peak as a function of
scaling variablej2 . Note the asymmetry@for g̃x(L).0#, compat-
ible with the results found in@14#. Note also that the curve become
negative aroundj252.
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tive equations can be interpreted as a coarse-grained~hydro-
dynamical! description of the propagation of a stress pert
bation, which takes into account the average effect of
local disorder. One problem, however, comes from the pr
ence of the dispersion termauku, which corresponds to a
nonlocal operator in real space. We thus neglect this term
the following discussion, but one should keep in mind th
the effective equation are actually nonlocal. In any case,
main features of the response functions@peaks centered
around x56cRt (cR,c0) with a diffusive width propor-
tional to At# are not lost when settinga50 ~except for the
fact that the response function can become negative, whic
related toaÞ0!. Effective equations can then be written
the large-t limit as

] t^ds tt&5dr2]x^dsxt&, ~58!

] t^dsxt&52cR
2]x^ds tt&12g]xx^dsxt&. ~59!

That disorder generates the diffusion terms 2g]xx^dsxt& is
rather intuitive and had been guessed in@10#. This term can
be seen as the first term of a gradient expansion of the c
stitutive equations, which have the correct symmetry, i.e

^dsxx&5cR
2^ds tt&2g]x^dsxt&, ~60!

^ds tx&5^dsxt&. ~61!

Equation~61! is imposed by the absence of local torque.
We have thus shown that the introduction of a small d

order in the local direction of propagation does not chan
radically the nature of stress propagation on large len
scales, although the peaks in the response function acqu
diffusive width. These peaks acquire a width of the order
AgH ~whereH is the height of the pile! and are thus well
separated in the limit whereH@g. As we shall see now, this
is no longer true if the disorder becomes strong.

4. Critical disorder: The wave-diffusion transition

When the disorder is so strong thatcR just vanishes, the
roots of H21(k,E)50 change nature and so does the
sponse functionR. The two peaks of the previous expressi
for R merge together, while the width becomes anomalou
large~proportional tot2/3!. In the asymptotic, large-t regime
we obtain

R~k,t !5u~ t !cos@luku3/2t#e2gk2t, ~62!

where the new constantl is defined byl5c0A3/2L andg
5c0

2l t/3. The physical response functionR is plotted in Fig.
12, for different values oft, as a function of the scaling
variable

j5
x

lt2/3. ~63!

On the scalet2/3, the double-peak structure ofR is still vis-
ible. However, note that the terme2gk2t cannot be neglected
even for larget; this means that the response function
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never really a function ofj only, as is clear from Fig. 12
Note that the response function again becomes negative
some values ofj.

5. Strong disorder: The pseudoelastic regime

For larger disorder still, one finds, within the MC
~which is exact for a Gaussian, uncorrelated noise!, that the
renormalized value ofc0

2, cR
2 becomes negative. Upon a re

caling of x as x̂5x/ icR , the effective equation on̂ds tt&
then becomes, on large length scales, Poisson’s equatio

¹2^ds tt&5] t^dr&, ~64!

which means that the stress propagation becomes some
similar to that in an elastic body, where stresses obey
elliptic equation of similar type@24#. In particular, the cone
structure of stress propagation, which is associated with
underlying, hyperbolic, wave equation finally disappears;
average response to a localized perturbation becomes a b
‘‘bump’’ of width comparable to the height of the pile. It i
thus rather interesting to see that, within the MCA, there
phase transition from a wavelike mode to a diffusive mo
of stress propagation; the observation of the cone thus
quires that the packing is not too disordered. Certainly
relatively ordered packings the cone exists and has been
served experimentally@25# and numerically@14,23#. One
should, however, add some remarks.

~i! It is possible that the above transition is an artifact, d
to the fact thatv is taken to be Gaussian, which, strict
speaking, is not allowed since the local value ofc0

2 should
always be positive. One can show for some other proble
of the same type that a similar transition is artificially i
duced by the Gaussian approximation when it cannot re
exist on physical grounds. In this respect, it is interesting
note that the first non-Gaussian correction tends to incre
cR for negative kurtosis, as might be expected for a boun
v distribution.

~ii ! It should be noted that the predicted effective con
tutive relation between horizontal and vertical norm
stresses has a negative sign ifcR

2,0. This means that in-
creasing the vertical stress should reduce the horizo
stress, which is only possible if the grains move. Hence

FIG. 12. Response function for a critical disordercR50.
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region wherecR
2,0 is probably impossible to reach phys

cally: The system will rearrange spontaneously to reduce
disorder and to makecR

2>0. As already discussed above, th
disorder that results from such a rearrangement might
strongly correlated and correspond to an arching effect, a
@3#.

D. The correlation function

Returning to the weak-disorder case, the major probl
for the direct observation of the light cone is the fact that
perturbation representing the point source should be sm
~otherwise the packing structure would changes in an in
mogeneous way, thereby affecting the value ofc0

2 in a non-
uniform way!, but large enough for the response to be d
tected. A better possibility, as we show now, could be
measure the correlation function of the stress field. We ag
consider the stress correlation function in the case where
mass of each grain is small (r50) and a random or a con
stant overload is applied on the top of the silo. With the n
convention for the bar~for G! and the cross~for ] tr!, the
self-consistent diagrammatic equation~30! is valid in the
tensorial case. When writing it in its usual mathematic
form, the only difference from the scalar model is that no
the weight source term isw(k,0)d8(t), leading to
S0(k,t8,t9)5C(k,0)d8(t8)d8(t9).

The calculation of the correlation function is very simil
to the scalar case. In order to carry out the calculations to
end, we have neglected the dispersion termauku in the ex-
pressions forG and R. The analog of Eq.~20! is now, for
weak disorder,

C~k,t !5C~k,0!cos2@cRkt#e22gk2

1s2
c0

4

cR
2 k2E

0

t

dt8sin2@cRk~ t

2t8!#e22gk2~ t2t8!C~ t8!. ~65!

The functionC̃(t8)5*(dk/2p)C(k,t8) is of identical form
to the scalar case; only the expressions fora0 ~for the ran-
dom overload! andb0 ~for the constant overload! are differ-
ent:

a05
A0

2

4A2pg

1

12
s2c0

4

4pg2cR
2 arctanS pg

cR
D , ~66!

b05
B0

2

2p

1

12
s2c0

4

4pg2cR
2 arctanS pg

cR
D . ~67!

Knowing C̃(t8), C(x,t) can be computed from Eq.~65!. For
the case of a constant overload, the shape of the correla
function is very close to the one shown in Fig. 4 for th
scalar model. The case of the random overload, howeve
much more interesting since the fact that information trav
along a cone of anglecR appears clearly: The correlatio
function presentstwo peaks. The first one is of course atx
50, while the second is atx52cRt, which simply means
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57 4453MODELS OF STRESS FLUCTUATIONS IN GRANULAR MEDIA
that the two points at the bottom of the information co
share the same information coming from the apex of t
cone. ~In the absence of disorder, the correlation functi
consists of twod peaks, one atx50 and the other atx
52c0t of half the amplitude.! If we forget the second term
of the right-hand side of Eq.~65!, which is negligible com-
pared to the first one at larget, we can see that the secon
peak of the correlation function has a width proportional
At and a height proportional to 1/At. This approximation is
actually equivalent to saying that the~linear! effective equa-
tions ~58! and ~59! are sufficient to calculate the correlatio
function for large times. Other source terms, such as a fl
tuating density in the bulk of the pile, can thus be eas
accommodated by linear superposition. We have thus plo
in Fig. 13 the quantityB(x,t)5C(0,t)2C(x,t), omitting the
second term on the right-hand side of Eq.~65!. Analytically,
we have

B~x,t !5
A0

2

4A8pgt
@212e2cR

2 t/2g22e2x2/8gt

2e2~x12cRt !2/8gt2e2~x22cRt !2/8gt#. ~68!

This result is of importance since the shape of this corre
tion function clearly differs from the corresponding one
the scalar model. Measuring carefully the averaged corr
tion function of a granular system could then confirm~or
disprove! the presence of a light raylike propagation. In th
respect, it is interesting to plot the correlation function f
three-dimensional packings as well. This correlation funct
only depends on the radial distancer between the two points
as is plotted in Fig. 14. We note that, much as in two dim
sions, the correlation decreases sharply on the scale of a
grains, but increases again for distances of the order of

FIG. 13. Correlation function for the case of a random overlo
Note the presence of a peak centered atx52cRt, which reflects the
fact that information in the tensorial model is traveling along a co
of angle ofcR . In the case of a fluctuating density in the bulk of th
pile, one should integrate Eq.~68! with respect tot. The result is
plotted in the inset: The correlation reaches rapidly a first plat
and then increases again to a higher value aroundx52cRt. The
relative difference of height between the two plateaus decrease
t21/2.
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height of the pile. Note that a stress correlation function w
actually measured recently in@6# and found to be featureless
but on very short scalesx<5a, as compared to the height o
the pileH.100a. We expect the features of the correlatio
function to show up on much larger scales;2cRH.

IV. GENERALIZED WAVE EQUATIONS

It is tempting to generalize Eqs.~38! and ~39! and write
the most general linear equations governing the propaga
of the forces that are compatible with the~local! conserva-
tion rules. These equations were originally written by
Gennes@26#:

] tFt1]x@h8~x,t !Fx1m8~x,t !Ft#5r, ~69!

] tFx1]x@h~x,t !Ft1m~x,t !Fx#50. ~70!

Note that the termsm,m8 break the symmetryx→2x. This
is allowed locally and does not show up on large scale
their average is zero. Another possibility~but without noise!,
considered in detail in@12#, is thatm(x,t) changes sign with
x, i.e., m(x,t)5m sgn(x), which describes the fact that th
texture of a sandpile depends on which ‘‘side’’ of the p
one is looking at. Interestingly, Eqs.~69! and ~70! still lead
to wavelike propagation, but now the bisector of the lig
cone makes a nonzero angle with the vertical~whenm or m8
are nonzero!. In other words, Eqs.~69! and ~70! describe a
situation where not only the opening angle of the cone
vary in space, but also its average orientation.

The same analytical techniques as above can be stil
used. We shall only discuss some special cases.~To lowest
order in perturbation theory, the case where disorder
present in the four termsh,h8,m,m8 simultaneously is very
simply obtained by adding the corrections induced by e
term taken individually.!

~i! Let us first setm5m850 and consider the case whe
h8 is random andh fixed ~and equal toc0

2!. Taking
h8(x,t)5h08@11v(x,t)# with the noisev as above, one
finds that the renormalized value ofh8 is

.

e

u

as

FIG. 14. Correlation function for three-dimensional disorder
packings with a random overload, neglecting again the second
in Eq. ~65!. Note that, as in two dimensions, the correlation functi
exhibits a peak aroundr 52cRt.
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hR85h08S 12
c0

2h08s
2L3l t

12p D . ~71!

Now, on large length scales, one must recover the continu
equilibrium equations for the stress tensor@Eqs. ~40! and
~41!#. The condition of zero torque requires that the str
tensor is symmetric and thus one must sethR8[1, which
imposes a relation betweenh08 and the amplitude of the nois
s. Note that beyond a certain value ofs, this relation can no
longer be satisfied with a realh08 . This again means that th
packing is unstable mechanically and will rearrange so a
reduce the disorder.

~ii ! Another interesting class of models, which one c
call m models, is such thath5c0

2 and h851, but m(x,t)
5c0v(x,t) andm850 or vice versa. These two cases yie
identical results, namely, in the large-t limit

R~k,t !5cos~c0kt!e2gk2tu~ t !, ~72!

Rs~k,t !52 ic0 sin~c0kt!e2gk2tu~ t !, ~73!

whereg5c0
2Ls2/(8p). Note that in these cases, the respon

peaks acquire a finite diffusive width proportional toAt, but
the angle of the information cone is unaffected by the dis
der ~i.e., c0 is not renormalized!.

~iii ! Finally, there are special ‘‘symmetry’’ condition
where the equations can be decoupled and reduced to
scalar models. We will refer to this case as the ‘‘doub
scalar’’ model. This occurs whenm5m85c0v1(x,t) and
h85h/c0

2511v2(x,t) wherev1 ,v2 are two different sets o
noise. Let us defines65c0Ft6Fx , x65x7c0t, and v6

5v16v2 ; we then obtain

] ts15c0r2c0]x1
@v1s1#, ~74!

] ts25c0r2c0]x2
@v2s2#, ~75!

showing thats1 and s2 decouple, each propagating alon
two rays, of velocity6c0 , plus a small noisev6 , which, as
in the scalar case, generates a nonzero diffusion cons
The response functions fors tt andsxt are thus again mad
of two diffusive peaks of width proportional toAt, centered
at x56c0t. The interest of this double scalar limit is th
one can deduce simply the probability distribution of t
stresses from the Liuet al. model. This is developed below
Note also that, by construction, this special form of disor
does not lead to negative vertical stresses.

V. STRESS DISTRIBUTION WITHIN THE TENSORIAL
MODEL

A physically relevant question is to know how loc
stresses are distributed. We have seen above that with
scalar approach, an exponential-like distribution~possibly of
the type exp(2wb), with b>1! is expected@4,9#. One can
wonder whether this exponential distribution survives with
a tensorial description and what happens for very sm
stressesw→0. Unfortunately, the full distribution can onl
be computed analytically for the double scalar model;
numerical results have also been obtained for the rand
symmetric model and are described below.
m
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A. The double scalar limit

In the double scalar limit, the histogram of the stress d
tribution is obtained trivially by noting that sinces15w1
and s25w2 travel along different paths, they are indepe
dent random variables. Takingc0 to be unity for simplicity,
one thus finds

P~s tt!5E dw1E dw2P* ~w1!P* ~w2!dS s tt2
w11w2

2 D ,

~76!

P~sxt!5E dw1E dw2P* ~w1!P* ~w2!dS sxt2
w12w2

2 D ,

~77!

whereP* is the distribution of weight pertaining to the sc
lar case, which, as mentioned above, depends on the spe
form of the local disorder and on the discretization proc
dure. In the strong-disorder case that leads to Eq.~3! ~in the
caseN52!, we thus find thatP(s tt) is still decaying expo-
nentially ~it is actually aG distribution of parameter 2N!,
although its variance is reduced by a factor 2. ForN52, one
simply gets

P~s tt!5 8
3 s tt

3e22s tt, ~78!

P~sxt!5~ usxtu1
1
2 !e22usxtu. ~79!

The preexponential factor is therefore noticeably differe
from the prediction of Eq.~3!.

B. Numerical histograms for the random symmetric model
and open problems

The numerical analysis of Eqs.~40! and ~41!, with a sto-
chastic constitutive relationsxx5h@11v(x,t)#s tt , is actu-
ally not an easy task and the final results depend rather
sitively on the chosen discretization. For example, a na
discretization of the random wave equation leads to a n
zero diffusive width even in the absence of disorder and t
makes it hard to measure the ‘‘true’’ response functio
which should, in the absence of disorder, consist of twod
peaks. However, it should be noted that such diffusive te
~or ordera! are actually expected physically: They inde
appear when Eqs.~36! and~37! are expanded to second ord
in the lattice spacing. We shall return to this point below

The method we chose is the following. Starting wi
points regularly arranged att50, we construct the network
of characteristics~in the mathematical sense!. Associated
with each point (x,t) is a speed of light c0(x,t)
5c0A@11v(x,t)#, which determines the directions of line
that propagate the component of the stress parallel to
line, away from the point (x,t). The point (x,t) is then gen-
erated by two ‘‘parents’’ points (x8,t8) and (x9,t9) as indi-
cated in Fig. 15~a!. It sometimes happens that the cone fro
(x8,t8) is so wide that it cannot intersect with the one fro
(x9,t9) @see Fig. 15~b!#. We then imposex5x9 and t5t9.
This actually can be viewed as a local kind of arching: T
point (x9,t9) supports not only its parent neighbors but al
its ‘‘same generation’’ neighbor (x8,t8). This method has
several advantages. Its physical interpretation is very cl
Points are ‘‘grains’’ and characteristics are ‘‘stress path
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Figure 16 shows an example of the network of those pa
We can see how stress paths actually merge together
generate arching. Furthermore, there is strictly no diffus
in the absence of disorder, i.e., the Green’s function is
actly given by the sum of twod peaks.

Although the noisev has been implicitly considered to b
Gaussian throughout this paper, for numerical simplicity
chose the following algorithm for the calculation ofv(x,t).
At each site (x,t), a random angleu is uniformly chosen
between2D(p/4) andD(p/4). D controls the amplitude
of the noise. We then setc0(x,t)5c0 tan@p/41u(x,t)#; v
and u are then related by v(x,t)54 tanu(x,t)/@1
2tanu(x,t)#2. However, since the lattice itself is generated
the disorder, the precise correlation functiongx of the v ’s is
not well controlled in this numerical scheme. This is rath
important since we showed in Sec. III that the structure ofgx
influences the shape of the response function~it determines
whether the negative part of the response lies on the inw
or outside edge of the main peak!. In fact, the structure of the
peaks we obtain numerically is reversed compared to tha
our analytical calculation; see Fig. 17.

The numerical histogram of the force distribution at t
bottom of a silo computed within this numerical scheme i
mediately reveals some problems. Since the lattice beco
more distorted as time increases, the numerical histogram
vertical forces keeps broadening and never reaches a sta
ary shape. Furthermore, there is a nonzero probability of

FIG. 15. The left-hand picture~a! shows the construction rule o
the characteristics network: The ‘‘child’’ point (x,t) is located at
the intersection of the cones from the two ‘‘parent’’ points (x8,t8)
and (x9,t9). When the cones do not intersect~b!, we choose (x,t)
and (x9,t9) to be coincident.

FIG. 16. Stress path network for a periodic silo of width 100a.
This picture has been computed withD50.2. We have chosen pe
riodic lateral boundary conditions.
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serving negativeweights, which is, as we pointed out a
ready, a structural property of the wave equation w
randomness. Clearly, from a physical point of view, this
unacceptable and an additional rule should be added if
weight becomes locally negative. Some physically motiva
rules could be invented~much as in@3#!, but we do not want
to pursue this here and leave this for future investigation

In the present paper, we restrict to the case of a nonz
bare diffusion constant that, as argued above, should exis
a physical basis. Numerically, we have implemented this
two different ways.

The first one corresponds to letting the above scheme
until some heighttD and then start afresh with a regula
lattice, where the forces are obtained by averaging over
nearest-neighbors belonging to the old lattice. This averag
procedure is clearly equivalent to a diffusion term. In th
case, the numerical histograms do reach a stationary li
We note that the total probability of negative forces is
duced whentD is smaller; fortD;a, the histogram is very
nearly Gaussian around the average force; and for largertD ,
the tail of the probability distribution for large forces is o
the form exp(2wb), where 2.b.1 ~as found in @14#!,
where b is decreasing towards one astD increases, or for
increasing disorder. FortD510a and D50.1, we foundb
.1.6. The small force region has a much larger weight th
found within the scalar model, although the presence
negative forces prevents us from being conclusive in t
region.

The second scheme consists in simulating directly
three-leg model introduced above, with a randomp chosen
between 0 andpM . These scheme is thus very close in sp
to the Liuet al.model. Again, the local forces are not ever
where positive and thus the small force region cannot
reliably studied. Nevertheless, the large force region beha
much in the same way as in the Liuet al. model. In particu-
lar, as shown in Fig. 18, the tail of the distribution decays

FIG. 17. The main graph shows the response function calcul
numerically on a silo of width 100a with D50.2. The thin line is a
typical response for a given realization of the disorder. Note tha
takes negative values. The bold line has been averaged over
realization of the disorder. The inset compares the averaged
sponse peak with the one computed analytically, with a negativa.
Note the negative part, as predicted by the theoretical calculati
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4456 57CLAUDIN, BOUCHAUD, CATES, AND WITTMER
exp(2wb) with b.1 when pM51 and with b.1 when
pM,1.

More work is needed to understand the physical impli
tions of the presence of negative forces and any relation
may have to the static avalanche phenomenon@3#. However,
the above results show that the tail of the force distribution
only exponential in a strong-disorder limit, where loc
arches~i.e., one grain entirely bearing on a single downwa
neighbor! have a nonzero probability.

VI. CONCLUSION

We have investigated in great detail the role of a lo
disorder in the propagation of stresses in granular me
both within a scalar approach, where only one componen
the stress tensor is retained, and within the full tensorial
proach, using a simple linear closure scheme@11,12#, moti-
vated partly by numerical simulations, which leads to
wavelike equation for stress propagation. The main effec
this local disorder is, in addition to introducing a diffusio
like term in the effective, large-scale equations, to renorm

FIG. 18. These curves show the histograms of the vertical n
mal stressw, from which negative values have been removed. Th
all have been computed for the three-leg model, with periodic s
of width 1000a. The three bold~solid, long-dashed, and shor
dashed! lines are results from silos where the amplitude of the no
is maximum (pM51). The height of those silos is as indicated
the legend. The thin line represent a 1000a31000a silo where the
amplitude of the noise ispM50.5, where it is nearly Gaussian
Much like within the scalar model,P(w) shows an exponential tai
for large values ofw when the disorder is maximum, while it i
better fitted by a stretched exponential lnP(w);2wb with b.1,
for smaller values ofpM .
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ize the opening of the angle of the characteristic light co
for propagation of stress. Within a mode-coupling appro
mation scheme~exact for uncorrelated Gaussian noise!, one
finds that this angle vanishes for a critical disorder, beyo
which stress propagates in a fundamentally different w
~this regime might, however, not be physically relevant!. The
most striking difference between the scalar and tensorial
proach is the fact that the response function becomes n
tive in the latter case, which is a source of instability of t
packing to external perturbations. For moderate disorder,
response function takes negative values of order one nea
point where the perturbation is applied and decays with d
tance. Hence we expect this instability to occur near
point where the perturbation is applied; at least near the
per surface of a pile under gravity, the effect occurs fo
stress perturbation as small as the weight of one grain s
this is sufficient to make the total local vertical stress ne
tive.

Another difference that could be amenable to experim
tal verification is the structure of the correlation functio
which gives direct information on how the information tra
els in the medium. Because of the analogy between the sc
model and passive scalar convection in turbulence, it is
thermore possible that higher moments of the correlat
functions might reveal, in some circumstances, an interm
tent behavior. Finally, the exponential falloff of the loc
stress distribution at high values, first found within the sca
model, also holds within a tensorial approach, but requ
large disorder.

Several open points remain for further studies. First
all, we have considered only two-dimensional pac
ings. The extension to three dimensions is rather straig
forward: Although the structure of the response functio
becomes inherently more complex in this case~see@10#!, the
main features discussed here~i.e., diffusive spreading and
narrowing of the cone! are still valid.

Finally, we have not been able to determine analytica
the histogram for local stresses within the random tenso
model. The major unsolved problem is the presence of ne
tive forces, which induce a mechanical instability and im
poses that an extra rule should be added to the stoch
wave equation to determine how stress propagates. As
phasized above, we believe that this is a direct conseque
of the tensorial nature of the problem and can be interpre
as a signature of fragility of the contact network, which
generically unstable to very small perturbations@3,27#.
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