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We investigate in detail two models describing how stresses propagate and fluctuate in granular media. The
first one is a scalar model where only the vertical component of the stress tensor is considered. In the
continuum limit, this model is equivalent to diffusion equation(where the role of time is played by the
vertical coordinate plus a randomly varying convection term. We calculate the response and correlation
function of this model and discuss several properties, in particular related to the stress distribution function. We
then turn to the tensorial model, where the basic starting point is a wave equation that, in the absence of
disorder, leads to a raylike propagation of stress. In the presence of disorder, the rays acquire a diffusive width
and the angle of propagation is shifted. A striking feature is that the response function becomes negative, which
suggests that the contact network is mechanically unstable to very weak perturbations. The stress correlation
function reveals characteristic features related to the raylike propagation, which are absent in the scalar
description. Our analytical calculations are confirmed and extended by a numerical analysis of the stochastic
wave equation[S1063-651X98)07004-4

PACS numbes): 81.05.Rm, 46.10:z, 05.40:+j, 83.70.Fn

I. INTRODUCTION tically, which predicts a central pressure “humpgfather
than a dip.

Granular media are materials where stress fluctuations are It is thusa priori not obvious that the scalar model is a
large, even on scales much larger than the grain size. Repeatitable starting point for the description of fluctuations.
edly pouring the very same amount of powder in a silo re-Conversely, the influence of local randomness within the ten-
sults in fluctuations of the weight supported by the bottomsorial model was not yet investigated and is very interesting
plate of 20% or mor¢l,2]. This weight furthermore changes per se In particular, it is important to know if and how the
very abruptly when temperature changes by only a few deidea of a light cone survives in the presence of disorder and
grees Celsius, which induces only very small changes of thbow the stress fluctuations develop.
size of each graif2,3]. The aim of the present paper is to calculate analytically

More quantitative experiments were recently performedin two dimensionsthe average response functi@@reen’s
by Liu et al. [4], Brockbank, Huntley, and Ball5], and function) and the two-point correlation function for the ten-
Mueth, Jaeger, and Nagd], where the local fluctuations of sorial model in the presence of disorder and to compare the
the normal stress deep inside a silo or at the base of a santesults with those obtained within a scalar description. We
pile were measuredsee alsd 7] and for early qualitative find that the cone survives at small disordalthough the
experimentg8]). It was found that the stress probability dis- cone angle is shifted and acquires a nonzero width, which we
tribution is rather broadi.e., the relative fluctuations are of compute. More surprisingly, the Green’s function takes
order ong, decaying exponentially for large stresses. Anegative valuesa feature that we checked numerically,
simple “scalar” model for stress propagation was introducedwhich we discuss in detail in terms of the essential “fragil-
and studied in detajl4,9], which predicts a stress probability ity” of the contact network(That the Green’s function can
distribution in good agreement with experimentahd nu- take negative values in the presence of inhomogeneities was
merica) data. However, this model considers only treati- already noticed within the fixed principal axiEPA) model
cal normal component of the stress tensor and discards aih [12].) We show that the two-point correlation function
the other components: In this sense the model is scalar. keeps a signature of this conelike propagation. For large dis-

A fully “tensorial” model for stress propagation in ho- order, however, the theory suggests that the structure of the
mogeneous granular media was proposefili+12 to ac- large-scale equations could change drastically, frdmgzer-
count for the pressure “dip” that is observed experimentallybolic wave equation to aelliptic equation, akin tdbut dis-
below the apex of conical sandpiles. The most striking featinct from) those appearing in elasticity theory. The interpre-
ture of this model is that the stress propagation equation is ttion of the equations, however, suggests that by the time
wave equationwith the vertical axis playing the role of time. this happens, the pile is unstable to any perturbations and
Correspondingly, the stress propagafestwo dimensions; spontaneously rearranges.
see[10]) along two rays, which makes a certain angle with  The tensorial stress probability distribution is investigated
the vertical axigthe “light cone™). This must be contrasted numerically, with certain results that are close to those of the
with the scalar model, where stresses travel essentially vescalar model. We explain this by showing that a special case
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of the tensorial model actually reduces to the superpositiomodel(or g mode), was originally written with an arbitrary
of two independent scalar models. numberN of downward neighbordN=2 in the example
This paper is constructed as follows. In Sec. Il we reviewabove and can thus béin principle) generalized to three
the properties of the scalar model, including results that apdimensions.
peared in the literature in very different contetssalar dif-
fusion in turbulence and localizatiprin Sec. Il the random 2. Results on the stress distribution: Universality?
wave equation for the tensorial case is motivated by a micro-
scopic model and simulations and studied using perturbatioBe
theory in the strength of the disorder. We discuss how thFai
line shape of the response function distorts from tmeaks
to (eventually one broad peak as disorder increases. Som
generalizations of the random wave equation are consider
in Sec. IV. In Sec. V we present numerical results for the
stress distribution function and compare them with the pre- 1 x
dictions of the scalar model and also of direct simulations of Pj+1(w)=f dqldqu(ql)p(qz)f dw;dw,
sphere packingg13,14. We discuss a limit where the two 0 0
models can be quantitatively compared. Finally, in Sec. VI a
summary of the most interesting results is given, with sug-
gestions of future experiments and open questions. (2

The case of a uniform distribution of tlegs is interesting
cause it leads to an exact solution for the local weight
stribution P(w). In this limit, the correlation between two
neighboring sites at the same altitudes zero for allj. For

ore generat] distributions, this is true only whepis large

ee below ThusP(w) obeys the mean-field equation

X Pj(wq)Pj(wp) S(W— (W1q7+W,0,+Wo)),

where p(q) is the distribution ofg, here taken to be(q)

Il. THE SCALAR MODEL =1. In the limitj— o, the stationary distributio* of this

A. The discrete version equation is given by
1. Definition W W
* — JR—
The main assumption of the scalar model is that only the P* (w)= W2 exp( W)’ )

vertical normal component of the stress tenscr o, (the
“weight” ) needs to be considered. If the grains reside on thevhere 2V= jw, is the average weight. Fd{# 2, the distri-
nodes of a two-dimensional latti¢eee Fig. ], the simplest pution is instead & distribution of parameteX; its smallw
model for weight propagation down the pile is behavior iswN~, while the largew tail is exponential. Liu
et al. [4,9] have argued that this behavior is generic: For
example, the condition for the local weightto be small is
+q (i+1j-w(i+1j-1), (1) that all theN g's reaching th?s ;ite are thgmselvgs §mall; the
phase-space volume for this is proportionavt ™! if the
wherew, is the weight of each grain arg. (i ,j) are “trans- distributionp(q) is regular aroundj=0. However, if instead
mission” coefficients giving the fraction of weight that the p(d4)*q”~* wheng is small, one expectB* (w) to behave
grain (i,j) transmits to its rightleft) neighbor immediately ~for smallw asw™*, with «=1—-Ny<0. Similarly, the ex-
below. Mass conservation imposes that(i,j)+q-_(i,j) ponential tail at largev is sensitive to the behavior @f(q)
=1 foralli,j. The case of an ordered pile of identical grainsaroundq=1. In particular, if the maximum value of is
would correspond ta. = 3. The authors of4,9] proposed dm<1, one can easily show by taking the Laplace transform
to take into accountin a phenomenological waythe local ~ of Eq. (2) that P* (w) decaysfasterthan an exponential:
disorder in packing, grain sizes, shapes, etc., by choosing
g.(i,j) to be independent random numbéexcept for the InP*(w) = —wB with B= In N
above constraint for example, uniformly distributed be- W IN(Ngy)
tween 0 and 1. This model, which we shall call the kial.

w(i,j)=wg+q (i—-L1j—Dw(i—-1j—-1)

4

(Notice thatB=1 wheneverqy =1 and thatB—o when

v qu=1N.)
In this sense, the exponential tail Bf (W) is not univer-
sal: It requires the possibility that one of thecan be arbi-
/<1~(i+17j -1 r trarily close to 1. This implies that all othey's originating
(i =15 -1) from that point are close to zero, i.e., that there is a nonzero

~

é probability density that one grain is entirely bearing on one

o N . of its downward neighbors.
‘1-(”]/ \\‘I\Jr(l’f) Note that ifq can only take the values 0 or 1, the distri-
Q Q bution P(w) becomes a power lawP* (w)occw™ ¢, with

a=4/3 for N=2 [9]. This power law is, however, truncated

J for largew as soon as values fordifferent from 0 and 1 are
allowed.
FIG. 1. The Liuet al. model with two neighborsg..'s are in- How well does the simple distributiof8) compare to ex-

dependent random variables, except for the weight conservatioperiments and numerical simulations? The exponential decay
constraintq, (i,j)+q_(i,j)=1. for largew appears in some cases to overestimate both the



57 MODELS OF STRESS FLUCTUATIONS IN GRANULAR MEDIA 4443

experimentall5] and numerical tai[4] (see also Sec. ¥  —x')g(t—t’), whereg, andg; are noise correlation functions
suggesting a value @@ somewhat larger than 1. On the other along thex andt axes. We shall takg, andg;, to be short
hand, the probability to observe very smallis very under-  ranged(although this may not be justified; fluctuations in the
estimated by Eq(3): Seg[5,13,4 and Sec. V. This might be microstructure of granular media may turn out to be long-
due to the fact thahrching effects are absent in this scalar ranged due to, e.g., the presence of long stress paths or
model. A generalization of the Liat al. model allowing for  arche$, with correlation lengths”, and /;. Our aim is to
arching was suggested [18], which generates sites where describe the system at a scalemuch larger than both the
g.+=1 andq_=0 (or vice versa This indeed leads to much lattice and the correlation lengthsa,r,/,/<L. This
higher probability density for small weight®* (w)o«cw™ ¢, will allow us to look for solutions in the regim&,E—DO,

as argued in9]; see alsd15]. wherek andE are the conjugate variables farandt, re-
spectively, in Fourier-Laplace space. However, we shall see
B. Continuous limit of the scalar model below that the limita, 7,/ ,/—0 can be tricky and must be

. treated with care: This is because the noise appears in a
Let us focus on the cageé=2 and define to be such that 1 itiplicative manner in Eq(5). (In the tensorial case, the
9=(i,j)=[1%0(i,j)}/2. If v is small, the local weight is |imit ~,—.0 actually makes the problem trivial, for a reason
smoothly varying and the discrete equatidn can then be 4t will become clear belowFor computational purposes,
written in the differential form we shall often implicitly assume that the probability distri-
(5) bution ofv is Gaussian; this might, however, introduce arti-

OIW+ I (VW)= p+ Dgdy W, . ;
t x(0W)=pF Dodyy facts, which we discuss.

wherex=ia andt=jr are the horizontal anddownward
vertical variables corresponding to indiceandj of Fig. 1
anda and 7 are of the order of the size of the grains. The The limit wherea,/,—0 is ill defined and leads to a
vertical coordinate has been calledor its obvious analogy divergence of the perturbation theory infor large wave
with time in a diffusion problemyp is the density of the vectorsk. We thus choose to regularize the problem by
material (the gravityg is taken to be equal to)landDy a  working within the first Brillouin zone, i.e., we keep all
“diffusion” constant, which depends on the geometry of the wave-vector components within the interval=[—A,
lattice on which the discrete model has been defined. For & A], whereA =w/a. Our Fourier conventions for a given
rectangular lattice as shown in Fig.0g=a?/27. More gen-  quantity f will then be
erally, the diffusion constant is of the order of magnitude of
the size of the graina. A dk

In this model and in the following, we shall assume that f(xyt)zf — ek (k,t), (6)
the densityp is not fluctuating. Density fluctuations could be —A 27
easily included; it is, however, easy to understand that the
resulting relative fluctuations of the weight at the 1t/>20ttom of o
the pile decrease with the height of the pgileasH ™ < and _ —ikx
are thus much smaller than those induced by the randomly f(k't)_/xxg_m e Y. @)
fluctuating direction of propagation, encoded gy(or v),
which remain of order 1 abl—. Two interesting quanti-
ties to compute are the average “respongg(x,t|xg,to) to
a small density change at pointq(ty), measured at point
(x,t), and the correlation function of the force field
C(x,t,x/,t")=(w(x,t)w(x’,t")). (connected payt where
the averaging is taken over the realization of the nois

2. Fourier transforms

One has to be particularly careful when computing convolu-
tion integrals, such af(dg/27)f,(q)f.(k—q), which must

be understood with limits- A +k andA (= A andA +Kk) if
k=0 (k=0). An important example, which will appear in
e];he response function calculations, is

v(x,t).
Equation(5) shows that the scalar model of stress propa- dg k )
gation is identical to that describing tracer diffusion in a fq q iy q= Z+O(k ) (8

(time-dependentflow v(x,t). This problem has been the
subject of many recent works in the context of turbulence
[16,17; we believe that interesting qualitative analogies withLet us then take the Fourier transform of Ef) alongx, to
that field can be made. In particular, “intermittent” bunch- obtain

ing of the tracer field corresponds in the present context to

patches of large stresses, which may induce anomalous scal-

ing for higher moments of the stress field correlation func- 2\ — ; dq

ng 9 . (9 +Dok?)wy=pi+ik [ 5— Wqu—q- 9
tion. We refer the reader §d.6,17] for further details. 2w

1. Statistics of the noise (x,1) Our aim is to calculate, in the sma&lHimit, the average

The noise termv represents the effect of local heteroge- response(or Green’s function G(k,t—t"), defined as the
neities in the granular packing. Its mean value is taken to bexpectation value of the functional derivative
zero and its correlation function is chosen for simplicity to{dw(k,t)/Sp(k,t")), and the two-point correlation function
be of the factorable form(v(x,t)v(x’,t"))=c%gy(x  of w, (w(k,t)w(k’,t))=2m5(k+k")C(k,t).
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3. The noiseless Green'’s function length/, is very small, but not smaller than(see Fig. 2 In

The noiselessbare Green'’s function(or “propagator”) this Casg, t.hGV’S and 'thev’s cannot be taken 'tO be indepen—
G, is the solution of the equation where the “velocity” com- dent. This is the choice that we shall make in the following.
ponents v, are identically zero, &+ Dok?)Gg(k,t—t")

=§(t—t"), which is C. Calculation of the average response and correlation
. functions
— —Dok“(t—t’
Go(k,t—t")=6(t—t")e™ Pok=t) (10 Two approaches will be presented. The first one, based on

Novikov’s theorem, leads to exa@h the smallk limit) dif-
ferential equations fo6 and C, which can be fully solved.
The second one is a mode-coupling approximatigiCA),

or, in real space,

Go(x,t—t')= & e~ X714Do(t—t") (11) based on a resummation of perturbation theory. It happens
VaAmDg(t—t") that, for this particular model where the noise is Gaussian

and short-range correlated in time, both approaches give the
4. Ambiguities due to multiplicative noise: Ito vs Stratonovitch ~Same results because perturbation theory is trivial. In other
cases, though, where exact solutions are no longer available,
"he MCA is in general very useful to obtain nonperturbative
results(see[18]). We shall see that the effect of the noise is

In Eqg. (9) we have omitted to specify the dependence o
the variablet. There is actually an ambiguity in the product
termwquy—q . In the discrete Litet al. model[4], theq+'s 4, yiden the diffusion peak: Dy is renormalized by an ad-

emitted from a given site are independent of the value of th%itional term proportional to the variance of the noise
weight on that site. In the continuum limit, this corresponds

to choosingw,(t) to be independent af4(t) or that the 1. Novikov's theorem: Exact equations for G

v’s must be thought of as slightly posterior to thés [i.e., L _ L . .

the product is read asq(t—0)v,_4(t+0)]. In this case, the Novikov's theorgm provides tht_'-z following identity, valid

average of Eq(9) is trivial and coincides with the noiseless T the v are Gaussian random variables:

limit; henceG=G,. This can be understood directly on the ¢ dq [ sw(k,t)

discrete model by noticing that the Green’s function (W(k,t)v(k’,t)):f dt’f _<_,>

G(i,j|0,0) can be expressed as a sum over paths, all starting 0 2m |\ dv(q,t")

at site(0,0), and ending at sitei(j): X(u (gt )oK, b)) (14)

G.i,jl0,0= > TI q.(k1D), (12)  Such aterm actually appears in E8), after transformation
pathsP (k,lye P into an equation folG:

where theq- (k,l) are eitherq . (k,I) org_(k,l), depending
on the path. Since each bond (k,l) appears only once in
the product, the averaging ovaris trivial and leads to

)
2 —t)=o(t—t")—ik ——=
(30 Dok®)G(k,t—t') = 3(t—t") =ik 5 7

dqg
A X | 5= (v(g,t)w(k—q,t)).
G(1,jl0,0= > 271=Gy(i,j|0,0). (13) f 27"
pathsP (15)

correlation functiorC since paths can “interfere.” We shall form  (y(q,t)u(q’,t"))=27025(q+q")Gu(@) ge(t—t"),

return later to this_ calculation. S with g, peaked int=t’ such thatf(t')g,(t—t")=f(t)g,(t
The above choice corresponds to Ito’s prescription in sto-/y for any functionf. In all of Sec. Il we takej,(q) =1.

chastic calculus. Another choidge., Stratonovitch’s pre-  Erom formally integrating Eq(9) betweert’ andt, one can
scription is possible, however, which corresponds to theexpress the equal-time derivative/dv as
proper continuum time limit in the case where the correlation

Sw(k,t)
a(t—1) Su(k' 1)

Z, and thus obtain

— —ikw(k—k’,t) (16)
t’'=t-0

(3, +Dok?)G(k,t—t")=8(t—t")— o’k G(k,t—t")

Xftdt’ t—t’ j da k

! _ A k—
t—t g (t-t) | 5 (k-a).
J4

) (17)
FIG. 2. Correlation function of the noise alongaxis. The re-  Using the shape of the functiog, (see Fig. 2 the first

sults presented below would hold for an arbitrary, symmetric, shortintegral is3. The second one is a convolution integral and its
range function. value isAk/2r+ O(k?) [see Eq.(8)]. The final differential

[
bR
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equation forG is then, in the smalk limit, a diffusion equa-
tion with a renormalized diffusion constant

5 5 O'ZA (18) DR/[2D0—RR]
=Dg+—. L
ROZ0T 4 2(D,-D,)/[2D,-Dy]
It is interesting to note that the model remains well defined in %
the limit where the “bare” diffusion constant is zero since a 3§
nonzero diffusion constant is induced by the fluctuating ve- §
e

locity v. This would not be true if Eq(5) was interpreted
with the Ito convention, where the fluctuating velocity would
not lead to any spreading of the average density.

The most important conclusion is thus that, in the present
scalar model, stresses propagates essentially vertically: Tak-
ing /' ~a, the response at depth to a small perturbation is .
confined within a distance proportional tDgH from the 0 a X
vertical. SinceDg=/"?/a, VDgH is much less that in the FIG. 3. Correlation function for the case of a random overload.
limit where H>/?/a, i.e., when the height of the assembly g has been rescaled by the facf/[87Dgt]"2
of grains is much larger than the grain size.

B(x=0})=0,
2. Exact equations for C
2
Exact equations can also be derived @rin the limit k B(x>a,t)= Ad 1— e X°/8Dgt
—0, following very similar calculations. From E¢9) one ’ V87DRT
can deduce the corresponding onevigk,t)w(—k,t). Upon )
averaging, Novikov’'s theorem has to be used on quantities n g
such agw(k,t)v(q,t)w(—k—q,t)}, finally leading to 2[Dy—Dg]
1 X 2
d w|Z+ —x2/8Dgt
(9+ 2DRk2)C(k,t):02k2J % C(q,t). (19 a 8Dgt € ) ’ (21)

which is shown in Fig. 3. _
One can formally integrate Eq419). It gives (b) Constant overloadin the same limit, we geC(E)
~1/E or C(t)=by, where

t o~
c:(k,t)=c,(l<,0)e—2DRk2t+azkzfoon’e—ZDsz“—t T, o g2 Dr
(20) 0 OZW[ZDO_DR] '

Hence

whereC(t")= [(dk/27)C(k,t"). Let us specify at this stage
two specific initial conditions<C(k,0) that can be of interest. B(x=0)=0,
We consider, for simplicity, a random packing of “table ten-
nis” balls with no mass §=0), but subject to a random
overload of zero mean(W(x,0)w(x’,0))=A25(x—x")) or
to a constant overloadv(x,t=0)=B,]. Therefore,C(k,0)
=AZ in the first case an@(k,0)=B25(k) in the second one.
Equation(20) is then solved in two steps. We first integrate it
overk and find a closed equation f@, which can be solved a
in Laplace transform[Note that this is an approximation,
since Eq.(20) is only valid fork—0.] We callE the conju-
gate variable of. FromC(E), we getC(t) and then finally
computeC(x,t).

(@) Random overloadn the smallE (larget) limit, we
getC(E)~ 1/JE, meaningC(t)=a,/+t, with

.2
1 1—e x“/8D Rt

5_ \/87TDRt

2p2

BOa )= 55, — by

. (22

1/a-1/(8xDH"

rescaled B{x,t)

Dr Ao

ag= .
0 2D, Dg v8mDg !

0 a X

It finally leads to the following expression foB(x,t) FIG. 4. Correlation function for the case of a uniform overload.
=C(0t) — C(x,t) = 3{[w(x,t) —w(0,t) ]?): B has been rescaled by the factetB2/[47(2D—Dg)].
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which has a form similar to that above; see Fig. 4.

One could have performed the calculation with the Ito
convention(corresponding to the Liet al. mode). The final
results for the correlation function are actually very similar (25)
to those above. The main point is that the correlation is
rather structureless. Equati¢®2) shows that the correlation The corresponding equation @& is obtained by taking the
function C(x>a,t) becomes zero for large times, a result gerivative 8/5p and averaging over the noise Since(v)

that was used to establish EQ). =0, the second diagram vanishes. We represent the noise
i correlator by a dashed line with a centered cifslee Fig. %
3. Perturbation theory and obtain
The above method gives exact results, essentially because o
v(x,t) is short-range correlated in timéw/ v is then only ™
needed at coinciding times, where it is exactly known. This —— = ——— * '
would not be true in general; furthermore, Novikov’'s theo- 26)

rem requires to be Gaussian. It is thus interesting to show )

how a systematic perturbation scheme can be made to woff G=Go+Go2Go, whereX is called the self-energisee

by the use of diagrams to represent E}. The MCA is then Fig. 5. Act_ually, one can resum exactly all the (_jlagrams

a particular resummation scheme of this set of diagramsgorresponding t0Go2 G, and Go2Go2 G, to obtain the

which was discussed in detail i8], which sometimes pro- Dyson equatiorc=Go+Go%G.. .

vide interesting nonperturbative results. The MCA amounts to replacing the bare propagator in the
diagram for2, by the full propagatofs. (Note that the MCA

. is of course exact to second order in perturbation thedve

olk,t) = X Go(k,t) = —+— wo(k, t) = X then obtain a self-consistent equation @r
ok, ) = - & __ Glht) = —E— wik,t) = —b—x O
’ \
k—q O~ gk s B ot U \
(7 = - ome e Stht-t)= LA Imca =Gy~ — Gyea = ——
FIG. 5. Definition of various diagrams. (27

Equation(9) is multiplied on the left by the operat@, Diagrams like the one drawn in Fig. 6 are now also included.
[see Eq(10)] and then reexpressed as

O -
w(k,t)=Ggy(k,t)® p(k,t) —ikGq(k,t) R RN
dq /// /’O\ \\\
®f Ew(q,t)v(k—q,t), (23 / ! K N

® meaning at-convolution product. This equation can be FIG. 6. BExample of a diagram included in the MCA.

represented with diagrams as follows: As shown in Fig. 5
we represent the sourgeby a cross, the bare propagat®g
by a plain line, and the noise by a dashed line. The first dq
term of Eq.(23), which is the noiseless solutiom,, is then N 2 M 4
obtained gs the juxtaposition of a plain line a(:lmc'joa cross. The Fueatkt=t) =0 kf 27 ACmea(@,t=t")
arrow flows against timéi.e., it is directed front to t’ <t).
The juxtaposition of two objects means-aonvolution prod-
uct. By definitionw is represented by the juxtaposition of a ) _
bold line and a crosthis is consistent with the identification !N the special case wheug is peaked arounti=t’, we can
of a bold line with the full propagatd®). The diagrammatic Make the approximatiors(q,t—t)gy(t—t")=G(q,0)gq(t
version of Eq.(23) is then —t’)=gt(.t—t’) [since by definitionG(q,0)=1]. We thus
get, using Eq. (8), Imcalkit—t")=—c2Ak?g(t
| —1")/(2). The expression fo@,\_,léA is thus identical to the
ék-q one obtained with the exact approach, as can be seen by
o _ E oo kL9 comparing Eq(17) andG, 'G=1+3G.
Note that one can also calculate the influence of a nonzero
kurtosis « of the noisev, which is its normalized fourth
(24 cumulant. In this case, four dashed liresrresponding to)
can be merged, leading to a contributiorixp of the order of
The “vertex” stands for—ikS(dg/2w), the two emerging «o*.
wave vectors being] and k—q (node law. One can now Let us turn now to the calculation of the correlation func-
iterate this equation. To second order, one obtains tion (w(k,t)w(k’,t))=278(k+k")C(k,t). The basic object

The self-energy¥ yca can be easily computed; we get

Xgy(t—t"). (28
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that corresponds to the self-energy is now the “renormalized 20 '
source” spectrumS(k,t,t’) defined asC=G®S®G. The :32”:5236"
quantity S is drawn as a filled squar&, (empty squargis
the correlation function source term, which encodes the ini- < 5|
tial conditions(see below. The two first terms of the expan- ?f
sion are s
g 10+ 1
O "
4 N 2
/ \ 8 My
B, - 1F + oo+ g 5¢
(29 %3 0.0 0.3
rescaled x—x’
Here again we transform the perturbative expansion into a dibold i q hin |
closed self-consistent equation ®iby replacingG, andS, F'G'f7' /tb_\veragfeth( 0 Ime) a; | UB?V.engedt n 'nlf) t:e_ .
in Eqg. (29) by G andS, respectively. The final equation for sponse functions ot the scaiar model, obtained numerically by simu-
C reads lating the Liu et al. model. The average is performed over 5000

samples. One can notice how “non-self-averaging” the response
,/ \ function is, i.e., how different it is for a given environment as com-

' j pared to the average. Note also that the unaveraged Green’s func-
\I/ tion is everywhere positive.

i = {— +

(30)
meaning that the “center” of Green’s function wanders
or, written explicitly, away from the origin in a subdiffusive fashion, €€, This
t . behavior has actually been obtained in an another context,
_ , " oy PN Lt that of a quantum particle interacting with a time-dependent
Clk.t) fodt Jodt Gk =Sk )Gk t=t) random environment. Physically, the Lit al. model can
t : indeed be seen as a collection of time-dependent scatterers,
21,2 , " Y converting incoming waves into outgoing waves with a cer-
Tk fodt fodt Glkt=t") tain partition factorg, =1—q_ (see the discussion {19]).
q In two dimensiongplus time, the wandering of the packet
aq ' e Y NP center[x](t) is only logarithmic(and disappears in higher
Xf 2 Cla,t", 1) g (' =) G(—k,t=t). dimensiong 19]).

(31
E. The scalar model with bias: Edwards’s picture of arches

If we choose the source term to be an overload localized at Up to now. we have considered the mean value & be
t=0, we get Sy=(p(k,t')p(—k,t"))=C(k,0)8(t") 8(t"). P ’

. ) P . zero, which reflects the fact that there is no preferred direc-
Using the fact thaty, is peaked around’=t", we again .. for st tion. In some cases. however. this ma:
recover exactly Eq(19), showing again that the MCA is tion for stress propagation. L , Y
exact(in the limit k—0) in this special case not be true. Consm!er, for examplg, a s_andpﬂg bu!lt frpm a

' point source: The history of the grains will certainly inprint a
certain oriented “texture” to the contact network, which can
be modeled, within the present scalar model, as a nonzero

The averageGreen’s function described above is thus avalue of(v), the sign of which depends on which side of the
Gaussian of zero mean and of width growingy@gt. How-  pile is chosen. Let us call, the average value af on the
ever, for agiven environment, the Green’s function is not x=0 side of the pile and-V, on the other side. The differ-
Gaussian, presenting sample-dependent pésées Fig. 7.  ential equation describing propagation now reads, in the ab-
Note, however that, contrarily to what we shall find below sence of disorder,
for the tensorial case, the unaveraged Green’s function
remains everywhere positive. Furthermore, the quantity I+ 5[ VoSGrIX)W] = p+ Dodx,W. (34)
[x](t), defined as the displacement of the centroid of the ,
weight distribution beneath a point source in a given realizalAn €xtra noise can be handled as abpwor a constant

D. Further results: The unaveraged response function

tion, densityp=pg and forDy=0, the weight distribution is then
e é\N(X,at) poX
[X](t)=f dx'x" ———=, (32 w(x,t)=—— for 0=<x<Vyt,
. 5p(0,0 0= 0

typically grows witht. More precisely, one can show that polCt—x)
w(x,t)=———— for Vot=x=ct, (35
([x1(t))=0  but ([x]?(t))<t*?, (33 c—Vo
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wherec=1/tan(p) (¢ is the angle made by the slope of the
pile with the horizontak axis). For Dy# 0, the above solu-
tion is smoothedsee Fig. 8 In any case, the local weight
reaches aminimumaroundx=0. Equation(34) gives a pre-
cise mathematical content to Edwards’ model of arching in
sandpileg 20], as the physical mechanism leading to a dip in
the pressure distributiof21]. As discussed elsewhere
[11,17], this can be taken much further within a tensorial
framework(see Sec. Il

The scaling of the stress at the center of the pil@.t)
can b,e understood §|mply 'n,terms of fa”do,m walks subject FIG. 9. Three-neighbor configuration. Each grain transmits two
to a biasVy. The region contributing ta(0) is then found  f5rce components to its downward neighbors. A fractfoof the

to be 20f finite volume, independent of and of the order of  yertical component is transmitted through the middle leg and a frac-
Do/Vg, as shown on the two top pictures of Fig. 8. tion (1—p)/2 through each of the external legs.

bors(see Fig. 9, for a reason that will become clear below.

2w Lo Each grain transmits to its downward neighbors not one, but
g 2 two force components: one along the vertical ax@énd one
5 10° 1 w18 along x, which we call, respectivelyF,(i,j) and Fy(i,j).
15 E g ¢ (We will restrict attention, in the following to two-
. 10° L it vl 05 L i) dimensional piles, leaving extensions to three dimensions for
£ AR A further investigations.For simplicity, we assume that the
2 1.0 | 8 “legs” emerging from a given grain can only transport the
é vector component of the force parallel to its¢ffut more
5 general rules could be inventedssuming that the transmis-
05 | | sion rules are locally symmetric and that a fractipe 1 of
the vertical component travels through the middle leg, we
find
00 ¥ o = Fuli,))=3[Fx(i—1j—1)+Fy(i+1j—1)]
normalized radius + %(1_ p)tan ’/’[Ft(i _ 1,j _ 1)_ Ft(i + 1,]- _ 1)]’
FIG. 8. On the main graph the solution of E@4) for V,/c (36)
=0.4 is plotted. The dashed line is for a diffusion consfagtten
times smaller than the solid one. The bold line is yy=0. Stress Fo(i,j)=wo+pFi,j—1)
values are rescaled by the height of the pil&he left inset shows
thatw(0,t) scales like 2 at smallV,, while the right inset shows +1(1-p)[F(i—1j—-1)+F(i+1,j—1)]

thatw(0t) is constant for largé. Note that for very small values of
Vo, the 1V3 scaling becomes invalid for finite-size reasons.

+atany [Fli~Li—D=Fi+1j-1)]

Equation(34) with noise can in fact be obtained naturally 3
within an extended Litet al. model, with an extra rule ac- (37)
counting for the fact that a grain can slide and lose contaGhere 4 is the angle between grains, defined in Fig. 9. Tak-

with one of its two downward neighbof8]. This generically  jng the continuum limit of the above equations leads to
leads to arching; in the sandpile geometry and for above a

certain probability oflocal) sliding, the effective velocity Fi+ o Fy=p, (39
becomes nonzero and the weight profi&5) is recovered
[3]. However, this extra sliding rule implicitly refers to the IFyt ax[cSFt]=O, (39

existence of shear stresses, which are absent in the scalar ) o
model but are crucial to obtain symmetry-breaking effectsvherecg=(1-p)tarf ¢. Eliminating (say F, between the
modeled by a nonzer¥,. It is thus important to consider above two equations leads tonave equatiorfor Fy, where
from the start the fact that stress has a tensorial, rather thdhe vertical coordinateé plays the role of time and, is the
scalar, nature. This is what we investigate in the followingequivalent of the “speed of light.” In particular, the stress
section. does not propagate vertically, as it does in the scalar model,
but rather at aonzero angler such thaty=tan ¢. Note that
¢# ¢ in general(unlessp=0); the angle at which stress
Ill. THE TENSORIAL MODEL propagates has nothing to do with the underlying lattice
structure and can in principle be arbitrary. We chose a three-
leg model to illustrate this particular point.
It is useful to start with a simple “toy” model for stress The above derivation can be reformulated in terms of
propagation, which is the analog of the model presented iglassical continuum mechanics as follows. Considering all
Fig. 1. We now consider the case of three downward neighstress tensor components , the equilibrium equation reads

A. The wave equation
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BTyt IO = P, (400  ascatter plot otr,, versusoy, measured as averages of the
local forces over a small box centered around different points
Ot0txt Iy yx=0. (41)  within a heap(from Ref.[23]). This plot clearly shows that a

. _ linear relation is indeed acceptable, leading in this case to
Identifying the local average df with oy, and that ofF,  ¢2~0.56+0.03[23]. There are, however, significant fluctua-
with a1, we see that Eqg38) and(39) are actually identi-  tjons, reflecting some disorder in the packing, which are fur-

cal to Egs.(40) and (41) provided oy,= 0y (Which corre-  thermore uncorrelated from point to point. The histogram of
sponds to the absence of local torjjaed o= céan. This | defined as

relation between normal stresses was postulateld 0h as

the simplest constitutive relation obeying the correct symme- Oyx= c§[1+v(x,t)]an, (v(x,1))=0, (42
tries that enables one to lift the indeterminacy of E@€) . . .

and (41); it can be seen as Iocal Janssen approximation iS found to be roughly Gaussian, of relative widih-0.3.
[22]. ¢2 should encode the relevant information of the local This corresponds to a locally varying angle of stress propa-
geometry of the packing, friction, shape of grains, etc., an@ation, Wh'Chova”eS around the mean angle 54° by an
should thus depend on the construction history of the graifmount~10.8°. _ _ _ .
assembly. For example, in the sandpile geomefyis re- Motivated by the simulations results, we now investigate
lated to the angle of frictior of the material by the relation & Model(called the random symmetric model in the follow-
c(2)=1/(1+2 tar? ¢) [10]. This approach can be generalized ing) with the inhomogeneous constitutive relatidqA?2),

to take into account a local asymmetry in the packing texturé(\{h'Ch leads tot_thg following stochastic wave equation for
(which one expects, for example, in the case of a sandpil8 ress propagation:

; ; 2
constructed from a p_omt sourcky allqwmgco to erend on Iy = &XX{CS[lJF v(x,)]owl, (43)
oyl oy [10-12. If this dependence is linear, this is equiva-
lent to a coordinate rotation it [12]. where the random noise is assumed to be correlated as
(v(x,t)v(x',t"))=0?g(x—x")g(t—t"). The correlation
B. A stochastic wave equation lengths/’, and/; are again kept finite and of the same order

The starting point of the scalar model is thus essentialy’’ Magnitude. In a Fourier t’ransform,zthls relation can also
the diffusion equation, which one perturbs by adding a ranP®  Wwritten  (v(k,t)u(k’,t"))=2mo"5(k+ k') g, (K) gyt
dom convective term. As the preceding subsection shows, at’)- It turns out that the final shape of the averaged re-
more natural starting point is the wave equation. The toy8Ponse function depends on the sigrgefA). In Sec. Il we
model presented above, however, suggests that, provided [B0Plicitly made the choica,(k) =1, which corresponds to
cal conservation laws are obey¢ie., those arising from 9x(x=0)=1/a and g,(x>0)=0. We will keep this choice
mechanical equilibriumy many local rules for force trans- for the following calculations, but note that another form for
mission are compatible with the contact conditipnd]. Itis ~ 9x could lead to sgim,(A)]=—-1.
thus natural to encode the disorder of the packing or model In the following, o will be again denoted byv. After a
the indeterminacy of the contact conditions as a randomly-ourier transform along the axis, we get, from Eq(43),
varying speed of lightt, (reflecting the fact that, for ex-
ample, the parameter can vary from grain to grajn Two (ﬁn-l—CSkz)W:&tp—Cgsz d_q w(g, v (k—q,t).
recent numerical simulationgl4,23 actually suggest that 2@
this should be a good first approximation. In Fig. 10 we show (44)

Note that the “source” term of this equation is nowp
rather tharp itself. Therefore, if we calG the Green'’s func-
tion (or propagator of this equationG={ éw/ 53,p); the re-
sponse functioiR=(éw/Sp) of our system is now actually
the time derivative of: R(k,t) =4,G(K,t).

The noiseless propagat@, is the solution of the ordi-
nary wave equation d+ck?)Go(k,t—t')=48(t—t’) and
can be easily calculated:

XX

Go(k,t)= [e/Cokt— e~ iCokt] (1), (45)

2icgk

which leads to the response functiByg,

Ro(X,t)=3[ 8(x—cgt) + 8(x+cot) ]A(1). (46)

Equation(46) sums up one of the major results [df0] (see
FIG. 10. Relation betweeu,, and o, from a microscopic nu-  also [11-12): In two dimensions, stress propagates along
merical simulation of grains forming a heap in two dimensii2g].  two CharaCtQFISt!C rayS[Npte th.at the corresponding re-
These data are compatible with a stochastic constitutive relatiosponse function in three dimensiofvshere a secondary clo-
oyw=C3[1+v(x,t)]oy, wherev is the random noise. sure is needed, for instance,,=oy,, y being the third
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coordinate reads Ry(x,t)<(cat?—x?) Y2 for |x| is a decreasing function ef, meaning that the peaks of the
<ct and zero otherwisgLO]]. A relevant question is now to  response function get closer together as the disorder in-
ask how these rays survive in the presence of disorder. Wereaseg.As a technical remark, let us note thagjf=g,, the
will show that for weak disorder, thé peaks acquire a finite  problem is symmetric in the change—t, c3(x,t)
(diffusive) width and that the speed of light is renormalized — 1/c3(x,t). It thus looks as if the cone should both narrow
to a lower value. Not surprisingly, the effect of disorder canor widen, depending on the arbitrary choicexaindt. There
be described by an “optical indexii>1. For a strong dis- is, however, no contradiction with the above calculation
order, however, we findwithin a Gaussian approximation since we assumed that has zero mean, while 1/(1v)
for the noisev) that the speed of light vanishes and then—1 has a positive mean value, of ordef.] For a critical
becomes imaginary. The “propagative” nature of the stressjalueo= o, cg vanishes and becomes imaginary for stron-
trans_mission Qisappears and_ 'ghe system behaves more like g&r disorder. For’,=/,=1 and c§:0.6 (corresponding to
elastic body, in a sense clarified below. ¢=30°), one findso,~1.42.
In the limit of larget, the propagator reads
C. Calculation of the average response function

One can again use Novikov's theorem in the present case G(k,t)= L sincgkt(1+ a|k|)]e™ ykzte(t), (51)
if the noise is Gaussian and short-range correlated in time. crK

However, the same results are again obtained within the di%
grammatic approach explained in Sec. Il, which can be easil
transposed to the present case, and is more general. T

here the following constants have been introdufeote
}:heat the sign ofa is dictated by the sign o, (A)]:

propagatolG is a now represented as a line, the sourgea 3 Cc2>
cross and the vertex meaningcik?f (dg/27). Within the a= r (?—1), (52
MCA, the self-consistent equatidganalogous to Eq(27) in R
the scalar cagds B(k)  o?A3/2
= = (53

t Y= 2kZ T 36r
(att+c§k2)H(k,t)=5(t)+fodt’EMCA(k,t’)H(k,t—t’),

(47)

where H is defined byG(k,t)=H(k,t)6(t) and the self-
energy> yca IS given as

From Eq.(51) the response functioR, in the limit of small
k and larget, is given by

R(k,t) = cog crkt(1+ a|k|)Je~ "ta(t) (54)

4

: (59

or in real space

dq
41y — 4,22 _ 152 _t!
EMCA(k,t t ) Coo k f 2 q gt(t t ) e_gi/b

1
<Gk-H(@t-t). @4y  ROVT e Re{ b

Equation(47) can be solved using a standard Laplace trans- )

form along thet axis (E is the Laplace variabje Using the + \/Ee‘bg—[l—CI)(—i\/Bg,)]
fact thatH(k,7)=7 in the limit where r—0, we find, for
small k,E (corresponding to scalds such that/, ,/ <L),
H~%(k,E)=E?+ BE+c2k?, where

1-®

where the scaling variables. , measuring distances relative
to the two peaks, are defined by

Coo?A3/, 3k
cA(k)=c2—- ——1 L +0(K?), (49 _ XEcgt
127 2A bi=—x (56)
VA Y[t
cio?k?A3/ 2 . g’
B(K) = % +0O(K3). (500 and wherey=y—icga andb=¢€' 297 ® is the standard
T

error function. Figure 11 showR as given by expression
(55). Interestingly, this propagator not only has a finite dif-
df&sive width proportional toyt, but is also asymmetric
around its maxima. Surprisingly, and in sharp contrast to the
scalar case discussed above, the response function becomes
negativein certain intervalgalthough its integral is of course
%qual to one because of weight conservatidrhis means
that pushing on a given point actually reduces the downward
pressure on certain points. This can be interpreted as some
kind of arching: Increasing the shear stress does affect the
propagation of the vertical stress and may indeed lead to a
For weak disorderczR( k) is always positive. We can then reduction in its local value that is redistributed elsewhere. As
definecg=cg(k=0). As we will show nowgcg, is the shifted we shall see in Sec. V, the unaveraged response function
cone angle along which stress propagates asymptoticglly. indeed takes negatiand rather largevalues. This is a very

We notice here that in the limit;— 0, the effect of the
randomness completely disappears, as in the scalar mo
with the Ito convention[Technically, this is due to the fact
that G(k,t=0)=0 in the present problerhin order to cal-
culate the inverse Laplace transform, we need to know th
roots of the equatiorH “1(k,E)=0. This leads to several
phases, depending on the strength of the disorder.

1. The weak-disorder limit
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N

tive equations can be interpreted as a coarse-gramgdtto-
dynamical description of the propagation of a stress pertur-
bation, which takes into account the average effect of the
local disorder. One problem, however, comes from the pres-
ence of the dispersion term|k|, which corresponds to a
0.0 . . nonlocal operator in real space. We thus neglect this term in
-4 2 0 2 4 the following discussion, but one should keep in mind that
scaling variable £_ - . .

the effective equation are actually nonlocal. In any case, the
main features of the response functiofpgeaks centered
aroundx=*=cgt (cgr<cy) with a diffusive width propor-
tional to \/t] are not lost when setting=0 (except for the
fact that the response function can become negative, which is
related toa# 0). Effective equations can then be written in
i the larget limit as

-
=1
T
1

rescaled RE )
e
o
T
s

rescaled R(x-x',t-t'=25a)

40 20 0 20 40
X=X I(O0) = 6p— Ix( S0 1), (58)

FIG. 11. Response function for weak disordet/¢.~0.13).
The two curves have been rescaled by the facfdry|t]¥2 The
main graph shows the general double-peaked shape of the response
of the system when subjected to a peaked overload=41, t=0.  That disorder generates the diffusion termgi2(do,,) is
The inset gives details the right-hand peak as a function of théather intuitive and had been guessedf)]. This term can
scaling variablet_ . Note the asymmetrffor §,(A)>0], compat- be seen as the first term of a gradient expansion of the con-
ible with the results found ifil4]. Note also that the curve becomes stitutive equations, which have the correct symmetry, i.e.,
negative around_=2.

I boyy) = _C§5x< 80 1) + 205 60 xy). (59

_ . . . (804 = CR{ 8ayy) — YIy{ Soyy), (60)
significant result since it suggests that granular materials

may be susceptible to rearrangement under extremely weak
external perturbations. Suppose indeed that as a result of the
perturbation a grain receives a negative force larger than th . -
preexisting vertical pressure. This grain will then move and agqs\?é'%r;\?;)t;i'srzazﬁg t?]ﬁttrt]ﬁeai?iﬁ)%cuecﬁ;Aogﬁgtg:nq;ﬁ ' dis-
local rearrangement of contacts will occur, inducing a varia- . L .

: . Y order in the local direction of propagation does not change
tion of cy(x,t) as to reduce the cause of the instability. Thusradicall the nature of stress propagation on large lenath
the stochastic wave equation implicitly demands rules simi- Y SS propag arg 9
lar to those introduced ifB] to describe extreme sensitivity scales, although the peaks in the response function acquire a

to external perturbations in silos. The present model whicﬁjiﬁcUSiVe width. These peaks acquire a width of the order of
P X P ! VyH (whereH is the height of the pileand are thus well

is purely static, does not say what to do when a local rear- ted in the limit whetd v. A hall thi
rangement occurs, but certainly suggests that small perturb&gp"jlrae In the fimit whe Y. AS We shall see now, this

tions will induce such rearrangements. Is no longer true if the disorder becomes strong.

It is interesting to note that this response function was
numerically measured in Ref14]; its shape is compatible
with the above expression; in particular, the two peaks were When the disorder is so strong tha{ just vanishes, the
found to be asymmetric with a longer “tail” extending in- roots of H %(k,E)=0 change nature and so does the re-
ward, as we obtain here. Note, however, thatdefA) <0,  sponse functiomR. The two peaks of the previous expression
the shape of the peaks is reversed: The small dips are locatéat R merge together, while the width becomes anomalously
inside the peaks and the longer tail extends outward. This ikarge (proportional tot?3). In the asymptotic, largetegime
actually what we obtain numerically in Sec. V. we obtain

< &Ttx) = < 5Uxt> . (61)

4. Critical disorder: The wave-diffusion transition

2. Shear response function R(k,t)= 6(t)cog A |k|¥2]e k2t (62)
Equation(40) provides a straightforward way to calculate
the shear response functi®q in terms ofR. Indeed, one has where the new constantis defined byx =c,+/3/2A andy
ikRg(k,t)=8(t) —dR(k,t). We thus get, in the limit of —=¢2/,/3. The physical response functidis plotted in Fig.
smallk and larget, 12, for different values ot, as a function of the scaling

N A variable
Ry(k,t) = —icgsimcgkt(1+ a|k|) e~ 7 0(t), (57)
This shear response function is very similaRpexcept that £= X . 63)
it is, as expected, an odd function xf NEE
3. Effective large-scale equations On the scalgé??, the double-peak structure & is still vis-

It is interesting to know of which differential equations ible. However, note that the terat "t cannot be neglected,
the response functior® and R, are solutions. These effec- even for larget; this means that the response function is
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never really a function of only, as is clear from Fig. 12. region wherec3<0 is probably impossible to reach physi-
Note that the response function again becomes negative feally: The system will rearrange spontaneously to reduce the
some values of. disorder and to make2=0. As already discussed above, the
disorder that results from such a rearrangement might be
0.6 . . strongly correlated and correspond to an arching effect, as in

[3].

— t=10a
——-t=100a g
----1t=1000a

D. The correlation function

Returning to the weak-disorder case, the major problem
. for the direct observation of the light cone is the fact that the
perturbation representing the point source should be small
(otherwise the packing structure would changes in an inho-
= mogeneous way, thereby affecting the valueci)in a non-
uniform way), but large enough for the response to be de-
tected. A better possibility, as we show now, could be to
measure the correlation function of the stress field. We again
consider the stress correlation function in the case where the
mass of each grain is smalp€0) and a random or a con-
0 2 4 6 stant overload is applied on the top of the silo. With the new

scaling variable § convention for the baffor G) and the crosgfor d,p), the
self-consistent diagrammatic equati¢80) is valid in the
tensorial case. When writing it in its usual mathematical
5. Strong disorder: The pseudoelastic regime form, the only difference from the scalar model is that now

th ight t isw(k,0)8’(t), leadi t
For larger disorder still, one finds, within the MCA Soe(k ;/\,/e:%:Cislg)(:;(tgg?(t”;s'w( )o'(t), leading to

(which is exact for a Gaussian, uncorrelated npitiet the The calculation of the correlation function is very similar
renormalized value o, g becomes negative. Upon a res- 1 the scalar case. In order to carry out the calculations to the

caling of x asX=x/icg, the effective equ_ation,oh&rto_ end, we have neglected the dispersion tetfk| in the ex-
then becomes, on large length scales, Poisson’s equation pressions foiG andR. The analog of Eq(20) is now, for

V2(50) =y p), (64) weak disorder,

rescaled RE,Y)

]
N
~

FIG. 12. Response function for a critical disorag= 0.

_ —2yk?
which means that the stress propagation becomes somewhat C(k,t)=C(k,0)cos crkt]e™*”

similar to that in an elastic body, where stresses obey an ch ‘
elliptic equation of similar typg24]. In particular, the cone + 0% —2 sz dt’sir[ cgk(t
structure of stress propagation, which is associated with the Cr 0

underlying, hyperbolic, wave equation finally disappears; the
average response to a localized perturbation becomes a broad

bump” of width comparable to the height of the pile. It is The functionE(t’)=f(dk/27r)C(k,t’) is of identical form

thus rather interesting to see that, within the MCA, there is a

phase transition from a wavelike mode to a diffusive mode™© the scalar case; only the expressionsdprfor the ran-

of stress propagation; the observation of the cone thus réj-om overloagiandby (for the constant overloadre differ-
quires that the packing is not too disordered. Certainly fof"t

—t')]e” 2 e, (65)

relatively ordered packings the cone exists and has been ob- 5
served experimentally25] and numerically[14,23. One an— Ao 1 (66)
should, however, add some remarks. O 42wy a’c, my\’
(i) It is possible that the above transition is an artifact, due 1- P arctaré _R)
to the fact thatv is taken to be Gaussian, which, strictly R
speaking, is not allowed since the local valuecéfshould B2 1
always be positive. One can show for some other problems boz—o 54 i (67)
of the same type that a similar transition is artificially in- 2m TG arctar( 77_?’)
duced by the Gaussian approximation when it cannot really 4777207R R

exist on physical grounds. In this respect, it is interesting to _

note that the first non-Gaussian correction tends to increas€nowing C(t’), C(x,t) can be computed from E65). For

cr for negative kurtosis, as might be expected for a boundethe case of a constant overload, the shape of the correlation

v distribution. function is very close to the one shown in Fig. 4 for the
(i) 1t should be noted that the predicted effective consti-scalar model. The case of the random overload, however, is

tutive relation between horizontal and vertical normalmuch more interesting since the fact that information travels

stresses has a negative signcﬁ‘<0. This means that in- along a cone of angleg appears clearly: The correlation

creasing the vertical stress should reduce the horizontdlinction presentswo peaks. The first one is of courseat

stress, which is only possible if the grains move. Hence the=0, while the second is at=2cgt, which simply means
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rescaled B(x,t)
N
rescaled B(r,t)

x=2¢;t X

0 1
0 r=2¢.t r

0 I
x=2ct X

FIG. 14. Correlation function for three-dimensional disordered

FIG. 13. Correlation function for the case of a random overload.packings with a random overload, neglecting again the second term
Note the presence of a peak centere®=alcgt, which reflects the in Eq. (65). Note that, as in two dimensions, the correlation function
fact that information in the tensorial model is traveling along a coneexhibits a peak around=2cgt.
of angle ofck . In the case of a fluctuating density in the bulk of the
pile, one should integrate E¢68) with respect tat. The result is  height of the pile. Note that a stress correlation function was
plotted in the inset: The correlation reaches rapidly a first plateaactually measured recently j] and found to be featureless,
and then increases again to a higher value arouncgt. The byt on very short scales<5a, as compared to the height of
relative difference of height between the two plateaus decreases @gg pileH=100a. We expect the features of the correlation
e function to show up on much larger scale®cgH.

that the two points at the bottom of the information cone
share the same information coming from the apex of this
cone. (In the absence of disorder, the correlation function |t js tempting to generalize Eq$38) and (39) and write
consists of twos peaks, one ak=0 and the other ak  the most general linear equations governing the propagation
= 2cot of half the amplitude. If we forget the second term  of the forces that are compatible with thlecal) conserva-

of the right-hand side of E¢65), which is negligible com-  tion rules. These equations were originally written by de
pared to the first one at large we can see that the second Genneq26]:

peak of the correlation function has a width proportional to

IV. GENERALIZED WAVE EQUATIONS

Jt and a height proportional to {f. This approximation is OF+ o 7' (X, DF+ u' (X, 0)F]=p, (69)
actually equivalent to saying that tiiknear effective equa-
tions (58) and (59) are sufficient to calculate the correlation Fyt o n(X, V) Fy+ p(X,t)Fy]=0. (70

function for large times. Other source terms, such as a fluc-
tuating density in the bulk of the pile, can thus be easilyNote that the termg, ' break the symmetry— —x. This
accommodated by linear superposition. We have thus plotteid allowed locally and does not show up on large scales if
in Fig. 13 the quantity(x,t)=C(0,t) — C(x,t), omitting the  their average is zero. Another possibilityut without noisg
second term on the right-hand side of Egp). Analytically,  considered in detail if12], is thatu(x,t) changes sign with
we have X, i.e., u(X,t)=u sgnk), which describes the fact that the
texture of a sandpile depends on which “side” of the pile
0 ~c2t2y ~x2/gyt one is looking at. Interestingly, Eq&9) and(70) still lead
F\/W_yt [2+2e "RT7—2e to wavelike propagation, but now the bisector of the light
cone makes a nonzero angle with the vertigathenu or u’
_e—(x+2th)2/8yt_e—(X—ZCRt)Z/Syt]. (68) are nonzerp In other words, Eqs(69) and (70) describe a
situation where not only the opening angle of the cone can
This result is of importance since the shape of this correlavary in space, but also its average orientation. .
tion function clearly differs from the corresponding one in ~ The same analytical techniques as above can be still be
the scalar model. Measuring carefully the averaged correlaised. We shall only discuss some special caSeaslowest
tion function of a granular system could then confitor ~ order in perturbation theory, the case where disorder in
disprove the presence of a light raylike propagation. In this Present in the four termg, 7", u, 1" simultaneously is very
respect, it is interesting to plot the correlation function forSimply obtained by adding the corrections induced by each
three-dimensional packings as well. This correlation functiorierm taken individually.
only depends on the radial distancbetween the two points, (i) Let us first sefu= " =0 and consider the case where
as is plotted in Fig. 14. We note that, much as in two dimen=’ is random and7 fixed (and equal toc). Taking
sions, the correlation decreases sharply on the scale of a few (x,t)=n{[1+v(x,t)] with the noisev as above, one
grains, but increases again for distances of the order of thfinds that the renormalized value gf is

B(x,t)=
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A. The double scalar limit

comoo A%,
(72) In the double scalar limit, the histogram of the stress dis-

7](?: 77,( 1- 127
tribution is obtained trivially by noting that since , =w;
Now, on large length scales, one must recover the continuurand o_ =w,, travel along different paths, they are indepen-
equilibrium equations for the stress teng@&ms. (40) and  dent random variables. Taking, to be unity for simplicity,
(41)]. The condition of zero torque requires that the stres®ne thus finds
tensor is symmetric and thus one must sg=1, which

) . . . Wi+ W,
imposes a relation betweey}, and the amplitude of the noise  P(¢)= f dwlf dw,P* (w;)P* (w,) 5( Oy— —)
o. Note that beyond a certain value @f this relation can no 2
longer be satisfied with a reaj,. This again means that the (76
packing is unstable mechanically and will rearrange so as to Wi — W,
reduce the disorder. P(Uxt):J dwlf dw,P* (wq) P* (wy) 5( o )
(ii) Another interesting class of models, which one can 77

call « models, is such thaty:cé and ' =1, but u(x,t)

=cov(x,t) andu'=0 or vice versa. These two cases yield whereP* is the distribution of weight pertaining to the sca-
identical results, namely, in the largeimit lar case, which, as mentioned above, depends on the specific

_ 2t form of the local disorder and on the discretization proce-
R(k,t)=codcokt)e™ ™ "6(1), (72 qure. In the strong-disorder case that leads to(By(in the
R.(k,t)= —icy sin(cokt)e™ szta(t), (73 caseN=2), we thus find thaP (o) is still decaying expo-

nentially (it is actually aI' distribution of parameter I12),
éalthough its variance is reduced by a factor 2. Rer2, one

wherey= C(2)A0'2/(87T). Note that in these cases, the response’.
simply gets

peaks acquire a finite diffusive width proportional o, but

the angle of the information cone is unaffected by the disor- P(oy)= ggﬁe—%n, (78)
der (i.e., cq is not renormalized
(i) Finally, there are special “symmetry” conditions P(oy) = (| oy + 5)e 2o, (79)

where the equations can be decoupled and reduced to two

scalar models. We will refer to this case as the “doubleThe preexponential factor is therefore noticeably different
scalar’ model. This occurs whem=pu’'=cqvq(x,t) and from the prediction of Eq(3).

7' = nlci=1+v,(x,t) wherev,,v, are two different sets of

noise. Let us definerifcoFti Fx, X2=X+Cot, and v+ B. Numerical histograms for the random symmetric model
=v,*v,; we then obtain and open problems
9o+ =Cop—Cody, [v4 0], (74) The numerical analysis of Eq&10) and(41), with a sto-
chastic constitutive relationr,,= 7[ 1+ v (X,t)]oy, is actu-
do_=Cop—Cody [v_0o_], (750  ally not an easy task and the final results depend rather sen-

sitively on the chosen discretization. For example, a naive

showing thato, and o_ decouple, each propagating along discretization of the random wave equation leads to a non-
two rays, of velocity c,, plus a small noise . , which, as ~ zero diffusive width even in the absence of disorder and thus
in the scalar case, generates a nonzero diffusion constaffiakes it hard to measure the “true” response function,
The response functions far, and o, are thus again made Which should, in the absence of disorder, consist of @vo
of two diffusive peaks of width proportional tgt, centered peaks. However, it should be noted thgt such dlffu5|ye term
at x=*c,t. The interest of this double scalar limit is that (Or ordera) are actually expected physically: They indeed
one can deduce simply the probability distribution of the@PPear when Eq£36) and(37) are expanded to second order
stresses from the Liet al. model. This is developed below. N the lattice spacing. We shall return to this point below.

Note also that, by construction, this special form of disorder 1he method we chose is the following. Starting with
does not lead to negative vertical stresses. points regularly arranged &t=0, we construct the network

of characteristics(in the mathematical senseAssociated
with each point X,t) is a speed of lightcg(x,t)
=coV[1+v(x,t)], which determines the directions of lines
that propagate the component of the stress parallel to that
A physically relevant question is to know how local line, away from the pointx,t). The point &,t) is then gen-
stresses are distributed. We have seen above that withinexated by two “parents” pointsx,t’) and x”,t”) as indi-
scalar approach, an exponential-like distributipossibly of  cated in Fig. 188). It sometimes happens that the cone from
the type exptw?), with B=1) is expected4,9.. One can (x',t’) is so wide that it cannot intersect with the one from
wonder whether this exponential distribution survives within(x”,t”) [see Fig. 18)]. We then imposex=x" andt=t".
a tensorial description and what happens for very smallhis actually can be viewed as a local kind of arching: The
stressesv— 0. Unfortunately, the full distribution can only point (x",t") supports not only its parent neighbors but also
be computed analytically for the double scalar model; buits “same generation” neighborx(,t’). This method has
numerical results have also been obtained for the randorseveral advantages. Its physical interpretation is very clear:
symmetric model and are described below. Points are “grains” and characteristics are “stress paths.”

V. STRESS DISTRIBUTION WITHIN THE TENSORIAL
MODEL
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FIG. 15. The left-hand pictur@) shows the construction rule of g 0.0
the characteristics network: The “child” point(t) is located at §
the intersection of the cones from the two “parent” poinss,t’) =
and (x”,t”). When the cones do not intersdb), we chooseX,t) 041 averaged
and (x”,t") to be coincident. — unaveraged
-0.8 '
) -05 0.0 0.5
Figure 16 shows an example of the network of those paths. X=X’

We can see how stress paths actually merge together and . .
generate arching. Furthermore, there is strictly no diffusion FIG. 17. The main graph shows the response function calculated
in the absence of disorder, i.e., numerically on a silo of width 1Gwith A=0.2. The thin line is a

the Green's function is ex-
actly given by the sum of tw@ peaks. typical response for a given realization of the disorder. Note that it

Alth h th ; has b imolicitl idered to b takes negative values. The bold line has been averaged over 5000
though the noise has been implicitly considered to be realization of the disorder. The inset compares the averaged re-

Gaussian throughout this paper, for numerical simplicity Wesponse peak with the one computed analytically, with a negative

chose the following algorithm for the calculation ©fx,t).  Note the negative part, as predicted by the theoretical calculation.
At each site k,t), a random angle is uniformly chosen

between—A(m/4) andA(w/4). A controls the amplitude i ) ) o )

of the noise. We then sety(x,t)=c, tar{ m/4+ 6(x,t)]; v serving negativeweights, which is, as we pointed _out al_-
and 9 are then related by v(x,t)=4 tanf(x)/[1 ready, a structural property of the wave equation with
—tan 6(x,t)J>. However, since the lattice itself is generated byrandomness Clearly, from a physical point of view, this is
the disorder, the precise correlation functignof thev’s is unacceptable and an additional rule should be added if the
not well controlled in this numerical scheme. This is ratherweight becomes locally negative. Some physically motivated
important since we showed in Sec. Il that the structurg,of rules could be inventemuch as in{3]), but we do not want
influences the shape of the response functibdetermines to pursue this here and leave this for future investigations.
whether the negative part of the response lies on the inward In the present paper, we restrict to the case of a nonzero
or outside edge of the main peakn fact, the structure of the bare diffusion constant that, as argued above, should exist on
peaks we obtain numerically is reversed compared to that ad physical basis. Numerically, we have implemented this in
our analytical calculation; see Fig. 17. two different ways.

The numerical histogram of the force distribution at the The first one corresponds to letting the above scheme run
bottom of a silo computed within this numerical scheme im-until some heightt;, and then start afresh with a regular
mediately reveals some problems. Since the lattice becomésttice, where the forces are obtained by averaging over the
more distorted as time increases, the numerical histogram efearest-neighbors belonging to the old lattice. This averaging
vertical forces keeps broadening and never reaches a statioprocedure is clearly equivalent to a diffusion term. In this
ary shape. Furthermore, there is a nonzero probability of obease, the numerical histograms do reach a stationary limit.
We note that the total probability of negative forces is re-
duced wherty is smaller; fortp~a, the histogram is very
nearly Gaussian around the average force; and for lagger
the tail of the probability distribution for large forces is of
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the form exptwP), where 2>8>1 (as found in[14]),
where B is decreasing towards one &s increases, or for
increasing disorder. Fap=10a and A=0.1, we foundB
=1.6. The small force region has a much larger weight than
found within the scalar model, although the presence of
negative forces prevents us from being conclusive in this
region.

The second scheme consists in simulating directly the
three-leg model introduced above, with a randprnshosen
between 0 ang,, . These scheme is thus very close in spirit
to the Liuet al. model. Again, the local forces are not every-
where positive and thus the small force region cannot be

reliably studied. Nevertheless, the large force region behaves
much in the same way as in the Lét al. model. In particu-
lar, as shown in Fig. 18, the tail of the distribution decays as

FIG. 16. Stress path network for a periodic silo of width 400
This picture has been computed with=0.2. We have chosen pe-
riodic lateral boundary conditions.
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ize the opening of the angle of the characteristic light cone

10' . : for propagation of stress. Within a mode-coupling approxi-
— 1-10000 2 mation scheméexact for uncorrelated Gaussian ngjsene
. ——- t=5000 2 finds that this angle vanishes for a critical disorder, beyond

---- =1000a 1 which stress propagates in a fundamentally different way

(this regime might, however, not be physically releyamhe
most striking difference between the scalar and tensorial ap-
proach is the fact that the response function becomes nega-
tive in the latter case, which is a source of instability of the
packing to external perturbations. For moderate disorder, the
response function takes negative values of order one near the
point where the perturbation is applied and decays with dis-
tance. Hence we expect this instability to occur near the
1 point where the perturbation is applied; at least near the up-
per surface of a pile under gravity, the effect occurs for a
10° , : stress perturbation as small as the weight of one grain since
0 2 4 6 this is sufficient to make the total local vertical stress nega-
rescaled vertical normal stress w tive.

FIG. 18. These curves show the histograms of the vertical nor- Another difference that could be amenable to experimen-
mal stressv, from which negative values have been removed. Theytal verification is the structure of the correlation function,
all have been computed for the three-leg model, with periodic silosvhich gives direct information on how the information trav-
of width 100G. The three bold(solid, long-dashed, and short- els in the medium. Because of the analogy between the scalar
dashedllines are results from silos where the amplitude of the noisesmodel and passive scalar convection in turbulence, it is fur-
is maximum @y =1). The height of those silos is as indicated in thermore possible that higher moments of the correlation
the legend. The thin line represent a 1860L00Ga silo where the  functions might reveal, in some circumstances, an intermit-
amplitude of the noise ipy=0.5, where it is nearly Gaussian. tent behavior. Finally, the exponential falloff of the local
Much like within the scalar modeR(w) shows an exponential tail - stress distribution at high values, first found within the scalar
for large values ofv when the disorder is maximum, while it is model, also holds within a tensorial approach, but requires
better fitted by a stretched exponentialFfw)~—w? with 8>1, large disorder.
for smaller values opy . Several open points remain for further studies. First of
B B _ all, we have considered only two-dimensional pack-
exp(-w’) with =1 whenpy=1 and with >1 when jng5 The extension to three dimensions is rather straight-
pPm<1. . ) ) . forward: Although the structure of the response functions

More work is needed to understand the physical implicapecomes inherently more complex in this césme[10]), the

tions of the presence of negative forces and any relation thig,ain features discussed hefiee., diffusive spreading and
may have to the static avalanche phenomei&nHowever, narrowing of the coneare still va,lid.

the above results show that the tail of the force distribution is Finally, we have not been able to determine analytically

only exponential in a strong-disorder limit, where local e histogram for local stresses within the random tensorial
archeg(i.e., one grain entirely bearing on a single downwardmqge|. The major unsolved problem is the presence of nega-
neighboj have a nonzero probability. tive forces, which induce a mechanical instability and im-
poses that an extra rule should be added to the stochastic

VI. CONCLUSION wave equation to determine how stress propagates. As em-
hasized above, we believe that this is a direct consequence
f the tensorial nature of the problem and can be interpreted
s a signature of fragility of the contact network, which is
enerically unstable to very small perturbatidB8s27].

We have investigated in great detail the role of a localP
disorder in the propagation of stresses in granular medid
both within a scalar approach, where only one component o
the stress tensor is retained, and within the full tensorial ap9
proach, using a simple linear closure schdrh&, 12, moti-
vated partly by numerical simulations, which leads to a
wavelike equation for stress propagation. The main effect of We thank V. Bucholtz, E. Chaent, J. Duran, C. Eloy, and
this local disorder is, in addition to introducing a diffusion- J. Rajchenbach for discussions, and A. Stott for a careful
like term in the effective, large-scale equations, to renormalreading of the manuscript.
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