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Calculating exact propagators in single-file systems via the reflection principle
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The dynamics of tagged particles in diffusive single-file systéome-dimensional systems where the par-
ticles are not able to pass each ojhisiinvestigated. The presented approach, based on the reflection principle,
yields exact propagators for quite a general class of systems. Examples are considered explicitly and compared
both with results of computer simulations and, in one case, with the asymptotic behavior known from the
literature. Practical implications of the results to the interpretation of data from scattering experiments and to
the application of single files for the controlled release of particles are discUSi63-651X98)02604-X

PACS numbe(s): 05.60+w, 66.30—h, 02.50.Ey, 02.50.Ng

[. INTRODUCTION used in this field. The interpretation of their data relies on the
assumption that the propagator of tagged particles is a
One-dimensional diffusion of a set of particles that are notGaussiarf11,3]. For large observation times, the validity of
able to change their order is known sisgle-file diffusion  this assumption has been shown analyticgilyl2]. Some
Quite a number of systems in different fields of science shovexperiments, such as neutron scattering at zeolitic single-file
such a behavior, e.g., superionic or organic condudtes systemg13], however, are able to resolve rather short obser-
ion channels through biological membraned, or many vation times, belonging to the aforementioned transition re-
zeolites with a one-dimensional channel sysi@fordenite, gion between normal and single-file diffusion where exact
L, AIPO,-5, etc) [3]. While the collective motion of the propagators have not yet been obtained. This paper will close
particles in such a single-file system proceeds just like that othis gap.
independent particles, the dynamics tafjged particlesis Example 2.Applications such as controlled-release sys-
considerably differenf4,5]. Its analytical treatment proves tems[14] require systems that release particles in a slow,
complicated because the motions of all individual particleswell-defined way. In single-file systems, tracer processes are
are correlated to each other over the entire syg@mMost  much slower than in systems undergoing normal diffusion
theoretical investigations in the literature are, for this reasondue to the strong mutual hindrance of the partid&Ss].
restricted to mean quantities or limiting cases[Th a for-  Moreover, the particles leave the channel in exactly the same
malism is developed yielding thpropagator of a tagged order as they entered it previously. As a basis of a quantita-
pointlike particle in a single-file system on the basis of thetive analysis of the release, we will consider the following
propagator of an isolatede., noninteractingparticle in the  process. Initially, the finite single-file channel is in sorption
same system. Due to an approximation partly neglecting thequilibrium with an infinite external reservoir of particles so
aforementioned correlations, the result is only valid for suf-that the channel is homogeneously occupied with a given
ficiently large times. A number of interesting phenomenaparticle concentratioe. At time zero, the channel openings
e.g., the transition from the initial Fickian behavior to single-are exposed to vacuum, whence the particles will, one after
file diffusion, or the diffusion of tagged particles in finite another, be desorbed from the file without any chance to
single-file systems, however, involve rather short times noteturn. By means of the calculation presented in this paper,
covered by the range of validity ¢7]. an individual of these particles starting at an arbitrary given
The formalism presented in this paper is free of approxi-position within such dinite channel with absorbing bound-
mations, i.e., it considers the correlations completely, andries can be traced.
therefore yields exact propagators for all observation times. The motion of particles in a single-file system is deter-
It may be applied to a wide class of single-file systems, in-mined by two kinds of influences: first, the particle-channel
cluding systems without translational invariance or with in-interaction, which acts on each individual particle causing it
homogeneous initial particle densities. Generally, the parto move, and second, the particle-particle interaction, which
ticles are assumed to be pointlike and diffusing in ainhibits the particles from changing their order. Section Il, as
continuous one-dimensional space. a preliminary, is devoted to the first kind of influence, thus
In order to illustrate the application of the general formu-considering ansolated particlein the system.
las, special systems will be considered at certain stages of the Prepared in this way, Sec. Il turns to a single-file system
calculation. Two examples are, in addition, of practical rel-occupied by dinite number of particleshat influence each
evance. other via the particle-particle interaction. Three steps of cal-
Example 1.Many experimentally investigated single-file culation lead to a general expression of the propagator of a
systems may be idealized atfinite, homogeneously occu- tagged particle, which is subsequently applied to special
pied channelsAs powerful tools, quasielastic neutron scat- single-file systems.
tering [8] and pulsed field gradient NMR9,10] are widely The aforementioned examples, however, involveirdia
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nite number of particlesThus, as a fourth calculation step, = We remark that Eq3) is by no means a unique choice of
Sec. IV considers this limit. After deriving the general propa-a differential equation modeling diffusion. Instead, one
gator, the examples are explicitly treated and discussed. Thaight make use of the telegrapher’s equation

Conclusion indicates possible generalizations.
2

Il. PRELIMINARY: THE ISOLATED PARTICLE ?f(x|a)+ f(xa)=D ﬁ(x|a), @)

A. The particle-channel interaction

which takes into account that, for very short timgsthe

. . . ; eparticle actually moves ballistically rather than diffusively.
channel is described by thisolated-particle propagator The parametetr can be interpreted as the finite velocity of

f(x|a). (ienerally, thet prtisenteldtformafllsm asiulmg_?fthat ;[_ha'awe particle[16]. For larger times, this equation coincides
propagator represents the solution of a partial differential, ... "iha diffusion equation.

equation that follows from the underlying model of diffu-
sion. The variablex denotes the position of the isolated par-
ticle at timet, while a is the initial position at time 0. The
propagator represents the conditional probability density of Now consider a finite channel of length extending from
the particle position, i.ef(x|a)dx gives the propability that x, =0 to xg=L. At both boundaries, the file can be plugged
the particle is to be found betweenand x+dx under the  up: The particle will be reflected back on reaching them.
condition that it started a. [If needed, the time argument Consequently, the probability fluxes through the boundaries

C. Example: The finite channel with reflecting boundaries

will be written as a superscrift(x|a), but usually it will,  disappear. Since, according to Fick’s first law, the probabil-
for lucidity, be omitted] The propagator is a normalized dis- ity flux is proportional to the first derivative of the propaga-
tribution, i.e., tor, this yields the well-known boundary conditions
* of of
f(x]a)dx=1. 1 il - - —
wa (x|a) 1) —(0l2)=0, —~(L|a)=0. (8)

In addition to the probability densitf(x|a), the correspond- The propagator for this system is obtained as a solution of
ing distribution function the diffusion equatior(3) subject to these boundary condi-
tions. This solution can easily be obtained from that of the
x infinite system(5) via the well-known reflection principle
g(xla):= f_xf(§|a)d§ @ 1710 h}/only f)rze reflecting boundary were presgnt, s%y at
the left boundary, the solution would have to be reflected and
will be required. In the following, several well-known rela- added, while the density beyond the boundary would have to
tions concerning the dynamics of an isolated particle in som&€ Set zero:

special systems are listed.
d(x—a)+Pd(x+a), x=0
_ L f.(x|ja)=
B. Example: The infinite channel 0, x<0.

(€)

The most common differential equation describing diffu-

sional processes is Fick's second law In the presence of two reflecting boundaries, each boundary,

in effect, “reflects” the other boundary as well, resulting in

_ prr an infinite number of “true” or “reflected” boundaries and
f(x|a)=D —(x|a), (3)  therefore in an infinite number of reflected solutions<(0
ax? <L, O<a<L):
known as the diffusion equation. If the particle starts at po- o0
sition a one has the initial condition f(xla)= > [P(x—a+2kL)+D(x+a+2KL)].
k=—o0
fo(x|a)=6(x—a). (4) (10
The solution for an infinite channel is given by The corresponding distribution function follows as
f(xJa)=f;(x|]a)=®(x—a), (5 -

g:(xla)= >, [I(x—a+2kL)—I'(—a+2kL)
where ®(u) is a shorthand for the Gaussian distribution =

given explicitly in Eq. (A1) in the Appendix. The corre- +I'(x+a+2kL)—T'(a+2KL)]. (11
sponding distribution function reads, according to E@S.
and(A4),

D. Example: The finite channel with absorbing boundaries

gi(xj]a)=T(x—a), (6) In contrast to Sec. Il C, any particle reaching one of the
boundaries is now assumed to be absorbed immediately into
where the functiod’(x) is defined in Eq(A2). the surrounding space from which it will never return into
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the channel. This implies that the probability of finding the isolated particle at one of the boundaries vanishes, whence the
boundary conditions read

faa(0]la)=0, faa(L|a)=0. (12)

The propagator will only be required forx<L, i.e., for positions inside the channel. In this region, it is given by

S [®(x—a+2kL)—d(x+a+2kL)], O<asL
k=—o

faa(xla) = (13

0, L<a.

(In the case &a<L where the isolated particle starts at an arbitrary position within the channel, the propagator is, as in Sec.
Il C, obtained via the reflection principle, though by antireflection, i.e., subtracting rather than adding the reflected solutions.
In the casea>L where the particle initially is already situated to the right of the right boundary, i.e., outside the channel, the
probability of finding the particle at any position within the channel vanishes because we assumed that it cannot enter the
channel from outside. The missing cas€0 will not be required in the latter calculatign.

In order to obtain the corresponding distribution function one needs the probability that the particle is situated to the left of
the left boundary, i.e., it has been desorbed at this side of the channel,

©

o - O=asL
fo faa(X|@)dx= 22, [F(2L-a+2kL)-T(a+2kL)], O<a (14)

0, L<a.
(This expression follows from the time integral over the flux out of the left bound@hen the distribution function can be
calculated via its definition by Ed2):

> [T(x+2L—a+2kL)+T(—x+2L—a+2kL)
k=0

x|a)= 15
9aa(X|2) CT(x+a+2KL)~T(—x+a+2kL)], O=<a=L 19
0, L<a.
|
lll. THE SINGLE-FILE SYSTEM WITH FINITELY MANY The single-file system is characterized by the impossibil-
PARTICLES ity that two particles change places so that the order of the

coordinatesx; is strictly preserved during all the dynamical

development of the system. This implies that only a certain
In Sec. Il a system with an isolated pointlike particle in asectionS' of the spaces is accessible: If the initial order of

diffusional channel was considered. The state of this systefo arbitrary coordinates ig<a;, all points withx;>Xx; are

was given by the coordinateof the particle and the dynam- forbidden. Thus the accessible secti#nof the state space is

ics could be described by the propagaft(x|a) characteriz-  demarcated by the planes=x;. The single-file property

ing the particle-channel interaction including the driving dif- can therefore be expressed as the condition that the probabil-

A. First step: The total propagator

fusion mechanism. _ _ _ ity flux through these planes vanishes, i.e., these planes act
If severalpointlike particles diffuse in the same channel as reflecting boundaries. This means that the total propagator
the state may be described by the veoter( ... X;,...)  P(x|a) of the single-file system can be obtained as the solu-

of the coordinateg; of the individual particles. In the case of tion of the higher-dimensional differential equation subject
free particles(i.e., without particle-particle interactiorthe  to the (additiona) boundary conditions

coordinatesx; are statistically independent and the total
propagator(i.e., the propagator of the system as a whae
given by JP(x|a)

on

=0 Vi#]j (17)

Xi:Xj

F(x|a>=H f(xi]a). (16)

(derivative normal to the plarg =x;), which can be trans-

This expression can be interpreted as the solution of the dni_ormed to

ferential equation of the isolated particle in the higher-

dimensional state spa&eof the vectors, where boundaries dP(x|a) dP(x|a)
of the channel, if any, cause corresponding boundary planes ( X ox
perpendicular to the axes & ! b h=x

=0 Vi#j. (18
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As was already done in the case of the channel with reflect- We remark that the planes=x; divide the state spacg

ing boundaries, this boundary condition can be satisfied usnto a large number of disjunct sections. All these sections
ing the reflection principle If the solution is reflected at a are geometrically congruent: They can be mapped onto each
plane and added to the original solution, the derivative of thether by reflection at their demarcating planes. Each of these
sum normal to this plane vanishes. If several reflectiorsections correponds to exactly one order of the coordinates
planes are present, all the reflected planes act as reflectiai the particles. This implies that the initial order determines
planes as well and one has to consider all possible combinavhich of these sections represents the accessible segtion

tions of reflections.
For the present problem, reflection at a plagre x; sim-
ply means exchanging the coordinatgsand x;. The pos-

sible combinations of reflections are given by the permuta-

tions of the coordinates, so that

> F(V,X|a), xeS
P(xla)={ =

0, Xe S,

(19

where the sum is extended over all permutatierendV . is

the corresponding matrix exchanging the coordinates.

Proof. Consider an arbitrary pair of permutations

k I k I
oy

REEE
i.e., in, the coordinate; holds the place of coordinate ,
the coordinate; holds the place of coordinate, and, is
equal except for the exchange of coordinateandx; . Now
differentiate P(x|a) with respect tox; or X;, respectively,
and take the result at an arbitrary pont(only the terms
belonging to the permutations, and 5, respectively, are
written):

m1= DY

) ), To=
J

JIP(x|a) N dF(x|a) N
ey s 7 ..
I X =Yoo X =Y
N dF(x|a) N
(9X| X =Yoo X =VY;
IP(x|a) N dF(x|a) N
i I 7 ..
X =Yio oo X =Y
dF(x|a)
+ + ..
Xy

If yi=y; both expressions are equal, whefifex|a) satisfies
the boundary conditioi18) for any function F(x|a).

[18).

B. Second step: The tagged particle

Let us now consider an individual tagged patrticle, chosen
out of the identical particles of the single-file system. It is
labeled by the index 0, i.e., its coordinatexis There areR;
left neighbors with the coordinates g , ... x—; andRg

right neighbors with the coordinates, . . . XRg: The order
of the coordinates is

—B=X g <X g 1< <X <Xe<Xg < <XR_ 1

RS (21
The propagator of the tagged particle is obtained from the
total propagator by integration over all other coordinates,

p(Xola)

=J dx,lf dx,zu«J dxlf dx,- - - P(x|a).

(22

Now Egq. (20) is inserted, whence the range of integration is
limited over the accessible space sect®oorresponding to
the order(21):

X0 X_1
p(Xo|a):f7 dx—lJ; dx_p- -

o

xf dxlf dx, - >, F(x|V,a). (23
Xg X1 T

This expression, however, cannot be further evaluated. To
get a simpler expression one can invoke the fact that, from
the point of view of the tagged patrticle, all its left neighbors
are indistinguishable from each other, as are the right neigh-
bors. The accessible region of the tagged particle is limited
by the positions of its two next neighbors, irrespective of
which individual particles occupy these positions. This im-

P(x|a) can be expressed in a way more convenient to th@lies that the propagator of the tagged particle does not
further calculations by permutating the initial coordinates change if both the left and right neighbors are allowed to

rather tharx:

> F(xV,a), xeS
P(xlay={ =

0, Xe&S'.

Proof. The dependence &¢f(x|a) on the individual coor-
dinatesx; differs only in the parameters; . Since exchang-

(20

mutually change their order. Only exchanges with the tagged

particle have to remain excluded. Thus one can do with the

much weaker condition
_90$X,RL<X0, e ,_OO$X71<X0,

X0<X1$OO, “ 0 ,X0<XRR$OO (24)

ing two coordinates means exchanging the individuality ofand extend the range of integration over the modified acces-
the dependence on these coordinates it is completely equivaible space sectiof’ corresponding to this condition. Math-
lent to exchanging the values of the corresponding compoematically, this is possible because of the congruence of the

nents ofa.

space sections belonging to different orders of the coordi-
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nates. For compensation, however, a normalizafidras to  Now we group all the subterms of E@1) (i.e.,all subterms

be introduced. If, in addition, Eq16) is inserted, one arrives of all termsT) in such a way that every group contains

at exactly h subterms, each of which consisting of exadtly

factors; in a given group, the occurring indicég (k
(o) = EE fxo dx o - .- fxo dx =1,... h) of the factors of the subterms belong to the same
P{Xo z< ] TR ot subset of the set of possible indices; and the subterms of a
given group differ in the index of the fact@;’(xy). Then
the integral over such a group can be found via the identity

xfwdxr--fxdeRH F (V). (25)
Xo Xo i

Consider an arbitrary term of this suigorresponding to a f (gi'lgiz' Qi T gilgi'z' it 100, 'gi’h)dxo
given permutations) and abbreviate the permutated initial =~
vector byb: =V _a. One observes that each integral applies
to one of the function$(x;|(V a);) only and that one of the

functions remains without integration. According to the sign

of the indexi, this results, therefore, in three types of factors

=[9i,9i," - 0i, 17-=1, (35

which follows fromg;(—2)=0 andg;(«)=1 due to Egs.

making up the considered term,

X
Jof(xi|bi)dxi (i<0,L-type factoy, (26)
ff(xi|bi)dxi (i>0, R-type factoy, (27
X0

f(xg|bg) (=0, O-type factoy. (29

[In the following, the notation “factor” will consistently re-
fer to these very factors of the terms of E85).] Using the
distribution function defined in Eg2), one can write the
L-type factor in the forng(x,|b;) and theR-type factor due
to Egs.(1) and(26) in the form[1—g(Xe|b;)]. The term of
Eq. (25) considered can thus be written as

T(Xo|b)=g(Xo|b-r ) - g(Xo|b—1) T (Xo| D)
X[1=9(xo|b1)]- - -[1=9g(Xo|bry)]. (29)

The normalizatior? is obtained from the condition

J'_ p(X0|a)dX0=l, (30)
which yields via Egs(25) and(29)
Z= > T(Xo|V,a)dX,. (31
We define functions
gi(X0):=9(Xola), (32
which give
i’ (Xo)=f(xolay). (33

If Eg. (29) is multiplied out the termsT(xq|V,a) can be

(1) and(2). This means that the value of the integral over a
group is equal to thécommor) sign (34) of its subterms and
therefore depends only om. For eachh, there are

h_;*LR_l) (R.+1+Rg)! subterms (R +1+Rg]! is the
number of all terms anq1(§LR_l) is the number of subterms

per term withh factors because it is the number of possibili-
ties to choose theh(— R, —1) R-type factors contributing
with g;(Xp) rather than with L These subterms are parted
into groups ofh members each, whence one gets

R
RL+14Re h_RR_1>(RL+1+RR)!
7= (_1)h7RL71 L

h=TR +1 h

(—1)¥ (RR)
-

Rr

=(R.+1+Rp)! >,

k=0 RL+1+k (36)

The sum can be done analyticall§9] and gives

Z=R,'Rg!. (37

This result allows an illustrative interpretation: Since we
have used the modified ord&4) of the allowed coordinates
rather than the true ord€21), we have increased the size of
the accessible section of the state space. While the original
sectionS’ corresponds to only one permutation of the coor-
dinates, the modified sectid@®! corresponds to a large num-
ber of permutations. Thus the increased section is as many
times larger than the original one as the number of permuta-
tions allowed by the modified order. The obtained normal-
ization Z gives exactly this number.

C. Third step: The propagator of the tagged particle

The propagatop(x,|a) is valid for the initital condition
a, fixing explicitly the initial positions of all particles. Now
we assume that the left neighbors of the tagged particle ini-

written as sums of subterms, each of these subterms considially were randomly distributed over the intervalcc<a,

ing of h factors R, +1<h<R, +1+Rg), whereh—1 fac-
tors are of the forng;(x,) and one factor is of the form
0i’ (Xg). The sign of the subterm is given by

(_1)h—R|_—l. (34)

<ay. The probability density of the initial coordinatg of
any individual particle iSQL(aj|a0), which shall be common
to all left neighbors. Likewise, the right neighbors shall be
distributed overap<aj<< according to ¢r(aj|la). Of
course, the densitieg, and g have to be normalized:
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ap o ]
J oL (alag)da= Ja or(alag)da=1. (38 Krr= kRR(XO|aO):J'a [1—g(xcla)]er(alag)da.
- 0 0
Taking the mean of the propagator over all possible inititalThough these expressions arise in a purely mathematical
conditions according to these densities, one obtains way, they can be interpreted physically. The expression
kor(Xolag)dxy, €.9., gives the probability that an isolated
ag EN) o particle that starts at a random position in accordance with
P(Xola0) = f_wda_RL f_wda—lfa da- - the densityor(alay) occupies, at time, a position between
° Xo andxq+ dxy. Analogously, the expressidq r(Xo|ag) co-
o incides with the probability that this particle is to be found at
X faodaRRQL(a—RL|a0)' a an arbitrary position to the left ofy, i.e., it started as a right
neighbor but would now, if the particle-particle interaction
X e (a-1lag)er(ailag)- - - er(arlao)p(xola).  were absent, be on the left-hand side of the tagged particle.

All the quantities defined in Eq42) do not depend any-
more on the particular values of the indideand |, but only
on their signs, i.e., only on thiypesof factor and operation.

(39

When this mean is performed with the individual terms— " = " — ;
T(x0|V,a) of p(xo|a), there is a situation analogous to that This implies that all ter_mé'ﬂ(xolao) that <_:onta|n the same
observed on discussing E@5): Again each integral of Eq. numbersof these quantities are equal. It is now combinator-
(39) applies to only one factor of the terrii¢x,|V ,a); there  ICS that tells us what patterns of products out of these quan-

are two different types of integrals according to the sign oftities are possible and how mafigentica) termsT _(Xo|&o)

the indexj of the initial coordinate, belong to each of these patterns.
All in all, there are R +1+Rg)! permutations of the
fao d <0, Lot i R +1+Rg coordinates and, consequently, as many terms
e e(ajlag)da; (<0, L-type operation, T.,.(xolao) in the sum ofp(xg|a). At first, we consider the

(40)  type of factor ofT(x,|V ,a) that remains without integration.
Case 0.The O-type operation is applied to the O-type fac-
* . . tor. Consequently, the resulting teri,(xq|ay) contains
Jao' - er(8j|ag)da;  (j>0, R-type operation, (41) koo- All other factors of this term can be eithky, , k g,
KgrL, or kgr. Their respective numbers ang, , h g, hge,
and one factor of the term remains without integration ~ andhgg. The task to be solved is to determine how many
type operation The respective permutatiom determines possibilities there are to allof’ =R, L-type operations and
which of the operations is carried out on which of the factorsr g=Rg R-type operations omez R, L-type factors and&
of the termT(x,|V ,@). Since every combination is possible, =Rg R-type factors in such a way thét, factors of the
nine types of quantities occur as the factors of the resultingind k, , ,h, g of the kindk g, etc., are formed. At first, one
termsT _(Xo|ao) of p(Xolag) (Where the first index gives the oObserves that

type of factor and the second index the type of operation
hi+hir=r{. hgit+hre=rE, (43)

ap
kie=kii(Xolao) = f_wg(xo|a)9,_(a|a0)da, hi+hei=r°, hir+hrr=rg.

ag This means that if, e.gh, | is chosen, all other numbers are
k0|_=k0|_(xo|ao)=f f(X0|a)QL(a|a0)da, determined:

hLL:h, hLR:rfL_h, hRL:rE_h,

ag
kRL:kRL(XO|a0):fﬁx[l_g(X0|a)]QL(a|a0)dar hrr=h+rg—rl. (44
Kok B The following list gives the successive choices that have to
Lo=KLo(%o|80) = 9 (Xo|20), be made in order to select a special combination of opera-
tions and factors, together with the corresponding number of
Koo= Koo(Xol@0) = f(Xolao), (42 possibilities ifh,, shall attain a given valub.

(i) (LL): Out of theL -type operationdy, | =h are chosen

to be applied td.-type factors(Consequently, the remaining
L-type operations are applied Brtype factors).
0

kro= Kro(Xo|@0) =[1—g(Xo|ag)],

ki r=k xa=fwxa alag)da, r

LR=KLR(Xo0l0) aog( ol2)¢r(al20) (i) (rf_Bh): Out of theR-type operationsh,_R=rf,_—h
L

are chosen to be applied to the remainingype factors.

kor= Kor(Xo|a0) = fmf(xola)QR(a|a0)da, (Consequently, the remainirig-type operations are applied
ag to the remainingR-type factors).
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(iii) rfL!: The operations that have been chosen for the R—-1 B 1om R 1h
L-type factors can be arranged into an arbitrary order, Stt= 2 H(h)k okolkf k(L Tk T TKRRARTL
permutateyl h=0

(iv) r,g!: Likewise, the operations that have been chosen (49

for the R-type factors can be arranged. Subcase LRThe resulting term additionally contains the fac-

The number ofequa) terms withh,  =h that fall into case  tOr Kor. One hasr{=R —1, r;=Rg, r{=R., andrp

0 is the product of these numbers; if the values/aofetc., of =Rr—1 and there areR, possibilities of choosing the
case O are inserted one gets L-type factor andRg possibilities of choosing th&-type
operation, so that
HO(h)= R Rr IR iRy (45)
The range of allowed valudsdepends orfr, andRg. Here
and in the following we restrict ourselves, without loss of R.—1
generality, to the casB, <Ry and make use of the abbre- SLR— E HLR(h)kLOkORk LkRL 1- hkRL hkh+AR_
viation h=0
(51
AR=Rr—R_ =0. (46)

. Case R.Analogous considerations yield the expressions for
Then the variabldn=h | can take all values from 0 1B, . the subcaseBRL andRR:

The total number of case-0 terms B (+1+Rg)!//(R_ +1

+Rg)=(R_+Rg)! because we have chosen the 0-type fac- R.—1 Rk
tor f(xolag) out of all theR_+1+ Ry factors. This can be HRL(h)=( h )(R _h)RL!(RR—l)! R Rr, (52
used to test EQ.(45: The validity of the identity L
R
Eh:LOHO(h)=(RL+ Rg)! confirms the result. Now we are R -1
able to write down the sum of all terms that belong to case 0:  SRt= 2 HRY(h)kgoko kI KEL ™KL e AR
RL (53

=2 HOkook{Lky kel KRS (47)

HRR(h) = ( )(RR ,f)RL (Re—1)!R%,  (59)
Case L.The factor that remains without integration is lof R
type. The resulting term gb(x,|ay) therefore containg, . RL
This case splits further into subcases according to whether  gRR— 3" HRR )k kork!, kRL hkRL MRFAR—L.
the operation acting on the factb(xy|a,) is of L-type or _ [1]

Subcase LLThe resulting term additionally contains the

factorko, . The remainind?, +Rg—1 factors can, asin case |5 gyhcaseRR, the range oh needs special attention: For
0, be eitherky, , kg, kig, OF krr. One now has| =R, R <R, the range comprises, as in case 0, all values from 0
—1 (one of thel-type factors is already “consumed” by the g R | but for R, = Ry there is at least one-type operation
O-type operatio)) rg=Rg, r{=R_—1 (one of theL-type  more thanR-type factors so thah cannot be less than 1.
operations is already applied to the O-type fagt@ndr}  Thus the summation starts lat&0 if R, <Rg and ath=1 if
=Rg. In addition to the possible choices in case 0 one hask, =Rgz. The summation range in bo®RR and SR\, how-
independent of the numbels | , etc., R_ possibilities to  ever, can be altered into the full range from ORp without

choose thel -type factor to which the 0-type operation is changing the sum because the added terms contain’X
applied and furtheR, possibilities to choose thie-type op- -0 t

eration that is applied to the 0-type factor. Thus Now the set of cases is complete and the propagator can
be written as
RL - 1
)

The maximal value oh=h, is reduced td?, — 1. The total
number of terms belonging to subcdsk is

Rr

LL —
H= ()= R.—1—h

)(RL—l)!RR!RE. (48 .
p(x0|ao)=Z(SO+S'-'-+S'-R+SR'-+SRR). (56)

If the abbreviation

R

+1+
(Re+ 14+ R a1 TRy R+ Ry

(RL+ RR 1)'R2 = kRRkLL (57)

I(R’LkLR
because of the probabilities of choosing théype factor out
of all factors and thd_-type operation out of thé-type or s introduced, the five terms may be simplified in the follow-
R-type operations. The sum of all terms of the subcase readeg way:
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R R, Ry ability density ¢\ (a;|ao). Likewise, it hasRg neighbors to
LR RL h Y.

hlR — the right, initially distributed according to a density
L QR(aj|aO). The motion of all individual particles is deter-
R-1 mined by the isolated-particle propagafgx|a) and by the
_SLL RLkLOkOLkRL 1kRL 1kAR+1 (RL_1> hard-core interaction between adjacent particles. These quan-
h tities represent the input of Eq61), entering p(Xq|ag)
through the auxiliary quantitiek o,Kog,KoL Kor KL R 1 KRL s

1
= S'=kook{ KKn KRR

><( Rr )yh andz as defined by Eqg€42) and (60), respectively.
—1-h
R -1 D. Example: The infinite channel
1 L RL RR_ 1
ZS —RRkLOKORkRL 1kRLkARh ) ( h )( _1_h>yh, In order to illustrate and check the general reg6lt),

consider the special case of a homogeneous infinite channel
R with the isolated-particle propagathix|a) according to Eq.
ESRLZR Kok~ kKREKRL™ 1kAR2 (RL_l)( Rr ) h (5). Without loss of generalitya,=0 can be assumed. The

z LPROTOLPLR™RL  "RR R.—h/Y" left and right neighbors of the tagged particle initially are
uniformly distributed over finite intervals of lengths and

ESRR: RRkROkORkRLkRLkAR s (RL RR_l)yh L, respectively. The initial densities are therefore given by
7 LR™RL “,\ h/IR —h | [0’ a<—L,
a|0)=
These sums can be expressed in terms of Jacobi polynomials eu(al0) 1L, —L sas0,

P({*#) by employing their explicit representati¢a0]
O=a=sLlLg

a>Lg. 62

. 1ULg,
or(al0)= 0,

n+a>(n+,8

y+
k_— 1 p(a ﬁ)(
=(y—-1" y=

(58

According to these choices, the auxiliary quantities can be
and their recurrence relatiofi0]. Moreover, one easily sees calculated due to their definitio®42) by introducing Egs.

from the definition(42) together with Eq(38) that (5), (6), and(62) and using Eqs(A4) and (A5):

Kro=1—Kpo, ki =1—Kkgy, Kkrr=1l-kg, (59 1 (o 1

| | otxel)= [ fitxelarda= M0+ L)~ T(x0))
whencekgg, k| , andkgrg can be substituted. Using the ab- L L
breviation
10) 1f0 [1—gi(Xola)]1d
+1 2k, rk KrL(Xo|0) =1 —0gi(Xpla)]da
Z:=y _ LRKRL 41, (60 L)oo, i
y—=1 1-Kkr—KgL

the final result is =1- —[/\(Xo+ L) —A(Xo)],
p(Xolao) = (1= kir— ko) R 1=k ) *R| keP2R(2) KLo(%]0) = Gi(X|0) =I'(Xo), 63

R.PLAR(2)+ R P(OAR)(Z) Koo(Xo|0) =fi(X0|0) =D (Xo),
L

(RL+Rr)(1—kgp)
RPR*M(2)~RPRAT(2)
(RL+Rr)kLr

+ Ry K oKoL

1 (Lr 1
kLR(XO|O):L_Rfo gi(xo|a)da:L_R[A(X0)_A(Xo_LR)],

+ RgKLoKor

1 (Lr 1
k0R<xO|0>=—f f(xola)da= — [T'(xg)~ T (xo—Lr)].
ReP4R)(2) - RePRAR)(2) LrJo Lr

+RL(1—Kk o)KoL

(Rt Re)ke, [The explicit forms of the analytical functiors, I', and A
<0AR) <0 are given by Eq , , an , respectively] Intro-
RgPOAR)(7) + R PLOAR)(7) given by EqsiAl), (A2), and(A3), re ively} Intrc
+Ro(1—k 2k _ ducing these expressions into H&1) yields the resulting
r(1=Kio)kor (RL+ RR)(l_kLR) propagatomp;(Xo|0).

(61) An example of this propagator for special values of the
parameter®R, , L, , Rg, andLg is presented in Fig. 1. The
Summarizing, Eq(61) gives the propagator of a tagged analytical curve due to Eq$61) and (63) is compared with
particle in a single-file system under the following condi- the result of a Monte Carlo computer simulation. Like in all
tions. The tagged particle starts at the initial coordirsgtdt ~ examples of this paper, the simulations were carried out on a
hasR, neighboring particles to the left whose initial coordi- lattice with ten points per unit length. Considering that point-
nates are randomly distributed according to a common probike particles have to be simulated, neighboring particles
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0.16 T T T T which follow from the definitions(42) using the identity
! g(2S—x|2S—a)=1—g(x|a) according to Egs.(2) and
Tola - ——
Pi(@o]ao) calculated —— (64). In this case, therefore, it suffices to calculate the quan-
0.12 | - tities Kqg,K, g,Kor, andk, r. Note that this is true even if
| _ RL ¢ RR .
0.08 - ] IV. THE SINGLE-FILE SYSTEM WITH INFINITELY
s . MANY PARTICLES
0.04 | . A. Fourth step: The limit
| i So far, a system containing a givéinite number of par-
ol - ticles was considered. In many applications, including the
0_15 ' 10 5 0 5 examples indicated in the Introduction, however, the number

of particles is infinite. The strategy to obtain the propagator

in these cases is first to consider an auxiliary system with a
FIG. 1. Example: propagat;(x.|a,) of a tagged particle in an finite_ number of particles and then to take the limit of the

infinite single file at time Ht=100. The tagged particle starts at Propagator if the number of particles tends to infinity. Of

a,=0, surrounded byR, =2 left neighbors(initially distributed  course, the auxiliary system has to be designed in such a way

over the interval —2,0]) andRg=8 right neighborg(initially dis-  that the quantitieSRLQL(aj|a0) and RRQR(aJ—|aO) tend, in

tributed over the intervdl0,8]). As expected, there is a drift to the this limit, to the given initial particle concentration of the

left because at this side there are fewer particles plugging up theonsidered system. This has to be ensured by a suitable de-

way of the tagged particle. pendence of the initial distributionSQL(aj|a0) and

or(ajlag) on the number of particles. Moreover, in some

were allowed to occupy the same lattice site but, of courseapplications also the isolated-particle propagd{oda) has

they could never change their order. The simulated propagae depend in a suitable way on the number of particles in

tors represent relative occurrences based on an ensemble@tier to prevent the final concentrati¢after infinite time

10 000 independent identical systems. The coincidence dfom diverging. The general calculation in the present sec-

the simulated and the calculated propagators was checkeidn assumes that this is fulfilled.

successfully in the standard way by test of goodness of In the limit of an infinite number of particles, arfinite)

fit with the significance levelr=0.01. differenceAR between the numbers of the left and the right
Similar calculations can be done on the basis of the propaaeighbors becomes irrelevant. Thus one can set

gatorsf, (x|a) [Eq. (10)] or f,.(x|a) [Eq. (13)] for finite

channels with reflecting or absorbing boundaries, respec- Ri=Rg=:R. (67)

tively. Although, in these cases, the reflection principle is

used twice(first in accounting for the boundaries and secondThe propagatof61) then simplifies to

in accounting for the single-file confinemgnthere is no

disturbing interference between both kinds of reflection

planes in the state spa& This follows from the general P(Xolag) =(1— ki r—kr )| kooPr(2)
validity of the presented calculation, but may also be realized
explicitly by geometrical arguments. Pr(2)+Pgr_1(2)

+kLORkOL 2(1_kRL)

E. Symmetric systems
Pr(2) —Pr-1(2)

All special channels considered in Sec. Il possess a sym- + ki oRkor
metry point at a certain positioB where the propagator can 2k r
be reflected, Pr(2) —Pr-1(2)
+(1_kLO)RK)L—
f(2S—x|2S—a)=f(x|a). (64) 2KRrL
(For the finite channels, this symmetry point lies in the center +(1— kLo)R%Rw , (69
S=L/2, while for the infinite homogeneous chaniatan be 2(1=keR)
set at any position.If the initial distribution of the particles
is symmetric as well, where the Jacobi polynomials have become Legendre poly-
nomialsPg. In order to take the limit of this expression we
0.(2S—a|2S—ay) =er(alay), (65) define quantitiesn as the limits of the auxiliary quantitids
if the number of particles tends to infinity,
the calculation can be simplified using the relations
m,_o = lim k|_0, moo: = lim koo, (69)

Kot (Xo|@g) = kor(25—Xo|2S—ay), (66) R R

KrL(Xolag) =Kk r(2S—X¢|2S—ay), and quantitiesy as the limits ofRKk,
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QoL:= liMRky , Qor:= lim Rkog, if the limit q exists. In this way, one obtains the limit of the
R R first part of the expressio(68),
Our:= M Rkg,  Qre:= lim Rig, (70 lim (1—k r—kr)R=eXp(— 0 r—OrL)- (73

R—® R—»® Resoo
and assume that all these limits exist. The existence, pf
andqg, implies The limit of the Legendre polynomial can be found via
the integral representatig21]
lim kLRZO, lim kRL= 0. (71)
R—® R— o

I J2-1 R
For an arbitraryR-dependent quantitk=k(R) one has Pr(z)= ;JO (2 yz°~1cosp)"de. (74

lim (1+k)R=exp(q) with g=IlimRk (72
R—soo R a R—oo Inserting Eq.(60), the integrand becomes

2kk +2(1—k_ g)(1—kg )k gkgr.CO
(22 V= Toosp)R=| 1 LrKRLE 2V(1—k R) (1~ krp K rKRL S‘P) 79
1- kLR kRL
In order to get the limit of this expression one computes, according tg72y.
. 2K rKr* 2\(1— ki) (1—Kg )k rKr COSP
lim R 1—k K =2\JLrARLCOSP,
R—® LR~ KRL
where Eq.(71) was used, and obtains
lim Pg(2)= —f 2VaLRIRLCO% ], (76)
R—
This coincides with the integral representation of the modified Bessel fundtidid]:
1 (=
In(x)=;f e"“**¥cogne)de. (77)
0
The result therefore reads
lim Pg(2)= lim Pr_1(2) =1o(2Vd rARL)- (78)
R— o R—®

A final difficulty arises from the fact that the fractions in lines 3 and 4 of E&®) yield, in the limit, the indefinite
expression 0/(Qcf. Egs.(71) and(78)]. Using the integral representatiéind) again one obtains in line 4

de. (79

Pr(2)—Pr_1(2) __jw(z+ Jz?—1cosp)R (z+\z>— 1cosp) — 1

2kgL z°—1cosp 2KrL

The limit of the second fraction of the integrand becomes

lim (80)

R— o0

KLr
k +\/ 1-k 1-kg)—co0
(z+ /_2_2—1003p) 1 MR ( LrR)( RL)kRL Sp Iir
= lim = \/q—COSP,
RL

2|(RL 1_kLR_kRL

R— o0
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while the limit of the denominator of the first fraction, due to E@5), becomes 1. As before, the result turns out to be

Pr(z)—Pgr_4(2z 1(~
lim M: A /% _f e2VILRIRLCO% cogp dp= /%| (2N RARL)- (81)
Ore 7Jo arL

The analogous calculation has to be done in line 3. Insertinfpr the special choices di(x|a), ¢, (alag), andgg(alag) in
Eqgs.(73), (78), and(81) into Eq. (68) yields the final result the present case, which is done using E&S), (84), and

(A9):
lim p(xo|ao) =exp — g r— dry)| [ Moot MLodoL +(1 Moo= lim Kgo= P (o),
R—o R—
arL = i =
—myo)dor]lo(2VALRARL) +| MLodor ﬁ MLo Fi"jlk'-o I'(Xo),

gor= lim Rkor=cI'(Xo),

R— o

q
+(1—=mgo)doL \/ ﬁ) 11(2Vd rARL)

(82 dLr= lim Rk g=CA(Xo).

R—

Summarizing, Eq(82) gives the propagator of a tagged
particle in the single-file system, surrounded by infinitely thege expressions are inserted into E88) and(83). Using
many neighboring particles. In order to obtain this pPropagagq. (A7), the final result reads
tor, one has to consider an auxiliary system with a finite

number of particles and take the limit as the number of par-

ticles tend to infinity. If the limits in Eqs(69) and(70) exist P (Xo|0) =exp{ —c[ A(Xg) + A(—Xg) 1} [P (Xo)

the particle density is sure to remain finite in the limit and

the limiting propagator exists. +2¢T (o) T(— x0) 11 o[ 26 VA (Xg) A(— Xg) ]

For symmetric systems obeying Eqé4) and (65) the

calculation simplifies, as in the case of finitely many par- ) A(=Xo) .,
ticles, according to +c| I'“(Xo) A(xo) +I"“(—Xo)
o (Xo|@p) = Qor(25—Xo|25—ay), A(Xq)
X A(_io) 11[2cVA(Xg) A(—Xg)1|. (89)

drL(Xola0) =dLr(2S—X0|2S—ay), (83
Let us consider the asymptotic behavior of the propagator
whence only the quantitie®io, Mo, Gor, andd.g are re-  jf the mean distance that an isolated particle would have
quired. moved is still very small or already very large in comparison
to the mean distance between adjacent particles. In the first
B. Example: The infinite channel case\/4Dt<1/c, the isolated particle has most probably not
yet “felt” any influence by neighboring particles. This situ-
ation occurs for a very small observation timea very low
diffusivity D, or a very low particle concentratian It will
be referred to as a short-time lim{though it could, of
course, equally be termed a low-diffusivity limit or low-
concentration limit In the opposite casg4Dt>1/c, the
long-time limit, the interactions of the tagged particle with
its neighbors predominate its propagation. This should occur
after a long observation time, at very rapid diffusion, or in a
L =Lg=RIc, (84) very crowded channel. In addition to the asymptotic form of
the propagator, we are particularly interested in the mean-
with an R-independent constaut this auxiliary system be- square displacement of the tagged particle,
comes, in the limilR— oo, infinite with a homogeneous con-
centration ofc particles per unit length. a_ [T .2
Obviously, this system fulfills the symmetry relatiof@zl) (xo) J_wx0p|(xo|0)dx0, (86
and (65) with S=0. In order to get the propagator of the
tagged patrticle in this infinite system, according to Sec. IV Abecause of its central relevance for the observation of diffu-

one has to calculate the quantitiegy, my o, Jor, andq.g  sion phenomenfl0,22.

As announced in the Introduction, the req@®) shall be
applied to the infinite, homogeneous, uniformly occupied
single file (example 1. As the auxiliary system one can use
the system considered in Sec. Il D: The infinite channel with
the isolated-particle propagatbi(x|a) due to Eq.(5) where
the particles initially are uniformly distributed within finite
intervals to the left- or right-hand side of the initial position
ay=0 of the tagged particle due to E@2). If one sets
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The discussion can be facilitated if the mean distance be- 1w0fF ' T T T T T
tween adjacent particlesclis taken as the unit of the length i o ]
scale: The coordinate, is replaced by the scaled displace- 10 | 3
ment X,=cX, and the diffusion coefficienb by D=c?D, (x2y | ]
while the concentration parameter vanishes; 1. Thus the Ty E
case of an arbitrary concentration can be mapped onto the 01 L ]
casec=1. This implies that one may assurse-1 in all TF T
order-of-magnitude estimations. 001 £ ]

In the short-lime limit, the tagged particle is expected to [ I
behave like an isolated particle. To check this, take, without 0.001 | 4
loss of generalityx,=0. For 4Dt<1 one has, according to [ ]
Egs. (A2) and (A3), I'(Xg)~1, I'(—X0)=0, A(Xg)~Xo, 0.0001 " | 1 1 1 1 1 1 L
A(—Xg)=0, lg~1, andl;~0 and the propagator becomes 0.0001  0.01 1 100 10000

4Dt
Pi(Xo|0) = exp( — ¢[Xo|) P (Xg) = P (Xo) = fi(Xo|0),

FIG. 2. Mean-square displacement of a tagged particle in an
where the second approximation follows from|xo| infinite single file, homogeneously occupied witk 1 particles per
<x2/4Dt in the exponent. Thus the propagator of the tagged!nit length. The broken lines2t and 4Dt/ \/m, respectively, in-
particle can indeed be approximated by the propagator of th@cate the asymptotic behavior.
free particle, which is a Gaussian with the mean-square dis-

placement V4Dt T
VA(£X0) = —(1i§§+0(§2)). (93
(x2)=2Dt. (87) 2\m

, N . Turning to the large square brackets of E§8), one ob-
In order to obtain an approximation of the propagator N rves that all term& (*x,) become approximately 1/2.

the opposite case, the long-lime limit, write E®5) in an . X
alternative way by splitting the exponential term into two Compareq with this, the terr@(xO) can be canceled du.e 10
v4Dt in the denominator. The fractions

parts and attaching one of them to the Bessel functions: _ )
VA(£X0)/VA(FX,) tend to 1 and therefore vanish as well.

B (x,) The only surviving contributions are the Bessel functions,
Pi(Xo|0) =exp{—c[ VA (Xo) = VA(—Xo)1%}c ( 0 which can be approximated according te ™ ,(\)
¢ ~1/\2a\, valid for large\, because\ increases with. If

A% the expansion of/ A (*=Xxg) due to Eq.(93) is inserted into\
A0

+2T (%) T (—Xo) and into the exponential factor of E(B8) one arrives at

e)\|0(7\)(rz(xo)

VA(Xp) 5
1 X
¢A<x0>) D1(Xo|0)~————exp| — —— (94)
+T2(—xo)——=|e"*1(\) |, (89) Japt |
TVACx)) T 5 V4D 2
cm cm

with N1 =2¢A(Xg) A(—Xp).
which is nothing but a Gaussian with the mean-square dis-

Then investigate the behavior of the functichsT', and A placement
for 4Dt>1. For any coordinat&, the relation

\J4Dt. (95)

1
N
£— Xo <1 (89) (Xo) Jrc

V4Dt
This finding coincides, as expected, with the asymptotic be-
holds as soon asBit becomes sufficiently large. Then the havior given in[7] for the propagator derived there.
functions can be expanded, Thus we have confirmed that both for small and for large
observation times the propagator of the tagged particle in the
1 infinite single-file channel tends to a Gaussian with a mean-
D(=X0)= ﬁ[“‘o(fz)], (90 square displacement according to E§7) or (95), respec-
74Dt tively. However, Eq(85) is valid at intermediate observation
times as well. Figure 2 shows the mean-square displacement,

1 2 obtained by numerical integration according to E&®) and
I'(£x0)= E( 1i\/_;§+ O(gz)) ! Y (86), as a function of the scaled observation time. The figure
clearly shows the transition between the two limiting re-
JaDt gimes of propagatior_l, which are indicated by the broken
A(EXg)= ——[1+7e+0(£2)], (92)  lines. [If the calculation were based on the telegrapher's

2\ equation (7) rather than the diffusion equatio(8), there
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LA S B L B B B As in Sec. Il D, the resul{85) was checked by compari-
son with computer simulations via @ test. In the simula-
tion, the infinite channel was approximated by 1000 neigh-
4 boring particles on either side.

03

02
C. Example: Absorbing boundaries

Let us now turn to the finite channel with absorbing
] boundariegcf. example 2 in the IntroductionThough the
number of particles within this finite channel is, of course,
finite, the initial equilibration with the infinite particle reser-
0 I T T T T S voir involves an infinite number of particles. Moreover, since
0.0001  0.01 1 100 10000 the particle concentration (rather than the number of par-
4Dt ticles) within the channel is given, the actual number is al-
lowed to fluctuate around the average valtle This can
only be accounted for by considering an infinite number of
®particles. Thus this example demonstrates that the limit of
infinitely many particles can be essential even for finite
) . N ] single-file channels.
would be two superimposing transitions: first, from the bal-  The system can be modeled as follows. Initially, a small
listic to the dlffus!ve behavior of the |solated' parthles and,(finite) number of particles is placed into the channel in such
second, as described, from the free to the single-file behay way that it builds up the homogeneous particle concentra-
ior.] In order to assess the deviation of the propagatofion ¢, while the (infinite) rest is placed into the reservoir
Pi(Xo|0) from a Gaussian with identical mean-square disside the file. Fot=0 when the desorption process has

FIG. 3. Excesse of the propagatop,(x|0) with c=1 as a
function of the observation time, expressing the deviation of th
propagator from a Gaussian of identical variance.

placement, one inspects in Fig. 3 its excess started, the individual particles behave according to the
isolated-particle propagatdg,(x|a) considered in Sec. Il D:
(x3) As soon as a particle reaches one of the boundaries, it is
€= 55 (96)  swallowed by the vacuum and will never return.
(Xo) In the auxiliary system, where the number of particles is

finite, we adjust the initial densities in such a way that the
presented over the same range of observation times as in Figarticle concentration within the file has its given vakie
2. Obviously, the maximal deviation occurs roughly halfwaywhile the (still finite) rest of the particles are placed in the
through the transition. The explicit form of the propagator atreservoirs:
this maximum is given in Fig. 4 and compared with the

corresponding Gaussian. Obviously, the difference between R 0<a
both curves is rather small. If, therefore, the propagator is eL(aag)= c/R, O=a=a,
fitted to experimental data whose error is larger than this
difference, it can, for all observation times, be approximated c/R, ags=asL
by a Gaussian. or(alag) [ . L<a (97
0.4 T T T T T T T the ellipses stand for arbitrary distributions outside the chan-
pi(xo|0) L - nel ensuring Eq(38), which will not enter into the result.
Again, the system is symmetrical, whef®@=L/2. With
03 . foa(x|a) due to Eq(13), g,.(x|a) due to Eq(15), and these
L initial densities one hador 0<xy=<L)
0.2 | ' - Koo(Xol @) = faa(Xol@o),
i ; .\ ] KLo(Xo|@0) = Gaa(Xol@o),
0.1 ]
J \ c (L o
- . kOR(XO|aO):§f faa(X0|a)da+J faa(Xol@)- - -da,
ag L
0 1 1 1 1 1 (98)
4 3 -2 41 0 1 2 3 4

Zo

c (L »
L kL r(Xolag) = ﬁf Oaa(Xola)da+ f Jaa(Xol@)- - -da.
FIG. 4. Example: propagatqui(xo|0) of a tagged particle in an a L

infinite single file, homogeneously occupied witks 1 particles per

unit length, at time Bt=6.5 (solid line), compared with a Gauss- The ellipses are the arbitrary distribution from E87). The
ian of identical variancébroken line. At this time, the excess of ~ terms containing them vanish becaubg(xo/a)=0 and
the propagator is maximal. Jaa(Xgl@) =0 for a>L according to Eqs(13) and (15).
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FIG. 5. Example: propagatqma(Xo|a,) of a tagged particle in
a finite single file of lengti. =10 with two absorbing boundaries,
initially homogeneously occupied witlt=1 particles per unit
length, at time Dt=10. The tagged particle startsaj=2.

Now the limit R—« is performed. With Egs(69) and
(70) one calculates

Moo Xol@0) = Faa(Xol@o),

M o(Xol@0) = Gaa(Xolao),

L
qOR(XO|aO):Cja faa(Xola)da, (99
0

L
aLr(Xolag) = Cfa Jaa(Xola)da,
0

where the integrals are given by fXy=<L)

L oo
ffaa(xola)da: > [[(xo—ag—2kL)—T'(xo—L
ag k= —o0

—2kL)+T(Xo+ag—2KL)

—T(xp+L—2kL)], (100

L o0
f Jaa(Xola)da= >, [A(—Xo+ag+2KL)+A(Xo+ag
ag k=0
+2KL) + A (—Xo+ 2L —ag+ 2kL)

+2KL)—2A (Xo+ L +2kL)]. (101)

If this is introduced into Eq(82) one obtains the searched

propagatopaa(Xe|ao). As in Sec. Il D, an example is given

graphically in Fig. 5 and compared with computer simula-

tions. Once more, thg? test confirms the coincidence.
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FIG. 6. Probability that a given particle is still inside a finite
channel of length. =100 with absorbing boundaries. Initially, the
channel is occupied with=1 particles per unit length. The tagged
particle is identified according to its starting positigrereay=50
or ap= 20, respectively The situation in single-file systentsolid
lines) is compared with the case of noninteracting parti¢lreken
lines).

L
P(ap,t)= Jo Paa(Xolag)dXo. (102

For the special valué =100, ag=50 (the particle starts in
the channel centgrit is shown in Fig. 6 as a function of time
(rightmost solid curve For comparison, the corresponding
probability F(aq,t) for a free particle is given(broken
curve), which can be calculated via an integral similar to Eq.
(102 using the isolated-particle propagafqg(x,|ao) rather
than the single-file propagatia(Xo|ag). As expected, the
free particle leaves, on average, the channel much earlier
than the particle subject to single-file confinement. Interest-
ingly enough, also the opposite situation occurs, as is shown
by the left two curves in Fig. 6. In this case, the particles start
at a position closer to the boundagg=20. While the un-
restricted particle is free to move towards the channel center
where it is far from the absorbing boundary, the single-file
particle is not able to leave the vicinity of the boundary
whence it eventually has a greater chance to be absorbed.
This is illustrated in more detail by Fig. 7, where the prob-
abilities P(ag,t) andF(ag,t) for the single-file or the free
particle, respectively, are compared at a fixed time dependent
on their starting positiom,. The crossover of the two curves

is, however, not surprising: As already mentioned in the In-
troduction, the total mass transport is not influenced by the
single-file confinement, so that the mean number of remain-
ing particles within the channel is insensitive to whether or
not the particles are able to change their order. This implies
that the integrals over both profiles of Fig. 7 are equal,

CJLP(aO,t)daﬁCJLF(aO,t)daO. (103
0 0

The propagator can be used to calculate the probabilitffhe quantitative result presented in Fig. 7 shows that the
that a particular particle is, at a given time, still inside therelease of particles from a single-file channel depends much
channel. Assuming that the considered particle starts at more pronouncedly on their initial positions than in the case

positionag, this probability is given by

of noninteracting particles. This is a characteristic feature of
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1 T T interaction is described by appropriate boundary conditions
(or, even more generally, by a total interaction potentigbin
08 L 1 representing the sum of all pairwise particle-particle interac-
tion potentialy. In the case of hard-core repulsion, these
P F boundaries are totally reflecting and can be accounted for by
0.6 - the well-known reflection principle. Currently, we are inves-
tigating the generalizations of this method to more compli-
0.4 k i cated systems, including incomplete mutual repulsion of the
particles and systems where the single-file behavior is re-
stricted to certain regions of theaxis.
0.2 - 7 If the particles cannot be considered pointlike, but have a
given radiug, the reflection planes in the state sp&deave
ol I L to be translated. In this case, the treatment involves addi-
0 20 40 60 80 100 tional complications. For some systems, however, where the

ag particle density does not change with time, the propagators
may approximately be corrected by an appropriate scaling of
the x axis as suggested i7]: If all the space occupied by
particles is cut out, a modified system with again pointlike

aries, dependent on its starting posit@) If starting in the channel . 4i-ja5 s obtained. This can, on average, be done by scal-
center, the particle subject to single-file confinem@alid line) is : - L .
) ing the x axis by the factor *2rc giving the relative
much less probably absorbed than the free partisieken ling, .
amount of unoccupied space.

while the contrary situation is true for particles starting near the
boundaries. Initially, the channel is occupied with-1 particles
per unit length.

FIG. 7. Probability that a given particle is, at tim®#= 5000,
still inside a finite channel of length= 100 with absorbing bound-

single-file systems which could, e.g., be employed for the ACKNOWLEDGMENTS
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The presented formalism yields exact expressions for thBereich 294
propagators of tagged patrticles in single-file systems. It is
valid for arbitrary interactions between the particles and the

V. CONCLUSION

channel, as described by the isolated-particle propagator APPENDIX
f(x|a), and for arbitrary initial distributions of the particles, ) ) )
as described by the probability densitieg (aja,) and Because of their frequent use in the examples we define

or(alag). The number of particles may be finffgq. (61)]  the analytical functions

or infinite [Eq. (82)]. As examples, the infinite channel and

the finite channel with two absorbing boundaries were con- 1 u2

sidered. The validity of all explicit results was checked by ®d(u):= exp( — —) (A2)

comparison with propagators from computer simulations. As V4mD1t 4bt

a further check for the homogeneously occupied infinite

channel, the asymptotic behavior was compared with results

known from the literature. T'(x): :E 1+ erf X )] (A2)
In addition to the derivation of general expressions of the 2 Jabt) |’

propagators, practical conclusions were drawn from the re-
sults. First, it was shown that the propagator of a tagged t
particle in an infinite, homogeneously occupied single file A(x):=7¢>(x)+xl“(x), (A3)
deviates, for all observation times, only slightly from a
Gaussian. This justifies an assumption often made on evalu-. L cee -
J b th the observation timeand the diffusion coefficierld as

ating scattering experiments. Second, the release of particlé@ i Si th ¢ lusivel in th
from a finite single file can be investigated quantitatively. parameters. since INese parameters exciusively occur in the

One finds a characteristic, strong dependence on the initiz;?rm 4Dt, this g_xpressmn Caﬂ be considered d"’.‘S ? scaled
positions of the particles within the channel. Particles fromtme corresponding to tW'C.e the mean-square disp acement
ﬂf an isolated particle at this physical tinhdn a homoge-

the channel center are released much more slowly than i X R .
systems ruled by normal diffusion with equal length and dif-N€oUs channel with the diffusion coefficiedt cf. Eq. (87).
The functions are related to each other by the integrals

fusivity.

The basic idea of the approach presented is to solve the
diffusion equatior(or any equivalent differential equatipim fx ®(u)du=T(x), (A4)
the state spac® of all particles, where the particle-particle —o
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X A(—=X)=A(X)—X. A8
f I'(u)du=A(x). (A5) (=% (x) (A8)
Moreover, they fulfill the relations Their limits are
O(—u)=>(u), A6 . . .
(=u) (W (A8) lim ®&(x)=0, Ilim I'(x)=0, lim A(x)=0.
X— —© X— — X— — 0
I'(—x)=1-T'(x), (A7) (A9)
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