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Temporally disordered granular flow: A model of landslides
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We propose and study numerically a stochastic cellular automaton model for the dynamics of granular
materials with temporal disorder representing random variation of the diffusion probabitigy() around
threshold value % u( during the course of an avalanche. Combined with the slope threshold dynamics, the
temporal disorder yields a series of secondary instabilities, resembling those in realistic granular slides. When
the parametey, is lower than the critical valug.g~0.4, the dynamics is dominated by occasional huge
sandslides. For the range of valug§=<pu,<1 the critical steady states occur, which are characterized by
multifractal scaling properties of the slide distributions and continuously varying critical expongnts).

The mass distribution exponent fpp~0.45 is in agreement with the reported value that characterizes Hima-
layan sandslides. Aty= ng the exponents governing distributions of large relaxation events reach numerical
values which are close to those of parity-conserving universality class, whereas for small avalanches they are
close to the mean-field exponentS1063-651X98)01904-7

PACS numbe(s): 81.05.Rm, 64.60.Lx, 05.48j, 02.60.Cb

[. INTRODUCTION outflow currentl, which is defined as the number of grains
that leave the system when an avalanche hits its lower
Understanding flow in realistic granular materials appeardoundary. The probability distribution of outflow current
to be an important problem from both a practical and a theP(J) in the steady state obeys the scaling foR4J,L)
oretical point of view[1,2]. Renewed theoretical interest in =L #G(JL™") with =2 when the linear sizé& of the
this field has concentrated on the origin of scaling that charpile support is varied, as found in R¢#] for sandpiles of
acterizes phenomena in slowly driven granular materialstelatively small sizes. Using silicon dioxide sand Rosendahl
distributions of avalanches in realistic granular pil8s-8], et al. [5] concluded that small and large avalanches behave
stratification [9], compactification[10], etc. The central differently and the distributiof?(J) shows no simple finite-
guestion is as follows: Do granular piles self-organize intosize scaling. Moreover, avalanche statistics was found to
critical steady statefl] and if so, under what conditions? vary with the size of grains used. Measuring tinéernal
Another interesting phenomenon related to dynamics ofivalanches Bretet al.[6] have also observed that two types
granular materials in nature is the landscape evolution due tof statistics are governing small and large avalanches. The
overland and channel flow, which results in fractal topogra-measured distribution of avalanche size exhibits a power-law
phy. The underlying mechanisms of erosion with spatiallybehaviorD(s)~s™"s with [6] 7¢~2.14, which probably ap-
and temporally varying erosion rates are the subject of intenplies for avalanches of small sizes. The two titaed siz¢
sive discussion in the literatufd 1]. scales were more clearly demonstrated recently by MD simu-
It has been understood that realistic flow in slowly drivenlations[13], leading to two exponents;=2 for short, and
granular piles depends on many parameters, such as shapgs 1.5 for long time scale. A sophisticated measurement of
and sizes(and massesof individual beans, roughness of the internal avalanches was done with a one-dimensional
contact surfaces, their wetting properties, etc. Random ricepile[7], in which elongated rice grains were used to sup-
controlled variations in some of these parameters lead tqress inertial effects. Scaling properties of the distribution of
fluctuations of contact angles and force distributidr?],  dissipated energy were determined, indicating that details of
nonlinear friction, stochastic character of diffusion, velocity the dissipation are responsible for the occurrence of the criti-
and convection directions, and fluctuations in angle of recal state. In another experiment the transporindfividual
pose. Unidirectional flow—reflecting dependence ongrains was monitored, and the distribution of transit time was
gravity—is common in all granular materials, as is the oc-also found to exhibit robust scaling behavjai.
currence of secondary avalanches following the initial insta- The collected data for the landslides in nature, triggered
bility. Molecular dynamic(MD) simulations[13] and vari- by various mechanisms, also exhibit a power-law behavior
ous cellular automata models with stochastic relaxation rulegl]. The exponents for the area of slides have been estimated
[14-16 have been useful in describing certain aspects ofn the rangers=1.16-2.25[17], depending on the dominat-
realistic granular flow. However, comparison with measuredng triggering mechanism and region where the data were

avalanche properties has been only qualitative. collected. The distribution of the mass collected from Hima-
In experiments the most often measured quantity is théayan sandslides is characterized by the expongrt0.19
—0.23[18].
In the present work we introduce a new stochastic model
*Electronic address: Bosiljka.Tadic@ijs.si of directional flow on the two-dimensional square lattice in
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The organization of the paper is as follows: In Sec. Il we
introduce the model and show two representative examples
of landslides. The probability distributions of slides and their
scaling properties are determined in Secs. Ill and IV for vari-
ous values of the linear system sizeand the parameteg
in the scaling region. Section V contains a short summary
and the discussion of the results.

. MODEL AND LANDSLIDES

We consider a square lattice oriented downward, with a
dynamic variable, height(i,j), associated to each site. The
relaxation rules are a combination @f stochastic diffusion
by two particles whenh(i,j)=h. with probability w(t),
which varies in timg(see beloy, and(ii) deterministic con-
vection, when local sloper(i,j)=h(i,j)—h(i+1,j.) ex-
ceeds some critical value(i,j)=0o.. At each site the rule
(i) is applied by toppling one particle along an unstable
slope repeatedly until both local slopes drop belew The
system is updated in parallel, which leads to a well-defined
internal time scale of the relaxation process. The updating is
stopped wherall affected sites become temporarily stable.
Here (+1,j.) are positions of two downward neighbors of
the site (,j). Mass flow is always downward, however, the

FIG. 1. Two examples of avalanches running from left to right; instability can propagate backwards both due to nonlocal
(below) in the scaling regi0m0>lu6 and (top) in the region of Slope condition and due to time-dependent diffusion prOb-
erosional avalanches. Multiple topplings up to fourth order areability. We assume that diffusion probability fluctuates sto-
marked by different degrees of gray color. chastically in time, but is space independent. Implementation

of this rule is done as follows: We preset the threshold value
which numerous after-avalanches are generated within a cegr,, which is the same for all sites in the system. Then at
tain correlation time due to temporal disorder in the diffusioneach site that is affected by an avalanche a new valaigis
term. The dynamic rules are a combination of stochastic difselected at each time step until the avalanche stops from a set
fusion and deterministic branching processes. The diffusiomf random numbers evenly distributed on the interi@al),
probabilities changeandomly in time but are space inde- and toppling is accepted jf(t)< u,, and rejected otherwise
pendent. Fluctuations in diffusion probability —lu(t)  [20]. Therefore, foru,=1 all sites toppldthe rule becomes
around threshold value 14, which depends on external deterministi¢, whereas foj,<1 an unstable site might not
conditions and thus appears as a control parameter, is motopple at a given timé because of instantly low diffusion
vated by fluctuations in wetting and drying conditicaféer  probability p(t)=1— u(t)<1— uo, however, it may topple
an avalanche commencégsee Sec. )l Notice that the life-  at a later time step’ >t if p(t’) exceeds the threshold dif-
time of an avalanche can range from seconds in the laboraysion probability 1- u,. This temporally varying disorder
tory granular piles to geological times in the landscape evomimics changes in sticking properties with time, which then
lution. Therefore, the change of local stability conditions|ocally influence the angle of repose. This phenomenon can
during the avalanche lifetime is a natural choice in the case of interest for the flow of granular materials with large
of long relaxation times. A similar type of disorder in di- effective friction, such as ricepildg] in which the effects of
rected percolation processes was recently considered kytanular boundaries may depend on the local dynamic vari-
Jenser{19]. able h(i,j) and its derivatives. Therefore the difference

We perform extensive numerical simulations for various(t)— 4, is a measure of the dynamic friction. Recently
values of the parametgr, and lattice sizes, and quantify  proposed models with stochastic critical slope rules in one
the behavior by the landslide distributions @¢f duration  dimension[15] proved very successful in describing the ob-
t—time that an instability lasts measured on the internal timeservedtransportproperties of ricepilef8]. Whereas foava-
scale; (i) size s—area affected by an instability, arfdi)  lanche distributions these models predict universal scaling
massn—number of grains that exhibit slides during one ava-exponents, in contrast to the experimental observafid)is-
lanche, andiv) by outflow current)—number of grains that 7.
fall off the open boundaries of the pile. Self-organized criti-  Another interesting example is represented by landscape
cal states are found for a range of values of the control paevolution, which can also be considered as a granular flow
rameteruo= ug~0.4, which are characterized with multi- [1], in which local wetting properties fluctuate in time. By
fractal scaling properties andug-dependent critical wetting,p(t) drops below the threshold diffusion probability
exponents. Fop,< ug large discharging events occur occa- 1— o, the grains stick together, and the system builds up
sionally, representing large-scale erosional reorganization dérge local slopes. At a later tinté these slopes may become
the system rather than fluctuations around a well-definedinstable either when due to dryipgt’) exceeds the thresh-
critical state. old, or when the slopes become larger than critical. Two
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different classes of triggering mechanisms of landslides have The temporally varying diffusion probability is a new in-
been discussed in the literatyél]: rainfall and water level, gredient of our model, which was not considered so far in
which control soil moisture on one side, and ground motionCA models of granular flow. It appears to be responsible
which leads to slope variation on the other. The values oboth for new scaling properties and for the transition into the
measured exponents of landslide distributions are directlgtate dominated by large erosional avalanches. In Fig. 1 are
related to the locally prevailing triggering mechanib]. shown two examples of simulated landslides with multiple
In principle, threshold shear stress may depend on the slofgepplings due to secondary avalanches up to fourth degree in
angle and on soil properties, which are influenced by soithe scaling regioribottom) and a large erosional eve(top).
moisture. We assume that these two mechanisms are related
dynamically In .the present mpdel both mechani;ms are.ef— IIl. PROBABILITY DISTRIBUTIONS OF SLIDES
fective: 'I_'he so_ll n_10|sture, Whlch affects local height, varies AND THEIR SCALING PROPERTIES
stochastically in time at each site, whereas we assume that
the shear stress threshold depends only on the local angle In this section we present results of numerical simulations
and thus remains deterministic. Moreover, by tuning theof avalanche statistics. As discussed in Sec. |, a landslide
critical height mechanism via the parameigy;, we find non-  consists of many interpenetrating avalanches of different de-
universal critical properties and a transition to noncriticalgree, which are spatially connected to one another within the
dynamic states, in qualitative agreement with experimentdlifetime of the instability. For concreteness, the probability
observations. A different model of landslides is obtained bydistributions are determined for tivehole relaxation event,
“averaging out” the critical height mechanism and assumingwhich is equally termed as avalanche and/or landslide. We
stochastic variations of critical slope, which can be viewed agipply open boundary conditions in the perpendicular direc-
one of few possible generalizations of stochastic critication (see also later an example where periodic boundaries
slope model§15] to two dimensions. So far the results of have been us@dIn most simulations we useld,=2 and
two-dimensional stochastic critical slope models are notr.=8. By varying the external parametep between 0 and
available in the literaturg€22]. 1 and lattice sizd. between 12 and 192, we determine the
The system is perturbed by adding grains one at a time atistributions of size, mass, and duration of avalanches
a random site on the first row, thus increasing local heightslides.
and slopes. Therefore, an instabiligvalanchgcan in prin- In Figs. 2 and 3 the distributions of avalanche duration
ciple start only from the top, however, secondary avalanchewnger thant, P(t), size larger thars, D(s), and mass
are commencing from any affected site in the system, triglarger thann, D(n), are shown forL=128 and various
gered either by a high instant value @{t) or by supercriti-  values of the parameter,. [Notice that in the deterministic
cal slope. In order to have “clean” statistics, we start eachlimit wy=1 the distributionsD(s) andD(n) become iden-
avalanche from the top row and consider only those secondical, however, unbounded number of topplings at each site
ary avalanches that aspatially connectedvithin a certain  for wy<1 leads to two distinct distributionsFor u,<1 a
correlation timet. . Heret, is not a prefixed parameter, but it characteristic behavior with two scales appears: the steep
is determined by the relaxation process itself. Typicillis  section corresponding to small avalanches, and the flat sec-
determined by the lifetime of the instability, thtis>1 for  tion to large avalanches. The crossover length between small
large relaxation events. There are two interesting limits ofand large relaxation events varies wijiy, however, it re-
our model. In the limitug=1 it reduces to the deterministic mains small(cf. Figs. 2 and B so that distributions of ava-
directed model[23], whereas forug<l and in the limit lanches smaller than the crossover length extend only over
when the correlation time istrictly equal to one, it reduces one decade. Here we concentrate on the behavior of large
to the model considered in RéfL6)]. avalanchesi.e., avalanches that are larger than the crossover
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length. With lowering the threshold diffusion probability,  pile automata models in the literature, the present distribu-
a large number of secondary instabilities develop, leading ttions do not obey simple finite-size scaling. Instead, we find
the flattening of the distributions. However, we find a power-that different regions of a large avalanche have different
law behavior P(t)~t1"", D(s)~s'"7, and D(n) fractal propertiesand consequently their own exponents.
~n!"" as long asuy=0.4. The exponents;, 7, and The following multifractal scaling fornj25];

T, appear to vary continuously with control parameigr as

shown.in the insets to Figs. 2 and 3. The charact.er of the P(X,L)~(L/Lg)?x(@x), (1)
dynamics changes below;~0.4, where only occasionally

very large avalanches occur. We study in some more detaibith

the relaxation clusters giyo=0.4. Numerical values of the

exponents are,=1.253, 7,=1.202, andr,=1.190 for the X L

distributions of duration, size, and mass of avalanches, re- axE<|nX—) / <|n|_—) 2
spectively. In addition, we have measured the distribution of 0 0
linear elongation of avalanches in the direction of transportits well our data with Lo=1/4 and X,=1/4. (Here

P(N~7/"7, thDe mass-to-scale ratio with respect to parallelx=t s 3). In Figs. 4 and 5 we show the probability distri-
Ien%th (s),~7"l, and the average transverse extenit)  puytions of duration and size, respectively, for five different
~/*. We find 7,=1578, D=1572, and {=Dj=1 |attice sizesL and for fixed uo=0.7. The corresponding

=0.572(estimated error bars 0.03). These values are close gpectral functiong,(a;) versuse; andd.(a.) versusa, are
to the numerical values of the exponents in the parity-shown in the insets to Figs. 4 and 5.

conserving universality clasg®24] of branching processes.
On the other hand, the exponents governing small events
increase with decreasing, (cf. Fig. 2, reaching the values
77=1.92, 13=1.67, and7,=1.45 for the duration, size, The outflow current results only from those avalanches
and mass of small avalanches, respectivelys@t ug. No-  that reach an open boundary of the system. The size of such
tice that although the scale of the distributions is small, beingvents and their frequency is a relative measure of the trans-
bounded by the crossover length, these values of the expg@ort processes that occur in the interior of the pile. The out-

nents indicate closeness of the mean-field universality clas§ow current is easy to measure both in laboratory experi-
ments and in natural landslides. For instance, the width of

the sedimented layers of granular materials that occur below
steep sections in mountains are directly related to the size of
By varying the lattice siz& with u, fixed in the scaling outflow avalanches from that section. Sensitivity of the out-
region we study the finite-size effects on the distributions offlow current distributionP(J) to variations in the control
avalanches. In contrast to most of the two-dimensional sandgarameter is monitored in our model for= 48 with periodic

IV. OUTFLOW CURRENT

Multifractal scaling properties of landslide distributions
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boundary conditions in the perpendicular direction. In Fig. 6ary conditions. Fojwy= 0.4 (cf. lower three pane)sthe out-

we show the distributioP(J) versusJ for ug=1, 0.8, 0.6, flow current fluctuates around mean vallige=1, thus bal-

0.4, and 0.2. Once again, the change in the character of thenhcing the input current and maintaining the steady states of
dynamics below. is also seen in the outflow current, which the system(a steady state is characterized by balance be-
becomes centered around a certain mean valepending tween input and output currentsThe amplitude of the out-

on the lattice size Above uy, we find that the outflow flow events increases with decreasing, and at the same
current distribution exhibits multifractal scaling properties time the frequency of events decreases. This behavior is con-
according to Egs(1) and (2). The results foruy=0.7 and  sistent with the histogram that is shown in Fig. 6. The char-
varyingL from 12 to 192, obtained for open boundary con-acter of the dynamics changes fog< . (see top panel in
ditions in perpendicular direction, are shown in Fig. 7. Fig. 8), with dominating output events of large size and large

Additional information about transport processes in thetime intervals between the events. Ab=s; a dynamic

interior of the systgm IS obtamed by measuring the Oumoﬁahase transition occurs between critical steady states above
current as a function of time, and time intervals between ,

successive outflow events. In the inset to Fig. 6 we show thé&0 arld sFat_es without 'Or?g'ra”ge correlauons_ below
average time interval between outflow events as a function ofo=#o - (Similar phase transitions are found also in Refs.
the control parametes,. The time intervals grow exponen- [16] and[26], however, in different universality classpAl-
tially on lowering uo. In Fig. 8 the outflow current is shown though for uo<ug the system is likely to build up a finite
as a function of timgmeasured on the external time scale,slope (unlimited piling is prevented by the deterministic
i.e., by the number of added particleaveraged over 1000 critical slope rulg, preliminary results show that a substan-
time steps fol. =54 and with periodic perpendicular bound- tial growth of the average slope occurs only fep<<0.2,
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V. DISCUSSION AND CONCLUSIONS
FIG. 8. Outflow currentl(t) vs timet (measured in number of

. . . added particles averaged over 1000 time steps, fo=54 and
In the present model, combined relaxation rules with tem- »=1, 0.7, 0.4, and 0.8ottom to top and with periodic boundary

poral disorder are responsible for numerous after-avalanchegyngitions. Dashed lines are mean values calculated by linear fits of

which lead to large relaxation events resembling sandslidege data fort>40: (bottom to top 0.9972, 1.0004, 0.9935, and

in realistic granular materials. Numerical simulations showp.9g92. Siopes of the dashed lines are smaller thar? 19 each

that such large relaxation events exhibit scaling behavior fogase.

a range of values of the control parametge u5~0.4. The

avalanche distributions are characterized by continuously

varying scaling exponents, in qualitative agreement with th&on of the exponent of the avalanche mass distributicior

data collected from natural landslides. Moreover, compari0_4<luo<0_5 with the one that characterizes Himalayan

sandslides reported in Rdf18] is satisfactory. For various

008 ; . . ‘ lattice sizes the distributions are characterized by multifractal

rather than finite-size scaling properties. The deterministic

part of the relaxation rules leads to branching processes with,

on the average, even number of offsprings. For this reason

the scaling exponents for the distributions reach numerical

values characteristic of the modulo-two conserving processes

(also known as parity-conserving procegsesfore scaling

behavior disappears gto=ug. Below g the critical

steady state is lost. The dynamics is dominated by large ero-

sional avalanches in a region closeit§ and a net average
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