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Thermodynamic stability of periodic and quasiperiodic crystals
within a van der Waals approximation
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We investigate the relation between the thermodynamic stability of periodic and quasiperiodic crystals and
the characteristics of the interaction potential within a simple van der Waals approximation to the free energy
of a one-component two-dimensional system. We find that thermodynamically stable quasiperiodic crystals can
be found only when the interaction potential has at least two negative minima separated by a positive maxi-
mum.[S1063-651X98)00904-7

PACS numbg(s): 05.70.Fh, 61.44.Br, 64.70.Kb

I. INTRODUCTION two-dimensional systems can be obtained also in three di-
mensions, but at the expense of more elaborate calculations.
At present the existence and nature of quasiperiodic crys- This paper is organized as follows. In Sec. Il we summa-
tals (quasicrystalsis already well documentdd]. The ques-  rize the van der Waals approximation already put forth else-
tion of whether these quasicrystals are thermodynamicallyvhere [4] and generalize it to quasiperiodic structures. In
stable or metastable structures, however, has received cor€C. Il we describe the periodic and quasiperiodic structures
flicting answerg2]. The difficulty of this problem is related 0 beé considered here. Section IV contains our choice for the
to the fact that most of the existing quasicrystals are metallidntéraction potential. The phase diagrams obtained in this
alloys and hence involve several atomic species betweeff@y are discussed in Sec. V. Section VI contains our con-

which complex effective potentials or pseudopotentials aré&USions.
operating. In principle, such a quasiperiodic structure can be
stabilized by either entropic or energetic effects or by an Il. VAN DER WAALS THEORY

interplay between both. In the case of entropic stabilization Tpe pasic ingredients of the van der Wa@léW) theory
the alloy aspect is probably the dominant feature, whereagre well known[4]. A simple fluid of spherical particules

for energetic stabilization the particular features of (hTE interacting through a pair potentim(r) is considered:
termetallig potentials will dominate. In order to simplify the

problem we focus our attention here mainly on the energetic V(r)=Vys(r)+Va(r), (2.1
stabilization mechanism. Although experimentally less real- o )

istic, this simplification allows us to consider single- With V(r) consisting of a hard-spher@S) repulsion be-
component systems and hereby avoid the complications du#een HSs of diameter,

to the alloy aspect. One-component quasicrystals have not " (<o

been observed yet, but their possible existence is a question VHS(r):‘ ' 2.2
worth investigating for its own sakg3]. Even for one- 0, r=o,

component systems the problem is not simple because the ) _ )

question of thermodynamic stability requires one to computénd an attractionA) of amplitudee>0 described by

the Gibbs free energy for all the competing structures and

this for many temperatures and pressures. To simplify the v (r):[o' x<1 2.3
problem further we will evaluate these free energies here A —ep(X), x=1, '
within the van der Waals approximation ¢4,5]. Such a

mean-field approximation is bound to introduce large quanwhere r is the distance between the pair of particles,
titative errors, but could well be sufficient to indicate those=r/o, and the dimensionless functi@{x) will be specified
gualitative features of the interparticle potential that will fa- further in Sec. IV. The thermodynamic properties of a sys-
vor the occurrence of a quasiperiodic structure in the system of N such particles enclosed in a volurileat the equi-
tem’s phase diagram. Indeed, on all previous occasions thiforium temperaturel' can then be described by the Helm-
approximation has yielded qualitatively correct predictionsholtz free energyF=F(N,V,T). Within the present vdwW
when compared to more sophisticated theofi&8]. Even  theory the latter is writtep4]

so, the lack of periodicity of the quasicrystalline structures

requires the evaluation of slowly convergent sextuple lattice F(N,V,T)=Fyus(N,V,T)+FZ(N,V,T) 2.4
sums. In order to avoid also this more technical problem we

will consider here only two-dimensional quasicrystals foras the sum of the Helmholtz free enerdys) of a system
which the lattice sums are more easily evaluated. Whereasf HSs and the excess free enerdsf}) due to the attrac-
two-dimensional quasicrystals have been obsef\ddwe  tions. For Fys a simple free-volume approximation is
think that conclusions similar to those reached here for th@dopted whereby the HSs behave as an ideal gas in a reduced
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volume, aV, the “free” volume (the vdW covolume corre- 7
sponds then to the “excluded volumeé’— aV); hence ap(n)=1- P (2.19
Fus(N,V,T)=F;y(N,aV,T), (2.5

with the constanty, chosen so as to yield a maximum fluid
with Fig(N,V,T)=NKkgT{InpA?—1} the ideal gas Helm- density[ 7< 7, and a(7)>0] that interpolates between the
holtz free energy. Herp=N/V is the number densitkg is exact low-density behaviakg(7) = 1—2d—17,+ O(#? and
Boltzmann’s constantA is the thermal de Broglie wave- the physical upper limit at close packifig],
length, andd is the space dimensionality. F&;* the stan-
dard mean-field approximation is adopt{ed: -

— 1
_(o1-d _ _
) mo= (214 pep)a= 4+ 0.7034 (d=2),
FRIN,V,T)= Ef drlf drop(ri)Va(rip(ra), 43 2.12
(2.6

where p(r) is the one particle density and,=|r,—r,). where 7., represents the close-packing density of a close

When switching to the reduced free energy per particle Packed str_uctur({wh_ereas in Eq(2.8 7cp represent_s_the
=F/eN, the reduced temperature:kgT/ e, and the reduced close-packing density of the structure at hand, iz,

densitypo® or packing fractiony=pv 4 (with vy the volume ~ =maxcp]. From Eq.(2.7) we can obtain the chemical po-
of the hardd spherg, the above can be summarized as ~ tential x and pressure as
f(5,t)=C(t) +tinp—tina(n) —e(n), (2.7)

— 17
: . . (7,t)=—(nf(n,1),
where C(t)=t{In(A%v4)—1} is an immaterial constant, m an T

tiny is the ideal gas contribution, d{») is the reduced

excess entropy of the ham spheres, and-e(#) is the . 9

reduced excess energy resulting from the attracti@®). p(7,t)=n>—(f(7,1)), (2.13

The basic vdW structure of E€R.7) is assumed here to hold I

both for a disordered fluidR) phase for whickp(r)=p and

for an ordered periodic or quasiperiodic structure for whichwhere;: wule andp_z pv 4/ € are the corresponding reduced
p(r)EE}Llé(r—rj), with {r;} characterizing the set of sites quantities. To complete the thermodynamic description we
around which the particles are localizézke Sec. I). For a  can also obtain the reduced Gibbs free energy per particle
solid (S) the free-volume fractiom(7) of Eq. (2.7 willbe  g=G/Ne by eliminating » in favor of p. To this end the
approximated by its high-density cell-theory val4g relation p= p(ﬁt) is inverted asy=n(p.t) andg(p.t) is

p \Yd41d obtained fromu(#,t) as
ag(n)=|1-|— : (2.8
Mecp

g(p.t)=u(n(p,t),1). 2.1
where 7, is the value ofy at close packing of the structure 9(p.H)=n(n(p.O.) 219

considered, whereas E.6) gives rise to the following lat- ,
tice sum fore(#) of Eq. (2.7): In this way the Helmholtz free enerdy( »,t) of Eq. (2.7),

together with the pressua 7,t) and the chemical potential

13 - w(7,t) of Eq.(2.13 and the Gibbs free energy(p,t) of Eq.
ﬁi;l ¢(x;j)  (aperiodig (2.14), will provide a complete description of the phase be-
(2.9 havior of a system of particles interacting via the potential

(2.1)—(2.3) for both fluid phasefcf. Egs.(2.10—(2.12] and

(periodic or aperiodicsolid phase$cf. Egs.(2.8) and(2.9)]

in d dimensionghered=2). The underlying approximation
wherer;; =x;;o is the [d-dimensional distance between site is the vdW approximation contained in E&.7) that ascribes
i and sitej of the structure described Hy;} and ¢(x) was all the excess entropy of th& (or S) structures to the repul-
defined in Eq.(2.3). When the structure is periodic the sions, while the cohesion of these structures is ascribed to the
double sum in Eq(2.9 reduces to a single sum with excess energy provided by the attractions. Although a more
=X;jo being the(d-dimensional distance of sitg to an ar-  subtle interference between the repulsions and attractions
bitrary site chosen as the origin. For the flull)(phase Eq. than that described here can occur in real systems, the phys-
(2.6) yields instead ics contained within the vdW approximation is very basic
and has never been in conflict with reality. Indeed, in all
cases known to us the present vdW approximation has
yielded qualitatively correct resul{#,5]. It is in this spirit
that we use it here to investigate how the particular features
wherev,= (7/4) o. Finally, the free-volume fraction of the of the attractiong ¢(x)] influence the thermodynamic sta-
fluid phasear(7) is approximated by its low-density virial bility of the various periodic and quasiperiodic structures
form, namely, introduced in the following section.

eS( 77) = N
52 ¢(x) (periodic),
j=1

e (1) =4pvs ffdqus(x) (d=2), (210
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lll. PERIODIC AND QUASIPERIODIC STRUCTURES

The problem of thermodynamic stability is always one of
relative stability. Indeed, out of two phases the phase with

the lowest Gibbs free energy(p,t) is the thermodynami-

cally favored phase at the givenandt. It is thus essential to
clearly specify which phases have been allowed to compete.
In what follows we will restrict ourselves to four different
phases: the uniform fluid phaseither liquid or vapor and
three types of crystalline phases, a compact periodic struc-
ture, a noncompact periodic structure, and a quasiperiodic
structure.

The periodic structures to be considered below consist of
the triangular &) lattice and the squareS() lattice. The

compact structure is the triangular Iattice;le.QO?),

whereas the square lattice is a more open structnylfgJ (
=0.7854).

The quasiperiodicg;) structure to be considered here is a
two-dimensional dodecagonal quasicrystal that can be built
from squares and triangles. Of course, many different quasi- FG, 1. Quasiperiodic planar lattice with dodecagonal symmetry

periodic structures can be formulated or obsefddbut we a5 obtained from Eqs3.2) and(3.3). The dots represent the lattice
think that the essential features of the energetic competitiosites, while the lines exhibit the lattice structure as consisting of a

between periodic and quasiperiodic structures are well illustiling with regular triangles, squares, and trigonal hexaddfsAt
trated by the choice made here, which involves the samelose packing the density of this quasilattice is very close to that of
building blocks(triangles and squargfor both the periodic  the square lattice with the same lattice spacing.

and quasiperiodic lattices. To this end we consider one of the

guasilattices put forth in[7]. The points of the two- IV. THE INTERACTION POTENTIAL

dimensional plane with Cartesian coordinat&syj will be
represented by the complex numbersx+iy. The triangu-

lar lattice with unit lattice spacing corresponds then to the se
of complex numbers

To proceed we still have to specify the potential function
(x) of Eq.(2.3). To this end we will take advantage of the
bservation made ifi9] that the stable lattice structure is
very sensitive to the relative position of the maximum of
@(x) [or minimum of V(r), cf. Eg.(2.3)] and the position
Q={n;+n,w}, (3.2 of the nearest neighbors, as given for the various structures
considered here in Table I.

In order to easily locate the extremad®fx) we will write

where then; (i=1,2) are integersnj=0,=1,+2,...) and it as a sum of Gaussians

w=exp(2ri/3)=(—1+iy3)/2. Let z=n;+n,0 and

z,=n’,;+n’,w be two arbitrary points of Eq3.1) and con- ) r

sider the set of points B(x)=2 cex —aj(x—by)?], x= - (4D
n

Q={z;+z,}={n1+nw+n'1{+n",w}, (3.2  Where thec,=e,/e are relative amplitudes, while the con-
stantsa,, andb, fix, respectively, the “range” and the “cen-

) _ ) ter” of the nth Gaussian rf{=1,2,...). Of course, our
where gfexp(m/6)=(J§_+|)_/2 and lo=exp(5m/6)  choice of Gaussian potentials has no particular physical
= (—3+i)/2. The quasilattice %;) is then formed by meaning and similar results can be obtained by using differ-
those pointz =z, +z,{ of the set(3.2) that satisfy moreover gnt mathematical forms. Note that most of the investigations
the six conditions below involve in fact only a single Gaussifin which case

we can seftc;=1 because the, in Eq. (4.1) are relative

(Rez) cosm/12) TABLE I. Number of sites () at a gi lative dist
€2) — . Number of sites ;) at a given relative distance
sin(2n+1)7/12)] (xj/x4) from a central site for the periodic lattices considered here
cog m/12) 2 (S; for the triangular,S; for the square lattige Note that the
+(Ilmz) ] <1, (3.3 second-nearest-neighbor distance of the compact lat@de gx-
cog(2n+1)m/12] ceeds that of the noncompact latticg) by a factor/3/2.
where n=0,1,2,3,4,5. The corresponding quasilattice is Xj 1%

shown in Fig. 1. The density at close packing of this struc-
ture can be computed along the lines[8]. This has to be

1
2
done numerically and yieldsfgzo.785, a number very V3
close to that of the square Iattice;izo.7854).

o oo |-
O-b.b‘—:ugn
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f
3
I 2
i 1
0
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X n
-O(x) ' ' ' ' ‘ FIG. 3. Reduced free energy per unit volume=( 48F/V)
0.0 /\ versus the packing fractiom= pv4) of a hardd-sphere system as
obtained within the present vdW theory. The double-tangent con-
-0.14 L struction, yielding the fluid ) solid (S) coexistence densities, is
indicated by the dashed lines. For=2 the competing phases are
-0.2 L the fluid (F), the quasilattice §;), the square latticeS;), and the
triangular lattice §;). The resulting stablE-S transition is between
-0.3- - anF phase (==0.66) and the triangular Iatticeyg(=0.78). Note
that the free energies of the square and quasilattices cannot be dis-
-0. 44 i tinguished on this scale.
0.5 (b) close-packing densitisee Fig. 3. This result is in agreement
with the simulations of10] and observations dfil]. The
1.2 1.4 1.6 1.8 2 2.2 position of this transition in, say, the temperature-density
X plane is an important feature of a phase diagram because it

_ ) ) provides a partition of this plane into two domains, one for
FIG. 2. Dimensionless attractiof(r)/e=—¢(x), of Eq.(2.3  the fluid and one for the solid phases. The present vdW
versus the. dimensionless dlstan.xer rlo in units of the hard- theory, although very approximate, yields a fair estimate for
d.' sphere d'aWEtw .for the Gaussian potentials of E@"_l)' @A the position of the HS-freezing transition dfspheregsee
single Gaussian witic; =1, a,=20, andb;=1 (full line) 2 Fig. 3. Because the quasicrystalline structures are not com-
(short-dashed line The former potential favors the compact lattice 2+ 4 ctures they cannot be stabilized by the HS interac-
(S), while the latter favors the noncompact latticg). (b) A triple tion alone, not in the present vdW theory but also not in the

Gaussian withc;=0.4, c,=—0.5, c3=0.7, a;=a,=a3=20, b; o -
=1,b,=1.2, andbs= 2. This potential mimics an oscillatingn- more sophisticated theories [&,12,13.

termetallig potential and favors the quasilattice.
B. Isostructural transitions

amplitudes, the overall amplitude being setef Eq. (2.3)] As is well known[4], the introduction of attractions be-
with the exception of the study of the quasicrystals for whichtween the HSsp(x)#0 can lead to a transition between
a more general potential of the typ&1) with n=1,2,3 will  phases of the same structure, i.e., isostructural transitions, be
be used. The various types of potentials, within the generat disordered or ordered structures. The interplay between the
family (4.1), to be used below are shown in Fig. 2. order-disorder transition and these isostructural transitions
has been the subject of much recent work, in particular with
V. PHASE DIAGRAMS respect to the isostructural solid-solid transition, which at

present is still unobservefd4]. In order to convince our-
We now consider, in order of increasing complexity, aselves that the systems governed by potentials of the type
series of particular cases of E@.1). (4.1) behave in a similar way we first consider the case

— 2 2

A. Hard- (d-) sphere transitions sO)=exg—a’(x—1)7, x=1, (5.

When ¢(x)=0 the above vdW theory describes a systemwhere the parametex fixes the range of attractions relative
of hardd spheres. In such a system the only possible phas® the range ¢) of the HS repulsions. For long-ranged at-
transition is an order-disorder transition between a disoriractions(small a) the isostructural solid-solid transition is
dered fluid phase and an ordered crystal structure. This tramretastable, whereas for short-ranged attractitargea) the
sition is seen to be monitored by the free-volume entropy ofsostructural fluid-fluid(or vapor-liquid transition is meta-
Egs.(2.8) and(2.11). From the equations of Sec. Il it follows stable. There exists, moreover, a range of intermediata-
[4] that the stable crystal structure is the one with the highesties for which both isostructural transitions are metastable
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t (a) t
1.3
1.1 - 1.1
F 0.9{F
S \E S,
0.7
0.6{% [ S,
0.5
0.3 s Ss\'s,
0.2 0.4 06 0.8 : : : .
n 0.2 0.4 0.6 0.8
n
t . . .
(b) FIG. 5. Complete phase diagram in the temperature-density
1.3 I plane for ad=2 system with Gaussian attractions corresponding to
- E s Eq. (5.2 with a=20 andx,= 2 (same notation as in Fig)4Note
. t

that there is a melting maximum in the low-density fluid—triangular
0.9 L lattice coexistence, while the square lattice is stable only at low
temperatures and within a small density window.

0.71 -
way. In particular, the thermodynamically stable solid phase
0.57 I is always the compact periodic structure.
0.3 -
C. Structural transitions
02 04 06 08 In order to stabilize the noncompact lattices and induce
n transitions between different structures, i.e., induce structural
‘ . ‘ transitions, we now shift the centex 1) of the Gaussian
1 (c) S s attraction (5.1) towards a new positiork=Xx,, with X
oh = X, /X, andx, being the position of thath nearest neigh-
bor of the noncompact latticesee Table)t
F
1.9
d(x)=exg —a’(x—xp)?], x=1, (5.2
S, wherexo= 2 for d=2. Note that this is a simplified version
1.0] I of the argument put forth by Boyer i®] for d=3. Indeed,

the potential5.2) is now more strongly binding at the posi-
tion (x,) of the second neighbor of the square lattice
(X /X = \J2) than at the position of the second neighbor of
the triangular lattice X, /x,=/3). The shift[see Fig. 23)]
0.2 0.4 n 0.6 038 in the maximum of Eq(5.2) as compared to Ed5.1) can
have a profound influence on the system’s phase diagram. At
FIG. 4. Phase diagrams in the reduced-temperatur(-l,-ow temperatures, where the energetic cor_l_siderations domi-
(t=kgT/€)—reduced-density £=pv,) plane for d=2 systems Nate, we now have structural phase transitions between the

with a single-Gaussian attraction of the tyf1). (@) For long- ~compact and noncompact crystal structures. We now also
range attractionsa<3.38) there is a stable isostructural transition have a local maximum in the fluid-compact crystal melting
between two disordered fluid phasds, (@ndF,) in addition to the  line, a feature characteristic of short-ranged Gaussian poten-
fluid-solid (S;) transition. (b) For intermediate-range attractions tials [15]. An example of such a phase diagram is shown in
(3.38<a=28) the only stable transition is between the disorderedFig. 5.
fluid (F) and the ordered solidY) phase.c) For short-range at-

tractions @=28) there is a stable isostructural transition between

two ordered solid phase§r(1 andStZ) in addition to the fluid-solid _
transition. The above procedure of displacement of the “center of

attraction” relative to the structure to be stabilized, although
and the phase diagram is reduced to an order-disorder trasufficient for stabilizing noncompact periodic structures, is
sition. An example of the three types of phase diagram isinable to stabilize the quasiperiodic structure. This is be-
given in Fig. 4 (see[4,5] for the d=3 casé¢ Both the cause the entropic contributions to the free energy of the
d=2 andd=3 systems, with either a Gaussiéhl) or in- noncompact and quasiperiodic structures are almost identi-
verse power(see[4,5]) potential, thus behave in the same cal, but the latter are still energetically unfavorable. We

D. Quasiperiodic structural transitions
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found, by trial and error, that in order to stabilize the quasi-
crystal phase one has to introduce a weak repulsion centered t
between the first and second nearest neighbors of the com-

peting periodic structure. We thus take 0.09y F S |k sq| 8

d(x)=c exd —a?(x—1)?]+cexd —a?(x—1.27?]
+cgexi] —a(x—2)?],

with ¢4,c3>0 andc,<0, in order to stabilize the quasicrys-
tal relative to the triangular lattice. It is interesting to observe
that the corresponding potential mimics, to some extse¢
Fig. 2(b)], the oscillations present in the intermetallic
pseudopotentials prevailing in the alloys for which quasi-
crystals have been found experimentdlly]. It is thus pos- 6 02z 04 06 08

sible that for a one-component system, such as considered n

here, the thermodynamic stability of the quasicrystalline . )
phase requires likewise a fine-tuning of the minima and F!CG- 6. Low-temperature region of the temperaturp density
maxima of the interaction potential relative to the positions(”7) Phase diagram of d=2 system described by the potential of
of the first and second nearest neighbors of the competing¥: 4P) (same notation as in Fig.)AThe quasilattice phase is
periodic structure. To establish the thermodynamic stabilit able only in a narrow density window.
of the quasicrystalline phase for E&.3) theoretically, how-
ever, is not an easy task even within this simple vdW theory. ) N ) )
Indeed, because of the “oscillations” in the potenti&l3) The thermodynamic stability of two-dimensional one-
[see Fig. ?)] the Helmholtz free energies of the different component per_lodlc and quasiperiodic crystals has been in-
phases exhibit several “loops” that render the construction’estigated within the extended vdW theory{éf. The use of

of double tangents and convex envelopes very tedious. [RUCh @ simplified theory is justified here by the need to com-
this respect it should be stressed here that several studies Rite the Gibbs free energy in order to unambiguously locate
the literature have been limited to studying situations wherdh® thermodynamicallyas opposed to mechanicaligtable

the quasicrystalline phase corresponds to a local minimum dfhases. In particular, we find that quasiperiodic phases are
the Helmholtz free energy. This, however, is not a sufficienStaPle only when the interaction potential has at least two
condition for thermodynamic stability. Indeed, we haven€gative minima separated by a positive maximum. It is
found many instancdglso for potentials much simpler than found, moreover, that the minima and maxima of the inter-
Eq. (5.3] where such local minima do exist but do not be- action potential should be finely tuned with respect to the
long to the convex envelope to the Helmholtz free energie§tructure of the competing periodic crystals. This may ex-
of all the phases involved. Under such circumstances thgla|n why it is difficult to find stable quas!cry_stall_lne phases
quasicrystal phase, although mechanically stable, is still thef? ON€-component systems and why oscillating intermetallic
modynamically metastable relative to the other phases. Tg_seudopotentlals are required for stabilizing the quasicrystal-
establish unambiguously the thermodynamic stability of anyine alloys.
phase we found that in the present case it is much more
convenient to compare directly the Gibbs free energies

g(p,t) of the different phases. A phase diagram obtained in M.B. acknowledges financial support from the Fonds Na-
this way for Eq.(5.3) is shown in Fig. 6. tional de la Recherche ScientifiqBelgium).
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VI. CONCLUSIONS
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