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Quantitative phase-field modeling of dendritic growth in two and three dimensions
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We report the results of quantitative phase-field simulations of the dendritic crystallization of a pure melt in
two and three dimensions. These simulations exploit a recently developed thin-interface limit of the phase-field
model[A. Karma and W.-J. Rappel, Phys. Rev5g R3017(1996], which is given here a detailed exposition.

This limit makes it possible to perform efficient computations with a smaller ratio of capillary length to
interface thickness and with an arbitrary interface kinetic coefficient. Simulations in one and two dimensions
are first carried out to test the accuracy of phase-field computations performed within this limit. Dendrite tip
velocities and tip shapes are found to be in excellent quantitative agreement with exact numerical benchmarks
of solvability theory obtained by a boundary integral method, both with and without interface kinetics. Simu-
lations in three dimensions exploit, in addition to the asymptotics, a methodology to calculate grid corrections
due to the surface tension and kinetic anisotropies. They are used to test basic aspects of dendritic growth
theory that pertain to the selection of the operating state of the tip and to the three-dimensional morphology of
needle crystals without sidebranches. For small crystalline anisotropy, simulated valu&saoé slightly

larger than solvability theory predictions computed by the boundary integral method assuming an axisymmet-
ric shape, and agree relatively well with experiments for succinonitrile given the uncertainty in the measured
anisotropy. In contrast, for large anisotropy, simulated values are significantly larger than the predicted
values. This disagreement, however, does not signal a breakdown of solvability theory. It is consistent with the
finding that the amplitude of the cogdmode, which measures the departure of the tip morphology from a
shape of revolution, increases with anisotropy. This departure can therefore influence the tip selection in a way
that is not accurately captured by the axisymmetric approximation for large anisotropy. Finally, the tail shape
at a distance behind the tip that is large compared to the diffusion length is described by a linearzlawith

a slopedr/dz that is nearly equal to the ratio of the two-dimensional and three-dimensional steady-state tip
velocities. Furthermore, the evolution of the cross section of a three-dimensional needle crystal with increasing
distance behind the tip is nearly identical to the evolution of a two-dimensional growth shape in time, in accord
with the current theory of the three-dimensional needle crystal sh8t663-651X98)09201-0

PACS numbd(s): 68.70+w

[. INTRODUCTION AND SUMMARY henberg, and M&30] of dynamic critical phenomena into a
model describing the crystallization of a pure melt. This

The phase-field approach is rapidly emerging as a methothodel was implemented numerically by Hg]. Langer's
of choice for simulating interfacial pattern formation phe- derivation was published latgd]. Collins and Levine[3]
nomena in solidification and other systerfis-23. The have also written down independently similar phase-field
widely recognized appeal of this approach is to avoid theequations and analyzed one-dimensional steady states. Since
explicit tracking of macroscopically sharp phase boundariesthen, the original model has been modified and reformulated
This makes it better suited than more conventional frontby various authors to address issues of thermodynamic self-
tracking method§24—27 to simulate time-dependent free- consistency{4,5] and have been substantially extended to
boundary problems in three dimensio@®D) or when com-  model the solidification of binarj6-8| and eutecti¢9-11]
plex geometries are involved. Tracking is avoided byalloys. In addition, more extensive simulations have been
introducing an order parameter, or phase fig|dvhich var- ~ carried out. Much of the numerical work to date has focused
ies smoothly from one value in the liquid to another value inon the dendritic solidification of a pure m¢lt2—23 that
the solid across a spatially diffuse interface region of thick-Provides a nontrivial computational test case for the phase-
nessW. This field naturally distinguishes the solid and liquid field method. The basic equations for this case are described
phases and converts the problem of simulating the advand® Sec. Il. In the simplest situation where the surface energy
of a sharp boundary to that of solving a stiff system of partialiS isotropic, they take the simple form
differential equations that govern the evolution of the phase
and diffusion fields. =WV IF (¢,Au) R

The phase-field method is rooted in continuum models of t ap
phase transitions that have appeared in the literature in vari-
ous contexts[28—3(. However, the introduction of the du=DV2u+a;h(4)/2, 2
method—specifically as a computational tool to model
solidification—can be traced back to an unpublished derivawhere F(,Au)=f(¢)+Ag(¢)u is a function that has the
tion by Langer[31], who recast model C of Halperin, Ho- form of a double-well potential where the relative height of
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the two minima is temperature dependdty) is a function The first large scale phase-field simulations of Kobayashi
defined in the next section that describes the generation ¢f.3] produced dendritic structures that resemble qualitatively
latent heat and will be specified belowu=(T those seen in experiment. More recent computations by
—Tm)/(L/c,) denotes the dimensionless temperature fieldWheeleret al.[14] and Wang and Sekerka7] have focused
W is the interface thickneg®n the order of angstromsr is  on testing quantitatively the convergence of the phase-field
the characteristic time of attachment of atoms at the interfaceethod. These studies have highlighted a serious limitation
(~10 3 sec for metallic systemsand\ is a dimensionless of the phase-field approach. Namely, in practde and
parameter that controls the strength of the coupling betweehence the grid spacindgx that scales proportionally t@V,
the phase and diffusion fields and is typically of order unity.needs to be chosen quite small compared to the scale of the
HereT,, is the melting temperaturé, is the latent heat of dendrite pattern to converge to a reliable quantitative solu-
melting, c,, is the specific heat at constant pressure,@rid  tion of the sharp-interface equations. For this reason, com-
the thermal diffusivity. It is commonly accepted that theseputations to date, which can be considered to be reasonably
equations only represent a phenomenological description afdependent of computational parameters, have been re-
the underlying microscopic physics of the solid-liquid inter- stricted to a regime of dimensionless undercoolixrg (T,
face. Therefore they only take on a quantitative meaning in-T.)/(L/c,) of order unity[17], where T, is the initial
the so-called sharp-interface limit where the phase-fieldemperature of the melt. In this regime, the interfacial under-
equations reduce to the standard free-boundary problem cooling u; is dominated by interface kinetic§.e., 8V
>dy/R). Simulations at smaller undercooling seem to ex-

du=DV?u, (3)  hibit a dependence on interface thickngs4]. For this rea-
son, adaptive meshin®3-35 is actively being pursued to
V=D(dpu| ™ —dnu| "), (4)  try to overcome the stiffness associated with the diffuse in-
terface region.
ui=—do/R—BV, 5 This stringent computational limitation of the phase field

] . ) ] ] can be understodd 9] to result from the combination of the
where microscopic details of the interface region becomegnstraint on the ratiov/d, imposed by the assumptions
unimportant. Herey iszthe local normal velocity of_ the in-  made in deriving Eqs(6) and(7), and the fact that the com-
terface, do=yoTmCp/L" is the capillary lengthR is the  ptation time to simulate a dendrite structure diverges as
principal radius of curvature of the boundary, géds the (W/dg) @9 in d dimensions. The constraint ow/d,
kinetic coefficient. In this limit, Lange[l_], and th_en Cagi- comes from the fact that Eq¢6) and (7) are only strictly
nalp [32] using a more formal asymptotic analysis, have deajig in the asymptotic limit of vanishing interface thickness.
rived the expressions Mathematically, this limit corresponds to letting—0 [32]

W with W=2\d,/a; and T=)\2,8d0/a§. Thus, in this limit,u is
do=a;—, (6)  constant across the spatially diffuse interface region, since
A W—0 with respect to the macroscale of the diffusion field.
On purely dimensional grounds, the magnitude of the varia-
7 tion of u across the interface scales &s~WV/D, sinceu
varies locally on a scale-D/V in the direction normal to the
interface, wheré/ is the local normal velocity of the inter-
which relate the basic microscopic parameters of the phas¢ace. Therefore neglecting this variation is equivalent to as-
field model to the capillary lengtt, and the kinetic coeffi- suming thatsu<|u;|, orWV/D < gV, which is easily seen to
cient 8, which are both measurable gquantities. In these exyield the constraint
pressions,a; is a positive constant of order unity that
depends on the details of the assumed form of free energy W Dr
F(#,Au) and is unimportant. These expressions have been d—<—2 (8)
extended by Kobayashil2] and McFadderet al. [18] to o W

incorporate crystalline anisotropy, and have provided so far

the theoretical basis to relate phase-field computations to tH&SNg EAs{(6) and(7). The scaling of the computation time,
free-boundary problem. Note that Eq§) and (7) have a !N turn, comes from the fact that the number of floating point

simple dimensional interpretation. The Gibbs-Thomson con®PerationsNep, necessary to simulate a dendrite is approxi-
dition implies thatd, and 8 have dimension of length and Mately the Pde;JCt of the total number of grid points, which
inverse velocity, respectively. Furthermore, since only the>cales asA/W)*®, where/=D/Vy, is the diffusion length
product \u appears in the phase-field equations, must anthip_|s the tip velocity, and.the number of sweeps through
scale inversely proportionally with. It then follows thatd, f[he Iatt_lce necessary2 for the tip to reaqh a steady-state veloc-
and 8 must scale dimensionally a8/ and /W, respec- %Y, Which scales ag™/(D 7) sihce the time stept~r7. Us-
tively. Also, Eqs.(6) and(7) imply thatd, and 3 only fix the N9 the factD/Vy,~do/(Da™ P*) to estimate”’, we obtain

ratio W/\ and r/W\, respectively, but nofv and 7 indepen-

dently. Hence, convergence of phase-field computations can N N[
only be achieved by decreasiMg~\ and r~\? until the FP
results become independent of interface thickness; that is,

decreasingW, 7, and A while keepingd, and 3 fixed as  Where P=p;,Vy;,/2D is the tip Pelet number, ando*
defined by Eqgs(6) and (7). EZDdolpfithip is the classic parameter characterizing the

,
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operating state of the dendrite tip. The first term in squarehat taking into account the variation of in the interface
brackets on the left-hand side of H), which also appears region would generate corrections to the Gibbs-Thomson
in Eq.(8), is constrained by numerical stability to be of order condition that are proportional to the normal gradienti aft
unity if an explicit scheme is used to time step the diffusionthe boundary ¢,u|™). While such corrections are indeed
field. It can be made somewhat smaller if an implicit SChem@enerally present in this limit, they turn out to vanish some-
is used instead. The second reflects the increase of the diffyvhat miraculously if botH () is chosen to be an even func-
sion length with decreasing and P, or decreasing anisot- tjon of ¢, which implies that the stationary profile,(x) that
ropy ando™. Finally, the last factor reflects the very rapid describes the planar interface at the melting temperature is
increase iMNgp with decreasing interface thickness. Further-odd inx about the origin, anti() andg(y) in Egs.(1) and
more, the Pelet number scales @&~A?% 7 in 2D andP~  (2) are chosen to be odd functions ¢f It is precisely the
—A/In(A) in 3D for A<1. These relations, combined with fact that these corrections can be made to vanish for these
the estimate of Eq(9) and the constraint of E8), show  special symmetries that renders this limit computationally
that quantitative computations at small are extremely useful, i.e., in that it gives back a Gibbs-Thomson condition
costly, and not really feasible with current supercomputingof the standard form.
technology. Second, there is a subtle physical point concerning the
Recently, we have found that this limitation of the phase-interpretation ofg in Eq. (10). This result implies that the
field approach can be circumvented to a large degree by réinetic coefficient can become negative when\a,W?/D.
thinking the way in which we analyze the sharp-interfaceThis conclusion may appear at first sight thermodynamically
interface limit of the phase-field equatigfid-21. This was  inconsistent because the solid-liquid interface cannot solidify
done by deriving a “thin-interface” limit of these equations with u,>0, which corresponds to an interface temperature
[19,20, which is physically more realistic in that it assumes |arger thanT,,. There is, however, no inconsistency. In this
that the interface thickness is small compared to the mesoshin-interface limit,u; only represents the boundary condi-
cale of the diffusion field, but remains finite. This is in con- tion for u on the interface with respect to the macroscopic
trast to the standard asymptotics leading to Efsand(7),  (outep scale of the diffusion field. On the microscogio-
which assumes thatV—0 as emphasized above. A similar nep scale of the interface varies across the interface region
type of finite W limit has been independently examined by and changes sign as it crosses this region whe®. There-
Fife and Penrosg36], albeit not for computational purposes. fore the actual value ai at the interface position defined by
An analySiS of this thin-interface ||m|t, which is a more de- l/l:O is not the same as; in this limit. In contrast, in the
tailed version of our earlier derivation ii9], is given in  gharp-interface limit, both values of become identical and
Sec. lll for both isotropic and anisotropic interfaces. An al—lg is always constrained to be positive. This point is exam-
ternate derivation, based on a higher-order analysiswdB  jned in more detail in Sec. IV where we analyze 1D growth
small parameter, is given in Appendix A for completenessfronts for parameters of the phase field that correspond to
These analyses yield the same expressiordfoas Eq.(6), both positive and negativa.
but a mOdIerd eXpI’eSSion fOI‘ the kinetiC CoeffiCient giVen by The ﬁrst goal Of thls paper iS to demonstrate that accurate
[19] quantitative solutions of the free-boundary problem de-
scribed by Eqgs(3)—(5) can be obtained by exploiting the
(10) thin-interface limit described above. We examine the solidi-
' fication of a planar interface in Sec. IV, which is the simplest
test case where the steady-state velocity of the interface is
where the second term on the right-hand side of @)  known analytically. We then present in Sec. V the results of
originates from including the variation of across the inter- simulations of dendritic growth in 2D with and without in-
face, anda, is a positive constant of order unity that dependsterface kinetics. In previous studigk7,33, the convergence
on the details of the functional forms chosen forof phase-field computations as a function of interface thick-
f(y), 9(¢), andh(¢). As seen earlier, this variation scales ness has been checked by verifying that the Gibbs-Thomson
asou~WV/D, and therefore generates a correctiotthat  condition is verified at the tip. In contrast, here, we test this
scales as~W/D. This thin-interface limit has two obvious convergence by comparing the tip velocity and the interface
computational advantages. First, it is not subject to the conshape to the numerical solution of the steady-state growth
straint of Eq.(8) which is only present if one requires that equations, which provides a more direct test. These equa-
W/D< B, in Eq. (10). Therefore it makes it possible to per- tions are solved independently by the standard boundary in-
form simulations with a largeW/d, ratio, which reduces tegral method implementation of solvability thed87—40.
dramatically the computation time according to E2). One We find that we are able to model dendritic growth accu-
main consequence of this reduction is to render simulationsately down to values oA around 0.25. A simulation at this
at smallerA more directly accessible in 2[19] and to make undercooling requires about 100 hours to reach a steady-state
guantitative 3D simulation$21] possible. Second, the ki- velocity on a workstation with a single processor with about
netic coefficient can be made to vanish by choosirg\* a 50 Mflops (megaflops output. Much shorter times are
= rD/W?a,. Thus it makes it possible to simulate the case ofneeded for largeA and quantitative results can be obtained
negligible interface kinetics that is physically relevant at lowwith about 12 minutes of central processing UdPU) time
undercooling for a large class of materials, especially metalen the same processor at=0.55.
lic systems with fast kinetics. The second goal of this paper is to present 3D computa-
A couple of additional points concerning this limit are tions that explore several fundamental aspects of steady-state
worth emphasizing. First, one would have naively expectediendritic growth theory. A methodology is developed in Sec.
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VI to incorporate quantitatively the effect of the lattice an-ropy seen in our simulations should be experimentally veri-
isotropy. It makes it possible to speed up the computationfiable by comparing the amplitude of this c@s4node for
even further by using a larger grid spacing and to resolvenaterials with different anisotropies.

smaller anisotropies. The results of the computations, which In the dendrite tail, the shape of the needle crystal is
have been brieﬂy exposed elsewhé2&,42, are presented found to be described by a linear law=Bz for distances

in detail in Sec. VII. behind the tip larger than the diffusion lengihV. More-

Theoretical progress over the last decade has led to tHever, the slopeB is nearly equal to the ratio of the 2D and
development of solvability theory to determine the operating3D dendrite tip velocities in good agreement with the theory
state of the dendrite tip43—52. In 2D, dynamical simula- Of Brener[52], which is based on assuming that cross sec-
tions based on a Sharp-interfa@?] or a phase-ﬁe]d ap- tions of 3D Steady-state dendrites behave as two-dimensional
proach[lgyzq give a good quantitative agreement with this grOWth ShapeS. ACtuaIIy, our simulations indicate that this
theory. In 3D, however, this theory has remained more unassumption, which is strictly only valid fd8— 0, remains
certain. This is due in part to the fact that it has so far refémarkably accurate even in a regime wh8rés of order
mained too difficult to simulate reliably the free-boundary unity.
problem of dendritic growth in 3D using a sharp-interface
approach. This has prevented convincing demonstration that Il. PHASE-FIELD MODEL
the global attractor of the growth dynamics is indeed the . . . .
steady-state needle crystal predicted by solvability theory. Ir? The b‘f"S'C equations of the phase-ﬁeld model are depvable
addition, the predictions of this theory have remained themIrom a single Lyapounov functional when expressed in the
selves approximate in 3D since they are based on assumingiational form(VF) [1]
that the crystalline anisotropy and the tip shape are axisym- i SF
metric (i.e., are independent of the polar anglén the plane (n)—=——,
perpendicular to the dendrite growth gxigl9,50. It has at 5y
therefore remained unclear to what degree the existing dis-
agreement between theory and experinjét-57] is due to ﬁ: szﬁ_}‘ (12)
this approximation. gt bxn  SU’

The present computations largely remove much of the ex-
isting doubt about the validity of solvability theory in 3D. Where
They show that the attractor of the growth dynamics is the -
underlying steady-state needle crystal predicted by this _ ﬂ
theory, up to quantitative differences irf* values that are N |€¢| '
most likely due to the limitation of the axisymmetric ap-
proximation. In particular, we find that phase-field dendritesis the normal direction to the interface, and
grow with a slightly highero* value than predicted by the
axisymmetric solvability theory for low anisotropy, and a [W(n)]?
significantly largera* value for large anisotropy where the 2
departure from a shape of revolution becomes more pro-
nounced. They improve the agreement between theory arid a phenomenological free energy. Anisotropy in the surface
experiment for succinonitrilgSCN). A poor quantitative energy and in the kinetics is incorporated as in previous
agreement, however, is still found for pivalic adigVA). models [12,14,17-2] via the functional dependence of
This disagreement could potentially be resolved in the futuréV(n) and =(n). The independent variables age and the
by including kinetic effects that are neglected here both irdimensionless enthalpy
the 3D phase-field computations and in the 3D implementa-
tion of solvability theory. We only demonstrate in Sec. V B Uu, ) =u— M (15
that phase-field computations and solvability calculations ' 2
that both incorporate interface kinetics give essentially iden-
tical results in 2D. We therefore expect an equally goodEquations(11) and(12) imply that
agreement in 3D.

With regard to the shape of the needle crystal, the simu- d}_<
lation results show that the departure from a shape of revo- dt
lution is well described by a single cogdnode in the tip
region. For the smallest anisotropy simulated heeg ( if there are no fluxes across the boundaries of the volume
~0.0066), the amplitude of this mode is of comparable magwhere F is defined, i.e., the dynamics drives the system to-
nitude to the amplitude predicted by the linear solvabilitywards a minimum of free energy. To obtain a phase-field
theory of Ben Amar and Breng¢b1]. One difference, how- model that reduces to the desired free-boundary problem, it
ever, is that we find that this amplitude increases with is generally sufficient to require tha€i) has the shape of a
whereas their theory predicts that it is independeniepf  double-well potential. The simplest choice fiy) that has
Note that this is not an actual discrepancy since their theorpeen traditionally used is
is only strictly valid for asymptotically small values ef, ) 4
that are presumably outside the range of our simulations. f(g)=— lﬁ_+ lﬁ_ (17)

This sensitive dependence of the tip morphology on anisot- 2 4

(11)

(13

2
|v*¢|2+f(¢)+mu7 (14)

f=fdv

0, (16)



57 QUANTITATIVE PHASE-FIELD MODELING OF ... 4327

with minima at¢= =1 corresponding here to the soligs(  This form, which has been used previou§$;58|, has the
=+1) and liquid (= —1) phases. In the way the equations advantage that it keeps the minima of free energy at fixed
have been written here, there is the additional requirementaluesy= =1 independent of the value of Forh(), we
thath(y) satisfy the condition have used either the form

h(+1)—=h(-1) 8 hve(9)=15(y—24°/3+ y°I5)/8, (24)
2 with b=16/15, which correspond to the VF of the phase-

. . field equations, or the form
to ensure that a unit amount of latent heat is produced at the 9

interface with the temperature field normalized Ibic, for hye() =y (25)
f() defined by Eq(17). Note that Eqs(11) and(12) reduce
to the form of Eqs(1) and(2) if g(¢) andh(¢) are related that is to be used in conjunction with the IVF of the equa-
by tions. Interestingly, as described in Sec. V, the latter form
turns out to be computationally more efficient for simulating
b dendritic growth because results converge faster as a func-
9(¥)= Eh(‘/’)' (19) tion of the grid spacing\x. It is therefore used exclusively
here for the 3D computations. One point is worth emphasiz-
whereb is just a normalization constant that is introduceding. The VF represents a thermodynamically more consistent
such that Eq(18) can always be satisfied for a given choice description of a first-order phase transformation in that both
of function g(#). The VF was introduced by Langer in his €quations can be derived from a single free-energy func-
adaptation of model C of Halperin, Hohenberg, and Ma, fortional. It is therefore perhaps more appealing than the IVF
solidification (Egs. 3.13—-3.16 in Refl]). He wrote down from a formal standpoint. Both formulations, however, re-
Egs.(11) and(12) specifically for the case whe( )= i, duce to identical free-boundary problems in the limit that the
in which case Eqs(18) and (19) require thath()= and  interface thickness is small. Hence, in our view, the relative
b=1. Since then, this formulation has been reinterpreted bdvantage of one formulation over the other needs to be
Penrose and Fif¢4] and Wanget al. [5] in terms of an evaluated purely on the basis of computational efficiency and
entropy functionalS meant to represent the total entropy of @ccuracy. This is especially true since, as emphasized in the
the system in some given volume. In their interpretation, Eqintroduction, the phase-field model only takes on a quantita-
(16) becomes effectively replaced by the condition of posi-tive meaning in the limit where the microscopic details of the
tive entropy productionlS/dt=0, if no fluxes are present at interface region are irrelevant, and are only reflected in mac-
the boundaries of the volume. This entropy formulation isroscale parameters such ésand g.
equivalent to the VF in that it yields the same phase-field
equations[Egs. (11) and (12) abovdg, and yields the same 1. ASYMPTOTICS
thermodynamic consistency relation betwegg) andh(y)
as Eq.(19.

It is important to stress that the constraint imposed by Eq. For clarity of exposition, it is best to first derive the thin-
(19) is not necessary to obtain phase-field equations that renterface limit in the case where the interfacial energy and
duce to the desired free-boundary problem in the limit of akinetics are independent of interface orientation. We then
thin interface. The isothermal variational formulatidvyF)  consider how the results become modified when we incorpo-

A. Isotropic interfacial energy and kinetics

defined by the equations rate anisotropy in the surface energy and kinetics. We first
rewrite the phase-field equations in dimensionless form by
Y 6Fiso measuring length in units of ; and time in units o#?/D,
T(n)ﬁz T oy (20 where/ . is taken to be a fixed mesoscopic length scale that
sets the scale of the diffusion field and the solidification pat-
gu=DV2u+4h/2, 21) tern in a given simulation. All that we need to assume here is

that the interface thickness is small compared to the macro
scale of the solidification pattern, not that it vanishes. Equa-

where tions (1) and(2) then become
W(n)J? - 25 1 202, f
fisffdv[ (2)] IV o2+ () +rg(pu|, (22 ap oY =PVTY =T, mAgy, (26)
du=V2u+h/2, (27

conserves the total enthalpy and has the advantage that it
allows one to choose the functiog$) andh(y) indepen- where we have defined the small parameierW// . and
dently. In this case, the phase-field equations are not deriveitie dimensionless diffusivity=D 7/W?2. If we interpretV,
from a single Lyapounov functional. They are only varia-and /.~D/V, as the characteristic interface velocity and
tional isothermally in the trivial case wheteis taken to be diffusion length in the problem, respectively, thenis es-
constant. sentially playing the role of an “interface’Blet number.”
For computational purposes, we have used We now look for solutions of Eqg26) and(27) for p<1 in
an inner region which corresponds to the spatially diffuse
g(¢) = y— 24313+ /5. (23 interface region where varies rapidly, and an outer region
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which corresponds to the bulk phases away from the inter-

face. We expand the inner solutions in powergpds

Y=o+ Pyt PPt -, (28)

U=Ug+pu;+p2u,+--- (29

and expand similarly the outer solutions &s- o+ pi +
..., andU=Ug+pu;+---. Since in the outer regiom is
constant in each phagee., =*1), u; simply obeys the
diffusion equation

for all orders in an expansion ip. To look for the solutions

in the inner region, we start by rewriting the phase-field
equationg26) and(27) in terms of a local orthogonal set of
curvilinear coordinatesd ,¢,,&3) that moves with the in-
stantaneous normal velocity of the interfagg; measures
length along the normal direction, arid and &, measure

arclength along the two principal directions of the interface

defined byy=0. Furthermore, we define the inner variable
n=¢&3/p and the dimensionless interface velocity
=V/ /D and curvaturec=/(1/R,+1/R,), whereR; and

R, denote the two principal radii of curvature of the bound-
ary, andV is the instantaneous normal interface velocity.
Rewriting Egs.(26) and (27) in terms of » and the above
guantities, we obtain

plaw+k)d, i+ d5p—T,~Ng,u=0, (32)

p(v+K)d,u+d2u—pvd,h/i2=0, (32

where we have neglected higher-order termspfnwhich
turn out to be unimportant at the end of the calculation. Sub
stituting Eqs(28) and(29) into Egs.(26) and(27), we obtain

at leading order

I iho— )~ Ngue=0, (33

F2ue=0, (34)

where we have definetf=f,(#;) andgl=g,(#). These
equations have the trivial solutionsy,=0, and

o= —tanh 9/ \2),

for f3=— g+ 3. At first order inp, we obtain the system
of linear equations

(39

Ly =\gu;—(av+K)d i, (36)
3, 3,0= 5h°| =0, (37)

where we have defined the linear operator
£=5—19, (38)

and the functions,f?w 1+31//3, g?,,zgw(wo), and
h®=h(y,). We first note that Eq(37) can be integrated
directly, which yields

ALAIN KARMA AND WOUTER-JAN RAPPEL

V.o
—5h%+a,u=A, (39)
whereA is a first integration constant. Now integrating once
more the above equation yields

v

J— n
Up=u;+Azn+ Zf dzn’'h°, (40)
0

Whereu_1 is a second integration constant. The rest of the
calculation proceeds in two steps. First, a relation between

the two integration constants; andA, is derived using a
solvability condition for the existence of a nontrivial solution
1. SecondA and the boundary conditions faron the two
sides of the boundary are derived by matching the solutions
in the inner and outer regions. The first step is carried out by
first differentiating Eq.(33) with respect toz, which yields
L3d,o=0. Now, since this equation implies tha}yy, is a
homogeneous solution of E(36), and the linear operata?

is self-adjoint, the right-hand side of E¢36) must be or-
thogonal tod,, i, for a solutiony; to exist. This yields the
solvability condition

+

j_m Iyl NgSUL— (v e+ K)d o] d 7=0.

Let us now consider the matching conditions. The condition
that the slopes of the two solutions match on the solid and
liquid side of the interface in the regions defined b |1y|
<p~!implies that

(42)

lim g,u;="lim g Ug=dg Uo| " (42)

7— o gsﬂoi

Applying the above matching condition to E§9) and using
the fact that Iim]_,tocho( n)=71, we obtain at once that

v

2 +(9§3U0|+:A,

(43
_Y

2 +(7§3’Jo|7=A

(44)

Eliminating A between these two equations we recover at
once the usual heat conservation condition

U:(9§3G0|__(9§3D’0|+. (45)

To determine the conditions for the outer solution on the two

sides of the interface, we expandin the matching regions
in terms of the outer variablé;. This yields
U=Ui"+ 0, Uo| " &, (486)

where we have defined the temperatures on both sides of the
solid-liquid interface at ordep by uiiEIimg,ﬁotpﬁl, and

we have used the fact that the interface is isothermal at lead-

ing order since Iir@rozﬁozuozo. In the matching regions
on both sides of the interface, the inner solution takes the

form
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TABLE I. Numerical values for the solvability integrals and

> + a§3110| *&s, (47 constants for two choices of().

J— 1)) +
u=p( u+5sF=

h | J K F
where we have used Eq#3) and(44) to eliminateA in Eq. ) - %

(40) for each side ¢ ) and (—) of the interface, respectively, hye(#) 2y2/3 16/15 0.1360 2In2 0.8839 0.6267

and we have defined the constants hye(¥)  242/3 16/15 0.2236 0.4941 0.8839 0.3981
Fizf’ dp(h%=1). (48) .
: = [ dno, 0, (54
Equating the right-hand side of Eq46) and(47), we obtain
the desired relations +oo o
J=- f dnd,iod), (55
+ - v +
ui—=p( u1+—F—), (49
2 + o0 n
K= f dnd,pod), f d»’hO. (56)
— 0

where the constant, is defined by the solvability condition
of Eq. (41). Two points are worth emphasizing. First, Eq.
(41) implies thatu;” includes a term that is proportional £o
and, hence, to the normal gradient of the diffusion field
(agsﬁ) at the boundary for an arbitrary choice of functidns Up=——PpPrk———
andg in the phase-field equations. However, it is easy to see

that the term proportional t& vanishes identically as long as with

f andg are even and odd functions g@f, respectivelyi.e.,

f(—¢)=f(y) andg(—¥)=—g(¥)]. In this case Eq(33) I

implies that bothd,, i, and g%=g,(4°(7)) are even func- =73 (58)
tions of 5, and that

Substituting this expression far, into Eq. (52), we obtain

~|pv. (57

K+JF
+ oo 0 a2: 2|
B d»nd,e9,An=0. (50)

The values of the solvability integrals J, K, andF and
This integral vanishes since the produgupog?m is odd in  the resulting values for the constamts anda, are given in
7. Secondly, for a general choice of functitm Eq. (48)  Table | for the two choices oh(#) used in this paper:
implies thatF*#F~, and therefore that,"#u; . So, in  h()=hye(¥)=¢ and h(y)=hye(y)=15(p— 24313+
general, there is a temperature discontinuity at the interfacé®/5)/8. It is easy to see that E¢57) is identical to the
on the scale of the outer solution. This discontinuity, how-standard velocity-dependent Gibbs-Thomson condition
ever, vanishes ifi is chosen in addition to be an odd function
of . It is straightforward to see that in this case F4@®) Ui=—do(1/R1+1/Ry) — BV, (60)
implies that

(59

whered, and 8 are defined by Eqs6) and (10), respec-

P tively. Finally, Eq.(10) can be rewritten in the form
isF=f dn(h®+1) (51)
0 a,d,
B=PBo| 1—\ D g, (61)
and therefore that 0
by expressingV and 7 in terms ofdy and B,. In this form,
— 1% . . . . .
u =u=pl u+=F|. (52) the correction to the kinetic coefficient appears as a higher-
2 order term in an asymptotic expansionirsimilar to the one

) o used by Caginalp and othefd8] to analyze the sharp-
The main conclusion is that the standard form of thejnterface limit of the phase-field model. In this expansion,
velocity-dependent Gibbs-Thomson condition is obtained ifcarried out in Appendix A, the surface tension and kinetic
bothg andh are odd functions ofs, andf is an even func-  terms in the Gibbs-Thomson condition aB§1) quantities
tion of 4, which is in itself rather miraculous. Combining ang the aboved(\) correction to the leading order kinetic

Egs.(40), (41), and(50), we obtain that coefficient3, is obtained from the solvability condition that
there exists an inner phase-field solutionCgt?), whereas
U=— '_(av b )+ iv (53) in the present asymptotics the interface is isothermal at lead-
1 A 237’ ing order and the surface tension and kinetic terms are

treated as smalD(p) corrections that are both obtained from
where we have defined the integrals the solvability condition for the existence gf.



4330 ALAIN KARMA AND WOUTER-JAN RAPPEL 57

B. Anisotropic interfacial energy and kinetics

s | aviwm2 ¥yl + o)1)
\%

We now examine the more physically realistic situation
where bothW(n) and 7(n) are functions of the normal di-
::%ﬁlj?tri]o?\. The main result that we obtain is the interface +}\uj dV[g(¥)—g(—1)]} =0, 65)

\
__& 2 1 where the first and second integrals are over the fixed vol-
. A i=22 [W(n)+a0iW(n)]Ri AWV, (623 umeV and represent the surface and bulk energy contribu-
tions, respectively. Note that the integrand of the first inte-
gral term in the equation above vanishes everywhere except
in the region near the interface, whereas the integrand of the
second integral term is a constant that is equabte-1)
—g(—1)=J [with J defined by Eq(55)] everywhere in the
, (63 solid phase and that vanishes in the liquid phase. Therefore
in the limit where the interface width is small compared to
the size of the solid inclusion, we can rewrite E@5) in the
dform

where

W(n)?
D7(n)

a; 7(n)
p(n)= N W(n)

1—a,n

and wheref; and 6, are the angles between the normal an
the local principal directions on the interface. This result can

be derived in a relatively simple way. For this purpose, we 5( J dsy(n)+)\Juf dV) =0, (66)

first note that the expression for the kinetic coefficient can be S Vi

obtained by considering solely the motion of a planar inter-

face perpendicular tn. This is equivalent to carrying out the WhereS, is the surface bounding the solid inclusion of vol-
same calculation as for the isotropic case above, but withmeV; and where the surface energy

zero curvature. This implies that the expression gfin) .

must be identical to Eq10) with 7 simply replaced byr(n) _ * 2 R

andW replaced byw(n). Similarly, the surface tension term y(n)—W(n)fim d7l(9yiho) 12+ 1(Wo) ~ Te] = WM.

can be derived by considering solely a stationary interface. (67)
One way to derive this term is to repeat the asymptotic cal-

culation of Sec. lll A above including the extra partial de- As before,i; denotes the stationary one-dimensional phase-
rivatives in the phase-field equations that are generated bijeld profile given by Eq(33), where n= &3 /W is the local
taking the functional derivative of the free energy with  coordinate along the normal, and the constaistdefined by
replaced byW(V¢/|Vy|). This calculation is relatively EQg. (54). The second equality on the right-hand side of Eq.
straightforward to carry out in 2D along the lines of Ref. (67) can be obtained simply by multiplying the right-hand
[18]. It becomes more tedious in 3D because of the lengthgide of Eq.(33) by d,i,, and integrating over, which
form of the anisotropic phase-field equations, although muclyields

of this tediousness is removed by making elegant use as in

Wheeler and McFaddef59] of the &-vector formalism of (9,%0)? _

Cahn and Hoffmarj60] in a phase-field context. Here, we 2 ~[f(40)~Te]=C, (68)
only give a simple physically based derivation, equally valid,

which consists of minimizing the total free energy, of the  whereC is a constant of integration. Siné€y,) —fg=0 in
system under isothermal condition. This is directly analothe bulk phases, this constant must vanish. Therefore the
gous to the way in which the anisotropic Gibbs-Thomsonintegral on the right-hand side of E@7) is exactly equal to
condition is usually derived in the sharp-interface limit. Letthe constant defined by Eq(54). Finally, the variation of

us consider an inclusion of solid in a total volueof solid  Eq. (66) is well known and yields at once the curvature-
and liquid that is taken to be constant. We require that thelependent part of the Gibbs-Thomson condition defined in
variation of the total free energy with respect to an infinitesi-Eq. (62).

mal perturbation of the interface of arbitrary shape vanishes,
or that

IV. ONE-DIMENSIONAL STEADY STATES

A. Sharp-interface steady states
(Fiso— Fo) =0, (64) . . . .
In order to illustrate the practical implementation of the

thin-interface limit developed in the preceding sections, it is
where F, is some arbitrary constant. The separate contribuuseful to first consider the steady-state growth of a planar
tions of the bulk and surface energy terms can be made exaterface for undercoolings>1 [61]. This problem has the
plicit by choosingFo=[fg+Ag(—1)u]V, with fg=f(=1) advantage that it is exactly soluble analytically in the sharp-
= —1/4. With this choice,F, is just a constant that corre- interface limit and that it is relatively simple to investigate
sponds to the total free energy of the system with the volumeomputationally since it is only one dimensional. The sharp-
V occupied solely by the liquid phase. Combining the ex-interface equations that describe this problem consist of the
pression forF, given by Eq.(22) and the expression fgfF,  diffusion equation expressed in a frame moving at constant
above, Eq(64) becomes velocity V with the interface in thetx direction,
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Vau+Da2u=0, (69) 08
D=2
together with the interface boundary conditions A=1.4563
06 — 4
V=—Dad,u, (70 —_ grlldazzaﬁ:)l?nterface limit (=0.607) L
~=-- New thin interface limit (B=0.33) /»’
ui=-p8Yv, (71 z F
. . S 04 e
and the far-field boundary condition >
u(+w)=—A. @@ T
02t = T i
It is easy to verify that Eq¥69)—(72) have an exact soluton | 7 =7
given by e
V= A/; 1 , 73) 0'00.00/ 0.05 Aoﬁc{ 015 0.20

FIG. 1. Numerically calculated values @f/W vs A — 1 for the
planar steady states of the phase-field model compared to the exact
prediction of Eq.(73) with 8 predicted by the sharp-interface limit

—A (74) [Eg. (7)] and by the thin-interface limitEq. (10)].

with the temperature profile

_ \
u=exp - gx

ably large values oN at small velocity. This difficulty was

in the liquid x=0), andu=1—A in the solid (=<0). circumvented by noting that andu are only nontrivial un-
knowns in the interfacial region wheggvaries rapidly. Out-
B. Phase-field steady states side this regiony andu have trivial solutions, i.ey=*1,

] ] u=1-—A in the solid, andu is a decaying exponential in the
In order to relate the sharp-interface and phase-field forﬁquid_ Therefore Eqs(77) and(78) were solved over a fixed
mulations we need to calculate the analog of &§) for the interval by choosingl to be much larger thakv but inde-
steady states of the phase-field model. In 1D, the phase-fielsendent of velocity. Boundary conditions @gnandu were
equations take the form applied atx=+d that match to these trivial solutions. This
- ) ) method allowed us to calculate steady states for arbitrarily
To =W+ [¢—Au(1-¢I1-¢], (79  smallV with d<I. The choicesi=20, N=100, andAx/W
=0.4 withW=7=1 were found to yield interface velocities
du=DdZu+dypl2, (76)  accurate to less than one-tenth of a percent. Numerically cal-
. o ) culated values ol vs A—1 are shown in Fig. 1. Steady-
where we restrict for simplicity our attention to the casestate interface and diffusion profiles are illustrated in Fig. 2.
h(¢)=hwe(4)=¢. The VF gives qualitatively identical re- These results were checked by integrating the dynamical
sults. The steady-state growth equations are simply obtainesuationg75) and (76) for a few values ofA. These simu-
by rewriting Egs.(75) and(76) in the moving frame of the |ations showed that after some dynamical transient the inter-
interface, which yields face reached the velocity and stationary profiles predicted by

2.2 ) ) the numerical solution of the steady-state problem.
VO P+ W+ [—Au(1—¢)][1-¢7]=0, (77)

C. Comparison of sharp-interface and phase-field steady states

2 —_ =
Vout+Dau=Va,ypi2=0. (78 The sharp-interface and phase-field steady states can be

The solution of these equations withsubject to the far-field compared by expressingin Eg. (73) in terms of the param-

boundary condition Eq(72) determines the planar interface 2
velocity as a function of the undercooling.

This nonlinear boundary value problem was solved nu-
merically using a Newton-Raphson iteration scheme. For this
purpose, Eqs(77) and(78) were discretized withN equally
spaced mesh points inside the interxal [ —d,d] with the
interface (#=0) fixed atx=0. The spatial derivatives were I
represented using fourth-order accurfite., O(Ax%)] finite \
difference formulas for accuracy. The unknown valueg/of , 1
andu at the mesh points, and, were then determined using
a Newton-Raphson solver with the appropriate boundary
conditions at the two end points of the interval. One techni- 2 ‘ . ‘
cal point should be mentioned. The problem was not solved -20 -10 0 10 20
by imposing the far-field boundary condition E(2) di- W
rectly. This would require, in principle, choosing>1, FIG. 2. Calculated steady-state profiles wfand  for A
wherel=D/V is the diffusion length, and hence unreason-=1.225.

Steady-state profiles of u and y
o
[ =
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2 : ‘ ‘ (77) and(78), as inputs into the 1D time-dependent code that
integrates Eqgs(75) and (76). The interface evolved into a

v A—0.87 dynamical state with a velocity that decreases slowly as
A3 ~t~ Y2 and is the same dynamical attractor as 0¥ 0.
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V. TWO-DIMENSIONAL SIMULATIONS

In this section we describe our phase-field results for den-
dritic growth in 2D. We consider growth without and with
kinetics successively.

1
-
.
]
t
Il
i
1
i
1
1
1
1
]
1
1
1
]
]
1]
Il
1l
1]
Il
1

Steady-state profiles of u and y
o

2 . ‘ ‘ A. Without kinetics
-20 -10 0 10 20 ] » )
XW In 2D, the Gibbs-Thomson condition defined by E6R)

becomes simply

FIG. 3. Example of calculated 1D steady-state profiles ahd
 for a case where the kinetic coefficigatpredicted by the thin- u;=—do(n)/R—B(N)V, (80)
interface limit[Eq. (10)] is negative. Steady-state solutions are dy-
namically unstable foB<0, both in the sharp-interface theory and where
in the phase-field model, and are therefore not physically relevant.

eters7, W, \, andD of the phase-field model. This can be a 2
] 1] 1] p— +
done either by using the expression f®rpredicted by the do(n) A (W) +7W(n)] (81)
standard sharp-interface limitEq. (7)] or by the thin-

interface limit[Eqg. (10)]. Both sets of comparisons are made and @ is the angle between the normal to the interface and

in Fig. 1 in order to contrast the relative computational ad-q5me fixed crystalline axige.g.,z axi9. We choose here a
vantage of these two asymptotic limits. The results of thisgiandard fourfold anisotropy d,efined by
figure can be understood by noting that E€3) can be re-

written in the form
do(n)=do[as(n) + d2as(n)] (82

WV A
D aa

A-1
1_a2)\/a

P= ’ (79 and

by using Eq.(10) to eliminateB. This implies thap—0 as _a tind AT A reird . o
A—1, and therefore that the thin-interface limit should give a(n)=adl+e(ntnyl=adlte (SIM9+CO§0)2é3)
an exact agreement with E/.3) asA—1, which is what is
seen in Fig. 1. In contrast, the standard sharp-interface lim

does not predicB correctly unless the additional constraint that can be measured experimentally by examining the de-

Ma<1is satisfied. Sinca/« is of O(1) in the present viation of an equilibrium shape from a circle. For smajl
example, this limit remains inaccurate even though the dif- q P '

fusion length becomes much larger thAlasA —1—0! The this deviation is given by

computational advantage of the thin-interface limit is seen —

here to depend solely on the fact that it predicts a kinetic R(0)=Ro[ 1+ e,c0s40], (84)
coefficient that remains valid for a thicker interface.

L"he anisotropy strength is characterized by the paranagter

whereR is the radial polar coordinate measured from a fixed
D. The case of negative kinetic coefficient8<0) orgin.

. . . In this paper we will use, as the measure of the anisot-
We conclude this section by examining the case where the diti to check that and e’ lated t@, b
kinetic coefficient predicted by the thin-interface limit be- 'OPY and itis easy to check thaj ande” are related ta, by

comes negative. This occurs according to EtQ) when the expressions
a,A\W?/D r>1. To see what to expect in this case, let us first

consider the prediction of the sharp-interface theory. It pre- as=(1—3ey), (89
dicts that for3<<0 there should exist a steady-state planar

solidification front for A<<1 with a velocity given by Eq. 4e,

(73). However, an analysis of sharp-interface equations re- 6,21—364. (86)

veals that planar steady states are linearly unstablegfor
<0, and are therefore not physically relevant. In this case,
the interface slows down a&~t~ %2 in the same way as for
B=0 since the kinetics become irrelevant whén-0. The
same is true in phase-field simulations. Solutions of E&B.
and(78) exist for 3<0 andA <1 as illustrated in Fig. 3. We 1
verified that these solutions are unstable by feeding the B

steady-state profiles af and ¢, computed by solving Egs. du=DV7u+ 2 ah(y), (87)

The 2D phase-field equations are obtained by replading
by W(n) in the gradient term of the free energy, which yields
after functional differentiation
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M p=[h—Nu(L— g1~ g2+ V- [W()2V ] > — eom
+ o |V o 2W( )&W(n)) ----- £=0.05
n
ai HOx) 0.02
= r?W(n)) a N
+d \Y% 2W n . 88 >
W IV ()(9(9yl/f) (88) Z
The interface widthw depends on the orientation of the 001 \\\
interface and is given by
m=oadm 0.00 : ‘ .
4 4 o 200 400 600 800
de d +(d v,
—Wo(1-3eg)| 14 st (B (4yw) 1
1-3e |V‘/’| FIG. 4. Dimensionless tip velocity as a function of time for two

(89) choices ofe, and A =0.55 andAx/W,=0.4.

We first focus our attention on growth in the limit of _ The interface is defined as the contour for whigk- 0.
vanishing interface kinetics. This limit is obtained by setting The tip velocityVy, was calculated from the position of the

7(n) and\ equal to the values =0 point along the growth direction. It was allowed to
reach a steady-state value after which the simulation was
™ (n)=T1a5(n)?, (90 ended. Plots of the dimensionless tip velocityy,
=V;jpdo /D vs time for two different values of, are shown
1 D in Fig. 4.
* — . . . .
—a—ZWg (91 To select the grid spacingx for our simulations, we

decreasedx/W, in steps of 0.1 untiV, did not change in

value by more than 2%. In Fig. 5 we plﬁip vs Ax/W,, for

the two choices oh(#) along with the value obtained from
the Green function calculation. The two choices correspond
to the IVF and the VF, respectivel§i.e., h,e(¢)=¢ and
dve(¥) = 15(y— 2413+ ¢°/5)/8 for which Egs.(87) and
(88) also reduce to the entropy formulatipf] used in the
gomputations of Refd.14,17). Figure 5 shows clearly that
the IVF converges more rapidly than the VF. Furthermore,

that make the kinetic coefficierit defined by Eq(63) vanish
identically. Equationg87) and (88) were discretized using
standard second-order finite difference formulas, ex8&gt
which was discretized using a nine-point formula with near
est and next nearest neighbors which reduces the grid anis
ropy. They andu fields were time stepped using, respec-
tively, a first-order Euler scheme and a second-order implici

Crank-Nicholson schemé&2]. For smaller values ob, we .
62] although not shown here, we have found that for higthe

also used a second version of the code wheres time VE d hvsical . b h of q
stepped with an Euler scheme. The simulations were per* can produce an unphysical spurious branch of steady-
tate growth solutions. For these reasons we have chosen to

formed on two-dimensional lattices of rectangular sizes® : .
N, XN, and constant grid spacingx in both directions. perform our computations with the IVF ankk/W,=0.4.

Simulations were seeded with a small quarter disk of solid a Le_t us now consider the convergence of our r_esults asa
unction of the computational parameters. For this, we first

one corner of the lattice and a spatially uniform undercoolin hat. forB=0. d 4D b lod letel
u=—A. To reduce the computational time, simulations were"°t€ that, for5=0, do andD can be scaled out completely

performed only in the quadramt>0 andy>0. Care has to
be taken that the diffusion field along the direction of growth —
does not reach the end of the computational box. One way of — e h($):1v5(w—2w’/3+w’/5)/8
accomplishing this is to choose a box size that can accom- 040 |
modate the final fully converged dendrite and its diffusion
field. This would require large box sizes and hence long
simulation times. Instead, we have chosen to periodically %, 0.08
translate the phase and diffusion fields a certain distance in  <*
the direction opposite to the growth of the tip. This proce-
dure allows us to compute the dendrite tip in a smaller box 0.06 - ]
and leads to a significant speed up of the simulations. We //
have checked that the results we report here are independent
of this translation. 0.04 ‘ ‘ ‘

The simulations reported here are for the fixed values 02 04 Ax%?/ 08 10
Wy=1 and 7o=1. Note, however, that we can always res- °
cale space and time such that the only independent param- F|G. 5. Dimensionless tip velocity as a function of grid spacing
eters that appear in the phase-field equationscaemd\.  for two choices ofh(y) for A=0.65, €,=0.05, anddq/W,
We have kepW, and 7y in the equations to keep dimensions =0.554. The dashed line corresponds to the value obtained from
explicit for clarity of exposition. the Green function calculation.
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.. /\\
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o 16t
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A_FOI(;'SG' Iglmfgs(l)(;nliss_ tlila:_velgctlrt]y ‘ZS ahfL:jnlt_:tlon W/ do fo; ; FIG. 7. Sequence of interface shapes shown every 5000 itera-
— Y00 ande,=u.0o. AS 1N FIg. © € dashed e Cormesponds 10y, ng for the parameter values=0.65, €,=0.05, dy/W,=0.554,
the value obtained from the Green function calculation. andAt/r,=0.075

from the free-boundary problem of dendritic growth by mea-method. This equation was first written down by Nash and
suring length and time in units af, andd3/D, respectively. Glicksman[63] and takes the form

This implies that the dimensionless tip velocity and tip radius

are functions of undercooling and anisotropy only and can be —d,(n)«— B(n)vtipcog

written as g ) ) | |
+odx’ X)—y(x’ r—r’
<~ Vipdo :f mexp{y( Iy( Ko{ | }’ 4
Vtip: D :F\/(A,E4), (92) -
where |=2D/Vy, is the diffusion length. Several groups
Piip [37-39 have solved Eq(94) and shown that it admits a
ptip:d_osz(AvE4)- (939  discrete spectrum of solutions if a finite amount of anisot-

ropy, in either the surface enerd®7-39 or the interface

Next, recall that the derivation of the thin-interface limit is Kinetics[41], is present. Only the fastest growing solution in
based on treating=W,// . as small parameter. Therefore this discrete set is stable and corresponds to the dynamically
the convergence of our results can be established by decreg§ected operating state of the dendrite[4g,46). _
ing the parameterp;,=W,Vy,/D o rgp=Wo/py,, and To benchmark our simulation results, we solved numeri-

. = = , cally the steady-state growth problem defined by 4.

Svgecgngh?(iwégﬁ\?grp g%ggr;\s/etgg(e:c}r?]ﬂ;reg t\éaell:ﬁ; rg;g”;i; 'Iéhe input parameters of these calculations were chosen to

Y 9 P . IOcorrespond exactly to those of the phase-field computations;
to the exact shape as we shall do below. In practice, Conveﬁamely B(n)=0, dy defined by Eq(82), anday(n) defined

. . _ [ — Y, 4Yp ' S
gfen;s?nw)?f f(g“a;e(é by(gl f)cisakstf"egmcl gonsci?]rgét\i\htl);:de by Eq.(83). A comparison of the dimensionless steady-state
9 . g- pB=0. tip & tip velocities obtained by phase-field simulations and

Prip Ar€ propqrtlonal tCD/dQ anddy, rejspec_tlvely,.and SINC€ " Green's function calculations is shown in Table Il. A com-
do is prqporuoqal toWo /A", decreasing) is equivalent to parison of interface shapes for two different undercoolings is
decreasing simultaneously pj,=WoVyp, /D and  kyp shown in Fig. 8
=Wo/pyp- It is 'also equivalent to decreasmg the rat!o It can be seen that the quantitative agreement is remark-
W,/dg and showing that our results are independent of L P

terf thick We took tisfact f y good over the whole range df, A, ande, investigated
erface thickness. Vve took as a satistactory measure ol €Oy e “Taple 11 shows that accurate simulations are still pos-

vergence thaVy, does not vary by more than a few percentsiple at a very smaltly/W, ratio with an enormous gain in
upon decreasingV,y/do. A typical convergence result is computational efficiency in agreement with the estimate of

shown in Fig. 6. Finally, a typical sequence of dendritic pat-the computation time given by E¢Q).
terns is shown in Fig. 7, where we plot the=0 contour

every 5000 ?terations. _ B. With kinetics

It is possible to benchmark the results of our phase-field ]
codequantitativelysince the theory of the operating state of Above we have chosen the computational parameters
the dendrite tip is well established in 2D. The steady-statéuch that the kinetic coefficient vanishes but we can also
growth problem can be solved numerically to any desired?erform simulations with a nonzero kinetic coefficient. As an
precision, giving predictions of the dendrite tip velocity and €xample we have simulated a kinetically controlled dendrite
the steady-state interface shape. To obtain these steaM{jth an isotropic surface enerdye., W(n)=W,] and a fi-
states, Eqs(3), (4), and(62) are first written in the moving Nite kinetic anisotropy. The kTetlc anisotropy was intro-
frame (moving with a velocityVy,) and then recast into a duced by choosing(n) = o[ 1+ €in(ny+ny)]. If this form
single integral equation by the standard Green functions substituted into Eq(63), we obtain
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TABLE Il. Comparison of steady-state tip velocities calculated by phase-field simulafTQm}; é&nd
calculated by the Green function methd'at?f). Tcpy denotes the CPU time in hours for simulations on a
DEC Alpha 3000-700 workstatiofl.cp; 0n one processor of the Cray C90 is roughly five times smaller. The
relevant computational and material parametersVige=1, 7o=1, Ax/Wy=0.4, At/ 79=0.016, andh(y)
=4. \ is chosen equal ta* defined by Eq(91) to simulate kinetic-free growth.

A €4 D do/Wy vtip V$pF % error Ny Ny Tepu
0.65 0.05 1 0.554 0.0465 0.0469 1 600 300 2
0.55 0.05 2 0.277 0.0168 0.0170 1 800 200 4
0.55 0.05 3 0.185 0.0175 0.0170 3 600 200 1
0.55 0.05 4 0.139 0.0174 0.0170 2 400 150 0.2
0.50 0.05 3 0.185 0.01005 0.00985 2 1000 200 3
0.45 0.05 3 0.185 0.00557 0.00545 2 1000 300 14
0.45 0.05 4 0.139 0.00540 0.00545 1 800 250 5
0.30 0.05 10 0.055 0.00064 0.00068 6 1200 400 25
0.25 0.05 13 0.043 0.00027 0.00028 4 4000 1000 100
0.60 0.03 2 0.277 0.0183 0.0188 3 600 300 5
0.55 0.02 2 0.277 0.00735 0.00685 6 800 400 10
,8(n)=,§[1+ Ekin(n§+n3)]v (95) yvhere the underlying cubic symmetry of the surface energy
is expressed bgg(n),
where B8 and ¢, are functions ofrg, \, and €,;, which can A S SV
be eafily derik\llned using Ed63). OFor our sirkr|1nulations, we a(m=af1+e(n+n,+n;)]
have chosen these parameters such t§at0.6 and =a 1+ €' (codo+sin*6{1—2sirfpcogp})].
€in=0.05. The results are presented in Table Ill. The quan- 97)
titative agreement is again within a few percent as expected.
Here 6 and ¢ are the standard spherical angles that the nor-
VI. THREE-DIMENSIONAL EQUATIONS mal to the solid-liquid interface, and its projection in the
AND LATTICE ANISOTROPY plane, make with respect to tlzeaxis and thex axis, respec-
A. Basic equations tively. The constantss and e’ can again be related to the
usual measure of the anisotropy strengthusing Eqs.(85)

The Gibbs-Thomson condition takes the form and (86).

) The corresponding phase-field equations take the form
u=—do >, [asn)+d;anl/Ri—B(NV, (96
=12 i Ju=DV2u+ 4,2, (98)

0 F

— a0ss | (M dyp=[p—Nu(1— 2 (1~ )+ ¥ -[W(n)2¥ ]
———- A=0.45 aW(n)
3(O”x¢))
JW(n)
(?((9y¢))

+a,| |V y|2W(n)

|V 4 2W(n)

+dy

I dW(n)
[Vl W(n)—a( D) (99)

\ +9,
Y TABLE Ill. Comparison of steady-state tip velocities calculated
3400 50 0 50 100 by phase-field simulations/;,) and calculated by the Green func-
y/d, tion method YY) for the pure kinetic dendrite. The relevant com-

putational and material parameters &g=1, A=4.42,D=1, 7,
FIG. 8. Comparison of steady-state tip shapes calculated by-5.77 Ax/W,=0.4, At/7o=0.0577,€;,= 0.05.

phase-field simulationdines) and the Green function methgslym-

bolg for €,=0.05. The two interfaces correspond #0=0.55, A do /W, V. {/CF % error
dy/W=0.277 (solid line and circles and A=0.45, do/W, i '

=0.185 (dashed line and squaje§he time step in both simula- 0.85 0.20 0.0202 0.0206 2
tions wasAt/74=0.016. For clarity, only one out of every four 0.80 0.20 0.0142 0.0136 4

symbols along the interface is shown for the Green function results
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where we have chosdn() = and reduces the simulation time by a factor of abodti@ 3D
sincetgm~ (Ax/do) ~?*9 in d dimensions and allows us to

dey (axw)4+(ay¢)4+(az¢)4 resolve an anisotropy of surface tension as small as 2/3 of a

W(n)=Wy(1—-3e€y)| 1+ 1-3e, Vol percent with about 10% accuracy.
(100 1. Surface energy

corresponding to a cubic anisotropy as in E&}). As in our To calculate the effective surface tension anisotropy, de-
2D simulations, we will uséNy=1 in all our 3D simula- fined here a%., we simulate the 3D equilibrium shape pro-
tions. duced by the phase-field model with a given valueepf

All spatial derivatives were discretized usidg? accu-  input in the functionw(n) defined by Eq.(100. We then
rate finite difference formulas. The LaplaciaWi$y andV2u match this shape to the theoretical shape of an equilibrium
were discretized using the six-point nearest-neighbor forerystal in the sharp-interface theof§0], which can be ex-

mula: pressed in Cartesian coordinateq 6§]
APV~ iyt i it Wi et - et it x=Ro[ f (6, B)sin( 6)cos ¢) + a4 (6, $)cos 6)cod ¢)
* 1™ O (1o — a3t (B PsinBIsin( 9], (103

where the indicesi(j,k) measure position along the,f/,z) L L
axes, respectively. The cross partial derivatives were dis- y=Ry[f( 6, ¢)sin( 6)sin(¢) + d4f ( 6, $)cog h)sin( ¢)

cretized using the four-point formula o . .

, + 34t (6, Hcog P/sin( )], (104
(AAX?) gyt~ i s 1j 41— s -1k Yi-1j+ 1kt Yim1j— 1k

(102 2=R[f(6,dcos 6)— o (6,Hsin(6)], (109

with similar formulas foraizzp and aizw. Time stepping was h
done using a first-order Euler scheme. The simulations wer® €€
performed on a cubic grid of siz, X Ny xXN, with a con- 4
stant grid spacind\x. Because of the cubic symmetry only (O D=1+ €e cod O+ sinf o 1 — 2sirfdcoLd)
an octant is sufficient to provide the full shape of the den- (6.9) 1—369[ & deos )]
drite. Simulations were started with a small spherical seed in (106)
the corner of the octant and with a spatially uniform under-

coolingu=—A. and (6, ¢) are as before the spherical angles of the normal to
the solid-liquid interface. To determirg we then match the
B. Lattice anisotropy phase-field and theoretical shapes in yhe plane. This is

a§imply done by measuring on the cross section of the 3D

In this section we describe a numerical procedure th : C o
. ; . .~ phase-field shape in this plane the radial distances from the
incorporates corrections to the surface tension and kineti€ . : i X
origin to the interface ¢=0) along they axis, Ry, and

anisotropy due to the discreteness of the lattice. This proce- . 7 . .
dure makes it possible to chood larger than needed to along they=.z line, Ry, and substituting these distances in
possID -Noos farger t . > the expression

fully resolve the spatial derivatives in the interfacial region

where ¢ varies rapidly on the scale &/ as well as to re-

solve smaller anisotropies. While anisotropies larger than a

few percent are relatively easy to simulate, values smaller

than 1% become difficult to resolve because of the contribu-

tion of the grid anisotropy. The fact that the lattice has thewhich is simple to work out. Note that this procedure only

same cubic symmetry as the crystal can be exploited to deworks well in practice because the underlying grid has the

fine an effective anisotropy that includes the contribution ofsamecubic symmetry as the lattice. For this reason, the en-

the underlying grid. tire 3D phase-field shape can be accurately fitted by the
There is of course a limit to how largkx can be chosen equations above with a simple cubic anisotropy, as shown in

that is set by the onset of oscillations in the interface positiorFig. 9.

on the scale of the lattice. These oscillations, which are due One practical detail is worth mentioning. The phase-field

to the pinning effect of the lattice on the interface, have beerequilibrium shape is simulated by only evolving with a

analyzed in a pioneering paper by Cal6#], and further spherical solid inclusion of radiuR, as initial condition. The

studied numerically by Reynolds and co-work¢65]. In  temperature field is kept constant in space, and chosen ini-

practice, we have found that accurate simulation results catmally equal to the critical undercooling for which this equi-

be obtained by our procedure &x is chosen about twice librium shape would neither shrink nor grow if the surface

larger than needed to resolve accurately the continuum limienergy were isotropi@.e., A=dy/Ry). This undercooling is

of the phase-field equation. This is demonstrated expliciththen slightly adjusted in time by a feedback mechanism that

for dendritic growth in 2D. For this value dfx, the lattice  maintains the velocity of the interface, measured along some

oscillations appear to be sufficiently small not to producearbitrary axis, equal to zer@.e., A is increased by some

spurious sidebranching. The increasedix by a factor of 2 small amount if the crystal shrinks and decreased if it

_ RlO/Rll_ 1

" Ryo/Ry+1’ (107

€e
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FIG. 11. The effective anisotropy, that includes the small
correction of the lattice anisotropy as a function of the anisotropy

- P parametek, that is used as input into the phase-field equations for
plane (solid circle3 and the(110 plane (open squargsand the  the grid spacing\x/W,=0.8. The solid line is a linear fit through
theoretical shapes for the correspondéqgsolid lines for the grid  the data points.

spacingAx/W,=0.8. The anisotropy used as input into the phase-

field equations ise,=0.05 whereas the effective anisotropy ob- yalyes ofe, investigated here, we have taken the vakge
tained by flttlpg to the theo.retlcal eqwhbnum shapeeg 0.04.7. corresponding tdQR,=40 lattice units. This value was moti-
_The d_ashed line shows a circle corresponding to an isotropic solig 3t q by the averaged observed tip radius in our simulations.
inclusion for reference. Note though that, in the entire ran§g=15-60,¢, does not

] i . vary by more than about 6% of its mean value. This repre-
grows. This procedure is dynamically stable and selects augents the accuracy to which we can determine the effective

tomatice_llly the exact undercooling for which the crystal ”ei'anisotropy. Values oé, for variouse, can be found in Table
ther shrinks nor grows. _ _ V. Finally, in Fig. 11 we plote, as a function ofe, for the
Results of our equilibrium shape phase-field S|mulat|onsfange of anisotropies we have used in this paper. The data

are illustrated in Fig. 9 where we show the numerically ob-5r¢ wel| fitted with a linear fit indicating that the grid anisot-
tained shapes in the100) plane (solid circles and in the oy is constant and independent of the input anisotropy.

(110 plane (open squargsfor the grid spacingAx/Wg As will be shown elsewherg7], it turns out that one can

=0.8 used in our 3D computations of the next section. Theyiso analytically derive a relation betweeg and e, of the
theoretical equilibrium shapes calculated wéthin the (1000 form

and(110 plane are drawn as solid lines and are seen to agree

FIG. 9. Phase-field simulated equilibrium shapes in {h@0)

very well with the simulated shapes. We have also drawn for €= €,— aAX>+O(€e,A%%) + O(AXY), (108
reference a dashed line that represents a circle corresponding
to an isotropic solid inclusion. wherea is a numerical constant that depends on the choice

In order to check whether the effective anisotropy de-of the functionf(y). This result is obtained by writing the
pends on the size of the seed crystal, the procedure to calcdiscretized Laplacian as the sum %fy, which is rotation-
late €, was repeated for differelR,. As can be seen in Fig. ally invariant, and the higher-order term proportional to
10, the effective anisotropy depends weakly Rp For all Ax2(03+ &§+ &‘Z‘) ¢, which has a cubic symmetry and modi-

fies the surface tension anisotropy. Féry) defined by Eq.
5.1 ‘ - ‘ - (17), a=1/240, such that Eq108) gives an excellent agree-

ment with the values oé, obtained by fitting the equilibrium
shapes.

o
=}

2. Interface kinetics

B
©

In Sec. Ill we derived an analytical expression for the
anisotropic kinetic coefficiens(n) in the thin-interface limit
[Eq. (63)]. For the valueAx/W,=0.8 used in our 3D com-
putations, there are lattice corrections to the kinetic coeffi-
//"\'/ 1 cient, and thus to the functiof* (n) and the parametex*

that makeB(n) vanish. It is possible to incorporate quanti-
‘ . ‘ . tatively these corrections as long Ax is within a certain
10 2 s 40 %0 60 range where time-periodic oscillations of the interface veloc-
R, (lattice spacings) . . L . -
ity on the scale of the lattice spacing remain of sufficiently

FIG. 10. The effective anisotropy, that includes the small Small amplitude. The basic strategy consists of developing a
correction of the lattice anisotropy as a function of the rafy®f ~ method to calculate the planar interface velocity on a discrete
the equilibrium shape fore,=0.05 and for the grid spacing lattice in a range oAx where these oscillations are negligi-
Ax/Wy=0.8. bly small. This procedure can then be readily extended to

»
-4

% effective anisotropy (100 ¢,)
~
o




4338 ALAIN KARMA AND WO
0.07
—— AXW,=05
———- AXW,=0.8
0.06 | —emes AXW=1.1
I AN ",
005 /1 I !y ]
° /A IoA [ /
g i i i !
£ i1 A I !
0.04 =7 TNy -T Ty e N7 TS
/ \ / i ! 4 !
/ \ i i ! | !
/ \ / \ ! iy !
0.03 |/ N N/ o
/ \\-‘/ \\’/ ‘\-/,/
0.02 ‘
100 150 200
tit,

FIG. 12. Interface velocity as a function of time for the front
solution of Eq.(110 for different values ofAx/W, and A =0.02.

calculate an effective kinetic coefficienBq(n), and there-
fore an effective functionss (n), and constanh} , which
make B¢(n) vanish.

To illustrate the nature of these velocity oscillations it is
useful to first consider the simple front problem defined by

Toduh=Wdgh+ = ¢ —u. (109

This problem corresponds to the purely kinetic controlled
motion of a planar interface, without diffusion, where the
dimensionless interfacial undercoolingis constant and set
to u=—A. In the continuum limit, this equation has a con-
stant velocity traveling wave solutiog/(x,t) = ¢(x—Vt)
moving in the +x direction for u<0, whereV~—u for
small|u|. On a discrete lattice, with a centered finite differ-
ence representation of the spatial derivative, B9 be-
comes

A= (w.ﬂ Yio1—2¢) +i—yi—u, (110

where ¢;(t) denotes the value af(x,t) atx=iAx, and we
have seW,= 1o=1 for simplicity. This equation is discrete

UTER-JAN RAPPEL
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FIG. 13. Plots as a function dx/W, of (a) the relative ampli-
tude of oscillation, defined as the ratio of the difference between the
maximum and minimum interface velocity during one period of
oscillation and the average velocity, afiy) the average interface
velocity calculated by the direct numerical integration of EL0)
(solid line and filled circlesand by the approximate theofiew-
ton solvej that neglects the effect of velocity oscillations.

Eqg. (110 with an explicit Euler scheme and a time step
At/ 73=0.005. The interface positio{(t) was calculated by
using a fourth-order accurate interpolation formula to inter-
polate whereyy=0. The instantaneous interface velocity

in space and continuous in time. Treating time as a continu=dX(t)/dt was approximated by the formulgX(t+ At)
ous variable is justified because the interface velocity is- X(t— At)]/(2At). The average interface velocity,, was

small V<1 (i.e.,, V=ap in units wherero=W,=1). Con-
sequently, the error made in calculatiagy with an Euler
scheme scales agyAt, or V232At. Furthermore, since
the stability of the scheme requires one to chodse
~Ax?/2d in d dimension, this error scales ¥842yAx?/2d.
It is therefore smaller by a factor 8f%/2d than the error
made in the spatial discretization, which scalesiagAx?.
Therefore, for all practical purposes,can be treated as a
continuous variable as long a&sis small.

Equation(110 also has a moving front solution, but with
an interface velocity which oscillates in time for large

defined as the time-averaged velocity, or equivalently as the
total distance traveled by the interface during one oscillation
period, AX, divided by the period of the oscillation: V,,
=AX/T. Finally, the relative oscillation amplitude is defined
as A= (Viax— Vmin)/Vay, WhereV,,,, and V., are, respec-
tively, the maximum and minimum interface velocity during
one period.

The results of Fig. 13 show that there are two contribu-
tions of the lattice, which dominate in different ranges\of.
The first, which is dominant over a range®dk smaller than

AX. [corresponding to where the solid and dashed lines over-

because the lattice acts as an effective periodic potential oidp in Fig. 13a) and the solid line has a slope equal to 2 in

which the interface is riding. Furthermore, this periodic po-

Fig. 14] is a slow decrease of’av due to the correction of

tential tends to pin the interface. Consequently, for a g|verO(Ax2) made in apprommatm@xw by a finite difference

undercooling, there exists a critical value of the lattice spac

ing, AX., at which the interface becomes completely pinnedl4 where we show a log-log plot oW, (Ax/Wy=

and stall{64,65. This pinning is illustrated here in Figs. 12,
13(a), and 13b). These results were obtained by integrating

formula. This quadratic dependence & is shown in Fig.

0)
V(AXIW,) vs Ax/W,. This behavior is unrelated to the

pinning effect of the lattice and is already present in a range
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10 : i.e., ¢ varies between+1 and —1 over the intervalxe
[—d,d], we construct a new interface over the interxal
e[ —d,3d] that consists of the original interface plus its mir-
ror image about the point=d. This new interface is then
periodic and can be Fourier transformed to calculgig in
Fourier space using the relation,{/),=ik, . The inverse
Fourier transform of §,4), is then evaluated to obtain
Ayl y—iax tO spectral accuracy. The results are of course in-
dependent ofl for d/W<1. As shown in Figs. 13 and 14,
this procedure gives extremely accurate value¥/gfas a
function of Ax and only breaks down when the oscillation
amplitude becomes non-negligible.

The extension of the above procedure to calculate the ef-
fective kinetic coefficieniBq(n), as well as\} and 75 (n) is
straightforward. This kinetic coefficient can be conveniently
defined as the limit

—— Direct numerical integration
| = Approximate theory

FIG. 14. Plot ofV,(AX/Wy=0)—V (Ax/Wy) vs Ax/W, for
V. (Ax/W;) obtained by direct numerical integration of §E410
and by the approximate theofNewton solver that neglects the
effect of velocity oscillationgsolid line and filled circles

of Ax where the oscillation amplitude is negligibly small. Be()= IimV W(n) (113
The second effect of the lattice is the pinning that becomes A-l17a

dominant asAx approachef\x.. The latter is associated

with a relatively abrupt vanishing of the interface velocity of the discrete-space analog of the 1D planar front problem
and occurs in a range dfx where the oscillation amplitude g gied in Sec. IV. In this definitioW,(n) denotes the av-
A becomes of order unity. . _ erage velocity of the interface for growth along a direction
The key point here is that it is possible to chodSe  ,qiie| ton that is calculated as outlined above by neglect-
relatively large and still have a negligibly small oscillation ;g he effect of the lattice oscillations and therefore the pin-
amplitude, in which cas\_af i_s esser_1tia|ly independent of tim_e ning to the lattice[Note that the limit in Eq(112) is not
and equal t0V,,. Thus it is possible to perform more effi- yefined if the pinning effect of the lattice is included since
cient computations with a largekx while still having an  he jnterface will always get pinned in ti&00] direction at
mterfacg that behaves dynamlcally as if space was continusgme small enough — 1 for any finiteAx. This is of course
ous. This, however, requires one to know how to calculatg,os 5 imitation since we are only interested in calculating

V, in order to make co.ntact \(vith the thin—interface limit. B.(n) in a regime where\x is such that these oscillations
One way to compute/,, is to simulate Eq(110) directly, .o small]

which becomes somewhat cumbersome whésallowed to Because of the cubic symmetry, it is sufficient to calculate

diffuse, which i§ the case we need to considgr to cal_cglat%e(n) along two principal crystallographic directiorte.qg.,
Be(n) as described below. Another way, which explicitly [100] and[110]) to determine\* and*(n) and the value of

excludes the contribution of the lattice oscillations, is to re- : N
S 1Y - = Bo(n) along an independent directign.g.,[111]) can then
duce _Eq.(llO) toa tlme—lndependent problem_by exploiting be used as a self-consistency check dfatand 75 (n) make
the discrete translation symmetry of the moving front solu- s o
Be(n) vanish in all growth directions.

tion of Eq. (110 The discrete-space equations of motion of the planar in-

Gi(t+iT)= (1) (111) terface along th¢100], [110], and[111] directions can be

' R readily obtained from the discretized version of the 3D

where as beford=Ax/V,, is the oscillation period. This Phase-field equatiori€gs.(98) and (99)] by assuming that
problem can then be solved as in Sec. IIl by using a Newtory has the same_valuealj the lattice points contained within
solver for the unknowny andV,,. This is the equivalent to the corresponding100, (110, and (111 plane, respec-
making a transformation to a moving frame as in the conlively, that are perpendicular to these growth directions. This
tinuum case, albeit for a case Whape|s 0n|y known ata IS exact if we neglect the effect of the lattice oscillations in
discrete set of points. The simplest possible approximation ohich case the planar interface translates uniformly along
dup, that only involves the nearest neighbors dsy; these directions. The corresponding 1D equations are defined
~V i1~ i+ 1)/ (2AX). This approximation, however, is by
not useful here because it is itself only accurat©{@ x?).
Using it would defeat the purpose of the present procedure D
which is to calculate FhQ(sz) corrections tov,, induced U= — (Uj o1+ Ui —2U;) + d, 12, (113
by the spatial discretization. Therefore we calculatg, by 2

1=V adyxtlx=iax KWO)Z
h
which is exact if we neglect the oscillations, and evaluate

using the expression
o=y —Au(1-y¢*)](1- )+
dy i to spectral accuracy. Since the interface is not periodic, X (i1t 1—2¢), (114
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TABLE IV. Parametersr, K, andh, entering in Eqs(113 and TABLE VI. Comparison of steady-state tip velocities calculated
(114 for different growth directions. by 2D phase-field simulations fax=0.55 (/;;,) and calculated by
the Green function methodV{) for the sameA. The phase-field
n 4 K h simulations were performed using, 7¢(n), and\} as input. The
[100] 7o(1+ ) 1+e Ax Grgen function calculation was performed using th.e grid corrected
anisotropye, that corresponds to the, value used in the phase-

[110] To(1—8) 1-¢, AX/\2 . . .

fiel I .
[111] o(1—56/3) 1-5e,/3 Ax/\3 teld simulation

€e Ax/IWy, D do/W vtip VI?pF % error
with the far-field boundary condition— — A far from the 0.0066 0.6 3 0.179 0.00221 0.00211 5
interface, wherer, h, andK depend on the growth direction 771 0.8 3 0176 0.00638 0.00627 2
and are listed in Table IV. 00265 08 2 0269 000968 0.00996 3
A Thg (;\_ffett:jtlve kinetic function that makeg(n) vanishis g j369 0.8 1 0550 001309 0.01340 2
then defined as 00470 0.8 2 0281 001728 001767 2

* _ o 4, 4, 4
To(N)=79(1—36)| 1+ 1_35(nx+ny+nz) , (119

tain quantitative results with a larger grid spacing than
needed to fully resolve the continuum limit using the proce-

where the time constanty and the anisotro arameteér : ' .
o by p dure developed in this section.

need to be determined together wiif . We determined
these constants by requiring tha{n) is equal to unity along

the [100] direction, which yields the relatiomy(1+ 6)=1 VII. THREE-DIMENSIONAL SIMULATIONS
between two of the three constants, and by further requiring _ _ _
that B.(n) vanishes along th€100] and[110] directions, We have performed simulations for an undercoolihg

which provides two additional independent constraints. A=0.45 and for an anisotropy ranging froe=0.0066 to
self-consistency check was performed by calculating thefe=0.047. Most of our 3D simulations were performed for
magnitude ofB.(n) along the[111] direction, with these AX/Wy=0.8 with 7(n)=7.(n) given by Eq.(115 and the
same values of,, 8, and\¥ . This check yielded a value of Vvalues ofr,, &, and\=A\¢ listed in Table V. For the lowest
/3[111]~10—4 which is negligibly small. The results of our anisotropy, we have also carried out s_imula_tions with
calculations are presented in Table V. Ax/Wy=0.6. A smallerAx was necessary in this case to
One last point should be emphasized. The procedure déesolve the anisotropy more accurately. The velocity of the
veloped here works as long as the pinning effect of the latticéip was measured along theaxis and the simulation was
is negligible and the lattice oscillations remain small. For thestopped after this velocity reached a steady state. As in the
value Ax/W,=0.8 used in our 3D computations the relative 2D simulations, we periodically translated the computational
oscillation amplitude measured at the dendrite tipAs box a certain distance behind the tip. The convergence of our
~102 for the undercoolingh =0.45, which is sufficiently —numerical results with respect to the computational param-
small. eters was checked following the same procedure as in 2D.
That is, for each value of the anisotropy we decred3ednd
3. Numerical tests hencep, and «y,, until the dimensionless tip velocity did
Jot change by more than a few percent. A typical conver-
gence study is shown in Figs. & and 1%b) where we
show, respectively, the dimensionless tip velocity and the
dimensionless tip radius as a function\of, /d,.

To test the lattice effects induced by the large grid size
and to verify our results obtained in Secs. VI A and VI B, we
have performed 2D simulations for the grid spacings em
ployed in our 3D work. The effective anisotropy in 2D is
identical to the one in 3D since the equilibrium shape in the
symmetry planesge.g., thex-y plane reduces to the equilib- A. Tip selection
rium shape in 2D. The results of our 2D simulations are
presented in Table VI. We also show in the table the tip
velocity calculated by the solvability theory. The agreementby
is very satisfying and demonstrates that it is possible to ob-

The operating state of the dendrite can be characterized

2Dd,
| ot =, (116
TABLE V. A summary of the effective parameters for=1. ptianp
AXIW, €4 €e g To S
Ptipvtip
0.6 0.0081 0.0066 1.651 0.996 0.0038 P= D (117
0.8 0.015 0.0123 1.697 0.996 0.0038
0.8 0.020 0.0171 1.679 0.982 0.0183
0.8 0.030 0.0265 1.643 0.962 0.0400 Whereo™ is the classic stability parameter that first appeared
0.8 0.040 0.0369 1.608 0.942 0.0615 Within the context of marginal stability theory, amlis the
0.8 0.050 0.0470 1.575 0.924 0.0828 dendrite tip Pelet number. Fody=0, P is given exactly by

the Ivantsov relation for a paraboloid of revolutifg8]
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FIG. 16. Results of a typical 3D phase-field simulation on a

300X 300X 300 cubic lattice fore,=0.047 which shows dendrite
tips growing along the principal100) directions. The solid-liquid

boundary shown here corresponds to the-0 surface recon-

structed by reflection about the=y=2z=0 planes. The structure is
seen from an angle where all 5j200) directions are visible.

firm this supposition. We have not investigated this aspect
further here and Figs. 16 and 17 are only intended to show
that growth morphologies with and without anisotropy are

qualitatively different.

Unlike in 2D, the steady-state growth equations of den-
10 . . . . . dritic growth in 3D are too difficult to solve numerically by
0 2 4 Wjd 8 oo 2 the boundary integral method for an arbitrary nonaxisymmet-
’ ric shape. These equations, however, can be solved using the
FIG. 15. Plots of the dimensionless interface velogiyand the ~ SO-called axisymmetric approximatip49,50. This approxi-
dimensionless tip radiugb) as a function ofWy/d, for e, mation assumes that the anisotropy and the interface shape
=0.0369 andA =0.45. The time step ranges frofit/ 7,=0.07 for ~ z(r,¢) are independent of the polar anglein thex-y plane
the smallest value 0V, /d, to At/ 7,=0.01 for the largest value of perpendicular to the growth axis. Averaging over this angle
Wy /dg. yields an effective anisotropy function of the form

exp(—2) ag(n)=ay(1+ €'[cos 6+ Ssint 6]), (119

. (118

A = P|VeX[X PIV)J dZ
Py

where 6 is again the angle between the normal direction to
the solid-liquid interface and thgl00] direction (growth
axis). This axisymmetric approximation reduces the 3D
steady-state growth problem to a tractable problem that is
two dimensional. The equations can once again be trans-
formed into a single integro-differential equation in which
the interface shape(r) appears as an unknown and ap-
proaches the Ivantsov paraboloid of revolution far from the
tip region[49,70. This equation is defined by

In the phase-field simulations, howevpy, andVy, are cal-
culated independently to determifeand ¢*. The velocity
was calculated, as in 2[kee Sec. Y from the position of
the y=0 point along the growth direction. The details of the
calculation of the curvature are described in Appendix B.
A simulated 3D morphology for a high anisotropy.(
=0.047) is shown in Fig. 16. There are six dendrite tips
growing along the si{ 100] directions. Furthermore, each
dendrite has four “fins” that reflect the underlying cubic
anisotropy. This picture should be contrasted with Fig. 17
which shows the result of a simulation witdaq=0. Without
anisotropy the interface undergoes a series of tip-splitting
instabilities and no dendrites are formed. These simulation
results confirm the essential role of anisotropy in dendritic
growth. It is worth noting that it has recently been shown by
phase-field simulation that there exist steady-state growth so-
lutions in 3D for zero anisotropy in the form of triploh23].
These solutions are directly analogous to doub[@7s69 in
2D and may therefore exist for arbitrarily small although
this has not yet been demonstrated analytically as 62
From this standpoint, one would be tempted to interpret the
simulation of Fig. 17 as showing the early stage of formation
of triplons, although a longer run would be necessary to con-

FIG. 17. Same as Fig. 9 but with,=0.0.
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TABLE VII. Dimensionless steady-state tip velocity and tip ra- TABLE VIII. Result of phase-field simulations on a
dius (’Etip:ptip/do) calculated by 3D phase-field simulations. The 200X 200X 400 cubic lattice compared to the results of the numeri-
relevant computational and material parameters\Vege 1, h() cal and linear solvability theories far=0.45.A and 5 characterize
=, andA=0.45. The time step varied fromt/7,=0.018 for the  the amplitude of the fourfold symmetry component of the tip mor-

lowest anisotropy value tat/7,=0.076 for the highest anisotropy Phology in simulations. Typical runs took 60—140 CPU hours on a
value. DEC-ALPHA 3000-700 workstation and shorter times on a Cray-

YMP and a Cray-T3D.

€ AXIWg D do/W, Vip Pip ———————— =
Phase-field simulations Solvability theory
0.0066 0.6 3 0.179 0.00549 155.3 : i
0.0123 0.8 2 0261 000925  77.93 Numerical Linear
0.0171 0.8 2 0.264 0.0121 51.23 P o 5 Al P o P, o
0.0265 0.8 15 0.359 0.0181 26.09
0.0369 0.8 1 0.550 00231 1356 00066 0.426 0015 1.78 13.0 0.418 0.0128 0.471 0.0116
0.0470 08 05 1124 00297 625 0.0123 0.360 0.036 1.73 11.3 0.367 0.0329 0.471 0.0250
0.0171 0.312 0.063 1.68 10.1 0.324 0.0578 0.471 0.0367
0.0265 0.236 0.16 1.62 7.8 0.247 0.142 0.471 0.0602
2rdg’ [+ r'dr’ exd(z(r')—z(r)—d)/I] 0.0369 0.159 0.47 157 57 0.172 0.365 0.471 0.0890
A_A/.L:f s | d ) 0.0470 0.093 1.72 154 4.0 0.109 1.037 0.471 0.1240
0 0
(120
wherel =2D/V is the diffusion length, ability theory, but of the axisymmetric approximation. This
conclusion is supported by the fact that the fourfold devia-
d={r?+r'?2=2rr'cog¢— ¢')+[z(r")—z(r)]%}*?2, tion from a shape of revolution increases in magnitude with
anisotropy(as described belowThis cos4p mode was pre-
and viously found to affect very little the value ef* computed
with a linearized shape for smadl, [49]. In contrast, our
2 Z;, results indicate that for a surface tension anisotropy larger
Au:_do[as(”)+‘9§as(”)](l+—zrz‘)e,/z than about 3% the amplitude of this mode becomes suffi-

cient to produce a large percental changefh We also do

_ not observe any sidebranchipdg,53,57,71 without adding

—dg[ag(n)+cotbdgzag(n)] ENT noise to the phase-field equations. Hence our simulations
(1+z) rule out the possibility of a dynamical attractor other than a

steady-state needle crystal.

: . . . P The linear axisymmetric theory is seen to break down at

radius and velocity, obtained by solving £§20), were used much smaller anisotropy. This is because it assumes that the

. ; >
to*calculateq andP. Itis worth stressing that we calculate gqa 4y state shape remains close to the Ivantsov paraboloid
o* here using the tip radius. To our knowledge all previous

. ' of revolution. Figure 19 shows that the actuatkenumber

studies have reported values @f that are calculated with
the Ivantsov tip radius. We will see below that the numeri-
cally obtained Pelet numberP and the Ivantsov Réet num- «+ Phass—Fleld simulations
ber P,, defined by Eq.(118 differ significantly, even for 10° Numerical solvability theory
relatively small anisotropies. Hence, for a meaningful com- —-—-- Linear solvability theory
parison with experiment, care must be taken in definifig
with the actual tip radius. For completeness, we have also
computed o* using the linear axisymmetric solvability
theory of Barbieri and Langd60] that is based on a linear-
ization around the lvantsov paraboloid of revolution. In this
theory,P=P,,, independent of the value of anisotropy.

The results of 3D computations are summarized in Tables
VIl and VIII and in Figs. 18 and 19. We also show for
comparison the results of the numerical solvability theory

Z

represents the axisymmetric Gibbs-Thomson shift. The ti

10™

[i.e., the numerical solution of Eq120], and the linear 107

solvability of Barbieri and Langeli.e., the analytic solution 0 o o

of Eq. (120 with a shape linearized around the Ivantsov 7 anisotropy (100 ¢,)

needle crystdl We first note that the values of* produced FIG. 18. Plot ofo* Vs e, for A=0.45 showing the results of

by our simulations are systematically higher than the valuegnase-field simulations compared to the approximate predictions of
from the numerical solvability theory. For small anisotropy the numerical and linear solvability theories. Also plotted are the
these values are still reasonably close but for anisotropiesmall A experimental values of* for SCN [57] and PVA[54]
greater than about 3% the deviation between the phase-fielging the anisotropy measurements of H&#] for PVA (filled
results and the numerical solvability results become signifidiamond and of Ref.[56] for SCN and PVA(filled squares and
cant. Most likely, this does not indicate a breakdown of solv-error bars.
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FIG. 19. Plot ofP vs €, for A=0.45 showing the results of FIG. 20. Plot ofg* vs P for the numerical axisymmetric solv-
. 19. o .

bility theory for €,=0.0066. The solid line is a guide to the eye
and demonstrates that the dependencePoof o* is linear. The
data point with the arrow corresponds to the undercooling
=0.45 at which the phase-field simulations are performed and
shows that this value is approximately 15% smaller than the value
for small undercoolings.

phase-field simulations compared to the approximate predictions
the numerical and linear solvability theories.

already starts deviating significantly from its Ivantsov value
P,, at small anisotropy. The predictions of thecRe number
from the numerical solvability theory on the other hand re-
mair_w relatively accurate over the _entire range of anisotropymc kinetics,o* depends only or, andP, and can therefore
Figure 18 also shows a comparison between the numerlc%le expanded for smak as
results and experimental data points for two materials. The

comparison with experiments is limited to pivalic acid and N

sqccinoni'trile that are the only pure materials with an under- o* (P, e,)=0* (0,e5) + ﬁi(o@)m S (12D
lying cubic symmetry for which detailed measurements of JP

both anisotropy53,54,54 ando™* [53-55,57 are available.

For a summary of experimental results on other materialThis equation can then be used to extract the sthakperi-
and alloys we refer to Ref56]. mental limit ofe* as long as we know botho* /9P ando*

There are two anisotropy measurements reported for PVAit some finiteA. To make use of it, we have calculated this
in the literature. However, if we use either the value measlope by calculatingr* vs P using the numerical axisym-
sured by Muscholet al. [56], or the value measured by metric solvability code. The results are shown in Fig. 20.
Huang and Glicksmari53], the measured value of* They indicate that the finite ket correction atA=0.45
[54,59 is still much smaller than both the phase-field and thedecreases* by about 15% from its smalk limiting value.
numerical solvability values. A possible explanation for thiSConsequentIy, the value @f* obtained in our simulations
discrepancy could be that interface kinetics is playing anshould be increased by 15% to compare it with experiment,
essential role in the solidification of PVA. This is supportedwhich yields a small\ estimate ofo* =0.017. Furthermore,
by the fact that* was found to depend on the undercooling the effective anisotropy.=0.0066 lies inside the range of
in both the experimentgs5] and in the phase-field simula- uncertainty of the measured valg=0.0055+0.0015 for
tions for large undercoolinfl7]. The observed dependence SCN[56]. Therefore we obtain a reasonably good agreement
[55], however, does not seem to be sufficient to explain thevith experiment for SCN within the existing uncertainty in
present discrepancy. A closer examination of kinetic effectshe measured value of anisotropy.
for this material seems warranted.

We can also compare our phase-field results with mea-
surements in succinonitrile. Glicksman and co-workers mea-
suredo™ both in ground based experimen&3] and under Figures 21b) and 21d) show =0 contours in th€100
microgravity conditiong57], where convection effects are planes that are equally spaced in theirection by one tip
minimized. Interestingly, both the ground based and the miradius. Close to the tip the shapes are nearly circular but
crogravity experiments give essentially the same value ofurther behind the tip the contours are clearly noncircular and
o*:0* =0.0192 for terrestrial experiments and =0.0196 the deviation from an axisymmetric shape becomes larger.
for microgravity experiments. It should be noted that al-Comparing Figs. 2b) and 21d) also reveals that the non-
though o* is nearly identical in both experiments, the ve- axisymmetric component of the tip morphology becomes
locities and tip radii differ significantly and it is only the larger for higher anisotropy. To analyze the steady-state mor-
dimensionless combination* that is identical. The experi- phology of the dendrite tip we used the Fourier decomposi-
mental value fora* is approximately 20% larger than the tion
phase-field values* ~0.015 but most of this discrepancy
can be accoun_ted for by the fini?écFPeI number. correction. rz(gb,z):E A, (z)cosh (122
To evaluate this correction, we first note that, in the absence n

B. Tip morphology
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FIG. 21. Steady-state tip morphology far=0.0123(a) and(b)
and fore,=0.0470(c) and(d). (a) and(c) show the interfaces in the
$=0° (solid line and ¢=45° (dash-dotted lineplanes, andb)
and (d) show interfaces in th€l00) planes equally spaced alozg
by one tip radius, with the first plane two tip radii from the tip. The
Ivantsov parabol&= —r?/2 (dashed ling the solution from the
axisymmetric calculatiorfdotted ling, and a circle of unit radius
are superimposed i@ and(c). The Fourier amplitudes at two tip
radii behind the tip are iitb) A;(—2)=0.29,A,(—2)=0.020, and
A3(—2)=0.0022, and ind) A;(—2)=0.73,A,(—2)=0.077, and

10’
£,=0.0123
10°
“a 107
s
107
£,=0.0369
10° : :
107 10° 10'
z/ Pip

FIG. 22. Plot of the coefficients in the Fourier expansion coef-
ficient A, vs the distance behind the tifor two different anisotro-
pies and forA=0.45.

wherer is the radial distance from theaxis. Bothr andz

are measured in units gf, with the tip atz=0. This de-
composition has the advantage that it is general and does not
presuppose a particular analytical form to fit the tip shape.
The first term in the Fourier decompositioAgy(z), repre-
sents the axisymmetric contribution to the shape. It ap-
proaches a paraboloid of revolutiofy(z) = — 2z, for small

|z| and departs from this shape with increasjelg This can

be seen in Figs. 28 and 21c) where we have plotted as a
dashed line the Ivantsov parabolgicf(z) = —2z], together
with the tip morphologies in the planes=0 (solid line) and
¢=45° (dash-dotted ling These figures also show that this
departure is more pronounced at larger anisotropy as one
would expect.

The modesA,(z) for n=1 are responsible for the non-
axisymmetric departure from a shape of revolution. The first
nonaxisymmetric modé(z) was found to be much larger
than all the other modes indicating that the shape is domi-
nated by the cos@) term. Furthermore, this mode can be
described for all anisotropies by the power laf(z)
=A|z|”. This can be seen in Fig. 22 where we have plotted
on a log-log scaleA;(z) vs |z| with |z| ranging from|z]|
~0.1p4p to z~5py, for two different anisotropies. For
smallerz, our numerical interpolation is not sufficient to re-
solve accurately these amplitudes because the radius of the
cross-sectional shape becomes only a few times, or compa-
rable to, the lattice spacing. However, the analyticity of the
3D tip shape imposes that—2 in the limit of |z| —0, such
that the behavioA,(z) =A|z|” cannot strictly extend all the
way toz=0. So we expect that there should be, /q(z), a
crossover from a behavior ifz|?, with 7#2, to |z|? very
near the tip. The values &k and » in Table VIII clearly
show that the amplitude of the fourfold symmetry mode is
sensitively dependent on anisotropy, which is, as far as we
know, a qualitatively novel aspect of our results. The linear
solvability calculation of Ben Amar and Bren¢bl] and
subsequent refinement by Brener and Melniké®| predicts
that for smalle, the tip morphology should be independent

As(—2)=0.0095, illustrating that the tip morphology is dominated of anisotropy, withA~1=12 and »=2 for small|z|. The

by the fourfold symmetry mode.

values of A and 7 listed in Table VIII indicate that this
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TABLE IX. Results of steady-state growth velocities obtained
by 2D (V,p) and 3D {/3p) phase-field simulations as well as the
measured slope obtained by fitting a straight line through the lon-
gitudinal cross section of the 3D needle crystal in the tail region
(Fig. 23. Note the excellent agreement between the predicted slope
V,p/V3p and the measured slope.

%'g -10
A EE VZD V3D VZD/V3D Slope
- Interface
Linear fit 0.7 0.0269  0.0450  0.103 0.44 0.43
207 0.65 0.0269  0.0416  0.105 0.39 0.40
-15 -10 -5 0 5 10 15
P where|z|~r52 It is, however, possible to distinguish the far

FIG. 23. Longitudinal cross section of phase-field simulated in-tall r.eg|on described by ,Eq123)‘ . o
terface in thegp=0° plane(solid circleg and a linear fit of the tail Figure 23 shows an interface in thee=0° plane forA

shape far behind the tigsolid line) for A=0.7 ande,=0.0269. For ~—0.7 as solid circles. Far away from the tip it can be seen

clarity only one out of six symbols is plotted. that the interface approaches a straight line. A linear fit to
this tail, shown as a solid line, was found to have a slope of
prediction is most likely only valid for values af, which lie ~ ~0.43. To test Eq(123 we have calculated the velocity of

outside the range of experimental interest. This is also conh® 3D dendrite as well as the velocity of the 2D dendrite.
sistent with the fact that their calculation is only valid in the The values for the dimensionless velocities obtained from

limit where o* ~ /4, and that this 7/4 power law scaling is 2D and 3D simulations are given in Table IX. We see that
not yet attained at our smallest computed anisotropy. the ratio of the 2D and 3D velocities is very close to the
In Figs. 21a) and 21c) we have also plotted as dotted slope of the linear fit. In Table IX we also give the results of
lines the dendrite shape calculated by the numerical axisynft Simulation forA =0.65. Again, the ratio and the slope are
metric approach. As expected this axisymmetric approximal€arly identical, demonstrating that, far behind the tip, the
tion yields a solution that lies in between the shapes in thgoWth in the cross section perpendicular to the growth di-
$=0 and $=45° planes and that deviates more strongly'€ction is effectively 2D. .
from the full numerical simulation for higher anisotropies. ~1© illustrate more clearly that the fins in t&00 planes
Experimental data on the tip morphology are limited to9"0W as 2D dendrites, we show in Fig. 24 as solid circles
NH ,Br [73] and SCN[74]. For NH,Br dendrites it was cutg |n'the(100) plane of our 3D simulations. The cuts are,
found that the tip morphology is indeed well described by a2S N Figs. 2ib) and 21d), equally spaced along the growth
single cos4 mode. For SCN on the other hand, more modeﬁlrectlon by one tip radius. If the tail shape can be described
seem to be necessary to fit the tip morphology which make y Eq. (123 then 3D cuts spaged. by one tip rad't.js are
a direct comparison with the numerical valuesspand A eduivalent to 2D interfaces spaceutime by pip/vap. Fig-
impossible. The origin of this difference, which is potentially ure 24 shows that the interface shapes for a 2D simulation

due to noise amplification, remains to be understood.

C. Tail morphology — 2D

In a recent paper, Brener has derived a theory of the tail 0 ®
shape of 3D needle crystdl52]. His theory is based on the
assumption that the cross sections of 3D steady-state needle
crystals should grow as time-dependent 2D growth shapes
away from the tip. With length measured in unitsgf, his
theory predicts thaiz| ~r®?3in an intermediate region where
1<|z|<1/P, the exponent 5/3 having been derived by
Almgren et al. for 2D Laplacian growt{75], and|z|~r, in
the far tail region wheréz|> 1/P. In this last region, the 2D
time-dependent interface grows with a constant steady-state
growth velocity that we shall denote here Wy, in order to

distinguish it from the steady-state growth velocity of the 3D F|G. 24. Transverse cross sections of 3D phase-field simulated
needle crystal that we denote WD- With these definitions, needle crystal in th€100) plane equally spaced along tlzeaxis
Brener’s theory predicts that the tail region is described bysolid circleg by one 3D tip radiug,, . Superimposed for compari-
the simple relation son are 2D interfacesolid lineg obtained by 2D phase-field simu-
lations equally spaced in time y;,/V,p. The 2D time-dependent
r= B|Z|: (123 simulation uses as input the interface profile and the temperature
field of the 3D cross section closest to the tip in the present figure.
with B=V,p/V3p, this relation being strictly valid foB  Both 3D and 2D simulations are for the same parameters as in Figs.
<1. In our 3D phase-field computations, and thusP are  21(b) and 21d). The first interface plotted is 15p;, away from the
not quite small enough to distinguish the intermediate regionip. For clarity, only one quadrant of the cross section is shown.

&
=

X /pﬂp
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for the same computational parameters spaced as describsidnless velocity did not change by more than a few percent.
above are nearly identical to the 3D cuts. The slight deviaThese simulations provided us with both the velocity and the
tion of the shapes is due to the fact that the slope is not quiteadius of the dendrite tip. It should be emphasized that, in
constant yet. contrast to previous phase-field studies, our results were
We close this section with a few observations. First, it iscompared directly to exact benchmarks of solvability theory
somewhat surprising that we observe a linear tail shape witbbtained independently by Green’s function method both
a slope predicted by E§123), and obtain such a good match with and without interface kinetics. The comparisons showed
between 3D cross sections and 2D time-dependent growttnat the phase-field method was able to produce the correct
shapes in Fig. 24. This is because Brener's analogy is strictlyelocities and tip radii with a relative errer5%. In addi-
only valid if V,5/V3p<<1, in which case the flux of tempera- tion, we found that the computation time decreased dramati-
ture along the interface becomes negligible. In our simulacally as the ratioN/d, was increased.
tions, this ratio is about 0.4. Apparently, this value is already Our simulations were performed without employing more
small enough to suppress any 3D effects for the growth ofnvolved numerical techniques such as adaptive grids. Of
the fins that already behave as 2D growth shapes. Second,cburse, the implementation of such techniques will speed up
is unlikely that the linear tail shape will be observed experi-our calculations even further. This is especially the case for
mentally. Most likely, the amplification of thermal noise will low undercoolings where the diffusion length becomes ex-
induce sidebranching before the linear regime can béremely large and the calculation of the diffusion field be-
reached. The generation of sidebranches is currently undeomes very costly.
investigation by phase-field simulation. Our asymptotics have enabled us to perform quantitative
simulations in 3D. To reduce the computation time even fur-
ther than permitted by these asymptotics, we have used a
VIIl. DISCUSSION somewhat larger grid spacinggx than needed to fully re-

In this paper we have given a detailed exposition of asolve the continuum Iimi.t of the phasc_a—field equations..The
thin-interface limit of the phase-field equations describingSMall surface tension grid anisotropy introduced by using a
the crystallization of a pure melt where the interface thick-larger spacingabout 0.3% forAx/W,=0.8) was calculated
ness is assumed to be small compared to the mesoscale of thé comparing the equilibrium 3D crystal shape produced by
solidification pattern, but non-vanishing. We have presented€e phase-field model with the known analytic expression for
simulation results in 1D, 2D, and 3D, that demonstrate how? Sharp interface. A methodology was also developed to cal-
this limit can be implemented to obtain accurate quantitativeulate the grid-induced kinetic anisotropy and determine
solutions of the time-dependent free-boundary problemMmodel parameters for which the kinetic coefficient vanish.
Computations in 1D and 2D have mainly been used tofhese two steps allowed us to perform simulations of den-
benchmark our method against exact predictions of the claglritic growth that are converged in computational param-
sical sharp-interface theory, whereas 3D simulations wergters. This convergence was achieved as in 2D by decreasing
performed to test the validity of solvability theory and gain W/do until o did not change by more than 10%.
new insights into the factors that determine the shape and We used our simulations to critically test microscopic
operating state of actual dendrites observed in experiment.Solvability theory. We first compared our results to the linear

Two aspects of the asymptotics are worth emphasizing. 8xisymmetric solvability theory of Barbieri and Landé&0]

(i) By a suitable choice of computational parameters wavhich assumes that the underlying shape of the dendrite is
can simulate the solidification of a pure melt in the absencéhe Ivantsov paraboloid and linearizes around that shape. We
of kinetics. This, in turn, makes it possible to simulate theshowed that this theory breaks down at large anisotropies

important limit where kinetic effects at the interface are neg-2nd is presumably accurate for very small anisotropies only.
ligible. Next, we compared our results to the nonlinear axisymmetric

(||) We can perform simulations for a |arger interface SOIVability theory which assumes that the dendrite is aXisym'

thickness to capillary length ratigv/d, than was possible Metric. This assumption leads to an effectively two-

before. Since the computational timedrdimensions can be dimensional problem that can be solved numerically. Our
shown to scale as-(W/dg) 9*?, an increase inWid, Simulations showed that this numerical solvability theory

leads to an enormous gain in computational efficiency. breaks down for much larger values of anisotropies. For val-
As a first test case, we used the method to model th&es smaller than 3% the discrepancy between the simulations
growth of a planar front for undercoolings>1. The solu- and the numerical solvability theory is approximately 30%.
tion of this problem is well known analytically and the ve- In addition to the velocity and the tip radius of the 3D
locity is only a function ofA and the kinetic parametes. dendrite, we have also calcu]ated the tip morphology. We
Phase-field simulations that exploit the thin-interface limitfound that for all values of anisotropy studied here the mor-
were found to converge well to the results of the classicaP0logy is dominated by the fourfold mode and that the in-
sharp-interface theory, and more efficiently than with thet€rface shape can be adequately represented by
standard asymptotics of the phase-field model. As a second,
and less trivial test case, we showed that the phase-field r%(¢,2)=Ao(2) +AlZ| "cog4¢p) + - - - (124
method can yield accurate predictions of the operating state
of the 2D dendrite tip. For undercoolings as low As The values oA and» on the other hand are strongly depen-
=0.25 we were able to perform simulations with zero kinet-dent on the anisotropy. A recent analytical linear solvability
ics that were converged in numerical parameters. This concalculation by Ben Amar and Brengs1] predicts that both
vergence was achieved by decreasitgl, until the dimen- A and » should be independent of anisotropy in the limit of
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small €,. Our results suggest that the range of validity oftion of a dilute binary alloy. This makes it possible to inves-
their approximate theory lies outside the range of values ofigate a number of interesting microstructural pattern

€, that we simulated here, and at the margin of what isformation issues.
experimentally measurable.

We compared our simulations with values ot reported ACKNOWLEDGMENTS
in the experimental literature. For PVA the agreement be- .

There is a large discrepancy between the experimental valu§€ER45471 and we benefited from supercomputer time allo-
of PVA and the ones obtained from our phase-field simulacation at NERSC. We wish to thank Rob Almgren for valu-
tions as well as the numerical solvability theory. The mostble discussions about mathematical aspects of the present
likely explanation for this discrepancy is the dominant role@symptotics, Herbert Levine for providing us with the 2D
of interface kinetics in this material that remains to be mod-Solvability code, Martine Ben Amar for performing cross
eled quantitatively in 3D. che_cks of_lour 3D solvability calculations, Efim Brener and
The comparison between our results and SCN is muchieiner Mdler-Krumbhaar for useful remarks, and Stuart
more favorable. The smallest anisotropy value used in ouk€Vy of the Geometry Center at the University of Minnesota
study lies within the range of uncertainty of the experimentaffor his gracious help in visualizing our results.
value for €,. Our numerical value otr* is approximately
20% lower than the experimental value. To be able to perAPPENDIX A: ASYMPTOTICS OF THE THIN-INTERFACE
form our simulations the undercooling was chosen signifi- LIMIT
cantly higher than in experiments. This difference in under-
cooling between the simulation and the experiment acc:ountgiti
for most of the discrepancy in the value @f . Therefore it
is fair to argue that agreement between the experiment
value for SCN and the numerical value is good.
Finally, we analyzed the shape of the dendrite tail far
behind the tip. We find that the tail, at distances larger tharf

In this appendix, we show how the Gibbs-Thomson con-
on obtained in Sec. Il can be rederived from a matched
ée}symptotic expansion that treatsas a small parameter. We
Start by rewriting the phase-field equations by making the
dependence on explicit, i.e., by substitutingvV=xdq/a,;

nd 7=\2Byd, /a3, which yields

the diffusion length, is well described by the linear relation- 42
ship L P LN
2 tl//_ 2 w 7] gd;uv (Al)
a a
1 1
V2D — 2
r=——|\z, (1295 du=DV-u+;h/2. (A2)
Vip
We then look for solutions of the form
whereV,p, Vgp are, respectively, the 2D and 3D steady- _ 2
state dendrite tip velocities at the same undercooling. This U=Upt AUyt A Uyt - -, (A3)
means that the evolution in space of transverse cross sections - ~ - o~

of 3D steady-state needle crystals, with increasing distance
behind the tip, is described by the evolution in time of a 2D. . . : . -
growth shape. This result is in good agreement with the rel! the Inner anc_j outer regions, respectively, W'.th a similar
cent analytical theory of Brendb2)]. gxpgnsmn forg in bpth regions. In the OL-JteI’ reglor], all the
Our results in 3D leave little doubt about the validity of Uj (1=0,1.2...) simply obey the diffusion equatioau;

microscopic solvability theory in describing needle crystals=DV2uj since the phase-fielgy is constant. In the inner
computed with a phase-field model and yield a relativelyregion, the analog of Eqé31) and(32), rewritten in terms of
good quantitative agreement with experiment for SCN. Cauthe inner variablep=(£&3/\)(a,/dg), become

tion, however, is still needed in applying this theory to ex-

periments until a proper explanation of the disagreement be- Bo,, dof1 1 2 _
tween theory and experiment, most likely due to kinetic ™ a_lera_l R, R, }&”‘ﬂh?’/w_w_)‘gwu_o'
effects, is obtained for PVA. Our simulations demonstrate (A5)
the critical role of anisotropy in the selection of the operating

state of the dendrite tip. The values af are reasonably Adg 1 1 ) Ndg

close to the axisymmetric solvability theory, at least for a_l V+D R_1+ R_z dyu+Dau— a—lvanh/2=0,
small anisotropy. For higher anisotropy,t3%), thedis- (AB)

crepancy between our simulations and the axisymmetric

theory increases. However, this is not due to a failure owhere we have neglected the contributions of the partial de-

microscopic theory but due to the axisymmetric approxima-ivativesd,iy andd,u evaluated at fixed; that turn out to be

tion. unimportant at the end of the calculation. Substituting Egs.
The asymptotics we have presented in this paper can b@3) and(A4) into Egs.(A5) and(A6), we recover at zeroth

applied to a variety of problems. We are currently includingorder the stationary interface profilg,(#), defined by Eq.

thermal fluctuations quantitatively in the phase-field model(35), and ug=const. For all higher orders iN, Eq. (A6)

to investigate noise-induced sidebranching. We have also exields a linear equatios;=F; where L is the linear op-

tended the present asymptotics to the directional solidificaerator defined by Eq.38). Since/L is self-adjoint and satis-
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fies £d,0=0, there is at each order in a solvability con- ~ Which is easily seen to be identical to E&7) derived in

dition for the existence of a nontrivial solutiaf}, given by ~ Sec. lll Ain an asymptotic expansion that treptas a small
parameter. Note that, although the results are the same, the

tee solvability conditions that yield the correction to the kinetic
f,m d7F;dyho=0. (A7) coefficient do not have identical forms because they appear

at different orders in the two asymptotic expansifires, Eqg.

The rest of the calculation is straightforward. At first order(41) in Sec. lll A and Eq.(A7) for j=2 herd.

(j=1) Eq.(A7) yields

APPENDIX B: CALCULATION OF THE TIP RADIUS
_,BOVa (A8)

1 1
UO: _do<_ + =

Ri Ry The tip radius of the dendrite growing along theaxis
was calculated in thg-z (¢=0°) plane. The expression for

which is the condition obtained previously by Cagink3al. the curvature of the interface defined ¥y 0 is given at the

At second order j(=2), we obtain

tip by
_ |Bo, do Buw 2. o
"o a Tl Ry TR [T T VAT e 1 d2(0.02) o
Kiin="—— T A ~ .
+g%uy, (A9) P pip  3,4(0,0245)
where

For the typical grid spacindAx/Wy=0.8 used in our 3D
doV (7 computations, evaluating the derivatives in the expression
5D J d#'h° (A10) above directly with the values of on the lattice points

aiJo would introduce a large error iRy, , especially since the tip
does not usually coincide with a lattice point. For this reason

— . i we calculated these derivatives by interpolation.
constantl, is determined by EqA7). As before, iff andg We first fitted the function)(0,0z) in the neighborhood

are even and odd functions gf, respectivelyu, does not the tip using a fourth-order polynomiai(z). We used the

depend orA. In addition, it is easy to verify that all the terms e yertical lattice points closest to the tip along thaxis at

gpog:)ertirg)%g-?c?nod i 3'?&2;;1‘6‘2%' ;)r(\zi?/tx t(he) Izsgzn:\’/eire x=y=0. This allowed us to calculate the tip position defined
\7 ~ _ o~

function of 5. Therefore they give vanishing contributions to by 4(2p) =0, and themz'/’(_o'o’zﬁp)_d'/’(z_)/dz|z=_2up'

the solvability condition of Eq(A6) at second order in. I;et us denote the coordinates of the five points used to

Finally, matching inner and outer solutions up to first orderfit ¢(z) by z, for ne[1,5]. We then fitted the functions

in \ we obtain the standard heat conservation condition, toy(0,y,z,) using fourth-order polynomialsy,(y) for n

ul = U_]_+A77+

is obtained by solving Eq(A6) at first order in\x and the

gether with the interface condition e[1,5]. For eachn, we performed this fit using the five
11 horizontal lattice points defined by(0,£mAx,z,) for m
U= lim [Ug(&)+NUi(€3)]= —dO(R—+ R—) €[0,2] [where ¢(0,mAx,2,) =¢(0,—~ mAx,z,) by symme-
£50" 1 ™2 try]. We then calculatedy(0,0z,) = d?i(y)/dy?|,_. Fi-

nally, we fitted the functions(0,02) using a fourth-order

_130[1_)\ axdo Vv, (A11) polynomial through these five points and used this polyno-
DBo mial to calculate?;y(0,0zq,).
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