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Spatial correlation effects of molecules on the helical structure of cholesteric liquid crystals
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An extended mean field theory that is somewhat different from the Maier-SM@etype of mean field
theory is proposed for cholesteric liquid crystals. This extended mean field theory is based on Lennard-Jones
and Devonshire’s mean field treatment of isotropic classical liquids. Unlike the MS type of mean field theory,
our treatment can include both orientation and spatial correlation effects of molecules. A set of mean field
parameters are introduced and the corresponding self-consistent equations are derived. The results show that
the spatial correlation of molecules may have non-negligible effects on the helical structure of cholesteric
liquid crystals.[S1063-651X98)01803-0

PACS numbe(s): 42.70.Df, 64.70.Md

I. INTRODUCTION assumed distribution function, the Helmholtz free energy
function F can be calculated in the mean field approxima-
The cholesteric liquid crystal is generally regarded as dion, which is written as

distorted form of the nematic mesophase and is characterized
by a macroscopic twist, i.e., the helical struct{t¢ Besides . - = - = - =
this helical structure there is no long-range order in the spaF{f(r’Q)}zFOerkTJ f(ry, Qq)In{4mf(ry,Q)1drydQy
tial distribution of molecules. The existence of a finite pitch
is a common feature of all materials found in the cholesteric
mesophase. This description of the cholesteric phase as
twisted nematics is consistent with experimental observation; e L
it provides at least a very good approximation to physical XV(ry,Qq,r5,Q5)dr;dQ,dr,d(Q,,
reality. The helical structure results from the microscopic
structure of molecules and the nature of the intermoleculafherep is the average number densify, is the ideal-gas

interactions. From the point of view of global symmetry, it ¢ energy, andof(F,ﬁ) is the one-particle distribution

has been argued that cholesteric liquid crystals are made . . NI .
of chiral molecules and chirality is the major cause for theL*BnCtlon normalized by pf(r,Q)drdQ =N, whereN is the

macroscopic twisf2—-5]. Based on this assumption, a few total number of particIeE i[‘ the system. By minimizifg
potential models were presented for the cholesteric phase aMgth  respect  to f(r,Q2) ~under the constraint
the formation of the helical structure can be explained by the pf(r,Q)drdQ2=N, one can obtain the mean field self-
corresponding molecular theof2—7]. Most of the previous consistency equations and the corresponding mean field po-
molecular theory of cholesteric liquid crystals is based ortential V ;. From this simple introduction, one can see that
Maier-Saupe’YMS) mean field treatment of nematic liquid in this type of mean field theory, only the molecule-molecule
crystals[8],which has proven to be very successful in theorientation correlation is taken into account, and the
nematic case. Generally speaking, the MS type of mean fieltholecule-molecule spatial correlation is neglected. It has
theory can be described as follows. First, one begins by writbeen shown that such a mean field theory is rather successful

ing down a model potentiaf(r;,(,,r,,Q,) that describes in predicting certain thermodynamic properties of liquid

the interaction between a pair of molecules, wherand(y, ~ ¢'yStals, €.g., phase diagrams, order parameters, etc., but
denote the position and orientation vectors of itte mol-

ecule. Second, one assumes that the local molecular arran I tation correlation of molecules mav be dominant in deter
ment can be described by a distribution function ' ! u y : :

IO - s _ o mining the physical properties of liquid crystals, however,
F(n(r)-Q), wheren(r),Q) is the local directoi(direction of o short.range spatial correlation of molecules may have
the local nematic axjsand the orientation vector of mol-

) X ~_some effects in some aspects and cannot be neglected com-
ecules, respectively. It should be noted according to this asﬁletely. But as has been shown, the inclusion of both orien-

sumption that the distribution functioh(n(r)-€) will de-  tation and spatial correlation effects in the mean field theory
pend only on the relative angle between the local directofs rather difficult. To overcome this shortcoming of the MS

n(r) and the molecular orientation vect6}, but indepen- type of mean field theory, in the nematic case, some authors
dent of the spatial coordinates of molecules. Third, for thehave presented an orientation-averaged pair correlation func-

1 ) . N
+§P ff(rlvﬁﬂf(rzyﬂz)
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tion method within the framework of the MS type of mean Following the symmetry consideration, one can expaRd
field theory to take into account the short-range spatial corandV, in a series of Legendre polynomials:

relation effects[9]. In a previous papef10], an extended
mean field theory that includes both orientation and spatial . .
correlation effects of molecules has been proposed for nem- Vi(r12,Q1- Q) =Vo(r1)+ 2, Vai(r12)Pa(Qy-Qy),
atic liquid crystals. The theory is based on Lennard-Jones =1

and Devonshire’s mean field treatment of isotropic classical

liquids and it is found that the theory is in good agreement ©

with the experimental results. Recently, an extended 3 A3\ , 33
Landau—de Gennes phenomenon theory of the nematic- VX(rlz’Ql'QZ)_Zo Vara(f2Paca(Qy- Q). (4)
isotropic phase transition was developed to include the cou-

pling of the density and the orientation order parameter anth particular, the truncated form

it is found that most of the experimental measurements ex-

o

)

cept dQ/dT)t—n,, WhereT is temperature and) is the V(X1,X2) = V(I 12) + Vn(r12)Po(Q1-Q5)
orientation order parameter, can be reproduced reasonably o
well [11]. All these extensions of the MS mean field theory +V, (r12P1(21- Q) (21X Q5115 (5

show that the short-range spatial correlation of molecules

may have some significant effects on some physical propeis rather familiar and most widely adopted. In this paper, we
ties of liquid crystals and should not be neglected. In thiswill also adopt this truncated form, considering that it con-
paper we will apply the extended mean field theory develtains most of the physics of cholesteric liquid crystals, and is
oped in the previous papgf0] to the case of cholesteric rather more convenient to be dealt with than the general
liquid crystals. Our main purpose is to see whether the shorform. As to the forms ofVo(r), V(r), and V,(r), we
range spatial correlation effects of molecules may have somehoose them to be

contribution to the formation of the helical structure, which

characterizes cholesteric liquid crystals. This paper will be o\12 [o\8

arranged as follows: In Sec. II, we will briefly review the Vo(r)=€o (?) —(7) : (6)

existing potential model of cholesterics and a simplified

model potential is adopted. Then, based on the same ap- 12

proach as in Ref.10], a set of mean field parameters and the Vp(r)=— EN(E ' )

corresponding self-consistency equations are derived accord- r

ing to the adopted model potential. In Sec. 1ll, some numeri-

cal results are presented and the basic features of this theory 1/ o\’

are discussed. Vi) =— fx?(? ®

Il. MODEL AND THE EXTENDED MEAN FIELD The forms of Eqs(6) and(8) are the usually adopted forms

THEORY in the literature(see, for example, Ref§9], [13], and[14]),

and the form of Eq(7) was suggested by Refd.0] and[15].

It has been powerfully argued that cholesterics are made To establish the mean field theory corresponding to the
up of chiral molecules and chirality is the major cause of thegphgve assumed molecular potential, we will follow the ap-
helical structur¢2-5]. For the uniaxial, hard-rod-like chiral proach of Lennard-Jones and DevonshitelD) [16,17.
molecule, the pairwise potential(r;,;,r,,0,) between First, it is necessary to note that due to the formvegfr;;),
two molecules can be decomposed into two parts withouthere is in general an equilibrium separation between two

losing generality12]: molecules. Letr denote the averaged equilibrium separation
distance between two nearest-neighbor molecules. The LID
V(Xq,X5) approach consists of focusing on one molecule denoted as

moleculei, and inscribing its position inside a sphere of
e T T radiusa (not necessarily located at its centdBy consider-
=VUn(r12:01:712,005: 115,04 ) ing an isotropic distribution of the nearest-neighbor mol-
A7 3 2 3 7 3.8 ecules over this sphere, the resulting approximate effective
T (01X Q2 112V (112, 01112, Q21200 Qo) (D potential seen by moleculehas a minimum at the center of
.. the sphere, denoted as the equilibrium positionLJID). Let
in which x;=(r;,{;). The Vy term accounts for the forma- . pe the distance of molecule from the center of the
tion of the nematic phase, and tkg term manifests what is sphere, the equilibrium position. The effective potential may
known as Chirality, which vanishes for nonchiral mOleCUleS.be parametrized as a functionmf_ This procedure has been
A completely general form o¥/(x;,x,) is rather difficult to  done in some detail by Lennard-Jones and Devonshire
determine, so a more instructive and manageable but |E$§_6,17_| Fo||owing their approach' we have genera"zed the
general form is usually assumed, which can be written as | JD calculation to molecules with the anisotropic interaction
of Eq. (5). The main point of our generalization is to allow
V(X1,X2)=VN(r12,ﬁl-ﬁ2) molegulei's rye_:ar_est-neig_hbq’r also_to devigte from the re-
spective equilibrium positions, which are isotropic over the
+(Q1X 05 T1IV,(r12,01-Q,). (20 sphere, and on account of the symmetry of the interaction it
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is assumed that the pairwise potentié(r;,(;,r;,Q;) can  wheref,g=A-B (A, B are unit vectors (6a. ¥a) and (6,
be replaced equivalently by an effective averaged pair poteny.) are the polar and azimuthal anglesfondB relative to

tial: the same frame of reference. From Ef0) one can obtain
the mean field potentiaV,,; experienced by moleculie di-
Vei(pi 0, 0i,0) rectly by averaging over the coordinates of moledule
) ) ) , o\ 1? a\®
dbd, me(Pia®i):Z [fo (E) <|>|(Pi)_(g) (mym(p;)
X pfsing;p?singV(r; ,Q; .1}, Q) 9) o\ 12
( ) (M (pi
where we have denoteg¢=R, + p; . R; is the position vector
of theith molecule’s equilibrium positiofi.e., the center of x(PZ)PZ(co@i)Pz[ﬁ(ﬁi)-ﬁ(ﬁj)]
the spherg Ei is the position vector of the mass center of the o\ 7
ith molecule relative to the centef of the sphem., §;) are - 6"(5) (nYn(p;){P,)P,(coMd,)
the polar and azimuthal angles pf, and ©;,®,) are the
eoLar and azimuthal angles ﬁ‘i relative to the local director x[ﬁ( fqi) n( ﬁj)[ﬁgij n( fqi)xﬁ(ﬁj)]}, (17
n(R;). Because the calculation is straightforward but very
trivial, we write here only the final form: where ()=(1(p;)), (M=(mM(p;)), (M=(n(p;)), (P2)
E(Pz[ﬁjﬁ(ﬁj)]), and( ) denotes the ensemble averaged
Vei(pipj,9i,0;) values. All these averaged values are assumed to be site in-
o\ 12 o\ 8 dependent. The sunE{{} includes only the nearest-
= €o (5) I(Pi)l(Pj)_(a) m(Pi)m(Pj)} neighbor molecules. To complete the subi{ }, we can
" expandﬁ(ﬁj)—ﬁ(ﬁi) into the following series:
(o
_EN(E) I(pi)l(pj)P2(coM;)) 525
n
o n(Ry)—n(R)=2 R.,Q&X E RijsRij» 75 o
X Pa(co®)Py[n(R)-n(Ry)] s

7 = = = = .
e A . . ' whereR=(x1,X,,X3), Rjj=R;—R;. In the case of the iso-
ex(a N(pi)N(p;)P2(CoM;)P(co;) tropic, homogeneous distribution of the nearest-neighbor
L molecules’ equilibrium position over the sphere of molecule
X[n(Ry)-n(R)I[Rij - n(Ry) X n(R;) ], (100 i, after some simple calculation, one can obtain the following
relations:
where
— 2 4 2 ﬁnﬁ ’mﬁ 3
I(p)=[1+12p/a)>+25.2 pla) 2 P,[N(R;)-N(R})]=2o— _Zoa 2 ax. ax, To@),
+12(pla)®+ (pla)®)[1-(p/a)?] "%, (1D) (18
m(p)=[1+(p/a)*][1—(p/a)*]"*, (12 e e e e oL
2 [n(R)-n(R)I[R;;-n(R) X n(R))]
n(p)=[1+2(p/a)?+0.2p/a)*I[1-(p/a)?]®, (13 :
1 ng
> > > — 2 3
co®d;=0;-n(R)), (14) =3%a a% eaﬁyna_+o(a ) (19
Coj:ﬁj : ﬁ(ﬁj), (19 in which z, is the number of the nearest-neighbor molecules

(set to twelvé. The higher order terms af® are neglected.

. i Using these relations, the sugj{ } in Eq.(17) can be com-

Rij= : (16)  pleted, and then the mean fielt,; experienced by molecule
| l| i due to its nearest-neighbors can be expressed as

To obtain Eq.(10) we have used the following relation:

Vo :0) = 20080(p,0) + = 2082205 pr ) S, o O
) =17 [} =Zpa ] - oL
P, (CO¥ag) = P, (COS,) P, ,(COHR) mit P+ )= 2030l P, 0V T 5208702 Pr 7)ot Ty s
n
(n-m! . 1 Al
+23 oo ),p "(cosf,) 3%8%(p.0) 2 €appllagy (20

X Pp(cosfg)coam(dpa— dp), where
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o 12 o 6
Jo(p,0) =€ a <|>|(P)_(g) (m)m(p)} S:_kEi (Inf(p;, o)), (32
o 12
—enl =] (DI P,)Py(0o), 21 1
Mg) (MP)PIPAD) @ FZEZ (V(pi 1Ui)>+kTEi (Inf(pi o). (33
o 12
9ap.0)=en| 3| (D1(p)P2)P2(0), 22 IIl. NUMERICAL RESULTS AND DISCUSSION
o\7 In Sec. Il, we have established the basic formulas of the
gs(p,0)=¢€,[ =| (Mn(p){P2)Py(0), (23)  extended mean field theory. In order to see whether this type
a of mean field theory can describe the basic features of cho-
— co® 24 lesteric liquid crystals, we have done some numerical calcu-
o=C0o%. (24 lations. The numerical procedure will be as follows: For a

given set of model parameteeg, €y, €,, o/a, and a given
mperaturel, we first solve the self-consistency equations
5)—(28) and (31) to obtain the values of the mean field
parametergl), (m), (n), (P,), and the pitchp by iteration
method, then substitute these quantities into(88) and Eq.
(33) to calculate the entrop$ and the free energly. Due to
0.5 1 the fact that there is much uncertainty in the choices of the
(I>=J dpJ’ dol(p)f(p,o), (250  form of the model potential, including the model parameters,
0 0 and that our main purpose is only to see what effects the
05 L spati'c}l correlation of molecules hav_e on the he_lical structure,
<m>:f ' dpf dom(p)f(p,o), (26) Wwe will not try to make a quantitative comparison between
0 0 the numerical results of this theory and the experiment data,
we will focus on the main features of this theory. We have
0.5 1 carried out the numerical calculations for a number of differ-
<n>=fo dpfo dan(p)f(p,o), (27 ent model parameters and find the main features of this
theory may be summed as follows:
054 1 (1) For a set of appropriately chosen model parameters,
(P2>=J dpJ doP,(0)f(p,0), (28)  the theory predicts a first order phase transition at a tempera-
0 0 ture T¢ as the temperature varies: wh&r. T, the liquids
are orientationally ordered and whe&n-T, they are orien-
tationally disordered. The basic features of this orientation
1 order-disorder phase transition are similar to the nematic-
f(p,0)= Zexp{— BVmi(p,o)}, (29  isotropic phase transition except that a helical structure of the
director will form when the system turns into the orientation-
0 ) ally ordered phase. The calculated value of ic_e orientation
Z:f ' dpf daexpl— BV p, o)} (30) order parametefP,), as well as the entrop$, will jump at
0 0 Tc, and the(P,) jump as well as the entropy chand& are
within a few percent of the corresponding values of the MS
Generally speaking, the structure of the director, i.e., thenean field theory. Although in these respects this theory is
form of n(R), should be determined by the minimization very similar to the MS mean field theory, there are some
condition of the total free energy. But in the case of cholesimportant differences between them. It is well known that
teric liquid crystals, we can proceed with the usual ansatzthe small magnitude of [c—T*)/Tc, where T is the
n(R)=(cos gz sin qz 0). Such a representation assumeshematic-isotropic phase transition antl denotes the virtual
that the director is uniformly twisted along tlzeaxis with a  transition temperaturesupercooling temperatuignas been a
pitch p=2m/q. Hereq will be treated as a variational pa- long-standing puzzle in the physics of liquid crystals that

rameter and determined by the minimization condition of thec@nnot be explained by the MS mean field thefty. By
total free energy, which gives extending the mean field theory to include the spatial corre-

lation effects of molecules one finds that the magnitude of
6maey (92(p,0)) 67TafN/ a\ > (H{(p)P,(a)) (TC[— T]*)/TC becomes in accord with the experimental val-
= = = : ues[10]. In addition, this theory also yields a value &¥/V
€ (9s(p.)) x \a <n><n(p)P2(U)>(31) anddT:/dP (P is pressurewhich are in accord with the
experimental dat@l0]. Because these features of the theory
Equations(25—(28) and (31) constitute a set of complete have been discussed in detail previouglp], we will not
self-consistency equations. After solving them, one can obpursue them further in this paper. We will focus mainly on
tain the values of the mean field parameters and the pitchihe helical structure of the director.
and then the free energy and the entropy of the system can be (2) When the liquids turn into the orientationally ordered
calculated: phase as the temperature decreases to be lowerTiham

In Egs.(20) and(21)—(24) we have removed the subscript
from the expressions. There are four mean field parameteF
(1), (m), (n), and({P,) in the expression of the mean field
potential V,¢; they should be determined by the following
self-consistency equations:

where
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FIG. 1. (a) The temperature dependence of the pitch with the
model parametersy/ey=1, €,/€,=0.1, o/a=1. (b) The corre-
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FIG. 2. () The temperature dependence of the pitch with the
0.005, 0/a=1.0. (b) The

sponding temperature dependence of the orientation order pararmserresponding temperature dependence of the orientation order pa-

eter(P,).

macroscopic twist of the director, i.e.,
will form. This is the main difference between the cholesteri
phase and the nematic phase. The basic feature of the heli
structure is that the pitch invariably depends on the temper
ture. To give a theoretical explanation of the temperatur
dependence of the pitch, Keatifd8] proposed a micro-
scopic model that assumed the forces opposing the twist are
anharmonic so that a macroscopic twist results automatically
from the ensemble-averaging process. In his theory, the pitch
will decrease with the rising temperature. But experimental
results show that there are several types of temperature be-
haviors of the pitc18—22: (i) The pitch increases with
decreasing temperatur@@;) the pitch decreases with decreas-
ing temperatureiii ) the pitch increases with decreasing tem-
perature, and at a certain temperatligehe helicity reverses
and the pitch decreases as temperature further decreases. To
overcome the shortcomings of Keating's theory, Lin-lgtu
al. [12] proposed a molecular theory by including higher
order terms in the model potential, which is described in Sec.
[see Eq.(5)]. After adding two higher order terms
Vy(r12Pa(Qy- Q) and Vi(rip) Pa(1- Q) (21X Q5 1)
into the model potential5), the MS type of mean field
theory can yield correctly the above mentioned three types of
temperature behaviors of the pitth2]. To see what type of
temperature behavior of the pitch will exist in our theory, we
have calculated the temperature dependence of the pitch for a
number of appropriately chosen model parameters, we find
this theory also yields correctly three types of temperature
behaviors that are in qualitative agreement with the experi-
mental results, as shown in Figgalk-3(a). In Fig. 1(a), the

rameter(P,).

the helical structure, pitch increases with decreasing temperature; at a certain tem-
Cperature it reaches a maximum, and then it decreases as tem-
C%erature further decreases, corresponding to €éige For
Lomparison we have also plotted the corresponding tempera-
dure dependences of the orientation order param&ter in

940
920
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8801
860

840

Oh 05 d8 ﬂO
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0.4 06 08 1.0
T/T

c

1.2

FIG. 3. (&) The temperature dependence of the pitch with the

pitch increases with decreasing temperature, correspondingodel parametersy /€,=0.8, €, /€,=0.04,0/a=1.0. (b) The cor-
to the casei). In Fig. 2a), the pitch decreases with decreas- responding temperature dependence of the orientation order param-

ing temperature, corresponding to cds¢ In Fig. 3a), the

eter(P,).
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FIG. 4. The temperature dependences of the pitch for the differ-

ent values ok, / ; (shown in the figurg The other parameters are
fixed to beey/eyg=0.8, o/a=1. It is noted that the temperature
behavior of the pitch is not sensitive to the change pfe.

case, which are shown in Figs(bl-3(b). It can be seen
there is little difference between t@,)-T curves. The nu-

merical results also show that the temperature behavior of

the pitch depends mainly on the value &f/€,, and is not
sensitive to the change ef /€, as is shown in Fig. 4. While

300 T T T T T
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sxlso

09t ®)

0.8

<P

0.7

0.6k . . . \ E
0.10 0.15 020 025 030 035
sxleo

the temperature behavior mainly depends on the value of

en/ €, the length of the pitch has a far more sensitive de-

pendence on the value ef /¢, than oney /¢, [see Figs. 4,
5(a), and §a)]. The smallere, /€ is, the largerp is, andp
— whene, /e,— 0 [this can be seen from E¢1)], which

FIG. 6. (a) The dependence of the pitch on the valuespfeg.

The other parameters are fixed to gg/e;=0.8, a/a=1.0, T/ ¢,
=1.0. (b) The corresponding dependence of the orientation order
parameteK P,) on the value of, /e.

corresponds to the nematic case. We have also plotted the

dependences of the orientation order paraméteron the
value ofey/€g ande, / €y in Figs. §b)—6(b), from which we
can see that the order parametét,) is sensitive to the
change ofey/ €, but almost independent @f, / .

(3) Although the MS type of mean field theory of Ref.
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8 220p
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P
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FIG. 5. (a) The dependence of the pitch on the valuesgf €.
The other parameters are fixed to bg/e;=0.1, 0/a=1.0, T/eg

[12] yields similar temperature behaviors of the pitch as the
present theory, it should be pointed out there are some im-
portant differences between the two theori€s: In the
former theory, two higher order termég,(r,) P4(ﬁl-ﬁz)

and V3(r12)P3(Q4-Q,)(Q,XQ,-r1,) must be included in
the model potential5), or else a temperature-independent
pitch will be obtained. But in the present theory, the two
higher order terms need not to be included to get the
temperature-dependent pitch. The reason is that in the
present theory the spatial correlation effects of molecules are
also taken into accountii) In the former theory, the tem-
perature behavior of the pitch arises from the temperature
dependence of the ratio ofis(T)/o5(T), where a4(T)
=(P,[O-n(R)]) anda,(T)=(P,[Q-n(R)]) are the orien-
tation order parameters. But in the present theory, from Eq.
(31), one can see that the temperature dependence of
the pitch arises from the temperature dependence
of (9a(p,0))(g3(p,0))=(ala)>(enl€,)(I(p))?/(N(p))?,
which are mainly related to the spatial correlation effects of
the moleculegsee Eqs(11)—(13)]. (iii) In the case of the
helicity reverse, the pitch remains finite at all temperatures in
the present theory, as is shown in Figa)3but in the former
theory, the pitch diverges at a certain temperaiyei.e., at
T=T, the cholesteric phase changes into the nematic phase.
This divergence of the pitch may be due to the effects of the
higher order terms of the interaction. This significant differ-
ence between the two types of mean field theory shows that
the higher order terms of the interaction may have a great
contribution to the temperature dependence of the pitch, es-

=1. (b) The corresponding dependence of the orientation ordepecially if one wants to make a quantitative comparison be-

parameteK P,) on the value ofey /€.

tween the results of the theory and the experimental data, the
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effects of higher order terms of the interaction must be infprovement of the present theory, the effects of the higher
cluded, but it may be argued that one must first incorporaterder terms of the interaction, should be included.

the lower order effects that should present such as the spatial

cprrelatlon effects before assessmg'the effects due to the ACKNOWLEDGMENTS
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