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Bifurcations in two-dimensional Rayleigh-Benard convection
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Two-dimensional bouyancy-driven convection in a horizontal fluid layer with stress-free boundary condi-
tions at top and bottom and periodic boundary conditions in the horizontal direction is investigated by means
of numerical simulation and bifurcation-analysis techniques. As the bouyancy forces increase, the primary
stationary and symmetric convection rolls undergo successive Hopf bifurcations, bifurcations to traveling
waves, and phase lockings. We pay attention to symmetry breaking and its connection with the generation of
large-scale horizontal flows. Calculations of Lyapunov exponents indicate that at a Rayleigh number of 2.3
X 10° no temporal chaos is reached yet, but the system moves nonchaotically on a 4-torus in phase space.
[S1063-651%97)11412-X

PACS numbeps): 47.20.Ky, 47.20.Bp, 47.54r

[. INTRODUCTION tions are difficult to control in the laboratory, but an experi-
ment with these conditions has been repoftel]. Possibili-
Bouyancy-driven convection in a fluid layer heated fromties to approximately realize two-dimensionality are
below, known as Rayleigh-Bard convection, is one of the discussed in Sec. VI.
best-studied hydrodynamical systefils-5]. Apart from its In Sec. Il we introduce the governing equations, while in
many app"ca‘[ions, notab|y in meteorok‘)gy, geophysics, anéec. Il the symmetries of the system and their connection

astrophysics, it has become a paradigm of instabilities, bifurwith the possible occurrence of large-scale flows are dis-
cations, structure formation, and chaotic behavior in fluidcussed. Then in Secs. IV and V we describe the bifurcations

dynamics as well as in physical systems in general. found. Section VI finally gives a discussion of our results.
The simplest, but very influential model to study the non-
linear dynamics of this system was the one derived by Lo- IIl. EQUATIONS

renz[6], which consisted of only three ordinary differential
equations, resulting from a hard truncation of a Fourier ex- We investigate bouyancy-driven convection in a two-
pansion of the equations of two-dimensional convection. Thaimensional fluid layer of thicknesd heated from below.
most important property of this model was the appearance dfising the Oberbeck-Boussinesq approximation, which is
chaos in certain intervals of the system parameters. An excorrect for a wide variety of fluidgl,5], one has to solve the
tension of the Lorenz model to 14 modes was studied byartial differential equations
Curry [7], who also found chaos. By contrast, no chaos was
found in high-resolution two-dimensional calculations with V.v=0, (1)
stress-free boundary conditions at the top and bottom by
Curry et al.[8]. These authors concluded that the appearance
of c_haos _in_ the low-orddr6,7] models was a result of using ﬂ +(v-V)u=—Vp+PAv+PROe,, )
an insufficient number of modes. However, for computa- at
tional speedup Curret al. had imposed special symmetries,
thus restricting the dynamics to an invariant subspace of 90
symmetric solutions and possibly suppressing symmetry- —+Vv-Vo=v,+A0, 3
breaking bifurcations. In more recent calculations by Prat at
et al.[9,10] for the case of no-slip boundary conditions and
no restrictions by symmetry, chaotic behavior was agairwherev is the fluid velocity, whilep and ¢ denote the de-
found. A particular issue addressed by Peail. was the Viations of pressure and temperature from their values in the
generation of large-scale horizontal flows and their verticauiescent ground state with pure heat conduction. We use
profiles (e.g., symmetric or antisymmetric to the horizontal rectangular Cartesian coordinateandy, with thex axis in
midline). the horizontal and thg axis in the vertical direction parallel

In the present paper we study the bifurcations in two-to the gravitational forceg, is the unit vector in the vertical
dimensional Rayleigh-Beard convection with stress-free direction. Equation§l)—(3) are given in dimensionless form,
boundary conditions and no symmetry imposed. For a variwith the thicknessd of the fluid layer as the unit of length,
ety of astrophysical and geophysical applications, for in-x/d?, wherex is the thermal diffusivity, as the unit of time,
stance, the convective layers in stars like the sun or conve@nd the temperature differenéd@ between lower and upper
tion in the earth mantle, stress-free conditions are probably boundaries of the fluid layer as the unit of temperature. There
better choice than no-slip conditions, which are realized irare two parameters, the Prandtl numBeand the Rayleigh
most laboratory experiments. Stress-free boundary condinumberR, defined by
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agd® which can be solved fop in Fourier space:
oT, (4)

P=—, R=
Tk’ vk

L (X) k (y) _ kY
. . o . . P=1 12 Wi +k2Wk 7ERF91<- (19
wherev is the kinematic viscosityg the volumetric expan-
sion coefficient, and) the gravitational acceleratiofR pro-

vides a measure for the strength of the bouyancy forces. Equations(15) and(16) then become

In the horizontal direction periodic boundary conditions, K2 Kok K, k
with spatial periodL, are applied, while top and bottom 0= — WX X_zngymPRi v
planes are assumed as impenetrable, stress-free, and isother- k k
mal: (20
2 2
v . - kyky k; K
(W) =0,(60)=0,(x ) =0, ® W= W e W PR (g 6, PRy
y=ot (21)
6(x,0)=6(x,1)=0. (6) Because of the conditiofil4), these two equations are not
. . . . independent of each other.
These boundary conditions admit the Fourier expansions From the relation
E Z 0 exp(ik,x)cogk,y), (7) Vo= ) 22
ny=—c ny g Xoax X gy Y
* * it is seen that the spatial meanwfVuv, vanishegby virtue
= > 2 vy explik,x)sin(kyy), (8)  of the boundary conditionsThus according to Eq$13) and
My (15), v{p)y is independent of time. As any mean flow in the
w © direction can be removed by a Galilean transformation, we
o= > > 0, explik,x)sin(k,y), (9)  have restricted ourselves to the casa;[zﬁ y=0. Our time-

ny=—=ny=1 asymptotic states are then marginally stable with respect to

. . states with a nonvanishing mean flow.

_ . The system of ordinary differential equations for the Fou-
p= 2 2 pnexpikocosky), (10 ier coefficients of velocity and temperature has been studied
numerically by means of pseudospectral methda,13,

where wave numberk= (k,,k,) are referred to by indices mainly with a resolution of 6432, but partially(Sec. V)

n=(n,,n,) according to also with a resolution of 12864 collocation points.
Ke="y sz ne=0=1%2,., (1D . SYMMETRIES

With the periodic boundary conditions in the horizontal

k,=nym, n,=0,1,23,.... 12 A
y= ™ Ty (12 channel of infinite length. In such a channel a large-scale
We use the abbreviations horizontal flow is pOSSIb|@14,10,g One can Sp“t the Fou-
rier expansion of the horizontal velocity according to
w=(v-V)v, ¢=v-Vé. (13

for the nonlinearities, which have Fourier expansions analo- Ux(X,Y,t) = 2—1 UE)S?ny) cogkyy)
gous tov and 6. In Fourier space Eqgl)—(3) then take the My~

form i i
(x) i
v, explikyx)cogk,y)
_Ikxv X)-i-k v(y (14) nx— ny=1 " X y
nxsﬁo
W= — W — ik p,— Pk, (15) =0y, 1) F U (X, Y,t). (23
W= —wW 4k p,— Pk +PRE,, (16)  The large-scale flow,(y,t) is built up by the modes (,).
n n y n y

_ Each mode of this type corresponds to a shear flow wjth
= _¢n+vn k26, (17) neutral sheets. The modes with ot&len n, are antisym-

metric (symmetri¢ with respect to the horizontal midling
The pressurg can be eliminated from these equations by=1/2.
taking the divergence of Eq2). On observing Eq(1) this At the onset of convection, immediately after the bifurca-

direction, the domain of the fluid can be considered as a

leads to tions from the quiescent ground state to stationary convec-

) tion rolls, a discrete subgroup of the total symmetry group

(9 .

V.w=—Ap+PR 2, (18) of thg system proves to be importafuf. Refs.[10,9)). G
ay consists of four elements,
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G=1{id,S,,S,,S3}, (24)  We call the modesr(y,n,) even whem,+n, is even and
odd whenn,+n, is odd. For the last symmetrs, one has

where 0 W
X _ o (y _ _
Une.ny) = Uinyny = Oin =0,

Sli(XaY)H(_va),

(B0s0y0)—(—05,04,0), (25 if ny+ny is odd, (30)
i.e., all odd modes vanish.
S:(%y) = (=x+L/121-y), Explicitly imposing the symmetrieS; and S;, which
generate the grou@, Curry et al. [8] studied solutions with
(vx,vy,0)=(—vx, vy, = 0), (26)  the full symmetry. By this restriction to the invariant sub-
space of the fully symmetric solutions, symmetry-breaking
S3i(X%y) = (x+L/2,1-y), bifurcations were suppressed and, in particular, large-scale
flows excluded. For the aspect ratie= 2v2 and the Prandtl
(vxvy,0) = (vx, —vy, = 0). 27 humberp=6.8, Curryet al. found a transition from station-

S, is a reflection in they axis (or the vertical midling S, @ 0 periodic convection at a Rayleigh number &

corresponds to a rotation by 180 degrees about the poirt 20Rc~59 200 and a transition from periodic to quasiperi-

(0,1/2) plus a horizontal translation hy?2; S;=S;S, is the odic convection involving two frequencies at a Rayleigh

product of these two transformations, which is equivalent tolumber ofR,~290R .~ 190 700.R.=27*/4=657.5 is the

a reflection in the horizontal midline combined with a hori- critical Rayleigh number at which stationary convection sets

zontal translation byL/2. The group is isomorphic to the in. At very high Rayleigh number®;~800R.~526 000),

dihedral groupD, [15]. It is commutative and each transfor- Curry et al. then observed a transition back to periodic con-

mation gives the identity if it is applied twice. vection with one frequency. In a control computation without
With the primary bifurcation from the conductive state, Symmetries imposed they found the first transition to peri-

convection sets in in the form of stationary rolls symmetricodic convection to take place at a Rayleigh numbefRgf

with respect to the full groug. For the next bifurcation, ifit ~50R.~32 800.

is symmetry breaking, there are, with the exception of the

trivial symmetry groug{id}, only three possibilities to geta  |v. BIFURCATIONS TO LIMIT CYCLES AND 2-TORI;

subgroup with respect to which a bifurcating solution can be LARGE-SCALE FLOW
symmetric: . .
To have a direct comparison, we assume the same aspect
(i) G1={id,S;}. ratio and the same Prandtl number as used in R&f.
(i) G,={id,S,}. namely,L =2v2 and P=6.8. The first bifurcation from sta-
(iii) Gz={id,Ss}. tionary convection rolls takes place between Rayleigh num-

— , bers 30 006-45.6R . and 31 006-47.1R; it is a transition

Each of these three possibilities has a particular consequenggm stationary to periodic convection. This agrees with the
for the large-scale flow,(y,t). In case(i), because of reqyit of Ref.[8] mentioned in Sec. Il. The bifurcating pe-
vx(y,1)=—v,(y,1), the large-scale flow has to be zero. In rjggic solution, if looked upon at one instant of time, has the
case(ii) one findsv,(y,t)=—v.(1-y,1), i.e, the large- gpatial symmetrys,, while the symmetriesS, and S; are
scale flow has to be antisymmetric to the line 1/2. Case proken. A large-scale flow does not arise becaBises pre-
(iii) finally corresponds to a large-scale flow symmetric togapyed.
the liney=1/2: v,(y,t) =v,(1-V.1). _ . _In Fig. 1 velocity streamlines are shown for four instants

The symmetries have also particular signatures in Fouriegf time within one oscillation period;. One can see that
space. Fof, we have the following symmetries for the Fou- the convection rolls undergo a periodic deformation but re-

rier coefficients: main mirror symmetric to the vertical linek=L/2. The
™ streamline profiles at=0 and t=T;/2 (t=T./4 and t
Uineny) = T V(=ngny) =3T,/4) can be transformed into each other by apply8g
W W or S;. This observation leads to a more precisg characteriza-
U(ne.ny) = V(=ny.ny) tion of the symmetry. Actually the periodic orlds a whole

is invariant also with respect 18, andS;. By the action of
(28 these transformations merely a time shift is produced. As
each of the transformations is inverse to itself, the time shift
The coefficients{3), ,, corresponding to a large-scale flow, must be just half a period. A periodic state with the same
have to be zero. Fcéz one finds type of symmetry as the result of the first bifurcation from
stationary convection was found by Pmital. [9] for the

a(n n) = 6(7nx,n

x My Y

v%) ] ):(_1)nx+ny+lvz>i)n . case of no-slip boundary conditions, an aspect ratid_ of
Xy Xy =2, and a Prandtl number ¢#=10.
o) = (= 1)ty ) The next bifurcation, taking place betweé&t=45 000
(nyny) (=nny) =68.4R. and’R=46 000=70.0R., is a transition from pe-

_ ntn riodic to quasiperiodic convection. In this bifurcation also
9<nxyny>_(_l) * ye(*nxvny% (29 the spatial mirror symmetrg, is broken and a large-scale
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FIG. 3. Frequency spectrum of the time evolution ofﬁ%)
at R=46 000=70.0R.

In Fig. 3 the power spectrum of the time evolution of an
odd mode is shown. The two basic frequencies fare 86
andf,=17.f, is the new frequency, which is the strongest
frequency in the power spectra of the odd modes (0(not
showrn) corresponding to large-scale flow. In the torus bifur-
cation both the odd and the even modes\(pare excited.
Very often the presence of an antisymmetric shear motion,
corresponding to odd modes, is considered as responsible for

" a tilting of the convection rollor of the lines separating
FIG. 1. Streamlines aR =40 000=60.8R, for t=0, t=T,/4,  different rolls, respectively We would like to note here that
t=T,/2, andt=23T,/4. the evenmodes (M) lead to a tilting, while the odd modes
enhance one rollsay, the clockwiseand suppress the other
flow arises. Figures 2 and 3 confirm that now two frequen-{counterclockwisg Namely, a shear motion, to the right at
cies are involved. Figure 2 shows a two-dimensional projecthe top and to the left at the bottom, enhances clockwise
tion of the trajectory in the high-dimensional space ofmotion—the corresponding roll becomes larger—and im-
modes. Obviously, the motion takes place on a 2-torus witlpedes counterclockwise motion—the corresponding roll be-
two incommensurable frequencies. Now the three symmeeomes smaller. No tilting is produced. By the motion corre-
tries are completely broken. If one of the transformationssponding to even modes, on the other hand, one roll is
S1,S;,S; would merely time shift a solution, this solution enhanced at the top and suppressed at the bottom, while the
would be transformed into itself by applying the transforma-other is suppressed at the top and enhanced at the bottom. As
tion (the time shiff twice, which is possible only for time- a result, the rolls begin to resemble triangles, one with top
periodic solutions. So there coexist four different solutions.up, the other with top down, and the line separating them is
Given one of them, the three others are obtained by applyinglted.
the transformation§; ,S,,S;. A periodic tilting can be seen in Fig. 4, which shows
stream profiles fort=0, t=T,/8, t=T,/4, and t=3T,/8
(a trianglelike deformation, though very weak, is also recog-
nizable. In the first plot the “vertical” line separating two
convection cells is tilted slightly to the right; in the next plot
it is tilted to the left; then in the following, it again is tilted to
the right, and so on. The rolls are tilted to the left and to the
right approximately four times in each peridd. The expla-
nation of this can be seen in Fig. 5, which shows the large-
scale flowv,(y,t) (abscisspversusy (ordinate for nine
instants of time. The first plot shows all modes, the second
only odd modes, and the third only even modes. At some
instants of time the total flow is approximately symmetric; at
others approximately antisymmetric to the horizontal mid-
s line. The plot of the odd modes is dominated by the first odd

-3 o mode,(0,1), and the plot of the even modes by the first even
’ mode,(0,2). One sees that the even modes are changing ap-

FIG. 2. Phase-space projection to the plane spanned bproximately four times as fast as the odd modes. The stron-
Re@)) and Re((y),) at R=46 000="70.0R,. gest frequency for even modesfis—f,, which is close to

0.4

0.2

(5,2))

0.0

Re v(x)(k

-0.2
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FIG. 4. Streamlines aR=50 000=76.0R for t=0, t=T,/8, 00 :
t=T,/4, andt=3T,/8. -0 -

o
o

Horizontal velocity

4f,. It is clearly the influence of the even modes that leads FIG. 5. Large-gcale flovwx_(y) at R=50000=76.0R, (ab-
to the tilting seen in Fig. 4. scissa versusy (ordinatg. The first plot shows all modes, the sec-

ond only the odd modes, and the third only the even modes. The
flow is shown fort=0 (solid ling), t=T,/8 (doty, t=2T,/8 (short
V. BIFURCATIONS TO 3- AND 4-TORI: dashey t=3T,/8 (one dash, one dptt=4T,/8 (one dash, three
PHASE LOCKINGS dotg, t=5T,/8 (long dashes t=6T,/8 (solid line), t=7T,/8 (solid
line), andt=_8T,/8 (solid line).
We have traced the torus branch for increasing values of
the Rayleigh number. AR~85 000 a third frequency ap- is demonstrated in Figs.(® and &b). In Fig. 6a) the tra-
pears. This frequency corresponds to direction-reversinggctory is projected onto the plane spanned by two “normal”
traveling waveg16], namely, the whole oscillating structure components, namely the real and imaginary partsgéﬁ).
drifts, very slowly, back and forth in th& direction. The Two incommensurable frequencies are involved. The travel-
time between the direction reversals is of the order of théng wave appears as a very slow circular rotation. In Fig.
thermal diffusion time—3;~3/4, and time is measured in 6(b), showing a projection onto modes §Q), the frequency
units of the thermal diffusion time. The modesr(f), cor-  of the traveling wave is absent and the orbit thus closed.
responding to the large-scale flow, remain unaffected by the We have traced this branch up &= 230 000, expecting
third frequency, whereas all other modes now show three transition to chaos. Indeed, as is seen in Fig®-&f), the
superposed oscillations. motion in phase space becomes more and more irregular,
The degenerate 3-torydegenerate because some modesuggestive of a transition to chaos via torus destruction
show only two frequencigsietermines the dynamics over a [17,18. Also the frequency spectrum has now the broadband
large interval of the Rayleigh number, up to a value of aboutharacter of chaotic solutions. To test for chaos, we have
200 000. There are two subintervals, betweRr-90 000 calculated the largest Lyapunov exponents, using an algo-
and R~95000 as well as betwee®~175000 andR  rithm of Shimada and Nagashin&9]. Figure 7 shows for
~180 000, in which the two frequencies corresponding toR=230 000 the cumulative values of the ten largest
real oscillationgthe first one and the second 9rage locked, Lyapunov exponents versus the integration time. Surpris-
so that the degenerate 3-torus becomes a degenerate 2-torgly, five of the exponents tend to zero and no exponent
Interestingly, during the phase lockings the traveling wavesends to a positive limit. Four exponents approach zero from
are nonreversing, i.e., the oscillating structure migrates irabove(two of them are very close to each other and are seen
one direction. The character of these phase-locked solutiorts be different only in enlarged figuresThat these four ex-
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A ‘ : A coexisting solution branch. BetweeR~140 000 andR
~180 000 the solutions of this branch are normalidirec-
tional) modulated traveling waves, i.e., lie on a degenerate
2-torus. The modes (G oscillate with just one frequency

(5.1))

£ 0 ] (the frequency of the modulatiprBetweenR ~ 180 000 and
£l & ~1op 3 R~230 000 the solutions are simply periodic, seemingly as
-20f : the result of a phase locking on the 2-torus, and belong to the
-10 ‘ ‘ - S ‘ symmetry groupGs; described in Sec. Ill. When traced to
T P ey T T Rweeew " smaller Rayleigh numbers, this branch disappears Ror
AOd) — ~140 000. Its basin of attraction seems to be very small and

we could not clarify its origin.

(5.1
(0.2))

VI. DISCUSSION

Im v(x)(k
Re v(x)(k

We have studied the bifurcations in two-dimensional
Rayleigh-Beard convection with stress-free boundary con-
ditions and no symmetry imposed. As expected, the bifurca-
tion sequence differs significantly from that found by Curry
et al. [8] for the case with symmetries imposed. The first
bifurcation following the primary onéthat from the quies-
cent ground state to stationary symmetric convection)rals
a Hopf bifurcation at a Rayleigh number&f~ 30 000, lead-
ing to simple oscillations for which, at a given instant of
time, velocity, and temperature, are still mirror symmetric to
the vertical midlinex=L/2. Then in a second Hopf bifurca-
tion at R~45 000, leading to a torus solution with two in-
commensurable frequencies, this remaining symmetry is also
o broken. The torus solution shows a large-sd¢ate, indepen-

F!S 6. Ph(exl)se-space projection (S)nto the (B)Ianes_ spanned By ¢ ofx) horizontal flow component, the vertical profile of
ReG(Z)y), |m(v(5yl)z) (left) and by Re&(oyl))d’ Re@«éa) (right) for —\yhich is neither symmetric nor antisymmetric to the horizon-
E(ze;(lf)7]5 000 [(@).(b)], R=200000 [(c),(d], and R=230000 tal midline y=1/2. Contrary to a prevalent belief, it is its

e symmetric, rather than its antisymmetric, part that causes a

ponents do not tend to positive values, but approach zerBerIOdIC tilting (_)f the convection rolls. .
approximately following a power law, can be seen from a For further increased Rayleigh number, then, traveling

log-log plot inside Fig. since the logarithm is not defined Waves appear and the solution undergoes phase lockings. By

for negative arguments, negative exponents are absent in tiee appearance of traveling waveskat 85 000, the 2-torus
log-log plob. From the plots in Fig. 7 we conclude that the PTUrcates to a degenerate 3-torus. The modes,Jcorre-

attractor is a 4-torus. The fifth vanishing Lyapunov exponenfPonding to the large-scale flow, remain unaffected by this

corresponds to the translational symmetry of the system i ifurcation (i.e., show iny two frequenc&:swhere;as all
the x direction, which appears as a direction of marginaIOther modes now exhibit three superposed oscillations. Inter-

stability in phase space. estingly, the 'Frave_ling waves are direction-reversing in gen-
Besides the solutions described so far. we have detectedeéal and unidirectional in the intervals of the phase lockings.
' Up to R=230 000 we did not find chadthis agrees with
the results of Curnet al. [8]), though the motion in phase
space becomes more and more irregular. The calculation of
| the largest Lyapunov exponents f&=230 000 indicates
. that the system moves on a 4-torus.
1 Now according to a theorem by Ruelle and co-workers
| [17,2Q, bifurcations from 2-tori lead generically to chaotic
i attractors. It is not clear yet, however, whether the hydrody-
1 namic equationggeneral, three-dimensionaire generic in
the required sense. If not, nonchaotic attracting motions on
three- or higher-dimensional tori might well be observable.
The laboratory experiments on convection do not give a clear
picture in this respect. On one hand there are experiments
ool , ‘ ‘ ‘ | showing the sequence: stationargimply periodic-two-
0 2 4 6 8 10 frequency quasiperiodiechaotic[21]. On the other hand,
tme also counterexamples, namely quasiperiodic states with three
FIG. 7. The ten largest Lyapunov exponents versus integratioincommensurable frequenciétori), were observed,; for in-
time for R=230000. The inner plot is doubly logarithmic and Stance, by Gollub and Bens$82], who found the scenario
negative values of the exponents are thus not drawn. for the transition to nonperiodic or turbulent states to depend

~10 . . . -40 . .
—10 -5 0 5 10 -60 -40 -20 , O 20
Re v (k=(5,1)) Re v (k=(0,1))

40 €0

=(0,2))

Re v(x)(k

—10 -5 40

—20 3 20
Re v k=(0,1))
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Lyapunov exponents
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in an intricate way on the system parameters. the temperature gradient in the radial direction and the con-
Seemingly the equations of two-dimensional Boussinesgection driven by centrifugal buoyancy. Such systems have
convection(with stress-free vertical and periodic horizontal been studied both theoretically and experimentédfy Ref.
boundary conditionsare nongeneric in the sense of the [28]), among other things, in order to model the zonal flows
Ruelle-Takens-Newhouse theorem. It may now be that an{p the atmospheres of the major planets—these zonal flows
small perturbation towards three-dimensionality destroys th&€orrespond to the large-scale horizontal flows of the present
behavior found. But it is also conceivable that systems in a$tudy. A potential further application of this kind of annulus

appropriately defined neighborhood of the studied one stillnodel is the differential rotation of the su@9] (here the
behave in a qualitatively similar way. convection is again mainly driven by gravitational buoy-

Some remarks concerning the physical realizability Ofancy. The rotation gives an effective stiffness against varia-

two-dimensional convection seem to be in order. As relions along the rotational axis, thus admitting a theoretical

viewed in Ref.[23] (p. 245, two-dimensionality of the mo- description of basic dynamical phenomena by the equations

tion can be experimentally realized by confining the ﬂuidOf mor;adclgﬁn?Igrr]aclocnotg;/neecrtéorc]é)nvection woically sets in in
between parallelin our case, vertical plane walls suffi- 9 ypically

ciently close to each other. If these walls are eIectricaIIythe purely two-dimensional form of straight rolls whose axes

insulating and the fluid is electrically conductirfg.g., an are parallel to the_ shorter s_ide_ of the contaiftgrin the case
electrolytic solution, disturbing boundary-layer effects may Ofl rtlar{r(])w cy_Ilndfr ';?I anFug W't?hthe llnluoyancy forcc?_sliaara!-
be largely suppressed by applying a uniform magnetic fielde 0 the axis ot the cylinder, he roll axes are radially ori-

perpendicular to the walls. Such a magnetic field impede ntgd, while_ they are parallel to th_e cylinder axjg for the
motions with gradients in the direction of the field. The en_rapldly rotating annuli. If the experimental conditions are

suing two-dimensional motion satisfies the equations fOIchosen n such a way that two-d[mer15|onal motions are fa-
nonconducting fluidgsee Ref[24], p. 298. vored, bifurcations like those studied in this pafiacluding

Both the two-dimensionality of the motion and the peri- possibly those to nonchaotic higher-dimensional torus solu-

odic horizontal boundary conditions can be approximatel)}'ons)’ which leave the motian two-dimensional, might occur

realized in convection experiments in the geometry of nar_before other types of bifurcations eventually lead to three-

row cylindrical annuli with the cylinder axis in the vertical d|mDenS|§)naI con\./ecltnljln..t i th luti Id not b
direction(parallel to the directions of gravity and the applied ue to numerical imitations, the soiutions could not be

temperature gradientSuch experiments have been reported,tr""ceqi into the region (.jR> 230 OOQ' So it remains an open
for instance, by Cilibertd25] and by Daviaud and Dubois question whether at higher Rayleigh numbers chaos is still

[26], but the corresponding aspect ratio®., numbers of reached. This problem, as well as the possible changes of the
para,\llel rolly are probably much too Iarge,to allow for a bifurcation scenario if a larger aspect ratio is used, will be

direct comparison with our calculations. A similar annulusthe subject of future studies with improved numerics.

experiment, with stress-free top and bottom boundaries but

the convection driven by the combined effects of buoyancy

and surface tension, has been described by Bensj2idn This work was supported in part by Grant No. SE66215-1
An alternative possibility is rapidly rotating annuli with of the Deutsche Forschungsgemeinsck@fG).
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