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Bifurcations in two-dimensional Rayleigh-Bénard convection
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Two-dimensional bouyancy-driven convection in a horizontal fluid layer with stress-free boundary condi-
tions at top and bottom and periodic boundary conditions in the horizontal direction is investigated by means
of numerical simulation and bifurcation-analysis techniques. As the bouyancy forces increase, the primary
stationary and symmetric convection rolls undergo successive Hopf bifurcations, bifurcations to traveling
waves, and phase lockings. We pay attention to symmetry breaking and its connection with the generation of
large-scale horizontal flows. Calculations of Lyapunov exponents indicate that at a Rayleigh number of 2.3
3105 no temporal chaos is reached yet, but the system moves nonchaotically on a 4-torus in phase space.
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I. INTRODUCTION

Bouyancy-driven convection in a fluid layer heated fro
below, known as Rayleigh-Be´nard convection, is one of th
best-studied hydrodynamical systems@1–5#. Apart from its
many applications, notably in meteorology, geophysics,
astrophysics, it has become a paradigm of instabilities, bi
cations, structure formation, and chaotic behavior in fl
dynamics as well as in physical systems in general.

The simplest, but very influential model to study the no
linear dynamics of this system was the one derived by
renz @6#, which consisted of only three ordinary differenti
equations, resulting from a hard truncation of a Fourier
pansion of the equations of two-dimensional convection. T
most important property of this model was the appearanc
chaos in certain intervals of the system parameters. An
tension of the Lorenz model to 14 modes was studied
Curry @7#, who also found chaos. By contrast, no chaos w
found in high-resolution two-dimensional calculations w
stress-free boundary conditions at the top and bottom
Curry et al. @8#. These authors concluded that the appeara
of chaos in the low-order@6,7# models was a result of usin
an insufficient number of modes. However, for compu
tional speedup Curryet al. had imposed special symmetrie
thus restricting the dynamics to an invariant subspace
symmetric solutions and possibly suppressing symme
breaking bifurcations. In more recent calculations by P
et al. @9,10# for the case of no-slip boundary conditions a
no restrictions by symmetry, chaotic behavior was ag
found. A particular issue addressed by Pratet al. was the
generation of large-scale horizontal flows and their verti
profiles ~e.g., symmetric or antisymmetric to the horizon
midline!.

In the present paper we study the bifurcations in tw
dimensional Rayleigh-Be´nard convection with stress-fre
boundary conditions and no symmetry imposed. For a v
ety of astrophysical and geophysical applications, for
stance, the convective layers in stars like the sun or con
tion in the earth mantle, stress-free conditions are probab
better choice than no-slip conditions, which are realized
most laboratory experiments. Stress-free boundary co
571063-651X/98/57~1!/428~8!/$15.00
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tions are difficult to control in the laboratory, but an expe
ment with these conditions has been reported@11#. Possibili-
ties to approximately realize two-dimensionality a
discussed in Sec. VI.

In Sec. II we introduce the governing equations, while
Sec. III the symmetries of the system and their connect
with the possible occurrence of large-scale flows are d
cussed. Then in Secs. IV and V we describe the bifurcati
found. Section VI finally gives a discussion of our results

II. EQUATIONS

We investigate bouyancy-driven convection in a tw
dimensional fluid layer of thicknessd heated from below.
Using the Oberbeck-Boussinesq approximation, which
correct for a wide variety of fluids@1,5#, one has to solve the
partial differential equations

“•v50, ~1!

]v

]t
1~v•“ !v52“p1PDv1PRuey , ~2!

]u

]t
1v•“u5vy1Du, ~3!

wherev is the fluid velocity, whilep and u denote the de-
viations of pressure and temperature from their values in
quiescent ground state with pure heat conduction. We
rectangular Cartesian coordinatesx andy, with thex axis in
the horizontal and they axis in the vertical direction paralle
to the gravitational force;ey is the unit vector in the vertica
direction. Equations~1!–~3! are given in dimensionless form
with the thicknessd of the fluid layer as the unit of length
k/d2, wherek is the thermal diffusivity, as the unit of time
and the temperature differencedT between lower and uppe
boundaries of the fluid layer as the unit of temperature. Th
are two parameters, the Prandtl numberP and the Rayleigh
numberR, defined by
428 © 1998 The American Physical Society
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P5
n

k
, R5

agd3

nk
dT, ~4!

wheren is the kinematic viscosity,a the volumetric expan-
sion coefficient, andg the gravitational acceleration.R pro-
vides a measure for the strength of the bouyancy forces

In the horizontal direction periodic boundary condition
with spatial periodL, are applied, while top and bottom
planes are assumed as impenetrable, stress-free, and is
mal:

S ]vx

]y D
y50,1

5vy~x,0!5vy~x,1!50, ~5!

u~x,0!5u~x,1!50. ~6!

These boundary conditions admit the Fourier expansions

vx5 (
nx52`

`

(
ny50

`

vn
~x! exp~ ikxx!cos~kyy!, ~7!

vy5 (
nx52`

`

(
ny51

`

vn
y exp~ ikxx!sin~kyy!, ~8!

u5 (
nx52`

`

(
ny51

`

un exp~ ikxx!sin~kyy!, ~9!

p5 (
nx52`

`

(
ny50

`

pn exp~ ikxx!cos~kyy!, ~10!

where wave numbersk5(kx ,ky) are referred to by indices
n5(nx ,ny) according to

kx5nx

2p

L
, nx50,61,62,..., ~11!

ky5nyp, ny50,1,2,3,... . ~12!

We use the abbreviations

w5~v•“ !v, f5v•“u. ~13!

for the nonlinearities, which have Fourier expansions ana
gous tov andu. In Fourier space Eqs.~1!–~3! then take the
form

05 ikxvn
~x!1kyyn

~y! , ~14!

ẏn
~x!52wn

~x!2 ikxpn2Pk2vn
~x! , ~15!

ẏn
~y!52wn

~y!1kypn2Pk2vn
~y!1PRun , ~16!

u̇n52fn1vn
~y!2k2un . ~17!

The pressurep can be eliminated from these equations
taking the divergence of Eq.~2!. On observing Eq.~1! this
leads to

“•w52Dp1PR
]u

]y
, ~18!
,

her-

-

which can be solved forp in Fourier space:

pk5 i
kx

k2 wk
~x!1

ky

k2 wk
~y!2PR

ky

k2 uk . ~19!

Equations~15! and ~16! then become

v̇n
~x!52

ky
2

k2 wn
~x!2 i

kxky

k2 wn
~y!1PRi

kxky

k2 un2Pk2vn
~x! ,

~20!

v̇n
~y!5 i

kxky

k2 wn
~x!2

kx
2

k2 wn
~y!1PR

kx
2

k2 un2Pk2vn
~y! .

~21!

Because of the condition~14!, these two equations are no
independent of each other.

From the relation

v•“vx5
]

]x
vx

21
]

]y
~vxvy!, ~22!

it is seen that the spatial mean ofv•“vx vanishes~by virtue
of the boundary conditions!. Thus according to Eqs.~13! and
~15!, v (0,0)

(x) is independent of time. As any mean flow in thex
direction can be removed by a Galilean transformation,
have restricted ourselves to the case ofv (0,0)

(x) 50. Our time-
asymptotic states are then marginally stable with respec
states with a nonvanishing mean flow.

The system of ordinary differential equations for the Fo
rier coefficients of velocity and temperature has been stud
numerically by means of pseudospectral method@12,13#,
mainly with a resolution of 64332, but partially~Sec. V!
also with a resolution of 128364 collocation points.

III. SYMMETRIES

With the periodic boundary conditions in the horizont
direction, the domain of the fluid can be considered a
channel of infinite length. In such a channel a large-sc
horizontal flow is possible@14,10,9#. One can split the Fou-
rier expansion of the horizontal velocity according to

vx~x,y,t !5 (
ny51

`

v ~0,ny!
~x! cos~kyy!

1 (
nx52`
nxÞ0

`

(
ny51

`

vn
~x! exp~ ikxx!cos~kyy!

5 v̄x~y,t !1ux~x,y,t !. ~23!

The large-scale flowv̄x(y,t) is built up by the modes (0,ny).
Each mode of this type corresponds to a shear flow withny
neutral sheets. The modes with odd~even! ny are antisym-
metric ~symmetric! with respect to the horizontal midliney
51/2.

At the onset of convection, immediately after the bifurc
tions from the quiescent ground state to stationary conv
tion rolls, a discrete subgroupG of the total symmetry group
of the system proves to be important~cf. Refs. @10,9#!. G
consists of four elements,
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G5$ id,S1 ,S2 ,S3%, ~24!

where

S1 :~x,y!→~2x,y!,

~vx ,vy ,u!→~2vx ,vy ,u!, ~25!

S2 :~x,y!→~2x1L/2,12y!,

~vx ,vy ,u!→~2vx ,2vy ,2u!, ~26!

S3 :~x,y!→~x1L/2,12y!,

~vx ,vy ,u!→~vx ,2vy ,2u!. ~27!

S1 is a reflection in they axis ~or the vertical midline!; S2
corresponds to a rotation by 180 degrees about the p
(0,1/2) plus a horizontal translation byL/2; S35S1S2 is the
product of these two transformations, which is equivalen
a reflection in the horizontal midline combined with a ho
zontal translation byL/2. The group is isomorphic to th
dihedral groupD2 @15#. It is commutative and each transfo
mation gives the identity if it is applied twice.

With the primary bifurcation from the conductive stat
convection sets in in the form of stationary rolls symmet
with respect to the full groupG. For the next bifurcation, if it
is symmetry breaking, there are, with the exception of
trivial symmetry group$ id%, only three possibilities to get a
subgroup with respect to which a bifurcating solution can
symmetric:

~i! G15$ id,S1%.
~ii ! G25$ id,S2%.
~iii ! G35$ id,S3%.

Each of these three possibilities has a particular consequ
for the large-scale flowv̄x(y,t). In case ~i!, because of
v̄x(y,t)52 v̄x(y,t), the large-scale flow has to be zero.
case ~ii ! one finds v̄x(y,t)52 v̄x(12y,t), i.e., the large-
scale flow has to be antisymmetric to the liney51/2. Case
~iii ! finally corresponds to a large-scale flow symmetric
the liney51/2: v̄x(y,t)5 v̄x(12y,t).

The symmetries have also particular signatures in Fou
space. ForS1 we have the following symmetries for the Fo
rier coefficients:

v ~nx ,ny!
~x! 52v ~2nx ,ny!

~x! ,

v ~nx ,ny!
~y! 5v ~2nx ,ny!

~y! ,

u~nx ,ny!5u~2nx ,ny!. ~28!

The coefficientsv (0,ny)
(x) , corresponding to a large-scale flow

have to be zero. ForS2 one finds

v ~nx ,ny!
~x! 5~21!nx1ny11v ~2nx ,ny!

~x! ,

v ~nx ,ny!
~y! 5~21!nx1nyv ~2nx ,ny!

~y! ,

u~nx ,ny!5~21!nx1nyu~2nx ,ny! . ~29!
int
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We call the modes (nx ,ny) even whennx1ny is even and
odd whennx1ny is odd. For the last symmetry,S3 , one has

v ~nx ,ny!
~x! 5v ~nx ,ny!

~y! 5u~nx ,ny!50,

if nx1ny is odd, ~30!

i.e., all odd modes vanish.
Explicitly imposing the symmetriesS1 and S3 , which

generate the groupG, Curry et al. @8# studied solutions with
the full symmetry. By this restriction to the invariant su
space of the fully symmetric solutions, symmetry-breaki
bifurcations were suppressed and, in particular, large-s
flows excluded. For the aspect ratioL52& and the Prandtl
numberP56.8, Curryet al. found a transition from station
ary to periodic convection at a Rayleigh number ofR̃1
'90Rc'59 200 and a transition from periodic to quasipe
odic convection involving two frequencies at a Raylei
number ofR̃2'290Rc'190 700.Rc527p4/45657.5 is the
critical Rayleigh number at which stationary convection s
in. At very high Rayleigh number (R̃3'800Rc'526 000),
Curry et al. then observed a transition back to periodic co
vection with one frequency. In a control computation witho
symmetries imposed they found the first transition to pe
odic convection to take place at a Rayleigh number ofR1
'50Rc'32 800.

IV. BIFURCATIONS TO LIMIT CYCLES AND 2-TORI;
LARGE-SCALE FLOW

To have a direct comparison, we assume the same as
ratio and the same Prandtl number as used in Ref.@8#,
namely,L52& andP56.8. The first bifurcation from sta
tionary convection rolls takes place between Rayleigh nu
bers 30 000545.6Rc and 31 000547.1Rc ; it is a transition
from stationary to periodic convection. This agrees with t
result of Ref.@8# mentioned in Sec. III. The bifurcating pe
riodic solution, if looked upon at one instant of time, has t
spatial symmetryS1 , while the symmetriesS2 and S3 are
broken. A large-scale flow does not arise becauseS1 is pre-
served.

In Fig. 1 velocity streamlines are shown for four instan
of time within one oscillation periodT1 . One can see tha
the convection rolls undergo a periodic deformation but
main mirror symmetric to the vertical linex5L/2. The
streamline profiles att50 and t5T1/2 ~t5T1/4 and t
53T1/4! can be transformed into each other by applyingS2
or S3 . This observation leads to a more precise character
tion of the symmetry. Actually the periodic orbitas a whole
is invariant also with respect toS2 andS3 . By the action of
these transformations merely a time shift is produced.
each of the transformations is inverse to itself, the time s
must be just half a period. A periodic state with the sa
type of symmetry as the result of the first bifurcation fro
stationary convection was found by Pratet al. @9# for the
case of no-slip boundary conditions, an aspect ratio oL
52, and a Prandtl number ofP510.

The next bifurcation, taking place betweenR545 000
568.4Rc andR546 000570.0Rc , is a transition from pe-
riodic to quasiperiodic convection. In this bifurcation als
the spatial mirror symmetryS1 is broken and a large-scal
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57 431BIFURCATIONS IN TWO-DIMENSIONAL RAYLEIGH- . . .
flow arises. Figures 2 and 3 confirm that now two freque
cies are involved. Figure 2 shows a two-dimensional proj
tion of the trajectory in the high-dimensional space
modes. Obviously, the motion takes place on a 2-torus w
two incommensurable frequencies. Now the three sym
tries are completely broken. If one of the transformatio
S1 ,S2 ,S3 would merely time shift a solution, this solutio
would be transformed into itself by applying the transform
tion ~the time shift! twice, which is possible only for time
periodic solutions. So there coexist four different solutio
Given one of them, the three others are obtained by apply
the transformationsS1 ,S2 ,S3 .

FIG. 1. Streamlines atR540 000560.8Rc for t50, t5T1/4,
t5T1/2, andt53T1/4.

FIG. 2. Phase-space projection to the plane spanned
Re(v(3,2)

(x) ) and Re(v(5,2)
(x) ) atR546 000570.0Rc .
-
-

f
h
e-
s

-

.
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In Fig. 3 the power spectrum of the time evolution of a
odd mode is shown. The two basic frequencies aref 1586
and f 2517. f 2 is the new frequency, which is the stronge
frequency in the power spectra of the odd modes (0,ny) ~not
shown! corresponding to large-scale flow. In the torus bifu
cation both the odd and the even modes (0,ny) are excited.
Very often the presence of an antisymmetric shear mot
corresponding to odd modes, is considered as responsibl
a tilting of the convection rolls~or of the lines separating
different rolls, respectively!. We would like to note here tha
theevenmodes (0,ny) lead to a tilting, while the odd mode
enhance one roll~say, the clockwise! and suppress the othe
~counterclockwise!. Namely, a shear motion, to the right a
the top and to the left at the bottom, enhances clockw
motion—the corresponding roll becomes larger—and i
pedes counterclockwise motion—the corresponding roll
comes smaller. No tilting is produced. By the motion cor
sponding to even modes, on the other hand, one rol
enhanced at the top and suppressed at the bottom, while
other is suppressed at the top and enhanced at the bottom
a result, the rolls begin to resemble triangles, one with
up, the other with top down, and the line separating them
tilted.

A periodic tilting can be seen in Fig. 4, which show
stream profiles fort50, t5T2/8, t5T2/4, and t53T2/8
~a trianglelike deformation, though very weak, is also reco
nizable!. In the first plot the ‘‘vertical’’ line separating two
convection cells is tilted slightly to the right; in the next pl
it is tilted to the left; then in the following, it again is tilted to
the right, and so on. The rolls are tilted to the left and to
right approximately four times in each periodT2 . The expla-
nation of this can be seen in Fig. 5, which shows the lar
scale flow v̄x(y,t) ~abscissa! versusy ~ordinate! for nine
instants of time. The first plot shows all modes, the seco
only odd modes, and the third only even modes. At so
instants of time the total flow is approximately symmetric;
others approximately antisymmetric to the horizontal m
line. The plot of the odd modes is dominated by the first o
mode,~0,1!, and the plot of the even modes by the first ev
mode,~0,2!. One sees that the even modes are changing
proximately four times as fast as the odd modes. The str
gest frequency for even modes isf 12 f 2 , which is close to

by

FIG. 3. Frequency spectrum of the time evolution of Re(v(3,2)
(x) )

atR546 000570.0Rc .
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432 57E. ZIENICKE, N. SEEHAFER, AND F. FEUDEL
4 f 2 . It is clearly the influence of the even modes that lea
to the tilting seen in Fig. 4.

V. BIFURCATIONS TO 3- AND 4-TORI;
PHASE LOCKINGS

We have traced the torus branch for increasing value
the Rayleigh number. AtR'85 000 a third frequency ap
pears. This frequency corresponds to direction-revers
traveling waves@16#, namely, the whole oscillating structur
drifts, very slowly, back and forth in thex direction. The
time between the direction reversals is of the order of
thermal diffusion time—f 3'3/4, and time is measured i
units of the thermal diffusion time. The modes (0,ny), cor-
responding to the large-scale flow, remain unaffected by
third frequency, whereas all other modes now show th
superposed oscillations.

The degenerate 3-torus~degenerate because some mod
show only two frequencies! determines the dynamics over
large interval of the Rayleigh number, up to a value of ab
200 000. There are two subintervals, betweenR'90 000
and R'95 000 as well as betweenR'175 000 andR
'180 000, in which the two frequencies corresponding
real oscillations~the first one and the second one! are locked,
so that the degenerate 3-torus becomes a degenerate 2-
Interestingly, during the phase lockings the traveling wa
are nonreversing, i.e., the oscillating structure migrates
one direction. The character of these phase-locked solut

FIG. 4. Streamlines atR550 000576.0Rc for t50, t5T2/8,
t5T2/4, andt53T2/8.
s
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is demonstrated in Figs. 6~a! and 6~b!. In Fig. 6~a! the tra-
jectory is projected onto the plane spanned by two ‘‘norma
components, namely the real and imaginary parts ofv (5,1)

(x) .
Two incommensurable frequencies are involved. The trav
ing wave appears as a very slow circular rotation. In F
6~b!, showing a projection onto modes (0,ny), the frequency
of the traveling wave is absent and the orbit thus closed

We have traced this branch up toR5230 000, expecting
a transition to chaos. Indeed, as is seen in Figs. 6~c!–6~f!, the
motion in phase space becomes more and more irreg
suggestive of a transition to chaos via torus destruct
@17,18#. Also the frequency spectrum has now the broadba
character of chaotic solutions. To test for chaos, we h
calculated the largest Lyapunov exponents, using an a
rithm of Shimada and Nagashima@19#. Figure 7 shows for
R5230 000 the cumulative values of the ten large
Lyapunov exponents versus the integration time. Surp
ingly, five of the exponents tend to zero and no expon
tends to a positive limit. Four exponents approach zero fr
above~two of them are very close to each other and are s
to be different only in enlarged figures!. That these four ex-

FIG. 5. Large-scale flowv̄x(y) at R550 000576.0Rc ~ab-
scissa! versusy ~ordinate!. The first plot shows all modes, the se
ond only the odd modes, and the third only the even modes.
flow is shown fort50 ~solid line!, t5T2/8 ~dots!, t52T2/8 ~short
dashes!, t53T2/8 ~one dash, one dot!, t54T2/8 ~one dash, three
dots!, t55T2/8 ~long dashes!, t56T2/8 ~solid line!, t57T2/8 ~solid
line!, andt58T2/8 ~solid line!.
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57 433BIFURCATIONS IN TWO-DIMENSIONAL RAYLEIGH- . . .
ponents do not tend to positive values, but approach z
approximately following a power law, can be seen from
log-log plot inside Fig. 7~since the logarithm is not define
for negative arguments, negative exponents are absent i
log-log plot!. From the plots in Fig. 7 we conclude that th
attractor is a 4-torus. The fifth vanishing Lyapunov expon
corresponds to the translational symmetry of the system
the x direction, which appears as a direction of margin
stability in phase space.

Besides the solutions described so far, we have detect

FIG. 6. Phase-space projection onto the planes spanne
Re(v(5,1)

(x) ), Im(v(5,1)
(x) ) ~left! and by Re(v(0,1)

(x) ), Re(v(0,2)
(x) ) ~right! for

R5175 000 @~a!,~b!#, R5200 000 @~c!,~d!#, and R5230 000
@~e!,~f!#.

FIG. 7. The ten largest Lyapunov exponents versus integra
time for R5230 000. The inner plot is doubly logarithmic an
negative values of the exponents are thus not drawn.
ro

the

t
in
l

d a

coexisting solution branch. BetweenR'140 000 andR
'180 000 the solutions of this branch are normal~unidirec-
tional! modulated traveling waves, i.e., lie on a degener
2-torus. The modes (0,ny) oscillate with just one frequency
~the frequency of the modulation!. BetweenR'180 000 and
R'230 000 the solutions are simply periodic, seemingly
the result of a phase locking on the 2-torus, and belong to
symmetry groupG3 described in Sec. III. When traced t
smaller Rayleigh numbers, this branch disappears forR
'140 000. Its basin of attraction seems to be very small
we could not clarify its origin.

VI. DISCUSSION

We have studied the bifurcations in two-dimension
Rayleigh-Bénard convection with stress-free boundary co
ditions and no symmetry imposed. As expected, the bifur
tion sequence differs significantly from that found by Cur
et al. @8# for the case with symmetries imposed. The fi
bifurcation following the primary one~that from the quies-
cent ground state to stationary symmetric convection rolls! is
a Hopf bifurcation at a Rayleigh number ofR'30 000, lead-
ing to simple oscillations for which, at a given instant
time, velocity, and temperature, are still mirror symmetric
the vertical midlinex5L/2. Then in a second Hopf bifurca
tion atR'45 000, leading to a torus solution with two in
commensurable frequencies, this remaining symmetry is
broken. The torus solution shows a large-scale~i.e., indepen-
dent ofx! horizontal flow component, the vertical profile o
which is neither symmetric nor antisymmetric to the horizo
tal midline y51/2. Contrary to a prevalent belief, it is it
symmetric, rather than its antisymmetric, part that cause
periodic tilting of the convection rolls.

For further increased Rayleigh number, then, travel
waves appear and the solution undergoes phase lockings
the appearance of traveling waves atR'85 000, the 2-torus
bifurcates to a degenerate 3-torus. The modes (0,ny), corre-
sponding to the large-scale flow, remain unaffected by t
bifurcation ~i.e., show only two frequencies!, whereas all
other modes now exhibit three superposed oscillations. In
estingly, the traveling waves are direction-reversing in g
eral and unidirectional in the intervals of the phase lockin

Up toR5230 000 we did not find chaos~this agrees with
the results of Curryet al. @8#!, though the motion in phase
space becomes more and more irregular. The calculatio
the largest Lyapunov exponents forR5230 000 indicates
that the system moves on a 4-torus.

Now according to a theorem by Ruelle and co-worke
@17,20#, bifurcations from 2-tori lead generically to chaot
attractors. It is not clear yet, however, whether the hydro
namic equations~general, three-dimensional! are generic in
the required sense. If not, nonchaotic attracting motions
three- or higher-dimensional tori might well be observab
The laboratory experiments on convection do not give a c
picture in this respect. On one hand there are experim
showing the sequence: stationary→simply periodic→two-
frequency quasiperiodic→chaotic @21#. On the other hand
also counterexamples, namely quasiperiodic states with t
incommensurable frequencies~3-tori!, were observed; for in-
stance, by Gollub and Benson@22#, who found the scenario
for the transition to nonperiodic or turbulent states to depe

by
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in an intricate way on the system parameters.
Seemingly the equations of two-dimensional Boussin

convection~with stress-free vertical and periodic horizont
boundary conditions! are nongeneric in the sense of th
Ruelle-Takens-Newhouse theorem. It may now be that
small perturbation towards three-dimensionality destroys
behavior found. But it is also conceivable that systems in
appropriately defined neighborhood of the studied one
behave in a qualitatively similar way.

Some remarks concerning the physical realizability
two-dimensional convection seem to be in order. As
viewed in Ref.@23# ~p. 245!, two-dimensionality of the mo-
tion can be experimentally realized by confining the flu
between parallel~in our case, vertical! plane walls suffi-
ciently close to each other. If these walls are electrica
insulating and the fluid is electrically conducting~e.g., an
electrolytic solution!, disturbing boundary-layer effects ma
be largely suppressed by applying a uniform magnetic fi
perpendicular to the walls. Such a magnetic field impe
motions with gradients in the direction of the field. The e
suing two-dimensional motion satisfies the equations
nonconducting fluids~see Ref.@24#, p. 298!.

Both the two-dimensionality of the motion and the pe
odic horizontal boundary conditions can be approximat
realized in convection experiments in the geometry of n
row cylindrical annuli with the cylinder axis in the vertica
direction~parallel to the directions of gravity and the applie
temperature gradient!. Such experiments have been report
for instance, by Ciliberto@25# and by Daviaud and Duboi
@26#, but the corresponding aspect ratios~i.e., numbers of
parallel rolls! are probably much too large to allow for
direct comparison with our calculations. A similar annul
experiment, with stress-free top and bottom boundaries
the convection driven by the combined effects of buoyan
and surface tension, has been described by Bensimon@27#.

An alternative possibility is rapidly rotating annuli wit
y

n
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the temperature gradient in the radial direction and the c
vection driven by centrifugal buoyancy. Such systems h
been studied both theoretically and experimentally~cf. Ref.
@28#!, among other things, in order to model the zonal flo
in the atmospheres of the major planets—these zonal fl
correspond to the large-scale horizontal flows of the pres
study. A potential further application of this kind of annulu
model is the differential rotation of the sun@29# ~here the
convection is again mainly driven by gravitational buo
ancy!. The rotation gives an effective stiffness against var
tions along the rotational axis, thus admitting a theoreti
description of basic dynamical phenomena by the equat
of two-dimensional convection.

In rectangular containers convection typically sets in
the purely two-dimensional form of straight rolls whose ax
are parallel to the shorter side of the container@5#; in the case
of narrow cylindrical annuli with the buoyancy forces para
lel to the axis of the cylinder, the roll axes are radially o
ented, while they are parallel to the cylinder axis for t
rapidly rotating annuli. If the experimental conditions a
chosen in such a way that two-dimensional motions are
vored, bifurcations like those studied in this paper~including
possibly those to nonchaotic higher-dimensional torus so
tions!, which leave the motion two-dimensional, might occ
before other types of bifurcations eventually lead to thr
dimensional convection.

Due to numerical limitations, the solutions could not
traced into the region ofR.230 000. So it remains an ope
question whether at higher Rayleigh numbers chaos is
reached. This problem, as well as the possible changes o
bifurcation scenario if a larger aspect ratio is used, will
the subject of future studies with improved numerics.

ACKNOWLEDGMENT

This work was supported in part by Grant No. SE66215
of the Deutsche Forschungsgemeinschaft~DFG!.
g,

s

hys.
@1# S. Chandrasekhar,Hydrodynamic and Hydromagnetic Stabilit
~Clarendon Press, Oxford, 1961!.
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