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Model for convection in binary liquids

St. Hollinger, M. Lücke, and H. W. Mu¨ller
Institut für Theoretische Physik, Universita¨t des Saarlandes, Postfach 151150, D–66041 Saarbru¨cken, Germany

~Received 17 September 1997!

A minimal, analytically manageable Galerkin type model for convection in binary mixtures subject to
realistic boundary conditions is presented. The model elucidates and reproduces the typical bifurcation topol-
ogy of extended stationary and oscillatory convective states seen for negative Soret coupling: backwards
stationary and Hopf bifurcations, saddle node bifurcations to stable strongly nonlinear stationary and traveling
wave~TW! states, and merging of the TW solution branch with stationary states. Also unstable standing wave
solutions are obtained. A systematic analysis of the concentration balance for liquid mixture parameters has led
to a representation of the concentration field in terms of two linear and two nonlinear modes. This truncation
captures the important large-scale effects in the laterally averaged concentration field resulting from advective
and diffusive mixing. Also the fact that with increasing flow intensity along the TW solution branch the
frequency decreases monotonically in the same way as the mixing increases—the variance of the concentration
distribution decreases—is ensured and reproduced well. Universal scaling relations between flow intensity,
frequency, and variance of the concentration distribution~degree of mixing! in a TW are predicted by the
model and have been confirmed by numerical solutions of the full equations. The validity of the model is
checked by comparison with numerical solutions of the full field equations.@S1063-651X~98!08804-7#

PACS number~s!: 47.20.2k, 47.10.1g, 03.40.Gc
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I. INTRODUCTION

A great deal of effort has recently been undertaken
investigate convection in binary fluid mixtures as an exam
for pattern formation far from equilibrium@1#. This system
provides an experimentally convenient device@2–12# with a
well established theoretical description@13,14# allowing
quantitative comparisons of theoretical investigations@15–
29# with experiments. For a review and additional referenc
see @1,18#. Compared to convection in ordinary on
component fluids the spatiotemporal properties are far m
complex due to the influence of Soret sustained concen
tion gradients. The evolution of the concentration field
governed by the interplay of typically strong nonlinear co
vective transport and mixing, weak dissipative solutal dif
sion, and the Soret effect@1,13,14#. The latter is a source o
concentration fluctuations. It generates concentration gr
ents in response to the externally applied temperature di
ence and to local temperature gradients. The strength o
Soret coupling is measured by the dimensionless separa
ratio c @1,13,14#.

The concentration field changes the convective dynam
via solutal buoyancy forces entering into the momentum b
ance. In this way concentration gradients directly influen
the flow which in turn changes and mixes the concentrat
In binary liquids, this strongly nonlinear feedback is on
weakly damped by small diffusive homogenization so t
the concentration field distribution shows significant anh
monic and boundary layer structures. It is, however, the
istence of the feedback loop that ultimately causes conv
tion in binary mixture to exhibit such a rich variety o
patterns arising from stationary and oscillatory@30# instabili-
ties: Depending on the parameters the hydrodynamic bala
equations show convective solutions that bifurcate out of
quiescent conductive basic state in the form of~i! straight,
stationary, parallel rolls,~ii ! traveling waves~TWs! consist-
571063-651X/98/57~4!/4250~15!/$15.00
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ing of propagating rolls,~iii ! standing wave~SW! oscilla-
tions, and ~iv! stationary squares. Besides these prim
states, there are close to onset of convection pulselike,
tially localized traveling wave~LTW! states consisting o
only a few TW rolls, oscillating square patterns@31#, cross-
roll structures@32#, and also~spiral! defect chaos@33#.

In the present paper the focus is on two-dimensional~2D!
spatially extended convective structures consisting
straight parallel rolls that occur at negative separation ra
20.6,c,0. For typical fluid parameters convection aris
via an oscillatory subcritical bifurcation. The emerging so
tion branch locates unstable TWs that are ‘‘weakly nonl
ear’’ only near the onset. These unstable waves beco
strongly nonlinear and anharmonic@20,34# well before the
occurrence of a saddle node at which they are stabilized
an upper solution branch. Simultaneously, the TW propa
tion speed slows down from its large value at the Hopf
furcation threshold towards zero at the final transition
steady overturning convection~SOC!. There, the amplitude
of the concentration wave vanishes since in the SOC s
the fluid is well mixed to a mean concentration level exce
within narrow boundary layers. This SOC state is somew
similar to the convective rolls in one-component fluids.

The bifurcation topology described above has been v
fied by several experimental groups~e.g.,@3#; for additional
references see@1,18#!. A detailed insight into the spatiotem
poral variations of TW and SOC states along their up
solution branches and their parameter dependence prov
numerical simulations of Bartenet al. @15,18#. A quantitative
description of the whole bifurcation branches@20,34# includ-
ing the lower branches that were unavailable to Bartenet al.
was obtained recently with a multimode Galerkin~MMG!
expansion including several hundred modes. The MMG p
dictions agree very well@20,34# with results from finite dif-
ference marker and cell~MAC! simulations of the full field
4250 © 1998 The American Physical Society
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57 4251MODEL FOR CONVECTION IN BINARY LIQUIDS
equations supplemented by a control process which all
us to evaluate also unstable TW and SOC states@35#.

Since the first observations of TWs, much theoretical
search activity has been devoted to developing an un
standing and to developing models for these phenom
Based upon an earlier few-mode Galerkin model@26# Cross
@36# and also Ahlers and Lu¨cke @37# investigated Soret-
driven convection with permeable boundary conditio
They found TW states only locally at the onset of convect
since for permeable conditions the onset of TW convectio
tricritical. Linz et al. @24# implemented impermeable cond
tions yielding a subcritical primary bifurcation to TWs. Th
observation is in agreement with small amplitude compu
tions of Scho¨pf and Zimmermann@25#. Both approaches
however, do not explain the stabilization of the TW bran
via a saddle node bifurcation. Bensimonet al. @19# consid-
ered the case of weak Soret coupling by means of a smac
expansion treating the concentration field numerically. Th
observed a stable TW branch and interpreted the TW-S
transition as a boundary layer induced instability. Due to
expansion inc and due to the weak diffusion limit the ap
plication range in fluid parameter space is rather narrow@38#.

The detailed numerical analyses@15,18,20,34,39# eluci-
dating the influence of the spatiotemporal behavior of
concentration field on various properties of TW states, e
on the variation of flow amplitude, frequency, and mixin
with heating rate have clearly shown that the success
model description sensitively hinges upon the representa
of the concentration field. It has to capture the essence o
spatiotemporal structures following from the combined
tion of strong nonlinear advection and weak diffusion on
one hand and the generation of Soret induced concentra
currents by temperature gradients on the other hand
model that reproduces with few degrees of freedom all
sentials of the bifurcation behavior of flow amplitude, fr
quency, and mixing is presently not available—neither in
form of coupled amplitude equations nor in Galerkin ty
form. The respective reasons for their deficiencies are
cussed in the text.

The present paper aims at filling this gap. We presen
few-mode Galerkin model which rests upon a careful ana
sis @34,39# of the concentration balance in liquid mixture
and explains among others the whole TW solution bra
from oscillatory onset up to its merging with the upper SO
branch and the associated changes in the spatiotem
structure of the states.

We introduce the system and formulate the theoret
task in Sec. II. In Sec. III we construct the Galerkin mod
and give a detailed account of how the concentration fiel
represented. The main body of the paper~Sec. IV! is dedi-
cated to an extensive discussion of the results. Where
possible we provide analytic expressions for characteri
quantities like thresholds, bifurcation points, and order
rameters like convective amplitude, frequency, heat flux,
variance of the concentration distribution. The SOC and T
states will be compared in quantitative detail with simu
tions. Our model also yields unstable SW solutions.

II. SYSTEM

We consider a convection cell of heightd. It contains a
binary fluid of mean temperatureT̄ and mean concentratio
s
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C̄ of the lighter component confined between two perfec
heat conducting and impervious plates. This setup is expo
to a vertical gravitational accelerationg and to a vertical
temperature gradientDT/d directed from top to bottom. The
fluid has a densityr which varies due to temperature an
concentration variations governed by the linear thermal
solutal expansion coefficientsa52(1/r)(]r/]T̄) and b5

2(1/r)(]r/]C̄), respectively. Its viscosity isn, the solutal
diffusivity is D, and the thermal diffusivity isk. The ther-
modiffusion coefficientkT quantifies the Soret coupling
which describes the change of concentration fluctuations
to temperature gradients.

The vertical thermal diffusion time is used as the tim
scaled2/k of the system and velocities are scaled byk/d.
Temperatures are reduced by the temperature differenceDT
across the layer and concentration deviations from the m
concentration by (a/b)DT. The scale for the pressure
given byrk2/d2. Then, the balance equations for mass, m
mentum, heat, and concentration@13,14# read in Oberbeck-
Boussinesq approximation@40,18#

052¹•u, ~2.1a!

] tu52~u•¹!u2¹F p1S d3

k2
gD zG1s¹2u1Rs~T1C!ez ,

~2.1b!

] tT52¹•Q52¹•@uT2¹T#, ~2.1c!

] tC52¹•J52¹•@uC2L¹~C2cT!#. ~2.1d!

Here, the currents of heat and concentration,Q and J, re-
spectively, are introduced andT andC denote deviations of
the temperature and concentration fields, respectively, f
their global mean valuesT̄ andC̄. The Dufour effect@40,41#
that provides a coupling of concentration gradients into
heat currentQ and a change of the thermal diffusivity i
discarded in Eq.~2.1c! since it is relevant only in few binary
gas mixtures@6# and in liquids near the liquid-vapor critica
point @22#.

Besides the Rayleigh numberR5(agd3/nk)DT measur-
ing the thermal driving of the fluid there enter three ad
tional numbers into the field equations~2.1a!–~2.1d!: the
Prandtl numbers5n/k, the Lewis numberL5D/k, and the
separation ratioc52(b/a)(kT /T̄). The latter characterize
the sign and the strength of the Soret effect. Negative S
coupling c induces concentration gradients antiparallel
temperature gradients. In this situation, the buoyancy
duced by solutal changes in density is opposed to the the
buoyancy. When the total buoyancy exceeds a thresh
convection sets in, typically in the form of straight rolls fo
negativec. Ignoring field variations along the roll axes w
describe henceforth 2D convection in anx-z plane perpen-
dicular to the roll axes.

Form and strength of convection and its influence on c
vective concentration and temperature transport are m
sured by the following order parameters.~i! The maximum
wmax of the vertical velocity field.~ii ! The Nusselt number
N5^Q•ez&x giving the lateral average of the vertical he
current through the system. In the basic state of quiesc
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heat conduction its value is 1 and larger than 1 in all c
vective states.~iii ! The variance

M5A^C2&x,z /^Ccond
2 &x,z ~2.2!

of the concentration field being a measure for the mixing
the system. The better the fluid is mixed the more the c
centration is globally equilibrated to its mean value 0
optimally mixed, strongly convecting states forceM to van-
ish. In the conductive reference state denoted by
subscript ‘‘cond’’ the vertical Soret induced concentrati
gradient gives rise to a variance ofA^Ccond

2 &x,z5ucu/A12.
~iv! The frequencyv of a TW. Thus extended TWs with
wave numberk have a phase velocityv5v/k. They are
stationary states in a reference frame comoving withv rela-
tive to the laboratory system.

The solution of the partial differential equations~2.1a!–
~2.1d! requires boundary conditions for the fields. We u
realistic no slip conditions for the top and bottom plates
z561/2,

u~x,z561/2;t !50,

and assume perfect heat conducting plates by

T~x,z561/2;t !571/2.

Furthermore, impermeability for the concentration is guar
teed by

ez•J52L]z~C2cT!~x,z561/2;t !50. ~2.3!

We should like to stress again that we restrict ourselve
the description of extended roll-like patterns that are hom
geneous in one lateral direction, say,y. So, we investigate
2D states of a certain lateral periodicity lengthl52p/k. In
most cases we takek5p, i.e., l twice the thickness of the
fluid layer, which is close to the critical wavelengths for t
negative Soret couplings investigated here.

III. MODE SELECTION AND GALERKIN MODEL

A. Temperature and velocity fields

The temperature field consisting of a linear conduct
profile 2z and a convective deviation is truncated by

T~x,z;t !52z1T02~ t !A2sin2pz

1@T11~ t !e2 ikx1c.c.#A2cospz ~3.1!

as in the standard Lorenz model@42# and its first extensions
to convection in binary mixtures with permeable@26,36,37#
and impermeable boundaries@23,24,43#. These models do
not provide a satisfactory representation of strongly non
ear TW convection since they used a combination of conc
tration and temperature fields in order to fulfill the imperm
ability of the plates exactly without extending th
temperature truncation adequately. For a discussion of
point see Ref.@34#. Here, we truncate the concentration
self. This approach avoids the necessity of a more com
cated representation of the temperature field.

For the velocity field we adopt an earlier successful@34#
one-mode description
-
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w~x,z,t !5@w11~ t !e2 ikx1c.c.#cos2pz. ~3.2!

Equation~3.2! completes the Galerkin approximation of v
locity and temperature in our model.

B. Selecting the concentration field modes

In order to select adequate concentration modes a deta
analysis of the concentration balance and field structure
SOC and TW states is necessary.

1. Lateral average of the concentration and deviation

The first step of our analysis is to decompose the conc
tration

C~x,z;t !5^C&x1~C2^C&x!5:C0~z;t !1c~x,z;t !
~3.3!

into its lateral meanC0(z;t) and the deviationc(x,z;t) from
it. Inserting this decomposition into the balance equat
~2.1d! for the concentration and averaging it yields tw
coupled equations forC0 andc,

] tC052]z^wc&x1L]z
2C0 , ~3.4a!

~] t1u•¹!c5]z^wc&x2w]zC01L¹2c. ~3.4b!

In both of these equations we have discarded the Soret
pling term Lc¹2T in the bulkof the fluid. However, the
Soret coupling will not be dropped in the boundary conditi
~2.3!. The motivation and justification for this approximatio
are discussed in quantitative detail in Ref.@34#. Here, we
only mention that the basic justification is the smallness
the Lewis numberL in liquids so that transport by diffusion
and the Soret effect—both enter the balance with a we
L—are small compared with advection. In those regio
where advection needs to be balanced by another trans
mechanism strong concentration gradients are obse
whereas the temperature gradient shows no such bo
ary layers. Thus, an adequate balance is assured by adve
and diffusion and the additional concentration source
sink—the Soret effect—can be omitted in the bulk. Only
the impermeable boundary condition does the Soret ef
lead to a sizable nonvanishing mean concentration grad
at the plates which cannot be ignored.

In a SOC fixed point and also in a TW the lateral avera
of the concentration field is temporally constant. Thus it c
be calculated explicitly from Eq.~3.4a! to be

C0~z!52cNz1
1

LE0

z

dz8^wc&x . ~3.5!

Here, the impermeable boundary condition~2.3!,

]zC0~61/2!5c]zT0~61/2!52cN, ~3.6!

relating the lateral averagesC0 andT0 has been used in th
first integration of Eq.~3.4a! from 21/2 to z. The second
integration is taken from 0 toz since C0(z50)50 as re-
quired by the mirror glide symmetryC(x1l/2,z)52C(x,
2z) for SOC and TW states@15,18#. When describing TW
as well as SOC fixed points the relation~3.5! can be inserted
into the evolution equation~3.4b! giving
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57 4253MODEL FOR CONVECTION IN BINARY LIQUIDS
~] t1u•¹!c5L¹2c1cNw1S ]z2
w

L D ^wc&x . ~3.7!

The solutionc of this equation completely determines th
relaxed TW and SOC concentration field whenever the v
tical velocity field together with the Nusselt number is give
Just that is realized by the truncations for the velocity~3.2!
and temperature~3.1! field in Sec. III A. With c, w, andN
also the TW and SOC spatial structure of the lateral mea
the concentration is determined via Eq.~3.5!. The last task is
therefore to select modes forc that approximate the TW an
SOC structure appropriately.

2. Symmetry decomposition and lateral mode truncation

The mode selection ofc is based among others on th
insight gained in Ref.@39# from a symmetry decompositio
of c. The decomposition was realized@39# with respect to the
different parities under the mirror operationsx→2x and z
→2z so that the four symmetry classesS11, S12, S21,
andS22 are obtained. The first~second! superscript denote
the parity under the operationx→2x (z→2z). In relaxed
TWs and SOCs the lateral coordinatex can be combined
with the timet to x2vt so that the time derivatives in TW
can be replaced by2v]x and the argumentt in the field c
can be dropped. One main result of Ref.@39# was the obser-
vation that field components of the symmetryS22 are not
needed for a quantitative description of the TW and S
bifurcation topology and that the fields of the classS12 are
made up mainly by the zeroth lateral Fourier mode. Con
quently, the SOC and TW concentration fieldc can be rep-
resented well by just two parts

c~x,z!5c11~x,z!1c21~x,z! ~3.8!

belonging to the symmetry classesS11 andS21. Using the
approximation~3.8! for c one obtains from Eq.~3.7! two
equations

2v]xc
211

1

L
w^wc11&x5Ncw1L¹2c11, ~3.9a!

2v]xc
115L¹2c21 ~3.9b!

for thec11 andc21 fields of fully relaxed SOCs and TWs
Here, the vertical velocity fieldw was fixed to belong to the
symmetry classS11 in the Ansatz~3.2! by choosing the
temporal phase adequately and then switching fromx to x
2vt. Furthermore, we used the fact that the application
the advective derivativesu]x andw]z to c11 andc21 gen-
erate fields with negative vertical parity that do not belong
the two retained symmetry classesS11 andS21 for c. The
same holds also for]z^wc&x5]z^wc11&x .

The important implication of Eqs.~3.9! is that thelateral
variation of the concentration fieldc(x,z) is restricted to
sinkx and coskx if one uses the approximations~3.8! and
~3.2!. The reason is thatw^wc11&x as well asNcw have the
lateral variation ofw, i.e., coskx, and no other inhomogene
ity in Eq. ~3.9! excites higher modes. We should like
stress that all these restrictions are based on a quantit
investigation of their implications. Thus they do not enda
ger the success of our model, as we will see below.
r-
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3. Vertical variation

The last task is to select modes for thevertical spatial
dependenceof c(x,z) in the form

c~x,z!5c1~z!e2 ikx1c.c., ~3.10!

with c1 being the first lateral Fourier mode ofc. Numerical
calculations@18,34# have revealed that the main contributio
to c1(z) is made up by a part being phase shifted by 90o with
respect to the vertical velocity field. With the velocityAnsatz
~3.2! and the choice thatw11 is real, this implies thatc1(z) is
dominated by its imaginary part. This holds as long as
phase velocityv is large compared with the Lewis numbe
L5O(0.01).

The vertical spatial dependence of Imc1(z) is investi-
gated in Fig. 1. Therein, we demonstrate that the ‘‘exac
solution ~dotted line! obtained from a MMG scheme ca
very well be reproduced by a linear combination of 1 a
cos 2pz, i.e., of the first two modes with the boundary co
dition ]zc50 atz561/2. This holds both for the bifurcation
out of the heat conducting state (v5vH) and for the
SOC-TW transition (v50). The mode amplitudes of 1 an
cos 2pz were optimally chosen in Fig. 1 in order to demo
strate the usefulness of the representation of the first lat
Fourier mode

c1~z;t !5A2@c10~ t !1c12~ t !cos 2pz# ~3.11!

in terms of 1 and cos 2pz with two complex amplitudes
c10(t) andc12(t).

According to Eq.~3.5!, thespatial dependenceof the ze-
roth Fourier modeC0(z) can be calculated by integrating th
product of cos2pz for the vertical dependence ofw with 1
and cos 2pz, respectively, coming fromc. This procedure
leads to vertical modes of the form (2pz1sin 2pz) and
(24pz1sin 4pz). Their real amplitudes are labeled byc02
andc04, respectively. These two modesc02 andc04 are con-

FIG. 1. Vertical profiles of that part of the first lateral Fouri
mode of the concentration being in phase with the stream func
~in our notation the imaginary part!. Shown are the eigenfunction
at the Hopf bifurcation (v5vH) and at the SOC-TW transition
(v50) with arbitrary normalizations. Dots refer to a many-mo
Galerkin scheme, solid lines to an optimal truncation by a lin
combination of 1 and cos 2pz. Parameters areL50.01,s510, and
c520.25.



a
o

E

a

p

f
d
no
s

s-
t t

l-
t

es

de

atial
of

ally
for

a-

o

n

4254 57ST. HOLLINGER, M. LÜCKE, AND H. W. MÜLLER
stant in SOC and TW fixed points. To derive a model th
includes temporal variations of these modes as well, b
modes are taken as time dependent.

The complete GalerkinAnsatzfor the concentration field
is therefore given by

C~x,z,t !

2c
5$112pA2@c02~ t !22c04~ t !#%z

1c02~ t !A2sin2pz1c04~ t !A2sin4pz

1@c10~ t !e2 ikx1c.c.#A2

1@c12~ t !e2 ikx1c.c.#A2cos2pz. ~3.12!

In order to avoid the appearance of temperature modes in
~3.12! we approximate the boundary condition~3.6! by
]zC0(61/2)52c that deviates from the correct value by
factor equal to the Nusselt numberN5O(1). This approxi-
mation can be understood as the leading term in an am
tude expansion ofN which starts atN51. The exact value of
N is of minor importance in the boundary condition~3.6!.
Only the existence of a finite slope ofC0 at the plates is
crucial.

Similarly, a lateral variation of the vertical derivative o
C, i.e., of c, at the plates can be seen as a higher-or
contribution that scales with the field amplitudes and
with O(1). Thereader can convince himself of the smallne
of the derivatives of Imc1(z) at the plates in Fig. 1.

C. Galerkin model

1. Scalings

We use r 5R/R0 as control parameter. Here,R0

5 1
6 (3p/2)6.1825.14 is the stability threshold of the quie

cent heat conducting state of the pure fluid with respec
disturbances of a wave numberk5p within our model. This
is not exactly the minimum of the marginal curve. It is ca
culated as 0.9998R0 at k50.9827p. But since we are no
interested here in wave number dependencies we fixk5p.

The complex amplitudes of the first lateral Fourier mod
f P$w11,T11,c10,c12%, are written in a vector notation

f5~Ref ,Imf !T. ~3.13!

We scale the mode amplitudes in the following way:

X5
8

5p2
w11, ~3.14a!

Y5
6pA2

5
rT11, Z5

6pA2

5
rT02, ~3.14b!

U15
32A2

5
rc10, U25

32A2

5
rc12, ~3.14c!

V15
256A2

15p
rc02, V25

256A2

5p
rc04. ~3.14d!

Additionally, we introduce
t
th

q.

li-

er
t

s

o

,

s̃5
27

14
s, t5

1

2p2
, a5

9p2

128
.0.6940. ~3.14e!

2. Order parameters

The order parameters maximal convective amplitu
wmax, Nusselt numberN, and mixing numberM can be
expressed by

wmax5
5p2

4
uXu, ~3.15a!

N5E
21/2

1/2

dẑ Q•ez&x511
25

18 r
X•Y, ~3.15b!

M25
12

c2
^C2&x,z511

75

128 r 2S uU1u21
1

2
uU2u2D

1
45

64 r S 11
p2

3 DV12
15

128 r S 11
4p2

3 DV2

1
1125p2

32 768r 2S V12
1

3
V2D 2

1
75p4

16 384r 2S V12
2

3
V2D 2

.

~3.15c!

Here, the Nusselt number is computed as the global sp
average of the vertical heat flux since due to the truncation
velocity and temperature fields in different bases the later
averaged vertical heat flux which is conventionally used
evaluating the Nusselt number has a slightz dependence.
This problem occurs in all few-mode Galerkin approxim
tions with no slip boundary conditions, see, e.g.,@44,41#.

3. Model

We insert the field truncations of Secs. III A and III B int
the basic equations~2.1b!–~2.1d! without bulk Soret effect
and scale the mode amplitudes according to Eqs.~3.14a!–
~3.14d!. Then, the following model for the convection i
binary fluid mixtures is obtained:

tẊ52s̃FX2Y1acS U11
1

2
U2D G , ~3.16a!

tŻ522~Z2X•Y!, ~3.16b!

tẎ52Y1X~r 2Z!, ~3.16c!

tV̇152
6L

5
V12

32L

15
V21X•S U11

7

3
U2D , ~3.16d!

tV̇252
6L

5
V12

24L

5
V21X•~U114U2!, ~3.16e!

tU̇152rX2
L

2
U12

5

2
aS V12

4

9
V2DX, ~3.16f!

tU̇252rX2
5L

2
U22

10

3
aS V12

1

6
V2DX. ~3.16g!
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It is an extension of the standard Lorenz model@42#. The
latter is contained in Eqs.~3.16a!–~3.16c! in a form that is
slightly modified due to a different scaling and to the rea
tic no slip boundary conditions in our approximation.

This model can be looked upon as a minimal one
convection in binary liquid mixtures because it contains
the one hand the minimal description of convection in a p
fluid ~the Lorenz model! and on the other hand a minima
extension for binary fluids. This extension is minimal sin
the simple extension@36,37,24,43# of the Lorenz model with
only one linear modeU and one nonlinear modeV leads to
TW solutions with linear relations between all pairs of t
three quantitiesv2 ~the square of the phase velocity!, w2

~convective intensity!, and the Rayleigh numberr . In Ref.
@45# it has been shown that such pairwise linear relatio
result fromany truncation of the concentration field that
limited to only one linear and one nonlinear mode. Clea
these pairwise linear relations betweenv2, w2, and r are
incompatible with the topology of a backwards Hopf bifu
cation followed by a saddle node bifurcation into a branch
stable strongly nonlinear TWs. Thus our incorporation o
second linear modeU2 and its nonlinear partner modeV2
can be seen as a first nontrivial step in a~systematic! exten-
sion that goes beyond earlier models@36,37,24,43#.

Up to now, no few-mode model has described the bif
cation topology of TWs adequately: The problem was not
much the backwards Hopf bifurcation but rather the tran
tion to strongly nonlinear convection, the saddle node,
finally the merging of the TW solution branch with the upp
SOC solution branch. This failure of the earlier approxim
tions is due to an insufficient representation of the conc
tration field: It has not been truncated directly but rather
combinationz5C2cT with the temperature field has bee
introduced in order to fulfill the impermeable boundary co
dition exactly. However, when using the combined fieldz,
high mode representations in bothz as well as inT are
required as explained in@34#. By enforcing the impermeabil
ity of the plates onlyin the lateral averagewe avoid these
difficulties in our truncation~3.12!.

As an aside we mention that within another minimal a
proach Knobloch and Moore@21# have deduced a model fo
free slip permeable boundary conditions. They aimed a
correct, analytical representation of the primary bifurcat
and the involved modes which is possible for idealiz
boundary conditions. However, their model does not sh
TWs comparable with those seen in experiments and rel
simulations.

IV. RESULTS

Here, we elucidate the SOC, TW, and SW solutions
our model.

A. Stationary convection

1. Bifurcation properties of SOC states

In the case of SOC all time derivatives in Eq.~3.16! van-
ish so thatXiYiU1iU2 holds in the complex plane for th
amplitudes of the laterally varying modes. Without loss
generality we may therefore choose all modes to be r
-

r
n
e
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After elimination of the temperature and concentrati
modes the bifurcation diagramr SOC(X

2) can be calculated a

r SOC~X2!5
11X2

11
11

5
a

c

L

~11X2!F11
25

99
aS X

L D 2G
11

185

36
aS X

L D 2

1
625

648
a2S X

L D 4

~4.1a!

X@L
;

11X2

11
72

125S Lc

X2 D ~11X2!

. ~4.1b!

The relation~4.1! betweenr and X2 can be inverted, e.g.
graphically to obtain the standard bifurcation diagram
say, X2 vs r . The stationary stability thresholdr stat
5r SOC(X50) of the quiescent heat conducting state then

r stat5
1

11
11

5
a

c

L

.
1

111.527
c

L

. ~4.2!

It agrees quite well with the resultr stat.(111.538c/L)21 of
Galerkin approximations@43,41# that fulfill the concentration
boundary condition exactly.

As a first SOC property we can determine the type of
stationary bifurcation out of the quiescent heat conduct
state. For Soret couplings smaller than

cSOC
t 52

4

43a2

3
L3

11S 557

774aDL1S 68

129
aDL21S 32

215a2DL3

~4.3!

a subcritical bifurcation is observed:]r /]X2,0. The scaling
of cSOC

t with L3 agrees with earlier free slip@23# and no slip
predictions@25#. For subcritical bifurcations the saddle nod
is found at

r SOC
s 511

12

5
A2

5
A2Lc1O~Lc! ~4.4a!

.111.518A2Lc, ~4.4b!

in good agreement with the numerically determined res
r SOC

s .111.636A2Lc † @34# Eq. ~4.1!‡.
Equation~4.1b! shows that for convective amplitudesX

@L the Rayleigh number corresponding to a certain am
tude squareX2 deviates from that of the pure fluidr c50
511X2 only by terms}Lc. This means that for convectiv
amplitudesX2@Lucu the bifurcation diagrams of a mixtur
are the same as for a pure fluid. This equality reflects the
that strong convective mixing in conjunction with diffusio
equilibrates the concentration in the whole fluid with t
exception of narrow boundary layers so that it does not
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fluence the bifurcation behavior any more: The stronger
mixing the smaller the deviation from the pure fluid case

2. Fields

In order to reconstruct the fields and with them the or
parameters such as the Nusselt numberN and the concentra
tion varianceM , Eq. ~2.2!, we need the mode amplitudes

Y5
rX

11X2
, ~4.5a!

Z5
rX2

11X2
, ~4.5b!

V1522rF SOCS X

L D 2F11
25

216
aS X

L D 2G , ~4.5c!

V252
1

4
rF SOCS X

L D 2F12
25

18
aS X

L D 2G , ~4.5d!

U1522rF SOCS X

L D F11
5

12
aS X

L D 2G , ~4.5e!

U252
2

5
rF SOCS X

L D F12
25

18
aS X

L D 2G ~4.5f!

in the SOC fixed points. Here, we have introduced the qu
tity

FSOC5F11
185

36
aS X

L D 2

1
625

648
a2S X

L D 4G21

~4.5g!

for notational convenience. The square ofM is given by

MSOC
2 5F113.905S X

L D 2

12.224S X

L D 4

10.3040S X

L D 6

10.002 072S X

L D 8G
3F113.566S X

L D 2

10.4645S X

L D 4G22

~4.6!

and the Nusselt number by

NSOC511
25

18

X2

11X2
. ~4.7!

3. Comparison with numerical results

Using these formulas we can compare the results of
model with ‘‘exact’’ ones obtained by a MMG calculatio
@34#. This is done in Fig. 2 with the bifurcation diagrams
N andM . Since the Nusselt number@Fig. 2~a!# is determined
by the well described temperature field the Nusselt num
of the model deviates from the ‘‘exact’’ one maximally b
1% ~at r 51.6). The variance of the concentration fieldM in
Fig. 2~b! shows that also the concentration field is appro
mated reasonably well: the strong mixing in stable SO
with large velocity amplitudes~upper branch ofN and lower
e

r

n-

e

er

-
s

branch ofM ) leading to nearly equilibrated concentratio
distribution and nearly vanishingM is reproduced with a
relative error of about 15%. Since with the special mo
selection in the concentration field the model was co
structed to describe strongly nonlinear convection rather t
weakly nonlinear states it is not surprising thatM in the
unstable SOCs is reproduced only with an accuracy of ab
20% atr 51.6.

Beyond these global order parameters we may also
cuss the spatial variations of the concentration field. In Fig
we compare the SOC concentration field structure obtai
from our model with the ‘‘exact’’ one from a MMG scheme
To that end we show vertical~right column! and horizontal
~left column! profiles. Of course, the model cannot descri
the narrow concentration peaks in the lateral direction wh
are due to the strong boundary layer phenomena cause
the smallness of the ratioL/wmax5O(0.001). Nevertheless
the model predicts that the concentration vanishes nearly
over the convection cell. Also in the vertical profile we see
good agreement when keeping in mind that the combina
of only two modes, namelyc02 andc04, can provide only a
very rough approximation to a boundary layer.

The quality of the approximation of the concentration c
also be discussed by its zeroth lateral Fourier mode.
model predicts

C0~z!52
c

5Fz2
1

p (
n51

2

~21!n11
sinn~2pz!

n G1OS L

XD 2

.

~4.8!

FIG. 2. SOC bifurcation diagrams of Nusselt numberN ~a! and
concentration varianceM ~b! vs reduced Rayleigh numberr . Exact
~model! results are shown by dotted~solid! lines.

FIG. 3. Lateral~left column! and vertical~right column! con-
centration profiles of a TW with frequencyv52.75 ~a! and of a
SOC~b! at a Rayleigh number ofr 51.82. The two line types com
pare model~solid lines! and ‘‘exact’’ results~dotted lines!. Param-
eters areL50.01,s510, andc520.25.
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57 4257MODEL FOR CONVECTION IN BINARY LIQUIDS
In the ‘‘exact’’ results@18,34#, C0(z) is nearly zero in the
bulk of the fluid outside the boundary layers near the pla
It is interesting to note that an extension of the series in
above expression ton5` would yield

1

p (
n51

`

~21!n11
sinn~2pz!

n
5

1

p

2pz

2
5z ~4.9!

for values ofzP] 20.5,0.5@ so that the linear termz in the
square brackets of Eq.~4.8! is completely canceled. Thus th
exact result—C0(z)[0 in the limit L→0—is reproduced in
an optimal way, namely, by giving the exact results for tho
modes that the model contains. A significantly improved
scription is possible only by using many more modes
cause the contribution from higher modes in Eq.~4.9! de-
crease only}1/n.

To summarize: stationary convection in binary liqu
mixtures is described for negative as well as for positivec in
a semiquantitative way by our model. Beyond topologi
details of the bifurcation diagrams even the peculiar spa
structures of the concentration field can be explained.

B. Traveling wave convection

1. Bifurcation and scaling properties

For the TW fixed points of the model~3.16! with a fre-
quencyv we have to assume time dependences}eivt of the
complex modesX, Y, U1, andU2 because they are the am
plitudes of a lateral variation}e2 ikx. So, positive frequen-
cies correspond for positive wave numbersk to TWs travel-
ing to the right. The zeroth lateral modesZ, V1, andV2 are
time independent in TWs. We separate the time depende
eivt of the complex amplitude vectors by

@X~ t !,Y~ t !,U1~ t !,U2~ t !#5@X,Y,U1 ,U2#eivt ~4.10!

and use henceforth the same symbols for the tim
independent prefactors. Then, by choosing the temp
phase,X can be taken as real whileY,U1 ,U2PC. In addi-
tion, Z,V1 ,V2PR. Inserting these solutionAnsätze into Eq.
~3.16! yields in orderO(L0) the relations

2
1

c
5

3

2
a

s̃

s̃11

11V21X2

V2

3

11
175

108
aS X

V D 2

11
1025

144
aS X

V D 2

1
15 625

10 368
a2S X

V D 4 ,

~4.11a!

r TW511V21X2 ~4.11b!

between frequencyv, amplitudeX, and control paramete
r TW of the TW solution. Here,

V5vt ~4.11c!

has been introduced witht51/2p2, Eq. ~3.14e!, being the
intrinsic time scale of the model~3.16!.
s.
e

e
-
-

l
al

ce

-
al

Neglecting termsO(L) in Eq. ~4.11! causes the TW to
merge atv50 with the SOC solution branch of the pur
fluid instead of with the SOC solution~4.1! of the mixture.
Canceling the terms ofO(L2) is allowed for all states with
L!V or L!X. This condition is fulfilled for all separation
ratios away from the codimension-2~CT! point where Hopf
bifurcationand SOC-TW merging fall together and none o
the relationsL!V or L!X can be fulfilled. The TW fixed
points of our model can be calculated analytically witho
limiting to the orderO(L0). Since the formulas are length
they are not presented here. But they have been used fo
calculation of the phase diagram in Fig. 9 including the C
point.

From Eq.~4.11a! one observes first of all that TWs exis
only for negative Soret couplingsc,0. This is in line
with the absence of TWs forc.0 in numerical simula-
tions—TWs forc.0 seen in the model of Ref.@24# result
from low-order truncation. Relation~4.11b! allows us to de-
termine the frequencyV of a TW with a given velocity
amplitudeX:

r TW~X2!511X21V2~X2!

5r c50~X2!1V2~X2! ~4.12a!

or

v2~X2!

vH
2

5
r TW~X2!2r c50~X2!

r osc21
. ~4.12b!

Thus the model predicts that the square of the frequencV
of a TW state with a velocity amplitudeX is the distance in
the control parameterr between the TW under consideratio
and the state of the pure fluid with the same velocity am
tude. Hence the TW frequency is a direct measure of
distance of the system from the pure fluid, i.e., the influen
of the concentration.

Another equivalent interpretation of Eq.~4.11b! is that for
a given fixedr the squared frequency of a TW with velocit
amplitudeXTW ,

V25Xc50
2 2XTW

2 , ~4.13!

is given by the difference between the pure fluid flow inte
sity, Xc50

2 5r 21, and the flow intensityXTW
2 of the TW in

question. ThusV2 measures also the ‘‘vertical’’ distance i
the bifurcation diagrams ofX2 vs r between thec50 pure
fluid SOC solution and the TW solution in the mixture.

Equation~4.12a! has an explicit dependence on the So
coupling strengthc sinceV varies between 0 and the scale
Hopf frequencyVH . Thisc dependence is canceled by sca
ing Eq.~4.12a! with the Hopf frequency so that the left han
side of Eq.~4.12b! varies for allc between 0 and 1. Thus
Eq. ~4.12b! is a universal scaling relation for TW frequencie
resulting from our model for smallL. In Fig. 4 this predic-
tion of the model is compared with numerical results forc
P@20.65,20.25# obtained by a finite difference scheme a
a MMG scheme@20#. For all these Soret couplings the sca
ing relation is confirmed by the numerical results. Only
the case of small frequencies are deviations observed. T
are due to the fact that TWs with small frequencies do
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approach the SOC states of the pure fluid as implied by
~4.11b! but rather the SOC states of the mixture. These t
stationary states differ in the Rayleigh numberr by O(L)
according to Eq.~4.1b! so that deviations of the orde
O(AL).0.1 can be expected on the ordinate of Fig. 4. T
deviation from the scaling relation becomes more obvio
for weaker Soret couplings like, e.g.,c520.1, as shown by
the filled triangles. These states have been computed
MMG scheme@34#. For small Soret couplings the mergin
point of the SOC and TW branches is in a regime of sm
velocity amplitudes, i.e., in that part of the bifurcation di
gram where the differences between SOC states of pure
binary mixed fluids become more and more evident.

It should be noticed that the scaling relation holds
stable as well as for unstable TWs. Furthermore, it is in
pendent of the bifurcation topology, i.e., it applies to t
form shown in the inset of Fig. 4, i.e., forc*20.4 as well
as to a topology with a bistability of slow and fast TW
~c&20.4! @20#.

Bifurcation properties are best discussed by introduc
the ratio

x5
wmax

v
5

5p

8

uXu
V

~4.14!

of convective and phase velocity of the TW state. Then,
Rayleigh numberr TW(x2) of a TW with a velocity ratiox
can be written in orderO(L0) as

FIG. 4. Universal scaling relation connecting TW convecti
velocity amplitudeX}wmax with its frequencyv. The model pre-
diction ~4.12b! is the identity~solid line!. Numerical, finite differ-
ence ~MAC! data are shown by open symbols forcP@20.25,
20.65# and MMG data by filled symbols (c520.1). The symbols
cover in each case the whole bifurcation branch, i.e., stable as
as unstable TW states. The inset serves as a schematic explan
of the scaling relation.L ands were fixed to values of 0.01 and 10
respectively. But the scaling relation should not depend on them
long ass*1 andL!1.
q.
o

s
s

a

ll

nd

r
-

g

e

r TW~x2!5
1

11
27p2

256
c

s̃

11s̃

F11S 64

25p2Dx2G S 11
7

24
x2D

11
41

32
x21

25

512
x4

.

~4.15!

The oscillatory stability threshold of the basic state follow
for x50 as

r osc5r TW~0!5
1

11S 27p2

256 D S s̃

~11s̃ !
D c

~4.16a!

and Eq.~4.11b! yields the Hopf frequency

vH
2 5

2S 27p6

64 Dc

~11s̃ !

s̃
1S 27p2

256 Dc

.
2405.6c

~11s̃ !

s̃
11.041c

.

~4.16b!

The calculation of the CT point requires the consideration
the Lewis number dependence. If this is done one obtain

cCT52
1600

459p2

s̃11

s̃1
55

102
L

L2 ~4.17!

as the separation ratio at the CT point for given Lewis a
Prandtl number and fixed wave numberk5p. In ethanol-
water mixtures withL50.01 ands510, this yieldscCT5
23.71431025 which is in very good agreement with th
numerically@25# determined value of23.52631025.

The other limit inx, namely,x→` or v→0, gives the
Rayleigh number of the SOC-TW transition:

r * 5 lim
x→`

r TW~x2!5
1

11
1008

625 S s̃

~11s̃ !
D c

. ~4.18!

However, one should keep in mind that the SOC-TW tran
tion at r * with the transfer of stability from a SOC to a TW
when reducingr is related to an instability of the SOC con
centration boundary layer@19#. These boundary layers ar
caused by the smallness of the Lewis numberL, a limit
which is not systematically incorporated in the model und
consideration. The model’s main objective is a description
strongly nonlinear TW convection which has for finite TW
frequencies a definite limit for smallL. Thus one should no
expect a correct reproduction of the Lewis number dep
dence of the SOC-TW transition from a model with mod
that do not resolve the boundary layer structure in det
However, the dependence on the two other fluid parame
namely, separation ratioc and Prandtl numbers, is given in
a qualitatively correct way: strong increase ofr * with stron-
ger negative Soret coupling and saturation with increasins

ell
tion

as



ei
ti

ug
ve
r

d

te
tr

in

w
r

gly
us

al
e-

ce
ll

of

en
d

een
de

lly

lex
-
e-
to

n
o

the
are

ap-
the

n-
a

57 4259MODEL FOR CONVECTION IN BINARY LIQUIDS
as can be seen by comparing the formula~4.18! with the
numerical results in Figs. 9~b! and 15~b! of Ref. @18#. The
SOC-TW transition points which have been plotted ther
are also affected with a certain error bar since the spa
resolution of the numerical method used was not fine eno
to capture the whole boundary layer phenomena. Howe
their qualitative fluid parameter dependence has to be
garded as correct.

The analytical form~4.15! for the TW bifurcation dia-
gram allows a simple determination of the TW saddle no
bifurcation, namely, as the minimum ofr TW(x2). It is given
by

r TW
s .r TW~2.8687!.

1

110.6567S s̃

~11s̃ !
D c

. ~4.19!

2. Fields

The calculation of Nusselt numberN, concentration vari-
anceM , and concentration contrast between the two pla
requires the computation of the temperature and concen
tion field in the TW fixed points. Their mode amplitudes
the TW fixed points can be expressed by

V152
32

5p2
x2rF TWS 11

5

192
x2D ,

V252
4

p2
x2rF TWS 12

1

16
x2D ,

U152
X

VS L

2V
2 i D tFTWS 11

15

32
x2D , ~4.20a!

U252
X

VS 5L

2V
2 i D tFTWS 12

1

16
x2D ,

Y5X~12 iV!,

Z5X2,

where we have introduced the quantity

FTW5S 11
41

32
x21

25

512
x4D 21

. ~4.20b!

In Eq. ~4.20a! all quantities except the real parts ofU1 and
U2 are evaluated in orderL0 with X andV taken from Eq.
~4.11!.

3. Small amplitude expansions

Before discussing the order parameters themselves
should like to show that theycannotbe expanded as powe
series in the distance

e5
r TW~x2!2r osc

r osc
~4.21!
n
al
h
r,
e-

e

s
a-

e

from the onset of convection up to values where stron
nonlinear TW convection is observed. To see this, let
rewrite Eq.~4.21! by using Eq.~4.15! to display the relation
betweene andx2 explicitly,

e5
a1x2~11a2x2!

11b1x21b2x4
5

a1x2~11a2x2!

~12x2/b18!~12x2/b28!
.

~4.22!

Here, a1,2, b1,2, and b1,28 are amplitude-independent re
numbers. Note, in particular, that the functional relation b
tween control parametere and reduced order parameterx
5wmax/v is given by a rational function. A similar relation
has also been found from a fit to MMG and finite differen
numerical results@20#. The radius of convergence of a sma
amplitude expansion of Eq.~4.22! in powers ofx2 is given
by

xc
25 min

i 51,2
ubi8u.

This quantity depends onc and s so that for all negative
values ofc @TWs are observed only forc,0 according to
Eq. ~4.11a!#

xc
2<

328

25 S 12A1481

1681D .0.8052,

which is the absolute value of that node ofFTW
21(x2), Eq.

~4.20b!, with the smallest absolute value. Then, the radius
convergence is calculated in the variablewmax/v as

S wmax

v D
c

5xc.0.8973, ~4.23!

i.e., near that point in the bifurcation diagram which has be
identified in @20# as the transition between weakly an
strongly nonlinear convection. This point, namely,wmax.v,
where areas of closed streamlines first occur, has also b
identified as the radius of convergence for a small amplitu
power series expansion of different order parameters~see
Ref. @20#!.

Thus our model supports the notion that experimenta
observed TW convection in binary liquid mixturescannotbe
described by weakly nonlinear models as, e.g., comp
Ginzburg-Landau~GL! amplitude equations including vari
ousad hocquintic extensions that have been proposed. B
ing used out of their validity range they cannot be trusted
reproduce, e.g., the relations between frequencyv, mixing
M , flow intensitywmax

2 or Nusselt numberN, and the thermal
driving r . Typically already the simpler relation betwee
wmax

2 or N and r is wrong on the upper TW branch—not t
mention the more sensitive relations betweenv, M , and r .
Also results for LTWs based on this approach@28# have to
be questioned: The spatiotemporal field properties under
envelope being closely related to those in extended TWs
not captured properly. The main drawback of these GL
proaches is the insufficient representation of the role of
concentration field in these strongly nonlinear states.

A first step towards a better incorporation of the conce
tration field into the GL framework was the introduction of
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long wavelength concentration mode with characteristic ti
scale}L by Riecke@29#. The approximation is thatL is of
the same order as the distance from onset which, howe
does not apply to all experimental LTWs. Additionally, tho
parameters (h1 andh3 in Ref. @29#! that could immediately
lead in extended TW states without large-scale lateral va
tion to a finite mean concentration mode~possibly at the
expense of stabilizing terms of unphysical fifth order! have
been dropped in the LTW calculations@29#. While this ap-
proach in its present form does not seem to generate
spatiotemporal field structure of TWs under the LTW env
lope it is a promising step forward. Incorporation of impe
meable boundary conditions and separation of diffusiveL)
and critical (e) time scales and thus the incorporation of
additional concentration mode seems necessary to guara
the aforementioned relations betweenv, M , N, andr .

4. Comparison with numerical results

For a quantitative comparison with numerical MMG r
sults @34# we present in Fig. 5 bifurcation diagrams of th
square of convective amplitude~a!, the Nusselt number~b!,
the TW frequency~d!, and the concentration variance as
function of the frequency~c!. They show that all character
istic features of the TW bifurcation scenario are captured
the model: subcritical Hopf bifurcation, saddle node bifurc
tion, stable upper branch of strongly nonlinear TWs, merg
of TWs and SOCs atv50 in the strongly nonlinear regime
and drastic reduction of the concentration contrast with
creasing frequency. As an aside we mention that a mo
using the same number of modes, but numerically de
mined ones, is similarly successful@39#. This has to be con-
trasted withearlier analytical few-mode approximations fo
TWs in binary mixtures which reproduced only the bac
wards Hopf bifurcation.

The linear and weakly nonlinear bifurcation propertie
i.e., the onset of convection and the initial slope, are mode
by our approximation with high accuracy. The characteris
bump in the ‘‘exact’’ bifurcation diagrams of Fig. 5~a!, 5~b!,

FIG. 5. TW bifurcation diagrams of the square of the convect
velocity amplitudewmax

2 ~a!, the Nusselt numberN ~b!, and the
frequencyv ~d!, each vsr . In ~c! the reduced concentration var
anceM is plotted vs frequency.
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and 5~d! that occurs at the transitionx.1 from weakly to
strongly nonlinear convection is not reproduced by o
model. The absence of this fine structure in the bifurcat
diagram of our model is due to neglecting Fourier mod
higher than the first lateral one in the concentration. We h
explicitly checked this by determining the bifurcation di
grams for fields restricted to their zeroth and first lateral F
rier modes but with full vertical resolution. This is also cle
from studying the changes in the concentration at that po
Starting at the onset, only harmonic lateral variation is o
served up to a velocity ratiox5wmax/v.1. For largerx, the
harmonic profile gets more and more deformed by the occ
rence of plateaus~@20#, Fig. 2!. They reflect homogenized
concentration distributions in the regions of closed strea
lines. The description of this equilibration requires high
lateral Fourier modes.

The next characteristic point is the position of the T
saddle node bifurcation: As a consequence of the droppin
higher lateral Fourier modes and the above discussed im
cations, the saddle lies at too high frequencies or too
amplitudes, i.e., in a too weakly nonlinear part of the bifu
cation diagram. On the upper~lower! branch of theN vs r
(v vs r ) curve the TW frequeny of our model has too hig
values@Fig. 5~d!# and the zero frequency TW end point atr *
lies above the ‘‘exact’’ one. This is caused by the fact th
slow TWs are boundary layer dominated. This feature is
fully reflected in our model.

Since the concentration changes significantly with f
quency it is appropriate to discuss the relation between c
centration varianceM and TW frequencyv @Fig. 5~c!# rather
than the relation betweenM andr , thereby eliminating partly
the errors in ourv vs r curve of Fig. 5~d!. The prediction of
the model for M (v) agrees very well with the ‘‘exact’’
curve in Fig. 5~c!. This is once more a hint that the conce
tration field is globally treated in an adequate manner. Ad
tionally, the relation betweenM andv is a second universal
c-independent, scaling relation when scaling the freque
with its value at the Hopf bifurcation. This is done in Fi
5~b! of Ref. @20# with numerical data.

The spatial variation of the concentration field in a TW
shown in Fig. 3~a!. To measure the quality of the model w
compare its results with numerically obtained fields. As d
scribed above, it is convenient to select for this proced
two TWs with the same frequency but different Raylei
numbers. The ‘‘effective’’ value of the harmonic lateral pr
file @left part of Fig. 3~a!# in the model corresponds well with
the ‘‘exact’’ plateaulike concentration distribution. In th
vertical profile@right part of Fig. 3~a!#, even a slight building
up of a plateau can be observed. Its mean height is appr
mated by the height of the lateral profile explaining the d
ferences in the heights of the vertical plateaus. The str
variation of the model concentration along the plates is
artifact of only approximately fulfilling the impermeability
of the plates.

In the actual TW states, the concentration at the plate
nearly constant so that also the contrast between them
nearly constant. Thus an appropriate quantity to compar
the laterally averaged concentration contrast at the
plates. Our model predicts that

e
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512
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D ~4.24!

——→
v→0

2
c

5

depends only on the velocity ratiowmax/v. This relation is
checked in Fig. 6 by comparing the model prediction w
numerical finite differences and MMG results. The two lim
its, namely, the basic state withwmax→0 and the stationary
statev→0 (x→`) are reproduced very well by our approx
mation. The transition between them takes place forx
P@1,10#.

C. Standing wave convection

Besides SOC and TW convection there exists a third t
of convection that bifurcates out of the ground state: It
standing wave convection occurring at a Hopf bifurcati
simultaneously with TW convection. As long as linear sta
are considered SWs are just a linear superposition of a r
and left traveling wave. The selection of the nonlinear p
tern leading to either a TW or SW is governed by a gene
principle @46#: stable solutions exist directly at a Hopf bifu
cation only if both SWand TW bifurcate supercritically.
Then, the pattern with the largest initial slope of the amp
tude is selected. Using this principle and the numerica
obtained initial slopes of@25# it can be inferred that in al
liquid mixtures TWs are stable when bifurcating supercr
cally, i.e., forc larger than the tricritical valuecTW

t }2L2.
Thus SWs cannot be observed directly in experiments w
liquid mixtures. Their investigation requires stabilizing th
unstable fixed point and possibly destabilizing the station
fixed point having the same symmetries. Nevertheless, S

FIG. 6. Concentration contrast in a TW state between the pl
as a function of the velocity ratiox5wmax/v from the model~solid
line! and from numerical computations~finite differences: open
circles; many-mode Galerkin: filled lozenges!. Parameters areL
50.01,s510, andc520.25.
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represent a generic convection pattern in binary fluid m
tures. They occur, in particular, as transients in the evolut
of a strongly nonlinear TW out of the unstable, supercr
cally heated ground state.

Up to now, only weakly nonlinear properties as the init
slope of SWs have been discussed for binary fluid mixtu
with experimentally realistic, i.e., impermeable bounda
conditions. Since our model~3.16! has described both SOC
and TWs in an adequate way we think it is worthwhile
equally investigate the bifurcation properties and time dep
dence of SWs in its framework. The computation of the S
fixed points using the full field equations is a problem whi
has not been solved so far.

1. Solution procedure

In SWs the phases of the complex modesX, Y, U1, and
U2 are time independent so that the time derivative is para
to the mode itself, e.g.,XiẊ. Via the model~3.16! this leads
to XiYiU1iU2, i.e., all modes may be chosen real witho
restriction of generality.

In the linear modesX, Y, U1, andU2 only odd multiples
of the basic frequencyv of the SW occur whereas in th
nonlinear modesZ, V1, and V2 only even multiples exist.
This allows us to expand the time dependence of the m
amplitudes in the following way:

@X~ t !,Y~ t !,U1~ t !,U2~ t !#

5 (
n51,3,5, . . .

@X~n!,Y~n!,U1
~n! ,U2

~n!#einvt1c.c., ~4.25a!

@Z~ t !,V1~ t !,V2~ t !#5 (
n50,2,4, . . .

@Z~n!,V1
~n! ,V2

~n!#einvt1c.c.

~4.25b!

These series can be inserted in the model~3.16!, the mode
amplitudeX(1) can be chosen real by the arbitrariness o
common phase in time, and the resulting nonlinear system

es

FIG. 7. Complete bifurcation diagram of the Nusselt numb
~time averaged for SWs! of all types of convection connected wit
the ground by a primary bifurcation: stationary convection~SOC!,
traveling ~TW!, and standing~SW! waves. The inset shows th
frequency bifurcation diagrams of TWs and SWs.
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algebraic equations can be solved in the unknown varia
$v,X(1),ReX(3),Im X(3), . . . %.

2. Bifurcation diagram and temporal behavior

In Fig. 7 a bifurcation diagram of the time averaged Nu
selt number in SWs~dotted line! is given for the standard
ethanol-water fluid parameters together with the already
cussed diagrams for SOCs~solid line! and TWs ~dashed
line!. The inset shows the frequency of SW and TW. At t
oscillatory onset of convection (r osc.1.345) both TWs and
SWs bifurcate subcritically as has been predicted by@25#.
With decreasing frequency a weak maximum in the ti
averaged Nusselt number of the SWs is observed (r .1.19)
before a saddle node occurs atr .1.12. Then, it increase
with further decreasing frequency up to an absolute ma
mum of about 1.1 before approaching the SOC branch.
SW branch has to be connected with the SOC branch sin
SW with frequency 0 is a SOC. The exact merging point
SWs and SOCs cannot be determined by means of Eq.~4.25!
since with decreasing frequency the time dependence o
modes gets more and more anharmonic so that in the Fo
Ansatz~4.25! more and more modes have to be include
The evolution of this anharmonicity with decreasing fr
quency is indicated in Fig. 8 where the time dependence
the velocity field modeX within one period of oscillation is
plotted.

For the computation of the SWs shown in Fig. 7 and F
8 temporal Fourier modes up to 10v have been used an
compared with states calculated with modes up to 20v. Be-
tween vH and v50.4 the results of both time resolution
agree in Nusselt and Rayleigh number better than 1%
fixed frequency. However, states withv,0.4 shown in Fig.
7 and Fig. 8 may be erroneous.

D. Phase diagram

The dependence of the bifurcation topology of SOCs a
TWs on the separation ratio is summarized in the phase
gram of Fig. 9 which can be compared directly with t
‘‘exact’’ results described in Fig. 7 of Ref.@34#. The charac-
teristic points of the SOC bifurcation diagrams, namely,
stationary onsetr stat and the saddle noder SOC

s , agree very

FIG. 8. Time dependence of the velocity field amplitudeX over
one oscillation period in SWs with four different frequencies. P
rameters areL50.01,s510, andc520.25.
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well with the ‘‘exact’’ results. The same holds without re
striction for the oscillatory onset of convectionr osc and the
TW saddle node bifurcationr TW

s . The c dependence of the
SOC-TW transition pointr * , i.e., the strong increase wit
increasing the negative coupling strength, is only reprodu
qualitatively: r * (c) runs too flat in the interval@20.3,
20.01# so that the point wherer * [r osc is given asc.
20.014 instead of20.14. This is due to the neglect of th
influence of boundary layers in the concentration field. T
same is true for the merging ofr * with the TW saddle node
i.e., that separation ratio beyond which no stable upper
branch can be observed:c.20.001 instead of20.008.
Nevertheless, the model predicts ac interval where the TW
saddle node can be seen below the SOC saddle node,
has been discussed in the framework of the ‘‘exact’’ resu
in Fig. 5~d! of Ref. @34#. Furthermore, the tricritical
SOC-TW transition†@34#, Fig. 5~e!‡ at which the TW branch
merges vertically with the SOC branch, is predicted to ta
place on the unstable SOC branch, too. For more negativc
a TW saddle appears. Then, stabilization of TWs at t
saddle and subsequent destabilization, probably towar
modulated TWs, occurs before the now unstable TWs end
the unstable lower SOC branch~ @34#, Fig. 6!.

V. CONCLUSION

We have investigated roll-like 2D convection in bina
liquid mixtures with negative Soret coupling. Then, thr
types of extended convective states occur which are c
nected via a primary bifurcation to the quiescent heat c
ducting state: stationary convection~SOC!, traveling waves
~TW!, and standing waves~SW!. One objective of our pape
was to derive a model describing the combined SOC-T
bifurcation topology and the characteristic spatiotempo
behavior of the concentration seen in numerical simulati
and experiments. The most important TW bifurcation fe
tures are~i! a backwards Hopf bifurcation,~ii ! a saddle node
giving rise to stable TWs, and~iii ! the merging of the TW
solution branch with the SOC branch. Along the TW bran

-

FIG. 9. Phase diagram in mixtures withL50.01 ands510 in a
double logarithmical plotr 21 vs c. SOC properties are shown b
dotted lines~saddle noder SOC

s : open triangles up; bifurcationr stat:
open triangles down!. Solid lines correspond to TWs~Hopf bifur-
cation r osc: filled squares; SOC-TW transitionr * : open lozenges;
saddle noder TW

s : filled circles!. Stable TWs exist within the shade
area.
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~iv! both the phase velocity and the variance of the conc
tration field decrease monotonically in the same way.

Model. To derive such a model we started with an a
proximation for velocity and temperature fields similar
that in the standard Lorenz model@42#. We used, however, a
more realistic improved version with a no slip velocity fiel
To select and motivate an appropriate representation of
concentration field we relied on a systematic analysis of
concentration balance equations: the structure of the fi
components occurring in a symmetry decomposition was
vestigated@39#, a separation into lateral mean fields and d
viations thereof was used, and the effect of the Soret c
pling in the bulk of the fluid layer and at the plates w
quantitatively assessed for liquid mixture parameters@34#.
The concentration field truncation derived from these inv
tigations consists of two linear and two nonlinear mod
The resulting Galerkin model can be looked upon as minim
for the description of convection in binary liquid mixture
since it contains the Lorenz model, i.e., the simplest trun
tion for the pure fluid, and a minimal extension for mixture
Previous extensions@36,37,24,43# of the Lorenz model were
too simple and therefore failed in reproducing strongly no
linear properties such as, e.g., the TW saddle node.
present model is the first analytically manageable appr
mation showing the above stated four characteristic pro
ties ~i!–~iv!.

Stationary convection.Good agreement in the propertie
of the SOC branch was found: stability threshold, fluid p
rameters at the tricritical bifurcation, and position of t
saddle node bifurcation. Furthermore, the approach of
SOC branch of a binary mixture to that of a pure fluid cou
be discussed in the limit of large convective amplitud
Even the spatial variations of the concentration field which
boundary layer dominated in SOCs are reproduced in a
allowing good quantitative agreement in the concentrat
variance. This holds for both negative and positivec.

Traveling waves.The main results have to be seen in t
description of TWs. Here, the model shows that TWs oc
only for negative Soret couplings in agreement with all n
merical simulations and experiments. It predicts that the T
frequency is a direct measure for the ‘‘distance’’ of the s
tem from the pure fluid, i.e., for the influence of the conce
tration field. The ‘‘distance’’ can directly be read off th
bifurcation diagrams of flow intensity versus Rayleigh nu
ber in two equivalent geometric ways. This insight yielded
universal scaling relation between phase velocity, convec
velocity, and degree of mixing of a TW which was co
firmed in an impressive manner by different numerical me
ko
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ods analyzing the full field equations. The derived scal
relation holds for all TW states, stable or unstable indep
dent of the bifurcation topology@20#.

Linear convective properties are reproduced by the mo
with high accuracy: oscillatory stability threshold, Hopf fre
quency, and CT point. The same holds for the Rayleigh nu
ber at the saddle node bifurcation. Our model shows als
SOC-TW transition to SOCs at the upper stationary sta
branch and its dependence on the separation ratio and Pr
number is qualitatively correct. However, its Lewis numb
dependence is unphysical since the concentration boun
layers which are responsible for the SOC-TW transition@19#
are represented in the model only in an incomplete w
Otherwise, the spatial structure of the concentration field
TWs—frequency dependence of the concentration cont
between the two plates and building up of plateaus~in the
vertical direction!—is modeled in a quantitatively correc
way by our truncation.

The model allows us to pinpoint the breakdown of
expansion of the TW solution as a power series in the d
tance from the onset of convection up to values where sta
strongly nonlinear TWs are observed in experiments. T
related radius of convergence of the model is close to
numerically determined one@20# marking the transition from
weakly to strongly nonlinear states@20#. Hence complex
Ginzburg-Landau equations should not be expected to y
reliable quantitative results for localized and extended T
states.

The results of the stationary and traveling states
brought together in a phase diagram whose good agreem
with numerical simulations@34# can directly be inferred.
Only in the SOC-TW transition are remarkable deviatio
observed.

Standing waves.Our model gives insights into nonlinea
SW solutions in binary mixtures. It confirms earlier weak
nonlinear results@46,25# like the initial slope. In addition, it
becomes possible to follow the SW branch, which is eve
where unstable, up to regions with strongly nonlinear os
lating amplitudes. A numerical determination of the unsta
SW solution of the full field equations is still lacking and a
observation of these states, say, by a control process i
experimental challenge.
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Büchel are gratefully acknowledged.
.
A

@1# M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys.65, 851
~1993!.

@2# R. W. Walden, P. Kolodner, A. Passner, and C. M. Sur
Phys. Rev. Lett.55, 496 ~1985!.

@3# D. R. Ohlsen, S. Y. Yamamoto, C. M. Surko, and P. Kolodn
Phys. Rev. Lett.65, 1431~1990!.

@4# H. Touiri, J. K. Platten, and G. Chavepeyer, Eur. J. Mech
Fluids 15, 241 ~1996!.

@5# G. Ahlers and I. Rehberg, Phys. Rev. Lett.56, 1373~1986!.
,

,

@6# J. L. Liu and G. Ahlers, Phys. Rev. Lett.77, 3126 ~1996!;
Phys. Rev. E55, 6950~1997!.

@7# H. Gao and R. P. Behringer, Phys. Rev. A34, 697 ~1986!.
@8# E. Moses and V. Steinberg, Phys. Rev. Lett.60, 2030~1988!.
@9# K. D. Eaton, D. R. Ohlsen, S. Y. Yamamoto, C. M. Surko, W
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