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A minimal, analytically manageable Galerkin type model for convection in binary mixtures subject to
realistic boundary conditions is presented. The model elucidates and reproduces the typical bifurcation topol-
ogy of extended stationary and oscillatory convective states seen for negative Soret coupling: backwards
stationary and Hopf bifurcations, saddle node bifurcations to stable strongly nonlinear stationary and traveling
wave(TW) states, and merging of the TW solution branch with stationary states. Also unstable standing wave
solutions are obtained. A systematic analysis of the concentration balance for liquid mixture parameters has led
to a representation of the concentration field in terms of two linear and two nonlinear modes. This truncation
captures the important large-scale effects in the laterally averaged concentration field resulting from advective
and diffusive mixing. Also the fact that with increasing flow intensity along the TW solution branch the
frequency decreases monotonically in the same way as the mixing increases—the variance of the concentration
distribution decreases—is ensured and reproduced well. Universal scaling relations between flow intensity,
frequency, and variance of the concentration distribufidegree of mixing in a TW are predicted by the
model and have been confirmed by numerical solutions of the full equations. The validity of the model is
checked by comparison with numerical solutions of the full field equati®HB063-651X98)08804-1

PACS numbds): 47.20—k, 47.10+g, 03.40.Gc

I. INTRODUCTION ing of propagating rolls(iii) standing wave(SW) oscilla-
tions, and(iv) stationary squares. Besides these primary
A great deal of effort has recently been undertaken tcstates, there are close to onset of convection pulselike, spa-
investigate convection in binary fluid mixtures as an exampléially localized traveling waveLTW) states consisting of
for pattern formation far from equilibriuril]. This system only a few TW rolls, oscillating square patterf&l], cross-
provides an experimentally convenient deviRe-12] with a  roll structureg 32], and also(spiral) defect chao$33].
well established theoretical descriptidi3,14 allowing In the present paper the focus is on two-dimensi¢2B)
quantitative comparisons of theoretical investigatiphS—  spatially extended convective structures consisting of
29] with experiments. For a review and additional referencesstraight parallel rolls that occur at negative separation ratios
see [1,18]. Compared to convection in ordinary one- _q 6<y<0. For typical fluid parameters convection arises
component fluids the spatiotemporal properties are far morgja an oscillatory subcritical bifurcation. The emerging solu-
complex due to the influence of Soret sustained concentrgion pranch locates unstable TWs that are “weakly nonlin-
tion gradients. The evolution of the concentration field isear" only near the onset. These unstable waves become
govgrned by the interplgy_ of typically. strong nonlinear C.on'strongly nonlinear and anharmoni20,34] well before the
vective transport and mixing, weak dissipative solutal d'ffu'occurrence of a saddle node at which they are stabilized on

sion, and t_he Soret ef_fe§1,13,14. The latter is a source of an upper solution branch. Simultaneously, the TW propaga-
concentration fluctuations. It generates concentration gradlhOn speed slows down from its larae value at the Hoof bi-
ents in response to the externally applied temperature differ: P 9 P

ence and to local temperature gradients. The strength of tﬁgrcatlon thresh_old towards_ zero at the final trans!tmn 0
Soret coupling is measured by the dimensionless separatiohiedy overturning convectiofsOQ. There, the amplitude
ratio ¢ [1,13,14. of the.co.ncentratl'on wave vanishes since in the SOC state
The concentration field changes the convective dynamici€ fluid is well mixed to a mean concentration level except
via solutal buoyancy forces entering into the momentum ba/Within narrow boundary layers. This SOC state is somewhat
ance. In this way concentration gradients directly influencesimilar to the convective rolls in one-component fluids.
the flow which in turn changes and mixes the concentration. The bifurcation topology described above has been veri-
In binary liquids, this strongly nonlinear feedback is only fied by several experimental groufesg.,[3]; for additional
weakly damped by small diffusive homogenization so thatreferences sefd,18]). A detailed insight into the spatiotem-
the concentration field distribution shows significant anharporal variations of TW and SOC states along their upper
monic and boundary layer structures. It is, however, the exsolution branches and their parameter dependence provided
istence of the feedback loop that ultimately causes conveaiumerical simulations of Bartegt al.[15,18. A quantitative
tion in binary mixture to exhibit such a rich variety of description of the whole bifurcation brancH&®,34] includ-
patterns arising from stationary and oscillatpd@] instabili-  ing the lower branches that were unavailable to Baetkal.
ties: Depending on the parameters the hydrodynamic balanagas obtained recently with a multimode GalerKMMG)
equations show convective solutions that bifurcate out of th@xpansion including several hundred modes. The MMG pre-
quiescent conductive basic state in the form(ipfstraight, dictions agree very well20,34] with results from finite dif-
stationary, parallel rolls(ii) traveling wavegTWSs) consist- ference marker and celMAC) simulations of the full field
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equations supplemented by a control process which allowg of the lighter component confined between two perfectly
us to evaluate also unstable TW and SOC ste@8s heat conducting and impervious plates. This setup is exposed
Since the first observations of TWs, much theoretical ey, 5 vertical gravitational acceleratiap and to a vertical

search activity has been devoted to developing an undefsherature gradiemtT/d directed from top to bottom. The

: . fuid has a densityp which varies due to temperature and

[B;;%?egnlép(;?sgn :haltrehrir ;ivg'mie[;?l?;b'gsﬁg%ﬂ CsrgrS:t- concentration Yariationg governed by the Iine_ar thermal and
driven convection with permeable boundary conditionsSOlutal expansion coefficiens=—(1/p)(dp/JT) and f=
They found TW states only locally at the onset of convection— (1/p) (dp/ 9C), respectively. Its viscosity ig, the solutal
since for permeable conditions the onset of TW convection igliffusivity is D, and the thermal diffusivity isc. The ther-
tricritical. Linz et al. [24] implemented impermeable condi- modiffusion coefficientk; quantifies the Soret coupling
tions yielding a subcritical primary bifurcation to TWs. This which describes the change of concentration fluctuations due
observation is in agreement with small amplitude computato temperature gradients.
tions of Schef and Zimmermanr{25]. Both approaches, The vertical thermal diffusion time is used as the time
however, do not explain the stabilization of the TW branchscaled? x of the system and velocities are scaled syl.
via a saddle node bifurcation. Bensimenal. [19] consid- Temperatures are reduced by the temperature differafice
ered the case of weak Soret coupling by means of a sgnall-across the layer and concentration deviations from the mean
expansion treating the concentration field numerically. Theyconcentration by &/B8)AT. The scale for the pressure is
observed a stable TW branch and interpreted the TW-SO@iven by p«?/d?. Then, the balance equations for mass, mo-
transition as a boundary layer induced instability. Due to thementum, heat, and concentratifit3,14 read in Oberbeck-
expansion ing and due to the weak diffusion limit the ap- Boussinesq approximatidd0,18
plication range in fluid parameter space is rather nafi28y.

The detailed numerical analys§$5,18,20,34,3P eluci- 0=-V-u, (2.1a
dating the influence of the spatiotemporal behavior of the
concentration field on various properties of TW states, e.g.,

d3

on the variation of flow amplitude, frequency, and mixing %Y= ~(U-V)u=V/p+|—g|z +oV2Uu+Ro(T+C)e,,

p ’ q y7 g K
with heating rate have clearly shown that the success of a (2.1b
model description sensitively hinges upon the representation
of th_e concentration field. It has to capture the essence of the 8T=-V.Q=—V-[uT-VT], (2.19
spatiotemporal structures following from the combined ac-
tion of strong nonlinear advection and weak diffusion on the C=-V.J==V.[uC—-LV(C—yT)]. (2.10d

one hand and the generation of Soret induced concentration

currents by temperature gradients on the other hand. AMere, the currents of heat and concentrati@nand J, re-
model that reproduces with few degrees of freedom all esspectively, are introduced arffdandC denote deviations of
sentials of the bifurcation behavior of flow amplitude, fre- the temperature and concentration fields, respectively, from

guency, and mixing is presently nc_)t availabl_e—neithe_r in thepeir global mean valuet andC. The Dufour effecf40,41]
form of coupled amplitude equations nor in Galerkin typeat provides a coupling of concentration gradients into the
form. The respective reasons for their deficiencies are diszggt currentQ and a change of the thermal diffusivity is

cussed in the text. discarded in Eq(2.19 since it is relevant only in few binary

The present paper aims at filling this gap. We present 55 mixtureg6] and in liquids near the liquid-vapor critical
few-mode Galerkin model which rests upon a careful analy—poim [22].

sis [34,39 of the concentration balance in liquid mixtures = pagides the Rayleigh numbBr=(agd® v<)AT measur-
and explains among others the whole TW solution branch,, the thermal driving of the fluid there enter three addi-
from oscillatory onset up to its merging with the upper SOCyional numbers into the field equatiori®.1a—(2.1d: the
branch and the associated changes in the spatiotempors|,dt number= v/ x. the Lewis numbet. =D/ x. and the

Sm\J/\C/;uriﬁt?(:cgz(zesﬁtsséystem and formulate the theoreticapSParation ratiay=—(f/a)(ky/T). The latter characterizes
task in Sec. Il. In Sec. lll we construct the Galerkin model he Sign an(_d the strength of th‘? Soret e_ffect. Ne_gatwe Soret
and give a detailed account of how the concentration field igoupllng ¥ mduce_s concentrat|or_1 grgd|ents antiparallel FO
represented. The main body of the pag@ec. I\) is dedi- temperature gradients. In_ this s.|tu§1t|on, the buoyancy in-
(guced by solutal changes in density is opposed to the thermal

cated to an extensive discussion of the results. Wherev When the total b q threshold
possible we provide analytic expressions for characteristi uoyancy. en the ftolal buoyancy exceeds a thresnoid,
convection sets in, typically in the form of straight rolls for

guantities like thresholds, bifurcation points, and order pa- . | ing field variati | h I
rameters like convective amplitude, frequency, heat flux, an§€9atives. Ignoring field variations along the roll axes we

variance of the concentration distribution. The SOC and Tv\p_escnbe henceforth 2D convection in & plane perpen-

states will be compared in quantitative detail with simula—d'cglalr to ”:je roll axr?s.f _ dits inf
tions. Our model also yields unstable SW solutions. orm and strength of convection and Its influence on con-

vective concentration and temperature transport are mea-
Il. SYSTEM sured by the following order parametefs. The maximum
Way Of the vertical velocity field(ii) The Nusselt number
We consider a convection ce_II of heigtit It contains a N=(Q-e,), giving the lateral average of the vertical heat
binary fluid of mean temperatufe and mean concentration current through the system. In the basic state of quiescent
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heat conduction its value is 1 and larger than 1 in all con- W(x,z,t)=[wy,(t)e” "+ c.c]codnz. (3.2
vective statestiii) The variance

Equation(3.2) completes the Galerkin approximation of ve-
M =(C?), ,/{(Clnadx.2 (2.20  locity and temperature in our model.

of the concentration field being a measure for the mixing in

the system. The better the fluid is mixed the more the con- ] ]
centration is globally equilibrated to its mean value 0— In order to select adequate concentration modes a detailed

optimally mixed, strongly convecting states fogeto van-  analysis of the concentration balance and field structure of
ish. In the conductive reference state denoted by the©OC and TW states is necessary.
subscript “cond” the vertical Soret induced concentration
gradient gives rise to a variance qKCZ0x.=|¢|/V12.
(iv) The frequencyw of a TW. Thus extended TWs with a The first step of our analysis is to decompose the concen-
wave numberk have a phase velocity=w/k. They are tration
stationary states in a reference frame comoving wittela- e . ) )
tive to the laboratory system. C(x,z;1)=(C)H+ (C—(C))=:Co(z) +(x,Z;1) (3.3

The solution of the partial differential equatiof®.19— :
(2.1d requires boundary conditions for the fields. We useinto its lateral mearCo(z;t) and the deviatiore(x,z;t) from
realistic no slip conditions for the top and bottom plates afit |nserting this decomposition into the balance equation
z=*1/2, (2.10 for the concentration and averaging it yields two

U(x,z= +1/2:t) =0, coupled equations fo€, andc,

B. Selecting the concentration field modes

1. Lateral average of the concentration and deviation

: =— +Lo2 :
and assume perfect heat conducting plates by Co A W)L, Co, (343

T(x,z= +1/2:1) = T 1/2. (G +Uu-V)c=ad we)—wd,Co+LV?c.  (3.4h

- - L In both of these equations we have discarded the Soret cou-
'I:eljer(tjh&r/more, impermeability for the concentration is guaranpling term LyV2T in the bulkof the fluid. However, the
Soret coupling will not be dropped in the boundary condition
e,-J=—L3d,(C—yT)(x,z=+1/2;t)=0. (2.3  (2.3). The motivation and justification for this approximation
are discussed in quantitative detail in RE34]. Here, we
We should like to stress again that we restrict ourselves tonly mention that the basic justification is the smallness of
the description of extended roll-like patterns that are homothe Lewis numbet in liquids so that transport by diffusion
geneous in one lateral direction, say, So, we investigate and the Soret effect—both enter the balance with a weight
2D states of a certain lateral periodicity lengtk=27/k. In  L—are small compared with advection. In those regions
most cases we take=m, i.e., A twice the thickness of the where advection needs to be balanced by another transport

fluid layer, which is close to the critical wavelengths for the mechanism strong concentration gradients are observed

negative Soret couplings investigated here. whereas the temperature gradient shows no such bound-
ary layers. Thus, an adequate balance is assured by advection
lIl. MODE SELECTION AND GALERKIN MODEL and diffusion and the additional concentration source or
o sink—the Soret effect—can be omitted in the bulk. Only in
A. Temperature and velocity fields the impermeable boundary condition does the Soret effect
The temperature field consisting of a linear conductivelead to a sizable nonvanishing mean concentration gradient
profile —z and a convective deviation is truncated by at the plates which cannot be ignored.
In a SOC fixed point and also in a TW the lateral average
T(X,z;t)=—2z+ Tpy(t) \/ESin27TZ of the concentration field is temporally constant. Thus it can

) be calculated explicitly from Eq3.43 to be
+[Tyu(Hhe ™ +ccly2cosrz (3.0 PACEY a4

17z

as in the standard Lorenz modd{] and its first extensions Co(z)=—yN Z+[J dz'(wc)y. (3.9
to convection in binary mixtures with permealj26,36,31 0
and impgrmeablg boundari¢23,24,43.' These models do. Here, the impermeable boundary conditi@?),
not provide a satisfactory representation of strongly nonlin-
ear TW convection since they used a combination of concen- 3,Co(£1/2)= )9, To(+1/2)=— N, (3.6)
tration and temperature fields in order to fulfill the imperme-
ability of the plates exactly without extending the relating the lateral averag€®, andT, has been used in the
temperature truncation adequately. For a discussion of thifirst integration of Eq.3.48 from —1/2 to z. The second
point see Ref[34]. Here, we truncate the concentration it- integration is taken from 0 ta@ since Cq(z=0)=0 as re-
self. This approach avoids the necessity of a more compliquired by the mirror glide symmetr€(x+\/2,z)=—C(x,
cated representation of the temperature field. —z) for SOC and TW statefl5,1§. When describing TW

For the velocity field we adopt an earlier succes§a4] as well as SOC fixed points the relati@5) can be inserted
one-mode description into the evolution equatiofB.4b giving
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(d+u-V)c=LVZc+ yNw+

wW
dz— E) <Wc>x- (37)

The solutionc of this equation completely determines the
relaxed TW and SOC concentration field whenever the ver-
tical velocity field together with the Nusselt number is given.
Just that is realized by the truncations for the velo¢&y?)

and temperatur€3.1) field in Sec. Il A. Withc, w, andN

also the TW and SOC spatial structure of the lateral mean of
the concentration is determined via E§.5). The last task is

therefore to select modes forthat approximate the TW and . truncated by 1 and cos2nz

SOC structure appropriately. 0F . "

2. Symmetry decomposition and lateral mode truncation -03 ; 0-5

Im ¢,(2) (arb. units)

The mode selection of is based among others on the
insight gained in Ref[39] from a symmetry decomposition
of c. The decomposition was realizE&89] with respect to the
different parities under the mirror operatiors> —x and z

FIG. 1. Vertical profiles of that part of the first lateral Fourier
mode of the concentration being in phase with the stream function
(in our notation the imaginary partShown are the eigenfunctions
at the Hopf bifurcation ¢ =wy) and at the SOC-TW transition

_ + of— o+
- Z,S,O that the, four symmetry classes *, S, S (w=0) with arbitrary normalizations. Dots refer to a many-mode
andS™ " are obtained. The firgsecond superscript denotes Gajerkin scheme, solid lines to an optimal truncation by a linear

the parity under the operation— —x (z——2). In relaxed  combination of 1 and cossz. Parameters afle=0.01,o=10, and
TWs and SOCs the lateral coordinatecan be combined = _0.25,

with the timet to x—uvt so that the time derivatives in TWs
can be replaced by vd, and the argumert in the fieldc 3. Vertical variation
can be dropped. One main result of R&9] was the obser-
vation that field components of the symme8y ~ are not
needed for a quantitative description of the TW and SO
bifurcation topology and that the fields of the cla@s™ are
made up mainly by the zeroth lateral Fourier mode. Conse-

quently, the SOC and TW concentration figican be rep- ity ¢, being the first lateral Fourier mode of Numerical

resented well by just two parts calculationg 18,34 have revealed that the main contribution
3.9 to c4(z) is made up by a part being phase shifted by®ith
' respect to the vertical velocity field. With the velocAnsatz

belonging to the symmetry class6s* andS™*. Using the (3.2 and the choice thaty; is real, this implies that,(2) is

approximation(3.8) for ¢ one obtains from Eq(3.7) two dominated by its imaginary part. This holds as long as the
equations phase velocityw is large compared with the Lewis number

L=0(0.01).
1 The vertical spatial dependence of by(z) is investi-
—vdeT [W<Wc++>x:N¢W+ LVZc**, (3.99  gated in Fig. 1. Therein, we demonstrate that the “exact”
solution (dotted ling obtained from a MMG scheme can
—vaect =LVt (3.9  Very well be reproduced by a linear combination of 1 and
Cos 27z, i.e., of the first two modes with the boundary con-
for thec™ ™ andc™ " fields of fully relaxed SOCs and TWs. dition d,c=0 atz=*1/2. This holds both for the bifurcation
Here, the vertical velocity fielsv was fixed to belong to the out of the heat conducting statew€ wy) and for the
symmetry classS** in the Ansatz(3.2) by choosing the SOC-TW transition =0). The mode amplitudes of 1 and
temporal phase adequately and then switching frotw x ~ cos 27z were optimally chosen in Fig. 1 in order to demon-
—vt. Furthermore, we used the fact that the application ofstrate the usefulness of the representation of the first lateral
the advective derivativesd, andwd, toc** andc™" gen- ~ Fourier mode
erate fields with negative vertical parity that do not belong to
the two retained symmetry class§§* andS™ " for ¢. The c1(Z;t) = V2[cyo(t) + C1o(t) COS 27Z] (3.11
same holds also fa#{wc),=d(wc™™),.
The important implication of Eqg3.9) is that thelateral  in terms of 1 and cos2z with two complex amplitudes
variation of the concentration fielat(x,z) is restricted to  Cyo(t) andc,(t).
sinkx and coxkx if one uses the approximatior(8.8) and According to Eq.(3.5), the spatial dependencef the ze-
(3.2. The reason is that{wc™ ), as well asN#w have the roth Fourier modeC(z) can be calculated by integrating the
lateral variation ofw, i.e., coskx, and no other inhomogene- product of coénz for the vertical dependence of with 1
ity in Eg. (3.9) excites higher modes. We should like to and cos Zrz, respectively, coming front. This procedure
stress that all these restrictions are based on a quantitativeads to vertical modes of the form 42+ sin 27z) and
investigation of their implications. Thus they do not endan-(—4mz+sin 4xrz). Their real amplitudes are labeled by,
ger the success of our model, as we will see below. andc,, respectively. These two modeg, andcg, are con-

The last task is to select modes for thertical spatial
Cdependencef c(x,2) in the form

c(x,z)=c,(z)e +c.c., (3.10

c(x,2)=c**(x,2)+c” T (x,2)
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stant in SOC and TW fixed points. To derive a model that 27 1 972
includes temporal variations of these modes as well, both O=120 T=5 5 8= 58 =0.6940. (3.14¢
modes are taken as time dependent. 2m
The complete Galerkil\nsatzfor the concentration field
is therefore given by 2. Order parameters
c The order parameters maximal convective amplitude
(x, Zt)_{1+277\/—[c02(t) 26o,(1) ]}z Wpax, Nusselt numbeN, and mixing numbemM can be
—y expressed by
+Coxl 1) V25iN2mz+ Coy(t) V2sinderz 5772 y a1
+[ciot)e ™ +c.c]y2 =X (3152
+[ci(t)e ™ +c.cly2cos2rz. (3.1 12 25
[ci(te ™ +ccly2cos2mz. (312 N:f, d2(Qe) =1+ g XY, (35D

In order to avoid the appearance of temperature modes in Eq.
(3.12 we approximate the boundary conditid3.6) by 12
3,Co(=1/2)= — ¢ that deviates from the correct value by a M2=—<C2>x =

5
<|Ul|2 —|U2|2>

factor equal to the Nusselt numbir=O(1). This approxi- 12

mation can be understood as the leading term in an ampli- 2 2

tude expansion dfl which starts aN=1. The exact value of n ﬁ( 1+ 7y — i( 14 41) v

N is of minor importance in the boundary conditi¢®.6). 64r 3)°t 128r 3)°°

Only the existence of a finite slope &, at the plates is 5 ) 4 5

crucial. + 11257 ( _l ) + 7_577 (V _EV )
Similarly, a lateral variation of the vertical derivative of 32768r2\ * 3°2] "1g1384r2\ ' 372"

C, i.e., of ¢, at the plates can be seen as a higher-order (3.150

contribution that scales with the field amplitudes and not
with O(1). Thereader can convince himself of the smallnessHere the Nusselt number is computed as the global spatial

of the derivatives of Iroy(2) at the plates in Fig. 1. average of the vertical heat flux since due to the truncation of
velocity and temperature fields in different bases the laterally
C. Galerkin model averaged vertical heat flux which is conventionally used for

1. Scalings evaluating the Nusselt number has a slightiependence.

This problem occurs in all few-mode Galerkin approxima-
We use r=R/R® as control parameter. HereR° tions with no slip boundary conditions, see, e[g4,41.

=1(37/2)°=1825.14 is the stability threshold of the quies-

cent heat conducting state of the pure fluid with respect to 3. Model

disturbances of a wave numbes+ 7 within our model. This

is not exactly the minimum of the marginal curve. It is cal-

culated as 0.99% at k=0.982%r. But since we are not

interested here in wave number dependencies wk=fixr.
The complex amplitudes of the first lateral Fourier modes

fe{wy1,T11,C10,C1o}, @re written in a vector notation

We insert the field truncations of Secs. Ill A and Il B into
the basic equation&.1H—(2.1d without bulk Soret effect
and scale the mode amplitudes according to Eg§sl4g—
(3.149. Then, the following model for the convection in
binary fluid mixtures is obtained:

f=(Ref,Imf)T. (3.13 ™X=—a| X=Y+ay

U+ %UZ)}, (3.163

We scale the mode amplitudes in the following way:

2=—2(Z-X-Y), (3.16H
8 .
X=;Wll, (3.14a Y==Y+X(r—2), (3.160
v
2 2 v oL 2|‘v+x U+7U> (3.160
672 672 V1=~ 7= V1 2 1T 5U2], .
Y:TrTllv Z:TrTOZ’ (3-14b 5 15 3
. 6L
322 32,2 Vo= = V1= = Vot X- (U1 +4U,), (3.169
UlzTrC]_o, UzzTrC]_z, (3140
Uim—rX— —Us—2al V- 2w, X, (3.16
256(2 2562 U= —rX=3zU;=5a| Vim gV | X, (3.160
VlzﬁrCOZ, VZZ?I‘C()“. (314d
Uy —rX— Eu 10 Y 1v)x 3.16
Additionally, we introduce M= —rX= 5 Upmza| Vim g Ve X (3169
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It is an extension of the standard Lorenz mofi&2]. The  After elimination of the temperature and concentration
latter is contained in Eqg3.168—(3.16¢ in a form that is modes the bifurcation diagramod X?) can be calculated as

slightly modified due to a different scaling and to the realis-
tic no slip boundary conditions in our approximation. 1+ X2

This model can be looked upon as a minimal one for  sodX?)= X2
convection in binary liquid mixtures because it contains on 11 (1+X?)| 1+ ®a T }
the one hand the minimal description of convection in a pure f— f

. ' € 1+ 2 2
fluid (the Lorenz modeland on the other hand a minimal 5 L 14 185 (X N 625 (X
extension for binary fluids. This extension is minimal since 36 a L 648a L
the simple extensiofB6,37,24,43of the Lorenz model with (4.13
only one linear modéJ and one nonlinear modé leads to
TW solutions with linear relations between all pairs of the X>L 1+ X2
three quantities)? (the square of the phase velogity? - i (4.1b

T . ; W

(convective intensity and the Rayleigh numbaer. In Ref. N _2>(1+x2)
[45] it has been shown that such pairwise linear relations 125\ X

result fromany truncation of the concentration field that is
limited to only one linear and one nonlinear mode. Clearly,
these pairwise linear relations betweef, w?, andr are
incompatible with the topology of a backwards Hopf bifur-
cation followed by a saddle node bifurcation into a branch of—
stable strongly nonlinear TWs. Thus our incorporation of a

The relation(4.1) betweenr and X? can be inverted, e.g.,
graphically to obtain the standard bifurcation diagram of,
say, X2 vs r. The stationary stability threshold gy,
rsod X=0) of the quiescent heat conducting state then is

second linear modéJ, and its nonlinear partner modé, I sta ! = - ) 4.2
can be seen as a first nontrivial step ifsgstematig exten- 14 _1af 141 527f
sion that goes beyond earlier modgs$,37,24,43 5L L

Up to now, no few-mode model has described the bifur-
cation topology of TWs adequately: The problem was not sdt agrees quite well with the resui,~(1+ 1.5384/L) ! of
much the backwards Hopf bifurcation but rather the transi-Galerkin approximationg43,41] that fulfill the concentration
tion to strongly nonlinear convection, the saddle node, andoundary condition exactly.
finally the merging of the TW solution branch with the upper  As a first SOC property we can determine the type of the
SOC solution branch. This failure of the earlier approxima-stationary bifurcation out of the quiescent heat conducting
tions is due to an insufficient representation of the concenstate. For Soret couplings smaller than
tration field: It has not been truncated directly but rather the
combination{=C— T with the temperature field has been ‘ 4
introduced in order to fulfill the impermeable boundary con- ¥soc=— 4_3az
dition exactly However, when using the combined fiefd
high mode representations in bothas well as inT are L3
required as explained {i84]. By enforcing the impermeabil- X
ity of the plates onlyin the lateral averageve avoid these 1+ E Ea
difficulties in our truncation3.12. 774 129

As an aside we mention that within another minimal ap- N ) o .
proach Knobloch and Moor@1] have deduced a model for @ subcritical bifurcation is observedr/9X2<0. The scaling
free slip permeable boundary conditions. They aimed at &F ¥/socWith L® agrees with earlier free sli23] and no slip
correct, analytical representation of the primary bifurcationpredictions[25]. For subcritical bifurcations the saddle node
and the involved modes which is possible for idealizedis found at
boundary conditions. However, their model does not show

TWSs comparable with those seen in experiments and related s l_Z\E —
simulations. Fsoc=1+ 5 \gV—L¥+O(Ly) (4.4a

4.3

L+ L2+

32 E
21%°

~1+1.518/—Ly, (4.4b

Here, we elucidate the SOC, TW, and SW solutions oim good agreement with the numerically determined result
our model. reoc=1+1.636J—Ly [ [34] Eq. (4.)].
Equation(4.1b shows that for convective amplitudes
>L the Rayleigh number corresponding to a certain ampli-
A. Stationary convection tude squareX? deviates from that of the pure fluid,,_ o
=1+ X? only by terms=L . This means that for convective
amplitudesX?>L|y| the bifurcation diagrams of a mixture
In the case of SOC all time derivatives in E§.16) van-  are the same as for a pure fluid. This equality reflects the fact
ish so thatX||Y||U,||U, holds in the complex plane for the that strong convective mixing in conjunction with diffusion
amplitudes of the laterally varying modes. Without loss ofequilibrates the concentration in the whole fluid with the
generality we may therefore choose all modes to be reakxception of narrow boundary layers so that it does not in-

IV. RESULTS

1. Bifurcation properties of SOC states
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fluence the bifurcation behavior any more: The stronger the 1.6 —
mixing the smaller the deviation from the pure fluid case.

2. Fields

. . =
In order to reconstruct the fields and with them the order
parameters such as the Nusselt nunttbemnd the concentra-
tion varianceM, Eq. (2.2), we need the mode amplitudes

rX

Y=——7or, 4.5
1+ X2 (453
z X (4.5h

1+Xx2° '

V,=—-2rF X21+ 25 [X)% 4.5
1= —<fFgo L 2_16af ) (4.50
Vo= 1F le 25 (X 4.5
2=~ 7"Fsoq | |18\ ) |1 459

U 2rF X 1 > X)* 4.5
1=~ 2rFsoq 7|1+ 28l T | (4.5¢

U,= 2F X 1 25 (X 4.5
2=~ g Fsod || 1~ 188l T (4.5)
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B 4 0.08

0.00

1.0 1.3 1.6 1.0 1.3 1.6

FIG. 2. SOC bifurcation diagrams of Nusselt numbkfa) and
concentration varianckl (b) vs reduced Rayleigh number Exact
(mode) results are shown by dottedolid) lines.

branch ofM) leading to nearly equilibrated concentration
distribution and nearly vanishiniyl is reproduced with a
relative error of about 15%. Since with the special mode
selection in the concentration field the model was con-
structed to describe strongly nonlinear convection rather than
weakly nonlinear states it is not surprising thdt in the
unstable SOCs is reproduced only with an accuracy of about
20% atr=1.6.

Beyond these global order parameters we may also dis-
cuss the spatial variations of the concentration field. In Fig. 3
we compare the SOC concentration field structure obtained
from our model with the “exact” one from a MMG scheme.
To that end we show verticadfight column and horizontal
(left column profiles. Of course, the model cannot describe

in the SOC fixed points. Here, we have introduced the quanthe narrow concentration peaks in the lateral direction which

tity
471-1

(4.59

X

L

L, 185
362

X

L

2
625 ,

F soc— + 67861

for notational convenience. The squarehdfis given by

X\ 2 X\4 X\ 6
1+3'90E(E +2.224<E +o.304c<f)

X 8
+0.002 07%E) }

2 _
M SOoC™

X 2 X 471-2
X 1+3.566(E +0.464E<E) } (4.6)
and the Nusselt number by
Ngoc=1 25 X2 4
soc= +Em- (4.7)

3. Comparison with numerical results

Using these formulas we can compare the results of th
model with “exact” ones obtained by a MMG calculation
[34]. This is done in Fig. 2 with the bifurcation diagrams of
N andM. Since the Nusselt numbgFig. 2(@)] is determined
by the well described temperature field the Nusselt number
of the model deviates from the “exact” one maximally by
1% (atr=1.6). The variance of the concentration fidldin

are due to the strong boundary layer phenomena caused by
the smallness of the ratib/w,,,=0(0.001). Nevertheless,
the model predicts that the concentration vanishes nearly all
over the convection cell. Also in the vertical profile we see a
good agreement when keeping in mind that the combination
of only two modes, namelgy, andcy,, can provide only a
very rough approximation to a boundary layer.

The quality of the approximation of the concentration can
also be discussed by its zeroth lateral Fourier mode. The
model predicts

sinn(27z) (L 2
smizea] oL

1.2
Co(Z):—g z- ;nzl (-t

/004
‘1000 0

1 -0.04
0.04

B

i i
/4000 o
o

o

uE 4 -0.04

-0.04

FIG. 3. Lateral(left column and vertical(right column con-
centration profiles of a TW with frequenay=2.75 (a) and of a

Fig. 2b) shows that also the concentration field is approxi-soc(b) at a Rayleigh number af=1.82. The two line types com-
mated reasonably well: the strong mixing in stable SOCsare modelsolid lines and “exact” results(dotted liney. Param-

with large velocity amplitudegupper branch oN and lower

eters ard.=0.01, 0=10, andy= —0.25.
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In the “exact” results[18,34], Cy(z) is nearly zero in the Neglecting termsO(L) in Eqg. (4.11) causes the TW to
bulk of the fluid outside the boundary layers near the platesmerge atw=0 with the SOC solution branch of the pure
It is interesting to note that an extension of the series in théluid instead of with the SOC solutiof#.1) of the mixture.

above expression to=c would yield Canceling the terms dD(L?) is allowed for all states with
L<Q or L<X. This condition is fulfilled for all separation
1 i neq SINQ27z) 127z ratios away from the codimension(€T) point where Hopf

P (-1 n =L ¢ (4.9 pifurcationand SOC-TW merging fall together and none of

the relationsL <) or L<X can be fulfilled. The TW fixed

for values ofze]—0.5,0.5 so that the linear terma in the points of our model can be calculated analytically without
square brackets of E¢4.8) is completely canceled. Thus the limiting to the orderO(L°). Since the formulas are lengthy
exact result—C,(z)=0 in the limit L—0—is reproduced in they are not presented here. But they have been used for the
an optimal way, namely, by giving the exact results for thosecalculation of the phase diagram in Fig. 9 including the CT
modes that the model contains. A significantly improved defoInt.
scription is possible only by using many more modes be- From Eq.(4.1139 one observes first of all that TWs exist
cause the contribution from higher modes in £4.9) de- only for negative Soret couplingg<0. This is in line
crease only<1/n. with the absence of TWs foiy>0 in numerical simula-

To summarize: stationary convection in binary liquid tions—TWs fory>0 seen in the model of Ref24] result
mixtures is described for negative as well as for posithia  from low-order truncation. Relatiof.11b allows us to de-
a semiquantitative way by our model. Beyond topologicaltermine the frequency) of a TW with a given velocity
details of the bifurcation diagrams even the peculiar spatiamplitudeX:
structures of the concentration field can be explained.

rw(X?) =1+ X2+ 0%(X?)

B. Traveling wave convection = r¢=0(X2)+Qz(X2) (4.123

1. Bifurcation and scaling properties

or
For the TW fixed points of the modé€B.16) with a fre-
H kot
guencyw we have to assume time dependenzes*! of the w?(X?) fTw(Xz)—f./,:o(XZ)
complex mode, Y, U;, andU, because they are the am- > = — (4.12b
plitudes of a lateral variatiorre™'**. So, positive frequen- Wy osc

cies correspond for positive wave numbk&r TWs travel- .
ing to the right. The zeroth lateral mod&sV,, andV, are Thus the model predicts that the square of the frequéhcy

time independent in TWs. We separate the time dependen@ @ TW state with a velocity amplitud is the distance in
el“t of the complex amplitude vectors by the control parametar between the TW under consideration

and the state of the pure fluid with the same velocity ampli-
[X(1),Y(1),Us(1),Uy(1)]=[X,Y,U;,U,Je'*t (4.10 tude. Hence the TW frequency is a direct measure of the
distance of the system from the pure fluid, i.e., the influence
and use henceforth the same symbols for the timeef the concentration.
independent prefactors. Then, by choosing the temporal Another equivalent interpretation of E@.11D is that for
phase X can be taken as real whiM,U;,U,eC. In addi- a given fixedr the squared frequency of a TW with velocity
tion, Z,V;,V, e R. Inserting these solutioAnsdzeinto Eq.  amplitudeXqy,
(3.16 yields in orderO(L°) the relations

02=X5_o—X3w. (413
1 3 o 1+02%+Xx2
- ZzzaEJrl 02 is given by the difference between the pure fluid flow inten-
sity, X5,-o=r—1, and the flow intensit)%,, of the TW in
175 [ X\2 question. Thu£)? measures also the “vertical” distance in
1+ ﬁa Q the bifurcation diagrams ok? vsr between they=0 pure
> e fluid SOC solution and the TW solution in the mixture.
1+ £Z5a 5 n 15 625a2 5 Equation(4.123 has an explicit dependence on the Soret
144 7\ Q 10368" \Q coupling strengthy since() varies between 0 and the scaled

(4.113 Hopf frequency)y . This s dependence is canceled by scal-

' ing Eq. (4.123 with the Hopf frequency so that the left hand

Fry=1+ Q2+ X2 (4.11b side of Eq._(4.12t)_ varies for _allw bet_ween 0 and 1. ThL!s
Eq.(4.12h is a universal scaling relation for TW frequencies

between frequency, amplitudeX, and control parameter resulting from our model for small. In Fig. 4 this predic-

rrw Of the TW solution. Here, tion of the model is compared with numerical results for
e[ —0.65~0.25] obtained by a finite difference scheme and
Q=owr (41190 a MMG schemd20]. For all these Soret couplings the scal-

ing relation is confirmed by the numerical results. Only in
has been introduced with=1/272, Eq. (3.146, being the the case of small frequencies are deviations observed. They
intrinsic time scale of the modéB.16). are due to the fact that TWs with small frequencies do not
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o 1
: 1 rTW(X )_ R 64 5 1+ 7 )
. 2772 o 25m2) X 24X
+ =
= 256 "1+ 41 ) 25 4
v X T EoX
e 32 512
(4.19
[
0 model 105 The oscillatory stability threshold of the basic state follows
& y=—0.25 for x=0 as
0O y=-04
O y=-0.5 (MAC) 1
A y=—06
V y=-0.65 1 los=rrw(0)= > = (4.163
» y=—0.1 (MMG) 27w o "
1 + —
A T 256 |\ (1+0)
0 20.5 1
o(X") / o, and Eq.(4.11D yields the Hopf frequency
FIG. 4. Universal scaling relation connecting TW convective 275
velocity amplitudeXocw 4, With its frequencyw. The model pre- —( 6 ) 0
diction (4.128 is the identity(solid line). Numerical, finite differ- Wi 4 __ T4
ence (MAC) data are shown by open symbols fgre [ —0.25, H (1+E) 272 (1+5) '
—0.65] and MMG data by filled symbolsy= —0.1). The symbols —t 256 ~—+1.041)
cover in each case the whole bifurcation branch, i.e., stable as well o o (4.169

as unstable TW states. The inset serves as a schematic explanation

of the scaling relationl. ando were fixed to values of 0.01 and 10, h lculati f the CT point . th iderati f
respectively. But the scaling relation should not depend on them a € calculation of the point requires the consiaeration o

long aso=1 andL <1. the Lewis number dependence. If this is done one obtains

or. 1600 o+1
ST s 85 @
approach the SOC states of the pure fluid as implied by Eq. 102
(4.11b but rather the SOC states of the mixture. These two

stationary states differ in the Rayleigh numbreby O(L) as the separation ratiq at the CT point for given Lewis and
according to Eq.(4.1D so that deviations of the order Prandtl number and fixed wave number 7. In ethanol-

; P — e i CT_
O(4L)=0.1 can be expected on the ordinate of Fig. 4. Thighater mixtures withL =0.01 ando =10, this yieldsy™ =

- S-S .
deviation from the scaling relation becomes more obvious 3.714<10 ® which is in very good agreement with the

; ; -5
for weaker Soret couplings like, e.gi=—0.1, as shown by numerlcally[25] (.je.termlned VAllSIOFS.526510 S

the filled triangles. These states have been computed byﬁ The other limit in, namely,y—c or 0, gives the
MMG scheme[34]. For small Soret couplings the merging ayleigh number of the SOC-TW transition:

point of the SOC and TW branches is in a regime of small

velocity amplitudes, i.e., in that part of the bifurcation dia- r* = lim rrpw(x?) = — . (418
gram where the differences between SOC states of pure and e 1008/ o
binary mixed fluids become more and more evident. 1+ 625 | (1+0)

It should be noticed that the scaling relation holds for

stable as well as for unstable TWs. Furthermore, it is indeHowever, one should keep in mind that the SOC-TW transi-
pendent of the bifurcation topology, i.e., it applies t thegqn atr* with the transfer of stability from a SOC to a TW
form shown in the inset of Fig. 4, i.e., fa¥=—0.4 as well \ hen reducing is related to an instability of the SOC con-
as to a topology with a bistability of slow and fast TWS centration boundary layeil9]. These boundary layers are
(¢S_—0.4) [20]' ) . , . caused by the smallness of the Lewis numbera limit
Bifurcation properties are best discussed by introducing, hich is not systematically incorporated in the model under
the ratio consideration. The model’s main objective is a description of
strongly nonlinear TW convection which has for finite TW
frequencies a definite limit for small. Thus one should not
_ Wmax:5_77 m (4.14 expect a correct reproduction of the Lewis number depen-
v 8 O ' dence of the SOC-TW transition from a model with modes
that do not resolve the boundary layer structure in detail.
However, the dependence on the two other fluid parameters,
of convective and phase velocity of the TW state. Then, thenamely, separation rati¢p and Prandtl number, is given in
Rayleigh number,(x?) of a TW with a velocity ratioy ~ a qualitatively correct way: strong increaser&fwith stron-
can be written in orde®(L°) as ger negative Soret coupling and saturation with increasing
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as can be seen by comparing the form@#al8 with the  from the onset of convection up to values where strongly

numerical results in Figs.(P) and 1%b) of Ref.[18]. The nonlinear TW convection is observed. To see this, let us

SOC-TW transition points which have been plotted thereirrewrite Eq.(4.21) by using Eq.(4.15 to display the relation

are also affected with a certain error bar since the spatighetweene and y? explicitly,

resolution of the numerical method used was not fine enough

to capture the whole boundary layer phenomena. However, arx’(1+a,x?) arx’(1+a,x?)

their qualitative fluid parameter dependence has to be re-

garded as correct. (4.22

The analytical form(4.15 for the TW bifurcation dia- '

gram al_lows a simple determ_in_ation of the TW §adq|le nodeyere, a;,, by, andbj, are amplitude-independent real

bifurcation, namely, as the minimum ofy,(x?). Itis given  numbers. Note, in particular, that the functional relation be-

by tween control parametes and reduced order parameter

=Wnax/U IS given by a rational function. A similar relation

1 has also been found from a fit to MMG and finite difference

. (419 numerical result$20]. The radius of convergence of a small

v amplitude expansion of Eq4.22 in powers ofy? is given

by

€= = .
1+byx?+byx? (1—X2/b1)(1—)(2/bé)

o
1+0.6567< =
(1+0)

2. Fields X5= min|bf|.
i=1,2
The calculation of Nusselt numbél, concentration vari-

anceM, and concentration contrast between the two plateshis quantity depends o and o so that for all negative
requires the computation of the temperature and concentrgalues ofy [TWs are observed only fop<0 according to

tion field in the TW fixed points. Their mode amplitudes in Eq. (4.113]
2<£ 1— isl ~0.8052
Xe="5\"" V1ggy ~ o

the TW fixed points can be expressed by

which is the absolute value of that node léﬁ,%,()(z), Eq.
(4.20b, with the smallest absolute value. Then, the radius of
convergence is calculated in the variablg,,/v as

Vi=— ——Sx%Fl 1+ ixz
1 572 T™W 192 )

\Y; 4 2rF (1 ! 2)
_ — r _— s
2 ’772X ™w 16X

w
T = xc=0.8973, (4.23
U XL Frwl 1 D 4.20 ¢
TTalan TP g @208 R .
i.e., near that point in the bifurcation diagram which has been
identified in [20] as the transition between weakly and
X[ 5L 1 . . ; )
Up=— ~| =~ —i | 7Frw| 1— s=x?], strongly nonlinear convection. This point, namely,,,~=uv,
0120 16 where areas of closed streamlines first occur, has also been
_ identified as the radius of convergence for a small amplitude
Y=X(1-iQ), power series expansion of different order parametses
Ref.[20]).
Z=X2, Thus our model supports the notion that experimentally
observed TW convection in binary liquid mixtureannotbe
where we have introduced the quantity described by weakly nonlinear models as, e.g., complex

Ginzburg-LandauGL) amplitude equations including vari-

) 4 ousad hocquintic extensions that have been proposed. Be-

Frw={1+ 32X + 512X ' (4.20b ing used out of their validity range they cannot be trusted to
reproduce, e.g., the relations between frequeagcynixing

In Eq. (4.203 all quantities except the real parts df and M flow intensityw,,, or Nusselt numbeN, and the thermal

U, are evaluated in order® with X and() taken from Eq. driving r. Typically already the simpler relation between

(4.17). Wﬁqax or N andr is wrong on the upper TW branch—not to

mention the more sensitive relations betweenM, andr.
3. Small amplitude expansions Also results for LTWs based on this approd@8] have to

Before discussing the order parameters themselves Wl%e guestioned: The spatiotemporal field properties under the

. envelope being closely related to those in extended TWs are
shquld_llke to §how that thegannotbe expanded as power not captured properly. The main drawback of these GL ap-
series in the distance

proaches is the insufficient representation of the role of the

2 concentration field in these strongly nonlinear states.

€= Trw(X%) ~ Fose (4.21) A first step towards a better incorporation of the concen-
lNosc tration field into the GL framework was the introduction of a

-1
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r and 5d) that occurs at the transitiop=1 from weakly to
strongly nonlinear convection is not reproduced by our

16 model. The absence of this fine structure in the bifurcation
diagram of our model is due to neglecting Fourier modes
i3 higher than the first lateral one in the concentration. We have
explicitly checked this by determining the bifurcation dia-
grams for fields restricted to their zeroth and first lateral Fou-
1.0 rier modes but with full vertical resolution. This is also clear
-: 10 from studying the changes in the concentration at that point:
] Starting at the onset, only harmonic lateral variation is ob-
1s € served up to a velocity ratig=w,,/v=1. For largery, the
] harmonic profile gets more and more deformed by the occur-
rence of plateaug[20], Fig. 2. They reflect homogenized

S concentration distributions in the regions of closed stream-
lines. The description of this equilibration requires higher
lateral Fourier modes.

FIG. 5. TW bifurcation diagrams of the square of the convective

velocity amplitudew? ., (a), the Nusselt numbeN (b), and the The next charactgristic point is the position of the .TW
frequencyw (d), each vsr. In (c) the reduced concentration vari- Saddle node bifurcation: As a consequence of the dropping of
anceM is plotted vs frequency. higher lateral Fourier modes and the above discussed impli-

cations, the saddle lies at too high frequencies or too low
amplitudes, i.e., in a too weakly nonlinear part of the bifur-
cation diagram. On the uppélower) branch of theN vsr
long wavelength concentration mode with characteristic timg«, vsr) curve the TW frequeny of our model has too high
scalexL by Riecke[29]. The approximation is that is of  values[Fig. 5(d)] and the zero frequency TW end pointrét
the same order as the distance from onset which, howevefies above the “exact” one. This is caused by the fact that
does not apply to all experimental LTWs. Additionally, those gj\y Tws are boundary layer dominated. This feature is not
parametersh; and hs in Ref.[29]) that could immediately fully reflected in our model.
lead in extended TW states without large-scale lateral varia- Since the concentration changes significantly with fre-
tion to a finite mean concentration modgossibly at the

expense of stabilizing terms of unphysical fifth ondeave centration variancl and TW frequencys [Fig. 5(c)] rather

been dropped in the LTW calculatiof29]. While this ap- . T
proach in its present form does not seem to generate tht an the re_Iatlon betwedd andr, 'Fhereby ellmlnatn_wg_partly
the errors in ouw vsr curve of Fig. &d). The prediction of

spatiotemporal field structure of TWs under the LTW enve- . o .
lope it is a promising step forward. Incorporation of imper- (N model forM(w) agrees very well with the “exact
meable boundary conditions and separation of diffusije ( CUrve in Fig. §c). This is once more a hint that the concen-
and critical ) time scales and thus the incorporation of antration field is globally treated in an adequate manner. Addi-
additional concentration mode seems necessary to guaranté@nally, the relation betweekl andw is a second universal,

quency it is appropriate to discuss the relation between con-

the aforementioned relations betwesnM, N, andr. y-independent, scaling relation when scaling the frequency
with its value at the Hopf bifurcation. This is done in Fig.
4. Comparison with numerical results 5(b) of Ref.[20] with numerical data.

The spatial variation of the concentration field in a TW is
shown in Fig. 8a). To measure the quality of the model we
compare its results with numerically obtained fields. As de-

the TW frequency(d), and the concentration variance as ascribed aboye, it is convenient to select fpr this procedure
function of the frequencyc). They show that all character- WO TWS W'th“the same frequency but different Rayleigh
istic features of the TW bifurcation scenario are captured byfumbers. The “effective” value of the harmonic lateral pro-
the model: subcritical Hopf bifurcation, saddle node bifurca-file [left part of Fig. 3a)] in the model corresponds well with
tion, stable upper branch of strongly nonlinear TWs, mergingthe “exact” plateaulike concentration distribution. In the
of TWs and SOCs ab=0 in the strongly nonlinear regime, Vertical profile[right part of Fig. 3a)], even a slight building
and drastic reduction of the concentration contrast with deup of a plateau can be observed. Its mean height is approxi-
creasing frequency. As an aside we mention that a modéhated by the height of the lateral profile explaining the dif-
using the same number of modes, but numerically deterferences in the heights of the vertical plateaus. The strong
mined ones, is similarly successfd9]. This has to be con- variation of the model concentration along the plates is an
trasted withearlier analyticalfew-mode approximations for artifact of only approximately fulfilling the impermeability
TWs in binary mixtures which reproduced only the back-of the plates.
wards Hopf bifurcation. In the actual TW states, the concentration at the plates is
The linear and weakly nonlinear bifurcation properties,nearly constant so that also the contrast between them is
i.e., the onset of convection and the initial slope, are modeledearly constant. Thus an appropriate quantity to compare is
by our approximation with high accuracy. The characteristiche laterally averaged concentration contrast at the two
bump in the “exact” bifurcation diagrams of Fig(&, 5(b), plates. Our model predicts that

For a quantitative comparison with numerical MMG re-
sults [34] we present in Fig. 5 bifurcation diagrams of the
square of convective amplitude), the Nusselt numbeib),
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FIG. 6. Concentration contrast in a TW state between the plates r

as a function of the velocity ratig=w,,,/v from the modelsolid

line) and from numerical computationdinite differences: open ) FIG. 7. Complete bifurcation diagram of _the Nusselt ”“”?ber
circles: many-mode Galerkin: filled lozenged®arameters are  (ime averaged for SWef all types of convection connected with
=0.01,0=10, andy= —0.25. the ground by a primary bifurcation: stationary convect{&®O),

traveling (TW), and standing(SW) waves. The inset shows the
frequency bifurcation diagrams of TWs and SWs.

Co(Z: _)_C()(Z:__):ZCO(Z: _) . . . . . .
2 2 2 represent a generic convection pattern in binary fluid mix-
tures. They occur, in particular, as transients in the evolution

14+ —42 of a strongly nonlinear TW out of the unstable, supercriti-
X
_ | 1o 7 56 (4.24  cally heated ground state.
16X 41, 25 , ' Up to now, only weakly nonlinear properties as the initial
T X T X slope of SWs have been discussed for binary fluid mixtures

with experimentally realistic, i.e., impermeable boundary
"0 conditions. Since our modéB.16 has described both SOCs
f and TWs in an adequate way we think it is worthwhile to
5 equally investigate the bifurcation properties and time depen-
dence of SWs in its framework. The computation of the SW
depends only on the velocity ratio,,/v. This relation is  fixed points using the full field equations is a problem which
checked in Fig. 6 by comparing the model prediction withhas not been solved so far.
numerical finite differences and MMG results. The two lim-
its, namely, the basic state with,,,,—0 and the stationary 1. Solution procedure
statev — 0 (y— ) are reproduced very well by our approxi-
mation. The transition between them takes place for

e[1,10].

In SWs the phases of the complex modésY, U,, and
U, are time independent so that the time derivative is parallel

to the mode itself, e.gX|X. Via the model3.16) this leads
to X|Y||U4||U,, i.e., all modes may be chosen real without
restriction of generality.

Besides SOC and TW convection there exists a third type In the linear modeX, Y, U;, andU, only odd multiples
of convection that bifurcates out of the ground state: It isof the basic frequencw of the SW occur whereas in the
standing wave convection occurring at a Hopf bifurcationnonlinear mode<, V,, andV, only even multiples exist.
simultaneously with TW convection. As long as linear statesThis allows us to expand the time dependence of the mode
are considered SWs are just a linear superposition of a righdmplitudes in the following way:
and left traveling wave. The selection of the nonlinear pat-
tern leading to either a TW or SW is governed by a general X(t),Y(t),Uy(t),Ux(t)]
principle [46]: stable solutions exist directly at a Hopf bifur-
cation only if both SWand TW bifurcate supercritically. = > [X™M Y™ y® uMjenetyce., (4.253

C. Standing wave convection

Then, the pattern with the largest initial slope of the ampli- n=135...

tude is selected. Using this principle and the numerically

obtained initial slopes of25] it can be inferred that in all N

liguid mixtures TWs are stable when bifurcating supercriti- [Z(t)'vl(t)’VZ(t)]:n:O’M.__ [V vy et e.e.

cally, i.e., fory larger than the tricritical valug/,» —L2. (4.25h
Thus SWSs cannot be observed directly in experiments with

liquid mixtures. Their investigation requires stabilizing that These series can be inserted in the ma@el6), the mode
unstable fixed point and possibly destabilizing the stationaramplitudeX(®) can be chosen real by the arbitrariness of a
fixed point having the same symmetries. Nevertheless, SWsommon phase in time, and the resulting nonlinear system of
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FIG. 8. Time dependence of the velocity field amplitatiever FIG. 9. Phase diagram in mixtures with=0.01 ando=10in a
one oscillation period in SWs with four different frequencies. Pa-double logarithmical plots—l vs . SOC properties are shown by
rameters aré. =0.01, =10, andiy= — 0.25. dotted Illnes(saddle nodelsog: open triangles up; blfurcatlow'gtat:
open triangles down Solid lines correspond to TWdHopf bifur-
algebraic equations can be solved in the unknown variableS2tionrosc: filled squares; SOC-TW transitiort': open lozenges;
{w'x(l)’ ReX® 1m X®, .. 2. saddle node,y : filled circles. Stable TWs exist within the shaded
area.
2. Bifurcation diagram and temporal behavior well with the “exact” results. The same holds without re-

In Fig. 7 a bifurcation diagram of the time averaged Nus-striction for the oscillatory onset of convectiogs. and the
selt number in SWsdotted ling is given for the standard TW saddle node bifurcationy,,. The ¢ dependence of the
ethanol-water fluid parameters together with the already disSOC-TW transition point*, i.e., the strong increase with
cussed diagrams for SOQsolid line and TWs (dashed increasing the negative coupling strength, is only reproduced
line). The inset shows the frequency of SW and TW. At thequalitatively: r* () runs too flat in the interva[ —0.3,
oscillatory onset of convectiorr {~1.345) both TWs and —0.01] so that the point where*=r . is given asy=
SWs bifurcate subcritically as has been predicted] 25. —0.014 instead of-0.14. This is due to the neglect of the
With decreasing frequency a weak maximum in the timeinfluence of boundary layers in the concentration field. The
averaged Nusselt number of the SWs is observed1(19) same is true for the merging of with the TW saddle node,
before a saddle node occursrat1.12. Then, it increases i.e., that separation ratio beyond which no stable upper TW
with further decreasing frequency up to an absolute maxibranch can be observed:=—0.001 instead of—0.008.
mum of about 1.1 before approaching the SOC branch. Thblevertheless, the model predictgyanterval where the TW
SW branch has to be connected with the SOC branch sincesaddle node can be seen below the SOC saddle node, as it
SW with frequency 0 is a SOC. The exact merging point ofhas been discussed in the framework of the “exact” results
SWs and SOCs cannot be determined by means of422p) in Fig. 5d) of Ref. [34]. Furthermore, the tricritical
since with decreasing frequency the time dependence of theOC-TW transitior{[34], Fig. 5e)] at which the TW branch
modes gets more and more anharmonic so that in the Fourienerges vertically with the SOC branch, is predicted to take
Ansatz(4.25 more and more modes have to be included.place on the unstable SOC branch, too. For more negative
The evolution of this anharmonicity with decreasing fre-a TW saddle appears. Then, stabilization of TWs at that
guency is indicated in Fig. 8 where the time dependence ofaddle and subsequent destabilization, probably towards
the velocity field modeX within one period of oscillation is modulated TWs, occurs before the now unstable TWs end on

plotted. the unstable lower SOC bran¢h34], Fig. 6).
For the computation of the SWs shown in Fig. 7 and Fig.
8 temporal Fourier modes up to @0Ohave been used and V. CONCLUSION

compared with states calculated with modes up te.2Be- _ . _ S
tween oy and w=0.4 the results of both time resolutions  We have investigated roll-like 2D convection in binary
agree in Nusselt and Rayleigh number better than 1% foliquid mixtures with negative Soret coupling. Then, three
fixed frequency. However, states wiih<0.4 shown in Fig. YPes of extended convective states occur which are con-
7 and Fig. 8 may be erroneous. nected via a primary bifurcation to the quiescent heat con-

ducting state: stationary convectiéB80O0), traveling waves
(TW), and standing wave$SW). One objective of our paper
was to derive a model describing the combined SOC-TW
The dependence of the bifurcation topology of SOCs andifurcation topology and the characteristic spatiotemporal
TWs on the separation ratio is summarized in the phase didsehavior of the concentration seen in numerical simulations
gram of Fig. 9 which can be compared directly with theand experiments. The most important TW bifurcation fea-
“exact” results described in Fig. 7 of Reff34]. The charac- tures are(i) a backwards Hopf bifurcatiorii) a saddle node
teristic points of the SOC bifurcation diagrams, namely, thegiving rise to stable TWs, an(ii) the merging of the TW
stationary onset,, and the saddle node,., agree very solution branch with the SOC branch. Along the TW branch,

D. Phase diagram
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(iv) both the phase velocity and the variance of the conceneds analyzing the full field equations. The derived scaling
tration field decrease monotonically in the same way. relation holds for all TW states, stable or unstable indepen-
Model. To derive such a model we started with an ap-dent of the bifurcation topolog}20].
proximation for velocity and temperature fields similar to  Linear convective properties are reproduced by the model
that in the standard Lorenz moddR]. We used, however, a with high accuracy: oscillatory stability threshold, Hopf fre-
more realistic improved version with a no slip velocity field. quency, and CT point. The same holds for the Rayleigh num-
To select and motivate an appropriate representation of thiger at the saddle node bifurcation. Our model shows also a
concentration field we relied on a systematic analysis of th&&OC-TW transition to SOCs at the upper stationary stable
concentration balance equations: the structure of the fieldranch and its dependence on the separation ratio and Prandtl
components occurring in a symmetry decomposition was innumber is qualitatively correct. However, its Lewis number
vestigated 39], a separation into lateral mean fields and de-dependence is unphysical since the concentration boundary
viations thereof was used, and the effect of the Soret couayers which are responsible for the SOC-TW transifit9]
pling in the bulk of the fluid layer and at the plates wasare represented in the model only in an incomplete way.
guantitatively assessed for liquid mixture parame{&4). Otherwise, the spatial structure of the concentration field in
The concentration field truncation derived from these invesTWs—frequency dependence of the concentration contrast
tigations consists of two linear and two nonlinear modesbetween the two plates and building up of plateé@unsthe
The resulting Galerkin model can be looked upon as minimalertical direction—is modeled in a quantitatively correct
for the description of convection in binary liquid mixtures way by our truncation.
since it contains the Lorenz model, i.e., the simplest trunca- The model allows us to pinpoint the breakdown of an
tion for the pure fluid, and a minimal extension for mixtures. expansion of the TW solution as a power series in the dis-
Previous extensions6,37,24,43of the Lorenz model were tance from the onset of convection up to values where stable,
too simple and therefore failed in reproducing strongly non-strongly nonlinear TWs are observed in experiments. The
linear properties such as, e.g., the TW saddle node. Theelated radius of convergence of the model is close to the
present model is the first analytically manageable approxinumerically determined or@0] marking the transition from
mation showing the above stated four characteristic propemeakly to strongly nonlinear statd20]. Hence complex
ties (i)—(iv). Ginzburg-Landau equations should not be expected to yield
Stationary convectionGood agreement in the properties reliable quantitative results for localized and extended TW
of the SOC branch was found: stability threshold, fluid pa-states.
rameters at the ftricritical bifurcation, and position of the The results of the stationary and traveling states are
saddle node bifurcation. Furthermore, the approach of thérought together in a phase diagram whose good agreement
SOC branch of a binary mixture to that of a pure fluid couldwith numerical simulationd34] can directly be inferred.
be discussed in the limit of large convective amplitudesOnly in the SOC-TW transition are remarkable deviations
Even the spatial variations of the concentration field which isobserved.
boundary layer dominated in SOCs are reproduced in a way Standing wavesOur model gives insights into nonlinear
allowing good quantitative agreement in the concentratiorBW solutions in binary mixtures. It confirms earlier weakly
variance. This holds for both negative and positite nonlinear result$46,25 like the initial slope. In addition, it
Traveling wavesThe main results have to be seen in thebecomes possible to follow the SW branch, which is every-
description of TWs. Here, the model shows that TWs occuwhere unstable, up to regions with strongly nonlinear oscil-
only for negative Soret couplings in agreement with all nu-lating amplitudes. A numerical determination of the unstable
merical simulations and experiments. It predicts that the TWSW solution of the full field equations is still lacking and an
frequency is a direct measure for the “distance” of the sys-observation of these states, say, by a control process is an
tem from the pure fluid, i.e., for the influence of the concen-experimental challenge.
tration field. The “distance” can directly be read off the
blfur_catlon dlagrams of flow intensity versus Raylelgh num- ACKNOWLEDGMENTS
ber in two equivalent geometric ways. This insight yielded a
universal scaling relation between phase velocity, convective This work was supported by the Deutsche Forschungsge-
velocity, and degree of mixing of a TW which was con- meinschaft. Fruitful discussions with W. Barten and P.
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