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Influence of the Soret effect on convection of binary fluids
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Convection in horizontal layers of binary fluids heated from below and in particular the influence of the
Soret effect on the bifurcation properties of extended stationary and traveling patterns that occur for negative
Soret coupling is investigated theoretically. The fixed points corresponding to these two convection structures
are determined for realistic boundary conditions with a many-mode Galerkin scheme for temperature and
concentration and an accurate one-mode truncation of the velocity field. This solution procedure yields the
stable and unstable solutions for all stationary and traveling patterns so that complete phase diagrams for the
different convection types in typical binary liquid mixtures can easily be computed. Also the transition from
weakly to strongly nonlinear states can be analyzed in detail. An investigation of the concentration current and
of the relevance of its constituents shows the way for a simplification of the mode representation of tempera-
ture and concentration field as well as for an analytically manageable few-mode description.
[S1063-651%98)08604-9

PACS numbep): 47.20-k, 47.10+g, 51.10+y

[. INTRODUCTION unstable thermal layering. For positive Soret couplings, there
is no oscillatory instability of the basic state. The two inter-
Convection in binary miscible fluids such as, e.g.,esting cases for negative coupling are neeakandstrong

. i ; ; TWs was recently reporteld 7]; they coexist with the like-
system for studying instabilities, bifurcations, complex spa-’ h ' ’ ;
y ying P P ise stable basic state of heat conduction. A detailed phase

tiotemporal behavior, and turbulence. This is on the one hand: ; S
due to its sufficiently simple experimental realization undergl'agram was discuss¢d7] describing the Soret dependence

well controllable conditions. On the other hand, a great ad-?f the saddle nodes. For weak Soret couplings, however, a
r

vantage for the theoretical analysis is the solid knowledge o etailed study of the bifurcation toplogy was missing. Data

th ing field i 3 " lot of om direct numerical simulations are sparse since in the vi-
e governing field equations. So, recently a lot of researcliiniv, of saddle nodes and bifurcation points the intrinsic

activities [1-16| have been directed towards investigatingime scale of the system is arbitrarily long. Thus phase dia-
the enormous variety of pattern forming behavior in this sysrams to elucidate the whole bifurcation topology were in-
tem. The richness of spatiotemporal phenomena in binargompjete.
fluid mixtures stems from a feedback loop between the fields \ye have determined the SOC and TW fixed points of the
of velocity, concentration, and temperature. Let us start withsystem by a many-mode Galerkin scheme whose conver-
the velocity field: The convective flow is driven by the buoy- gence properties do not depend on the time scale of the sys-
ancy force field which itself is determined by variations of tem. In particular, this allowed us to study all unstable
the temperature and of the concentration field. The latter arbranches on which, especially, the transition from weakly to
on the one hand generated via the thermodiffusive Soret eftrongly nonlinear convection takes place. Furthermore, a de-
fect by temperature gradients and on the other hand they atailed explanation of the concentration distribution and its
reduced by concentration diffusion and by mixing due to therelation to convection is given.
convective flow. Since these changes influence the buoyancy Our article is organized as follows: The second section
which drives the flow the feedback loop is closed. presents the system, the fields needed for its description, and
In this article we concentrate on the Soret coupling and itgheir governing equations with the explanation of the rel-
influence on spatially extended convection states of straightvant fluid and control parameters. Finally, it presents a short
parallel rolls that occur either as a horizontally travelingsurvey on the typical bifurcation scenario in the convection
wave (TW) or in the form of stationary “overturning” con- of binary liquid mixtures with negative Soret coupling. The
vection (SOQ rolls. Among others, we elucidate the Soret third section shows the field truncations, the method of solv-
induced changes in the combined SOC-TW bifurcation toding the system, and the solutions of our many-mode Galerkin
pology which offers in both types of convection the possibil-scheme basing on a reasonable approximation in the velocity
ity of subcritically and supercritically bifurcating branches field. In the fourth section we discuss the influence of the
depending on the strength of the Soret coupling. Both soluSoret coupling on the bifurcation topology by means of ex-
tion branches develop with increasing Soret coupling saddlemplary bifurcation diagrams realized in experimentally fea-
node bifurcations which give rise to stability changes. Fi-sible mixtures and a detailed phase diagram. Furthermore,
nally, there exists a merging point of the SOC and the TWevidence for an instability of a TW towards a modulated TW
branches for moderate negative Soret couplings. This comMTW) is given. The fluid parameter range for its occurrence
petition of stationary and traveling states can only be obis elucidated for ethanol-water as well as fdie-*He mix-
served for negative Soret coupling, where temperature gradtures. Finally, we extract the relation between concentration
ents induce adverse concentration gradients that stabilize titstribution and convective structure and we investigate the
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importance of the Soret effect at the boundaries and its negA/e restrict ourselves to the description of extended roll-like
ligibility in the bulk. patterns that are homogeneous in one lateral directiony say
So, we investigate two-dimensional states of a certain lateral
periodicity length\=2#/k. In most cases we takie=m,

i o , i.e.,\ twice the thickness of the fluid layer, which is close to
_ Alayer of a binary fluid mixture with a mean temperature yhe critical wavelengths for the negative Soret couplings in-
T and a mean concentrati@his confined between two per- yestigated here. Furthermore, the stable nonlinear TW and

fectly heat conducting and impervious plates separated by gOC states that are observed in experiments have typically a
distanced and exposed to a vertical, homogeneous gravitawayve numbek= .

tional acceleratiorg. The lower (uppe) plate is kept at a
fixed temperatur@ + AT/2 (T—AT/2).

The fluid parameters arg (density of the fluig, «
=—(1lp)(dp/dT) (thermal expansion coefficient g
=—(1/p)(dp/IC) (solutal expansion coefficienty (kine-
matic viscosity, « (thermal diffusivity, ky (thermodiffusion
coefficien}, andD (solutal diffusivity).

II. SYSTEM

C. Conductive state

In the motionless basic state, a vertically linear tempera-
ture profile, T¢on= — 2, is observed due to the different top
and bottom temperature. This leads via the Soret effect and
the no flux condition fold to a likewise linear concentration
profile, C.ong™ — 2. Both together yield the hydrostatic
_ _ pressure
A. Scaling and balance equations

We scale lengths by the heigthof the layer, times by the
vertical diffusion timed?/ « of the heat, and accordingly ve-
locities by «/d. The deviationT of the temperature from its
meanT is reduced byAT, that of the concentration field by
(a/ B)AT, and the pressure by px?/d2. Then, the balance

1 , [
Pcond= Po— 5Ro(1+¢)z°—| —g|z
2 K2

in the quiescent state.

equations for mass, momentum, heat, and concentri&iGh
read in Oberbeck-Boussinesq approximatjia8]

0=-V-u, (2.1a

3
du=—(u-V)u=V|p+| —g|z|+oV?u+Ro(T+C)e,,
" (2.1b
8T=-V-Q=—(u-V)T+ V2T, (219
4,C=-V-J=—(u-V)C+LV3C—yT). (2.10

The Dufour effect describing currents of heat driven by con-

centration gradients is discarded in EJ.19 since it is rel-
evant only in binary gas mixturdd.8,19 or in liquids near
the critical point[20].

The dimensionless fluid parameters are the Prandtl nu
ber o= v/ k, the Lewis numbet =D/k, and the separation

nin all convective states.

D. Control and order parameters

The dimensionless temperature difference between the
two plates, namely, the Rayleigh numtbris used as contol
parameter. Mostly we scale it by the value of the onset of
convection in a pure fluid:

R R

"~ RO 1707.762

The convective states of the system are characterized by
four order parameters.
(i) The maximumw,,,, of the vertical velocity field.
(i) The Nusselt numbeN=(Q-e,), giving the lateral
average of the vertical heat current through the system. In the
basic state of heat conduction its value is 1 and larger than 1

(iii) The varianceM = \(C?), ,/{CZyndx . Of the concen-

ratio = _(B/a')(kT/?)- The latter characterizes the tration field being a measure for the mixing in the system.

strength of the Soret effect. The Rayleigh number

The better the fluid is mixed the more the concentration is

= (agd®/ vk)AT serves as control parameter measuring th@lobally equilibrated to its mean value 0 so tihatvanishes

thermal stress.

B. Boundary conditions

in optimally mixing, strongly convecting states.

(iv) The frequencyw of a traveling wave. Thus extended
TWs with a wave numbek have a phase velocity= w/k.
They are stationary states in a reference frame comoving

We use experimentally realized boundary conditions forwith v relative to the laboratory system.

the top and bottom plates at= = 1/2 which are no slip for
the velocity field,

u(x,y,z=+1/2;t)=0,
perfectly heat conducting for the temperature field,
T(x,y,z==*1/2;t)=*1/2,
and impermeable for the concentration field, i.e.,

e, -J=—Ld,(C—yT)(x,y,z=*1/2;t)=0. (2.2

E. Typical bifurcation scenario

For fluid parameters typically realized in mixtures of wa-
ter and about 10 wt % ethanol, an oscillatory, subcritical on-
set of convection is observed. It is connected by an unstable
TW branch with a saddle node bifurcation giving rise to
stable, strongly nonlinear TW states. At a certain Rayleigh
number, the phase velocity of these waves vanishes and the
SOC branch of stable stationary states can be observed.
Along the TW bifurcation branch which is shown in detail in



4240 ST. HOLLINGER AND M. LUCKE 57

y=-0.25 y=-0.6
o~ MR B B Tt =
X [ e ] @
N 2h/j\/' ¢ 32
—_— o | 1L ==
£ B ! i 1 g
She 6E 1r 1F 42 83
3 o2 I 1 ] S
3 k= [ 1 2
Ng 0 = 0 =~
= E 1o s
s 0 ]~ 8
2 [ 4-001 7
e £
c -0.001 = =
3 I ] 4-002 7T
= [ 1 e
0002 Lemt i i ] g3
0 4 8 0 10 20

Wmax (]dd) Wmax (K/d)

FIG. 2. Quality of the one-mode velocity field approximation
(3.1 for TWs with L=0.01, 0=10, and¢= —0.25 (left column
T T T T T T and = — 0.6 (right column as a function of growing flow ampli-
tudew,,,x along the TW bifurcation branches. The top row displays
' the error in the vertical velocity field according to definiti@®2)
and the bottom row the maximal amplitude of the lateral mean flow.

FIG. 1. Bifurcation diagrams of convection flow intensi®)

and frequencyb) in TW (solid lineg and SOC(dashed linesso- . . o
lutions in a binary mixture withj= —0.25, L =0.01, ando= 10. Continuity implies that only the lateral velocity field=u-e,

StatesA-D are identified for later discussion related to Figs. 8—10.can contain such a mean flow. In order to determine the
relevance of @—dependent mean flow we compare its maxi-

. . . mum with the two other velocities in the system: The maxi-
Fig. 1 the concentration changes its structure from Iatera\Ln(,:II vertical flow velocityw,,., and the phase velocity of
homogeneity and vertically linear layering in the basic stateI_WS Just at the onset of (r:ng)r;vection the mean flow mav be
over plateaulike distributions in fast TWs to boundary layerestirﬁated[Zl] to scale withw? and,to be very small ir)ll
dominated, slowly traveling wavesee the discussion and . itho . Furth max f g h
the figures in Sec. IV B The contrast between two adjacent ;:or):pe;]rlsont\k/]w L ur _ermlore,t mealn owllan P tatse Vfr;
TW rolls is strongly related to the phase velocity of the TW ocity nave the same sign. In strongly non |n?iar states, the
and it vanishes with this velocity. So, SOCs do not show/atlo of flow ve_IOC|ty and mean flow is nearly 113], but
such a concentration contrast. In SOCs adjacent rolls a as changed sign. Thus the mean flow h"?‘s a nonmonatonous
mirror images of each other and they are separated from o epend.ence on the_ phas_e_ and flow velocity whereas all other
another and from the top and bottom plate only by thinpro'per'ues of TWs like mixing and heat transport vary mono-
boundary layers. The latter are a typical phenomenon foponlcally. Hence the mean flow cannot contribute systemati-

cally to these properties characterizing TWs sufficiently.

convection of weakly diffusing scalars. . .
y 9 This is the reason, together with the smallness of the mean
flow, for ignoring it altogether.
lll. COMPUTATION OF EXTENDED STATES Thez dependence of the critical velocity field is described
A. Modeling the velocity field in an adequate mannésee, e.g.[22,23)) by the first even

In liquid binary mixtures like ethanol-water momentum Chand_rasekhar fu_nctlo[rﬂ4] Cl.(z)' Thgn, @he \_/elocny field
n%f straight rolls with axes oriented ig direction that are

diffuses approximately ten times faster than heat. This mea . ; o AR .
that the Prandtl numbar is of O(10) so that the velocity rTgropagatmg with phase velocityin x direction is described
y

field may be adiabatically eliminated. Then, the momentu

balance(2.1b), say in vertical direction, reduces to the bal- 1

ance of the diffusive termoV?w and the buoyant term —Esin k(x—v1)C1(2)

Ro(T+ C) with the latter containing no derivatives. Thus, in u(x,z;t) = Wmax (3.1)
a stationary flow, either in the laboratory frame or in a co- ” C41(0) 0 ’ '
moving one, the amplitudes of higher lateral Fourier modes cosk(x—vt)Cy(2)

w,, of the vertical velocity fieldw=u-e, scale at least as

1/(nk)? so that they decrease rapidly and even faster than

those of the temperature field. That is the reason why highdrierein, the phase is chosen so that the maximal vertical flow

modes than the critical first lateral Fourier mode are not nececcurs at=0 andx=0.

essary for a good description of the velocity field. One can Figure 2 checks in the first row the applicability of the

expect this to hold for alb=1. ansatz(3.1) by plotting the contribution of modes in the ver-
The next question deals with the role of the lateral meartical velocity w which arenot represented by Eq3.1) for

of the velocity field, i.e., of its zeroth lateral Fourier mode. two separation ratiog. The convective amplitude,,, was
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chosen as abscissa to quantify the nonlinearity of the stateBlote that the/ field (3.5) differs by a scaling factor 3/ from
As a measure for the strength of higher contributions to thehe field that has mostly been used so far, see, e.g.,
vertical velocity the error [25,21,19. An adequate trigonometric expansion is

<W§/IAC>X,Z_ (WWiac) .z 12 3.2 Z(x,z,t)

<W§/|AC>X,Z+ <WWMAC>><,2

was computed whera/yac(X,2) denotes the velocity field _
calculated from the full field equations by means of a finite n=0
difference marker and celMAC) scheme[16]. w(x,z) is e
the one-mode approximatidi3.1) with the two velocitiesy om —i(2n+ 1)kx
andw,,, chosen such that the numerically obtained velocity ﬂ;o mz_o [ a(De™ "2 V%5 c.c]y2 cosammz,
Wwnac(X,2) is fitted best or, equivalently, the err@8.2) is
minimized. For both Soret coupling strengths shown in Fig.
2 the error of the ansat@.1) is smaller than 4% but in- ] ) ] ]
creases as expected with the convective amplitude. which also takes the mirror glide symmet(§.4) into ac-
The bottom row of Fig. 2 shows the maximum of the count. . _ . .
mean flow(u(x,z)),. For both separation ratios the mean The introduction of the combined field was also moti-

flow is smaller than the convective amplitude by at least/ated by the wish to fulfill the boundary conditid@.2) or
three orders of magnitude. (3.7) for the concentration field exactly. However, the for-

All in all, Fig. 2 justifies the approximations implied by mulation of the concentration balance in terms of ¢hield
the ansatz3.1) for the velocity field. An important conse- Causes a severe theoretlpal drawback for small LeW|s_num-
quence of the fixed spatial structure of the velocity field isP€rsL and separation ratiog of order O(1), that are typi-
that all nonlinear terms in the balance equations contain nowally realized in liquid mixturesz and T have the same
the same amplitude, namelw,,,.x, since all nonlinearities order _Of magnitude acco_rdlng to E®.5. But in t_he bal_ance
are convective ones. This is an enormous simplification fofduation(3.6) for { the diffusive term enters with weight

20 [2m*Y(t)e2inkxt ¢ c]\2 sin2m+1) 7z

(3.8

the theoretical analysis, as we will see below. =0(0.01) and the temperature wi(1). This means that
for an appropriate solution of Ed3.6) for a particular{
B. Galerkin expansion for temperature and concentration mode temperature modes are necessary which arértés,

i.e., about 100 times, smaller than thenode under consid-
eration. Despite the fact that a relevant contribution of higher
by temperature modes was not observed either in experiments
T(x,z:t) or in simulations they are necessary in E}6) if the ¢ field

is introduced and small Lewis numbers are considered. That

The temperature field(x,z;t) is appropriately described

*Z e ik _ is mainly the reason why earlier Galerkin approximations
=-z+ Zo 21 [Tam(t)e 2"+ c.c]V2 sin2mmz using the( field and only a few temperature modes did not
n=eme succeed in describing nonlinear TW convection in binary

o _ liquid mixtures[21,23,25-27. In binary gas mixtures with
+> [TamrHt)e 2Dkt g c] typically L=0(1) this problem does not occ{it9].
n=0 m=0
X2 cog2m+1)mz. 3.3 C. Solution of the system of mode equations

This representation incorporates the mirror glide symmetry After projecting the balance equations forand { onto
the bases used in the mode expansi@®) for T and(3.8)

T T

| Jozo=-{¢)

A . for { one gets ordinary differential equations for the mode
X+ 5.zt (34 amplitudes of the temperature and théeld,
of TW and SOC statef13,16. X(1)=(Tom V), T 0,80 (1), an ()T
The representation of the concentration field is more

subtle because of its boundary conditi@?2) coupled to the The column vectoiX is written here as the transpose of a
temperature field. The straightforward solution is the intro-row vector.

duction of the combined field In the case of SOC the amplitudes are constant and have
1 to be chosen real in order to be compatible with the velocity
(x,z;t) = =C(x,z;t) = T(x,Z:1) (3.5  ansatz(3.1) for v=0. The flow amplitudewy, appears via
¥ Eqg. (3.1 in the T and ¢ field equations via the convective

nonlinearity and in addition as an inhomogeneous contribu-
tion wa, T con= —W from the conductive paril ...~ —z, of

8 l=—(u-V){+LV2—V2T (3.6) the temperature fiel(8.3). Thus the mode equations for SOC
states take the form

obeying the equation

and the boundary condition
azg(x,z=t1/2;t)=0. (37) gsodwmax)'X:BSOC(Wmax)- (3.9
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Here, the matrixM sodWmay Of mode coupling coefficients
containsw,,,, from the convective nonlinearity. The momen-
tum balance in Eq(2.1b provides the relation between the
Rayleigh numbeR and the velocity amplitude/, .y,

Wmax

a- Xsod Wmax) '

containing the solutiolX o= M 55 Bsoc of EQ. (3.9) de-
pending orw,,.,. The vectora contains all projection coef-
ficients. The pressure gradient in the momentum balance ¢
Eqg. (2.1b may be eliminated by taking the curl of the bal-
ance equation. The nonlinearity of EQ.1b vanishes in the
projection procedure when using only one velocity mode.
Now, the solution procedure is obvious: Solving the linear
system(3.9) for a given convective amplitude and inserting
the result into Eq(3.10 yields the Rayleigh number of that
SOC state with the convective amplitude,,,. Thus the
bifurcation diagranR(w,,y) Or Wn,.{ R) may be calculated.

Finding the TW solution is slightly more difficult since
the modes are time dependent:

R= (3.10

XTW(t) (TZ(m+l) |2nwt, -'I\-ggl_:rf.ei(ZnJrl)wt,

gznm-#l i2nwt Z 1 el(2n+1)mt)T_

The form of the time dependence is determined by the fa
that the TWs are stationary in a frame comoving with
= w/k. Therefore the angular frequency of th¢h lateral
Fourier mode(lower index of the mode amplitudess nw
with w being the basic frequency of the TW. With the com-
plex vector of TW mode amplitudes

2m+1
2n+1»

2 1 - 22 1
Xow= (T34, T )T

the system of the projected balance equations reduces on
more to a linear algebraic system

(3.1)

where, however, the matrixt,y of mode coupling coeffi-
cients is complex. Another complex equatifor two real
ones generated by the momentum balance relates the tw
real groupsw andw,,,, with the Rayleigh numbeR and the
separation ratiag,

with g, b; being vectors of projection coefficients.

A possibility to solve the system is to solve E§.11) for
a given combination ¢,w,,,) and to use the resulting
)A(Tw(w,wmw) for solving Eq.(3.12 with respect to (R, ).
This means thaR and¢ are uniquely determined for a given
combination w2, w
squaresv? andw? , since left- and right-traveling waves are
symmetry degenerated and the convective amplitwgg,
was chosen to be positive by E@.1).

This result is illustrated in Fig. 3: The TW states fill the

Mrw(®,Wmay) - Xw=Brw(Wma),

bl' )A(TW
b2' >A<TW

1R
P

- Xow @ Xow

(3.12

a1 Xrw A Xw

2
max
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FIG. 3. TW states in thev’,-»? plane forL=0.01 ando
=10. The separation ratig is constant on each solid line. It varies
logarithmically from line to line and has the value shown at the left
ordinate. The dotted line gives the positions of the TW saddle
nodes.

trol parametelR varies along a particular line betwe&j,

at the Hopf bifurcation \{,,,,=0) andR* at the SOC-TW

rtransmon (w —0) in a way that can be nonmonotonous. The
value of w? for w2,,=0 is w7, i.e., the square of the Hopf

frequencywy . The dotted line represents the position of the

saddle nodes in the diagramgR) or w,,(R). It vanishes

in the vicinity of y= —0.01 since for weaker Soret couplings

only an unstable lower TW bifurcation branch exists without

any saddle node. These topological features will be discussed

later in this article.

C€ D. Comparison with finite difference numerical results

In Fig. 4 we give a quantitative comparison of bifurcation
diagrams computed by the above presented numerical Galer-
kin method and those obtained by a finite difference MAC
scheme with a full representation of the fields. In our Galer-
kin scheme, we used one velocity mode and up to 19 tem-
gerature and; field modes in each direction. So, we com-
puted 761 real mode amplitudes in the case of TW
convection.

For both SOC and TW states the pairs of diagrams coin-
cide. The most evident discrepancy can be observed in the
end pointr* of traveling wave convection in Fig.(d): The
MAC results with a discretization oflx=dz=0.05 (solid
circles predictr* =1.65[16], the Galerkin schemé&lashed
line) r*=1.495. In order to elucidate this deviation we per-
formed a finite difference calculation withx=dz=0.025
(open lozengesand observed*=1.45, i.e., close to the
value of the Galerkin scheme which used modes up to a
wave number 18 in both directions. The variation af*

Wha - The relevant parameters are here thewith the spatial resolution of the MAC scheme is caused by

concentration boundary layers at the plates: Galerkin method
and the finer resolving MAC scheme show the same thick-
ness which is smaller than that predicted by the worse re-
solving methoddx=dz=0.05. Now, the SOC-TW transition

plane. The lines are connecting states along a TWmnay be interpreted as a boundary layer instab[2§] that

b|furcat|on branch for a particular separation ratio. The con-occurs if the SOC boundary layer thicknes$L/wW ) 1
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80C ™w plies to the transition point* of TW to stationary convec-

@ ‘ @ 8 Tl tion. The Galerkin method presented in the last section does
8t t=oot ¥ ¢ 1 not suffer from these disadvantages and it yields also the

g vl ] % 1 whole unstable branches directly without any numerical
1} + Do 1 tricks. Since it computes only fixed points the intrinsic time
of B—o—oaeoenO—a—o—t- SO 1 scale of the system doe®t enter the problem. However, an
o4 ‘ , additional stability analysis of the computed states is neces-
sary.

o (k/d%)

0.3 T

o2t 1 3 ] 1. Strong negativay

oif & I <>\<; - ] The investigation of the variation of the bifurcation sce-
ATA N O . . . .
nario with the separation ratigp has shown fostrongnega-
N P oA : tive couplings a very interesting featuf&7]: the develop-
o8} g PP ment of a lower stable TW branch out of the bump seen in
N | &7 ] Fig. 1 in the unstable branch fa#=—0.25. Fory<—0.4
asoo o two stable, convective TW solutions exist, opening up the
Aphasopinedsoo F 1 possibility of the coexistence of two different traveling states
ok Yoo o SRS in one container. Furthermore, all these TWs were found to
00 5 20 Byfosc P 20 display universal scaling properti€s7]. (i) The mixingM,
r i.e., the concentration variance varies linearly with the TW
FIG. 4. Comparison of bifurcation diagrams of frequenaies ~frequency(ii) The latter itself is uniquely fixed by the “dis-
(a), (d), varianceM of the concentration fieldb), (), and Nusselt  tance,” r(Wmax, ¥) — r(Wmayx, ¥=0), of the TW state’s loca-
numberN (c), (f) calculated by our Galerkin method and a finite tion (r,wns) on the TW bifurcation branch from the pure
difference MAC scheme. Results of the Galerkin method are showfiuid (¢/=0) convection coordinates in thew,,,, bifurca-
by solid (SOQ and dashedTW) lines. MAC results with a spatial tion diagram. Thus bifurcation properties, spatial structure of
resolution ofdx=dz=0.05[16] are shown by filled circle§TW),  the concentration distribution, and TW dynamics show for
open squaregSOQ), and open trianglegphase fixed, unstable strong Soret coupling a peculiar scaling behavior. For a dis-
SOC3. More accurate MAC resultsik=dz=0.025) are displayed cussion of the characteristic changes in the bifurcation topol-

as open lozenges. The dotted lines show results of a pure #uid, ogy atstrong Soret coupling see Ref17].
=0: thick dots—Galerkin, thin dots—MAC.

0.4

N-1

0.21

. . . 2. Weak negativay
exceeds a certain value when reducingr reducing the

convective amplitude. This critical thickness is reached for On the side oiveaknegative Soret couplings, i.6/—0,
higher amplitudes when using a numerical method that prothe motion of the saddle nodegoc and ryy, and of the
duces larger boundary layers. Thus=1.45 is a more ad- SOC-TW merging point* in ther-¢ plane was not eluci-
equate value fol.=0.01, =10, and y=—0.25 thanr* dated except for the vanishing of stable TW convection for
~1.65[16]. ¢>—0.01 in mixtures with ethanol-water parameters
The deviations in the bifurcation diagrams for the vari-L=0.01 ando=10[16]. To fill this gap we discuss in Figs.
anceM of the concentration in Figs(H) and 4e) are mainly 5-7 the bifurcation properties of TWs and SOCs in the range
due to the shift in the frequency bifurcation branches. This~0.25<#<0. In Fig. 5 we show TW and SOC bifurcation
means that the dependence of the concentration distributiofiagrams ofwj,, vsr for severaly as indicated. In the case
on the frequency is reproduced well. of the strongest coupling= — 0.05[Fig. 5a)] the same situ-
The convective heat transpdidt—1 [Figs. 4c), 4(f)] in  ation as fory=—0.25(Fig. 1) is observed except for the fact
our Galerkin approximation is carried by only one velocity that herer* <r., so that a SOC state is observed when
mode so that the actual values may be expected to be largbeating above threshold. The stationary bifurcation threshold
the higher the forcing, i.e., the Rayleigh numbefhis typi-  I'siaiS N€gative as is the case for a< —L/(1+L)=— 55
cal behavior can be observed also for the pure fiuid0.  for L=0.01[20,19: Thus the SOC branch is disconnected

There, a discrepancy between full MAC results and oumwith the ground statewfnaxzo at the positiver axis. The

Galerkin approximation of about 6% at2 is seen. shape of the SOC branch does not change when reducing the
strength of the Soret effect because the tricritical separation
IV. RESULTS ratio for SOCs,5oc, scales with—L3 [29] and is effec-

tively O for small Lewis numbers. The most evident effect is
the motion of the SOC-TW transition poim# along the
The dependence of the bifurcation topology on theSOC branch towards the SOC saddle node. f#er—0.02
strength of the Soret coupling, say in the rarg@25<¢<0, [Fig. 5b)], the TW and SOC saddle nodes coincide; for
was not yet discussed in the literatyr4,16,28 in detail:  =—0.01[Fig. 5(c)] the TW branch merges with the SOC
On the one hand, the directly integrating numerical methodsranch at the SOC saddle node. The transition from SOC to
[14,16 require large amounts of CPU time due to critical a pair of symmetry degenerated TWsr&twhich is a pitch-
slowing down near the saddle node positiodgc andr3,,.  fork bifurcation of the TW frequency is still backwards in
On the other hand, the Soret effect was only implementedhe sense that the frequency bifurcation is subcritical. Differ-
incompletely in a theoretical approa¢B8]. The same ap- enttoy=—0.02 we can observe fa¥=—0.01 TWs also for

A. Soret coupling and bifurcation topology
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FIG. 5. Bifurcation diagrams oiv;,,, versus reduced Rayleigh Re ¥y (x/d?)

numberr at weak Soret couplings arid=0.01, 0=10. Open loz-

enges represen_t SOCs, filled lozenges TWSs. Results were computed FIG. 6. Bifurcation diagrams of convective amplitude,, (2)

with our Galerkin method. and frequencyo (b) for fluids withL=0.03,0=1, andy=—0.055.
Graph(c) shows eigenvalues determining the stability of the TWs:

control parameters smaller than those of all SOCs, i.e., thepen (filled) symbols correspond to unstable, Rg>0 (stable,

extended state with the smallest Rayleigh number is now &eyrw<0) states(stationary: Imyry=0; oscillatory: Imyry#0).

TW and no longer a SOC. This is different from the behaviorThe states corresponding to the small filled circles are not shown in

for r<<—0.02 where SOCs exist also at Rayleigh numberéa) and (b).

notlr?llFoi\évllng((;l)'V\\:vsit.h = —0.0085 the TW branch merges change in s_tability along the supercritically bifurcating TW

with the lower, unstable SOC branch which then becomegranCh ending on the unstable SOC branch.

stable beyond its saddle node. But the TW saddle is still

found at smaller amplitudes and Rayleigh numbers than that

of the SOCs. The consequences are as follows: The lower We have checked the scenario for the appearance of

TW branch locates unstable TWs which become stable at th¥TWs more explicitly for a parameter combination which is

saddle. However, they change stability once more sincéealized in 3He-*He mixtures rather than in ethanol-water,

stable TWs may not merge with the unstable SOC branchamely,L=0.03, c=1, and = —0.055. In ®He-*He this

The only possibility is the existence of an additional bifur- scenario occurs in a four times broader range of the control

cation point — here to a modulated TW—on the upper TWparametefr €[1.0612, 1.0614 see Fig. €3)] than is real-

branch between$,, andr*. This scenario is investigated in ized in ethanol-water mixturels € [1.01375, 1.0138) see

more detail in the next subsection, IV A 3. Fig. (d)].

Here, we continue the discussion of the changes in the Sufficiently above the oscillatory threshold o
bifurcation topology of ethanol-water mixtures fgr—0. At ~ =1.088 27 (v,;=3.8467,k.=3.1152) stable SOCilled
=—0.007 in Fig. %) the TW saddle has vanished and thetriangles can be realized according to Fig@ When re-
whole TW branch is unstable. The next significant change iflucing the heating rate we approach the SOC saddle at
the topology occurs at the tricritical separation rafig,~  aboutrgoe=1.061 39. Below that, the system falls down on
—5x10 % [29]. Therefore aty=—4x10 ° we observe in the branch of TWs which is oscillatory unstablepen
Fig. 5(f) a supercritically bifurcating TW branch. It is stable squaresatrgoc. The upper stable TW brancfilled circles
just at the onset and then becomes unstable with respect torns unstable atymw=1.061 25 shortly above the saddle
MTWs. At the codimension-2 pointycr=—3.526x 10 ° rw - The oscillatory unstable TW®pen squargsgget modu-

[29] the TW branch vanishes completely. For separation ralated by a frequency at least ten times smaller than the basic
tios ¢ betweenyt,, and gy there is also a necessity of a frequency of the TW itself — compare the frequencies in

3. Modulated TWs
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Fig. 6(b) and the imaginary parts of the relevant eigenvaluestable, nonlinear TW branches have been discovered;for
in Fig. 6(c). The instability of the TWs on their upper =<-—0.4 in mixtures withL=0(0.01) ando=0(10).

branch, i.e., the transition at;r,y from filled circles to open

squares, gives birth to MTWSs with slowly breathing ampli- B. Concentration distribution and stream function

tude. The type of the instability of the TWs changes on the
upper TW branch at=1.061 41 from oscillatory to station-

ary (open circleg in order to merge appropriately with the ) .
stationary unstable lower SOC bran@pen triangies Rayleigh number. The TW states have been computed with

This scenario has also been discussed in a minimal mod&-" _Gale_rkin method using the one-mode velog:ity field ap-
by Knobloch and Moor¢30]. They, however, investigated a proxlmattlhorll(&li. Four states are labeled lay-D in agree-
system with stress-free and, more importantly, permeablgqen wi g. .

boundaries without adequately resolving the boundary Iaya. ng \{[\{ant t%d|scuss. herel the iEan_?\?vs t')r:, the ;:'oncsntratr;on
ers. We give here evidence for MTWSs in binary mixtures Istribution when moving along the lfurcation branc

with realistic boundary conditions realized in the experi-and their relation to the structural changes of the stream

ments. Note, however, the experimental investigation ref!"ction

quires a control of the temperature difference of about*10

Figure 8 shows a combined bifurcation diagram of con-
vective amplitudew,,,, and phase velocity vs reduced

~ Wmax

4. Phase diagram b (X,2)= KC1(0) sinkx C4(z)+vz 4.2

Our results are summarized in a phase diagram in Fig. 7 10 : s :
where they dependence af* (open lozenggs SOC saddle -
(open triangles up and TW saddlgfilled circles are dis- I D
played together with the linear stability thresholds of the 8 convection -
basic state(stationary: open triangles down; oscillatory: I veosty
filled squares Stable TW states on the upper TW bifurca- g .
tion branch are located in the shaded region of Fig. 7. The <z 6 i
inset in the upper right corner covers separation ratios be- ‘§ I
tween = —0.05 and = —0.005. In this inset we have ° 4 -_C:..._ ]
scaledr —1 by V— ¢ in order to map the SOC saddle node - N o N
positionr ¢, approximately onto a constant since itsde- i B @A veolk
pendence may be fitted very well by 2 | a0

reoc=1+1.636y—Ly. 4.0 o Lo

0sc

However, in view of the fact that the exponent in E4.1) is
not exactly 1/2 it is not surprising thafyc is not exactly
constant in the inset of Fig. 7. The range of existence of the

MTWs is too small to be visible in Fig. 7. FIG. 8. Bifurcation diagram of convective amplitudg, ,, and
The changes of the bifurcation topology induced by in-phase velocity vs reduced Rayleigh numberfor TWs in a mix-
creasing the strength of the negative Soret coupling beyonglire with L=0.01, 0=10, = —0.25, andk= 7. The stable(un-
values of —0.25 including a detailed phase diagram for stablg branches are shown by solidotted forw,,,, and dashed for
$e[—0.7,-0.2] were discussed in Refl7]: There, two v) lines. LettersA—D identify states discussed in the text.

Rayleigh number r
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(d) FIG. 10. Concentratiof vs stream functiorb in the comoving

frame for the states identified in Figs. 1 and 8. The dotted lines
FIG. 9. Lateral and vertical concentration profiles of the four réferring to the conductive state are explained in the text. Sthce
states identified in Figs. 1 and 8. and ¢ were evaluated on a grid some of the fine structure seen in
the plots reflects the grid discretization.

for the velocity field(3.1) in the frame that is comoving with

the TW phase velocity. Note that in this frame the velocity amplitude of the wave profile of stat in Fig. 9 is larger

S ; . . than that of staté as the lateral profiles are not taken at the
field is stationary so that passive particles would move alon%enter of the closed streamlines but in the center of the con-
the stregmllnes of Eq4.2). — vection cell. Beyond this maximum amplitude the concentra-

_ The first occurrence of local extremadi(x,z), Eq.(4.2,  tion wave crests are “cut off’ and a plateau develops with
gives rise to the first appearance of areas of closed strearfhe gppearance of closed streamlines. The plateau extension,
lines. That happens fok=m at the velocity ratiox je. the region of constant concentration within the areas of
=Wmax/v=0.9807. Thus, fory=1, i.e., in all TW states ¢|osed streamlines, broadens with increasinghile simul-
between the Hopf bifurcation thresholgs; and stateA the  taneously the plateau value of the concentration wave re-
streamlines are all open. |aneaSing the convective amplitUdQuces_ Furthermore, a small concentration peak at the lead-
Wmax Yields decreasing phase velocityand increasing val-  ing front of the right-traveling wave develops. It is caused by
ues ofy so that areas of closed streamlines appear that groghe advective injection of the concentration at the plates into
at the expense of those occupied by open streamlines. F@ie areas of closed streamlines. The lateral profile of #tate
v=0, i.e., at the poinD only closed streamlines are ob- has only a very weak, not visible asymmetry with respect to
served. reflection atx=*1/2 whereas the asymmetry in st&leis

Without feedback into bouyancy, concentration is a pasppvious and gets more and more pronounce€iandD.
sive scalar transported by means of convection and diffusiorhe advective injection of concentration into the regions of
(for the discussion of the Soret coupling in the bulk equa—josed streamlines takes — with diffusion being small com-
tions see Sec. IV £ Then one can apply the results of pas-pared to advection — the form of an inwards spiraling con-
sive scalar theory, e.d.31,32. It explains that within closed centration jet that can be seen in Fig. 3 of Hé#b].
streamlines a weakly diffusing scalar is homogenized. This This strong relation between streamlines and concentra-
behavior is elucidated in Fig. 9 where we show lateral andjon distribution is also demonstrated in Fig. 10 where we
vertical concentration profiles for statds-D labeled in Fig.  have plotted the concentration fielivs the stream function
8. 1n statesB,_C, and_D wherey>1 and therefore areas of % in the frame comoving with the TW state traveling to the
open streamlines exist we see a plateau characteristic of bo ht. Just at the Hopf bifurcation threshold the stream func-
profiles. However, statd with only open streamlines shows .~ . . L~ .
tion in the comoving frame ish=vz=wyz/k reflecting a

no such plateaus. o . oo
Note that the lateral concentration wave profiles betweer) gnlshmg convgctlve velocny.fleld |n.the laboratory frame.
Via the conductive concentration profi®.,,;~ — ¥z we get

the Hopf bifurcation and staté are basically harmonic and = o )
that their amplitudes increase with increasing convective amthe relationCeond ¢) = — (k¢/ wy) $=0.070p (dotted lines
plitude. This amplitude growth of the harmonic concentra-in Fig. 10 between concentration and stream function with
tion wave occurs as long as there are not yet closed streang> varying between-v/2 andv/2, i.e., between-1.78 and
lines, i.e., up to a limiting point in the vicinity of stafe The  1.78. In stateA, the conductive concentration distribution is
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complete Soret forcing In a relaxed TW state the relation

4,C=0=-V.J

holds so that] is divergence-free. It is shown as a vector
field plot in Fig. 1Xa) in the left column together with the

streamlines of the velocity field for a TW propagating to
the right. The structure of the current can be explained as
follows: In the closed streamlines of the right rolls of Fig. 11
x X concentration is homogenized to a level close to that of the
upper plate. This is due to the vicinity of the right roll to this
FIG. 11. Concentration currents in a TW propagating to thePlaté where the higher concentratiodt 0) is observed for
right in the comoving framel(=0.01, ¢=10, = —0.25, andw negative Soret couplings and heating from below. The left
=4) with complete Soret couplingleft column and averaged, area of closed streamlines is located next to the lower plate
boundary Soret forcingright column). For details see text. The top and contains therefore the lower concentrati@r<(0). The
row (a) shows the total concentration curréhtEq. (4.3), in the left WO Qifferent §igns of concentration — the mean concentra-
column and the modified currefogieq, EQ. (4.5), in the right tion is normallzed to zero — are the reason for the concen-
column each together with the streamlinesliofThe scaling factor ~ tration current] to rotate clockwise in both clockwise and
for the lengths of the arrows is 0.5 relative to the units of lateral anccounterclockwise rotating rolls. In the vicinity of the center
vertical axes. Rowb) shows the influence of the Soret coupling Open streamline that meanders between the rolls, a line of
more explicitly. Left columnL VT (complete coupling right col- ~ vanishing concentration current exists. It also vanishes near
umn: —L¢Ne, (averaged coupling In row (b), the arrow lengths  the center of the rolls where the velocitiyvanishes.
had to be magnified by a factor 30 relative to those of the top row At the plates the concentration current is purely lateral

in order to make them visible. since due to the impermeable boundary condities,=0. It

_ ) _ is mainly given by—uv C being negativépositive at the top
slightly deformed and the stream function varies betwee'%bottom) plate with C>0 (C<0). The contribution from
—1.4 and 1.4, which are the values at the top and bottonjtera| concentration gradients along the plates to the concen-
plates. At these boundaries the concentration is in contrast {944 current(4.3) is multiplied by the Lewis numbet
the stream function not constant so that a vertical shape 0;0(0_01) and can therefore be neglected there. The tem-
C(¢) is observed there. In stat there are already small perature, and consequently the Soret effect, does not contrib-
areas of closed streamlines with equilibrated concentrationa 4t all toJ-e, at the plates since the temperature is fixed
In these regionQ(ZS) is a constant. Moving along the TW there.
bifurcation branch the areas of these regions keep on increas-
ing via stateC to stateD, which is a SOC state. In this state 2. Approximate Soret induced current
we observe a remarkable concentration variation around its ) _ )
mean value 0 only in a small stream function interval around 'N€Xt, we discuss the influence of the temperature field on
0, the separatrix in this state. This is a strong boundary layef€ concentration curreri.3) in the bulk. We do this by

phenomenon caused by the smallness of Lewis nurhber Studying the left column of Fig. ). There,L VT is plot-
=0(0.01) in comparison with the convective amplitudeted by arrows whose lengths are magnified by a factor 30

Winas= 0(10). relative to that of] in Fig. 11(a). For negative Soret coupling
L4VT is parallel to the diffusive heat currertVT pointing
upwards in the system heated from below. The important
thing is the existence of this current and its mean upwards
1. Comoving frame of reference direction and not the small modulations. We ignore these
small lateral modulations by replacihg/VT by an adequate

The impact of the Soret coupling on the concentration .
current in a TW is best understood by studying the current ifean. For this mean we choose the mean. ¢V'T at the

a frame comoving with the TW’s phase velocity In this plates, namely,

frame, the velocity fieldi(x,z) = (— d,4,0,9, ) is well ap-

proximated by the ansat#.2) according to ansat@.1) and (LYVT)y 5 1= — LyyNe,, (4.4
the discussion of Fig. 2. The corresponding streamlines can T

be seen in Fig. 1&) for a TW state withv =4/, i.e.,

C. Soret coupling and concentration current

=4, in order to guarantee the impermeability of the plates in the
In the comoving frame the concentration currehtis  lateral mean. A global averaging &fy)VT would lead to
given by —L e, differing from our choice only by a factak=0(1)

and violating the impermeability by the same amount.
o The replacement df VT by the mear(4.4) leads to the
J=uC—-LV(C—yT). 4.3 modified concentration current
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perature can be modeled by those modes which are observed
in the fields and not additionally by those becoming neces-
sary for numerical reasons.

0.75 Bifurcation diagrams of the frequency computed by this
oy oozson | ] approximate methodsolid lineg are displayed in Fig. 12
I eyl IR and compared with the “exact” resultssymbol3 as de-
S 05 auossas | ] scribed in Sec. Il C over a wide range of Soret couplings.
8 g We have chosen bifurcation diagrams for the frequency since
0.25 it is most sensitive to an insufficient mode truncation. For

. separation ratiosy>—0.15 no differences are observed

] whereas for stronger couplingg/€ —0.25) at high heating

. ] rates deviations become visible. The reason for this is the
0.01 . 1 neglect of temperature modes higher than those incorporated
in Eq. (4.7). At high heating rates they become relevant: The
) ) _ _ maximum of the second lateral temperature mode has
‘ Ft'G' 12. ?'fgrcai'on d'?_gramstfle?N frzq”‘]f_nlcées' Symbotlst_re' reached for =1.6 about 6% of the size of the first one (3%
er 1o correc oret coupling an ull mode Ttie representation H : : H

Lines were obtained by the laterally averaged Soret effes} and Tﬁ: utsh ?hgllsr?mﬁflstltvgn?ag ?Ofrl rﬂgsteeem?::gtlfgé ';lilegld)ac?a%s

the reduced temperature representatibi). The unstable states for off at least 10% of the spectrum leading to comparable errors
the complete coupling have been dropped for reasons of Clarityi'n the bifurcation diagram, especially in the vicinity of the
Parameters are=0.01 ando=10. SOC-TW transition '

Jmmodifie= UC—LVC—LyNe, (4.5
V. CONCLUSION

shown in the right column of Fig. 14). Therefore in the

T ) We have given a detailed analysis of the influence of the
modified concentration balance

Soret effect on thermal convection in binary liquid mixtures.
As a tool we used a many-mode Galerkin method combined
0=3,C=—V-Jnodiiec™ — V- [UC—LVC] (4.6p  with an approximation in the velocity field: It is truncated by
a single mode which holds for convection in fluids with
randtl numbersr=1. The mean flow in traveling waves
Ws) was recognized as unimportant since it is very small
and contributes only unsystematically to the main TW prop-
_ erties. This truncation of the velocity led to a very simple
0=¢€,- Imodifie™ —LJ,C—LyN atz=+*1/2. and efficient solution procedure for the nonlinear TW and
SOC fixed points by only solving linear equations. This
opened up the possibility for a detailed elucidation of the

the temperature field has disappeared. It occurs only in th
boundary condition

This allows the concentration field to be described by

w o changes in the combined bifurcation topology of stationary
C(x.z:t)= — yNz+ C2m+ 1ty e=2inkx 4 ¢ ¢ and traveling states, especially the existence range of TW; in
( ) v ngo m=0 [Con (1) ] the control and fluid parameter plane. Together with the in-

vestigation of strong Soret couplings7] interesting fields

X2 sin2m+1)mz for experiments are opened: the bistability of slow and fast

traveling waves and the occurrence of modulated traveling

r - ‘ waves with slowly breathing amplitude. The classification of
+> > [CAM (t)e I(2ntDkxy ¢ e ] the states is facilitated by a detailed phase diagram. As an
n=0 m=0 additional insight it was found that the order parameters TW
frequency and TW convective velocity determine the control
parameters Rayleigh number and separation ratio uniquely.

Since now the actual concentration balance is solved and ng Eliminating the intrinsic time scale from the computation

the balance for thé field the above discussed problems with 0 the_ fixed pomts allowed besides the Qeterm|na_t|on of bi-
furcation points and saddle nodes the investigation of un-
the relevance of temperature modes that are filmes

smaller than thez-field modes no longer occur. Conse- stable states. In this regime the transition from weakly to

uently. the temperature field can now be represented b thstrongly nonlinear TWs is observed and may be understood
q Y P P y |ﬁ the framework of the intimate relation between concentra-

simplest approximation tion distribution and the structure of the flow and the changes

X /2 cosinmrz.

T(X,2,1)= — 2+ T2(1)\2 sin2mz+[Ti(t)e *x in this relation along the bifurcation branch. . '
(x.21)= =2+ T4(0) V2 sinZnz+[TH(D) As a further result the reason for the failure of earlier
+c.c]y2 cosrz (4.77  Galerkin approximations for the convection in binary liquid

mixtures was revealed: In order éxactlyfulfill the concen-
just like in the classical Lorenz mod83]. The advantage of tration boundary condition which is coupled to the tempera-
this procedure is that only for the concentration field is ature field earlier approaches used a combination of concen-
many-mode Galerkin representation necessary and the tertration and temperature field without resolving the
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temperature field adequately. When using this combine®&oret effect and to truncate the concentration field with an
field for small Lewis number& <1 a resolution of the tem- adequate boundary conditiofboundary Soret effegtdi-
perature is required that goes beyond the dominating modasgctly. Then, the foundations of a more compact description
seen in simulations and experiments. Although the contribuand solution for the convection in binary liquid mixtures are
tions of higher modes to the temperature field are small thelaid [34].

are essential in the balance equations formulated with the

combingd fielq. A way out.of t'his artificial theor'etical di- ACKNOWLEDGMENTS

lemma is obtained by investigating the concentration current:

It is mainly influenced by the lateral average of the tempera- This work was supported by the Deutsche Forschungsge-
ture gradient in the system. This allows us to ignore the Soraneinschaft. Stimulating discussions with W. Barten, P.
effect in the bulk equation of the concentration balafmeék  Buchel, and H. W. Miler are gratefully acknowledged.
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