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Influence of the Soret effect on convection of binary fluids

St. Hollinger and M. Lu¨cke
Institut für Theoretische Physik, Universita¨t des Saarlandes, Postfach 151150, D-66041 Saarbru¨cken, Germany

~Received 23 July 1997!

Convection in horizontal layers of binary fluids heated from below and in particular the influence of the
Soret effect on the bifurcation properties of extended stationary and traveling patterns that occur for negative
Soret coupling is investigated theoretically. The fixed points corresponding to these two convection structures
are determined for realistic boundary conditions with a many-mode Galerkin scheme for temperature and
concentration and an accurate one-mode truncation of the velocity field. This solution procedure yields the
stable and unstable solutions for all stationary and traveling patterns so that complete phase diagrams for the
different convection types in typical binary liquid mixtures can easily be computed. Also the transition from
weakly to strongly nonlinear states can be analyzed in detail. An investigation of the concentration current and
of the relevance of its constituents shows the way for a simplification of the mode representation of tempera-
ture and concentration field as well as for an analytically manageable few-mode description.
@S1063-651X~98!08604-8#

PACS number~s!: 47.20.2k, 47.10.1g, 51.10.1y
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I. INTRODUCTION

Convection in binary miscible fluids such as, e.
ethanol-water or3He-4He is a well established and accept
system for studying instabilities, bifurcations, complex sp
tiotemporal behavior, and turbulence. This is on the one h
due to its sufficiently simple experimental realization und
well controllable conditions. On the other hand, a great
vantage for the theoretical analysis is the solid knowledge
the governing field equations. So, recently a lot of resea
activities @1–16# have been directed towards investigati
the enormous variety of pattern forming behavior in this s
tem. The richness of spatiotemporal phenomena in bin
fluid mixtures stems from a feedback loop between the fie
of velocity, concentration, and temperature. Let us start w
the velocity field: The convective flow is driven by the buo
ancy force field which itself is determined by variations
the temperature and of the concentration field. The latter
on the one hand generated via the thermodiffusive Sore
fect by temperature gradients and on the other hand they
reduced by concentration diffusion and by mixing due to
convective flow. Since these changes influence the buoya
which drives the flow the feedback loop is closed.

In this article we concentrate on the Soret coupling and
influence on spatially extended convection states of stra
parallel rolls that occur either as a horizontally traveli
wave ~TW! or in the form of stationary ‘‘overturning’’ con-
vection ~SOC! rolls. Among others, we elucidate the Sor
induced changes in the combined SOC-TW bifurcation
pology which offers in both types of convection the possib
ity of subcritically and supercritically bifurcating branche
depending on the strength of the Soret coupling. Both so
tion branches develop with increasing Soret coupling sad
node bifurcations which give rise to stability changes.
nally, there exists a merging point of the SOC and the T
branches for moderate negative Soret couplings. This c
petition of stationary and traveling states can only be
served for negative Soret coupling, where temperature gr
ents induce adverse concentration gradients that stabilize
571063-651X/98/57~4!/4238~12!/$15.00
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unstable thermal layering. For positive Soret couplings, th
is no oscillatory instability of the basic state. The two inte
esting cases for negative coupling are nowweakandstrong
Soret effect. For the latter one a bistability of slow and fa
TWs was recently reported@17#; they coexist with the like-
wise stable basic state of heat conduction. A detailed ph
diagram was discussed@17# describing the Soret dependen
of the saddle nodes. For weak Soret couplings, howeve
detailed study of the bifurcation toplogy was missing. Da
from direct numerical simulations are sparse since in the
cinity of saddle nodes and bifurcation points the intrins
time scale of the system is arbitrarily long. Thus phase d
grams to elucidate the whole bifurcation topology were
complete.

We have determined the SOC and TW fixed points of
system by a many-mode Galerkin scheme whose con
gence properties do not depend on the time scale of the
tem. In particular, this allowed us to study all unstab
branches on which, especially, the transition from weakly
strongly nonlinear convection takes place. Furthermore, a
tailed explanation of the concentration distribution and
relation to convection is given.

Our article is organized as follows: The second sect
presents the system, the fields needed for its description,
their governing equations with the explanation of the r
evant fluid and control parameters. Finally, it presents a s
survey on the typical bifurcation scenario in the convect
of binary liquid mixtures with negative Soret coupling. Th
third section shows the field truncations, the method of so
ing the system, and the solutions of our many-mode Gale
scheme basing on a reasonable approximation in the velo
field. In the fourth section we discuss the influence of t
Soret coupling on the bifurcation topology by means of e
emplary bifurcation diagrams realized in experimentally fe
sible mixtures and a detailed phase diagram. Furtherm
evidence for an instability of a TW towards a modulated T
~MTW! is given. The fluid parameter range for its occurren
is elucidated for ethanol-water as well as for3He-4He mix-
tures. Finally, we extract the relation between concentra
distribution and convective structure and we investigate
4238 © 1998 The American Physical Society
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importance of the Soret effect at the boundaries and its n
ligibility in the bulk.

II. SYSTEM

A layer of a binary fluid mixture with a mean temperatu
T and a mean concentrationC is confined between two per
fectly heat conducting and impervious plates separated
distanced and exposed to a vertical, homogeneous grav
tional accelerationg. The lower ~upper! plate is kept at a
fixed temperatureT1DT/2 (T2DT/2).

The fluid parameters arer ~density of the fluid!, a
52(1/r)(]r/]T) ~thermal expansion coefficient!, b
52(1/r)(]r/]C) ~solutal expansion coefficient!, n ~kine-
matic viscosity!, k ~thermal diffusivity!, kT ~thermodiffusion
coefficient!, andD ~solutal diffusivity!.

A. Scaling and balance equations

We scale lengths by the heightd of the layer, times by the
vertical diffusion timed2/k of the heat, and accordingly ve
locities byk/d. The deviationT of the temperature from its
meanT is reduced byDT, that of the concentration field b
(a/b)DT, and the pressurep by rk2/d2. Then, the balance
equations for mass, momentum, heat, and concentration@2,3#
read in Oberbeck-Boussinesq approximation@18#

052¹•u, ~2.1a!

] tu52~u•¹!u2¹F p1S d3

k2
gD zG1s¹2u1Rs~T1C!ez ,

~2.1b!

] tT52¹•Q52~u•¹!T1¹2T, ~2.1c!

] tC52¹•J52~u•¹!C1L¹2~C2cT!. ~2.1d!

The Dufour effect describing currents of heat driven by co
centration gradients is discarded in Eq.~2.1c! since it is rel-
evant only in binary gas mixtures@18,19# or in liquids near
the critical point@20#.

The dimensionless fluid parameters are the Prandtl n
ber s5n/k, the Lewis numberL5D/k, and the separation
ratio c52(b/a)(kT /T). The latter characterizes th
strength of the Soret effect. The Rayleigh numberR
5(agd3/nk)DT serves as control parameter measuring
thermal stress.

B. Boundary conditions

We use experimentally realized boundary conditions
the top and bottom plates atz561/2 which are no slip for
the velocity field,

u~x,y,z561/2;t !50,

perfectly heat conducting for the temperature field,

T~x,y,z561/2;t !571/2,

and impermeable for the concentration field, i.e.,

ez•J52L]z~C2cT!~x,y,z561/2;t !50. ~2.2!
g-

a
-

-

-

e

r

We restrict ourselves to the description of extended roll-l
patterns that are homogeneous in one lateral direction, say.
So, we investigate two-dimensional states of a certain lat
periodicity lengthl52p/k. In most cases we takek5p,
i.e.,l twice the thickness of the fluid layer, which is close
the critical wavelengths for the negative Soret couplings
vestigated here. Furthermore, the stable nonlinear TW
SOC states that are observed in experiments have typica
wave numberk5p.

C. Conductive state

In the motionless basic state, a vertically linear tempe
ture profile,Tcond52z, is observed due to the different to
and bottom temperature. This leads via the Soret effect
the no flux condition forJ to a likewise linear concentration
profile, Ccond52cz. Both together yield the hydrostati
pressure

pcond5p02
1

2
Rs~11c!z22S d3

k2
gD z

in the quiescent state.

D. Control and order parameters

The dimensionless temperature difference between
two plates, namely, the Rayleigh numberR, is used as conto
parameter. Mostly we scale it by the value of the onset
convection in a pure fluid:

r 5
R

Rc
0

5
R

1707.762
.

The convective states of the system are characterized
four order parameters.

~i! The maximumwmax of the vertical velocity field.
~ii ! The Nusselt numberN5^Q•ez&x giving the lateral

average of the vertical heat current through the system. In
basic state of heat conduction its value is 1 and larger tha
in all convective states.

~iii ! The varianceM5A^C2&x,z /^Ccond
2 &x,z of the concen-

tration field being a measure for the mixing in the syste
The better the fluid is mixed the more the concentration
globally equilibrated to its mean value 0 so thatM vanishes
in optimally mixing, strongly convecting states.

~iv! The frequencyv of a traveling wave. Thus extende
TWs with a wave numberk have a phase velocityv5v/k.
They are stationary states in a reference frame comov
with v relative to the laboratory system.

E. Typical bifurcation scenario

For fluid parameters typically realized in mixtures of w
ter and about 10 wt % ethanol, an oscillatory, subcritical o
set of convection is observed. It is connected by an unsta
TW branch with a saddle node bifurcation giving rise
stable, strongly nonlinear TW states. At a certain Rayle
number, the phase velocity of these waves vanishes and
SOC branch of stable stationary states can be obser
Along the TW bifurcation branch which is shown in detail
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4240 57ST. HOLLINGER AND M. LÜCKE
Fig. 1 the concentration changes its structure from late
homogeneity and vertically linear layering in the basic st
over plateaulike distributions in fast TWs to boundary lay
dominated, slowly traveling waves~see the discussion an
the figures in Sec. IV B!. The contrast between two adjace
TW rolls is strongly related to the phase velocity of the T
and it vanishes with this velocity. So, SOCs do not sh
such a concentration contrast. In SOCs adjacent rolls
mirror images of each other and they are separated from
another and from the top and bottom plate only by th
boundary layers. The latter are a typical phenomenon
convection of weakly diffusing scalars.

III. COMPUTATION OF EXTENDED STATES

A. Modeling the velocity field

In liquid binary mixtures like ethanol-water momentu
diffuses approximately ten times faster than heat. This me
that the Prandtl numbers is of O(10) so that the velocity
field may be adiabatically eliminated. Then, the moment
balance~2.1b!, say in vertical direction, reduces to the ba
ance of the diffusive terms¹2w and the buoyant term
Rs(T1C) with the latter containing no derivatives. Thus,
a stationary flow, either in the laboratory frame or in a c
moving one, the amplitudes of higher lateral Fourier mod
ŵn of the vertical velocity fieldw5u•ez scale at least as
1/(nk)2 so that they decrease rapidly and even faster t
those of the temperature field. That is the reason why hig
modes than the critical first lateral Fourier mode are not n
essary for a good description of the velocity field. One c
expect this to hold for alls*1.

The next question deals with the role of the lateral me
of the velocity field, i.e., of its zeroth lateral Fourier mod

FIG. 1. Bifurcation diagrams of convection flow intensity~a!
and frequency~b! in TW ~solid lines! and SOC~dashed lines! so-
lutions in a binary mixture withc520.25, L50.01, ands510.
StatesA–D are identified for later discussion related to Figs. 8–
al
e
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Continuity implies that only the lateral velocity fieldu5u•ex

can contain such a mean flow. In order to determine
relevance of az–dependent mean flow we compare its ma
mum with the two other velocities in the system: The ma
mal vertical flow velocitywmax and the phase velocityv of
TWs. Just at the onset of convection, the mean flow may
estimated@21# to scale withwmax

2 and to be very small in
comparison withv. Furthermore, mean flow and phase v
locity have the same sign. In strongly nonlinear states,
ratio of flow velocity and mean flow is nearly 103 @13#, but
has changed sign. Thus the mean flow has a nonmonoto
dependence on the phase and flow velocity whereas all o
properties of TWs like mixing and heat transport vary mon
tonically. Hence the mean flow cannot contribute system
cally to these properties characterizing TWs sufficient
This is the reason, together with the smallness of the m
flow, for ignoring it altogether.

Thez dependence of the critical velocity field is describ
in an adequate manner~see, e.g.,@22,23#! by the first even
Chandrasekhar function@24# C1(z). Then, the velocity field
of straight rolls with axes oriented iny direction that are
propagating with phase velocityv in x direction is described
by

u~x,z;t !5
wmax

C1~0!S 2
1

k
sin k~x2vt !C18~z!

0

cosk~x2vt !C1~z!

D . ~3.1!

Herein, the phase is chosen so that the maximal vertical fl
occurs att50 andx50.

Figure 2 checks in the first row the applicability of th
ansatz~3.1! by plotting the contribution of modes in the ve
tical velocity w which arenot represented by Eq.~3.1! for
two separation ratiosc. The convective amplitudewmax was

.

FIG. 2. Quality of the one-mode velocity field approximatio
~3.1! for TWs with L50.01, s510, andc520.25 ~left column!
andc520.6 ~right column! as a function of growing flow ampli-
tudewmax along the TW bifurcation branches. The top row displa
the error in the vertical velocity field according to definition~3.2!
and the bottom row the maximal amplitude of the lateral mean flo
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57 4241INFLUENCE OF THE SORET EFFECT ON CONVECTION . . .
chosen as abscissa to quantify the nonlinearity of the sta
As a measure for the strength of higher contributions to
vertical velocity the error

S ^wMAC
2 &x,z2^wwMAC&x,z

^wMAC
2 &x,z1^wwMAC&x,z

D 1/2

~3.2!

was computed wherewMAC(x,z) denotes the velocity field
calculated from the full field equations by means of a fin
difference marker and cell~MAC! scheme@16#. w(x,z) is
the one-mode approximation~3.1! with the two velocitiesv
andwmax chosen such that the numerically obtained veloc
wMAC(x,z) is fitted best or, equivalently, the error~3.2! is
minimized. For both Soret coupling strengths shown in F
2 the error of the ansatz~3.1! is smaller than 4% but in-
creases as expected with the convective amplitude.

The bottom row of Fig. 2 shows the maximum of th
mean flow^u(x,z)&x . For both separation ratios the mea
flow is smaller than the convective amplitude by at le
three orders of magnitude.

All in all, Fig. 2 justifies the approximations implied b
the ansatz~3.1! for the velocity field. An important conse
quence of the fixed spatial structure of the velocity field
that all nonlinear terms in the balance equations contain n
the same amplitude, namely,wmax, since all nonlinearities
are convective ones. This is an enormous simplification
the theoretical analysis, as we will see below.

B. Galerkin expansion for temperature and concentration

The temperature fieldT(x,z;t) is appropriately described
by

T~x,z;t !

52z1 (
n50

`

(
m51

`

@T2n
2m~ t !e22inkx1c.c.#A2 sin2mpz

1 (
n50

`

(
m50

`

@T2n11
2m11~ t !e2 i ~2n11!kx1c.c.#

3A2 cos~2m11!pz. ~3.3!

This representation incorporates the mirror glide symme

H T

CJ ~x,z;t !52H T

CJ S x1
l

2
,2z;t D ~3.4!

of TW and SOC states@13,16#.
The representation of the concentration field is m

subtle because of its boundary condition~2.2! coupled to the
temperature field. The straightforward solution is the int
duction of the combined field

z~x,z;t !5
1

c
C~x,z;t !2T~x,z;t ! ~3.5!

obeying the equation

] tz52~u•¹!z1L¹2z2¹2T ~3.6!

and the boundary condition

]zz~x,z561/2;t !50. ~3.7!
s.
e

y

.

t

w

r

e

-

Note that thez field ~3.5! differs by a scaling factor 1/c from
the field that has mostly been used so far, see, e
@25,21,19#. An adequate trigonometric expansion is

z~x,z,t !

5 (
n50

`

(
m50

`

@z2n
2m11~ t !e22inkx1c.c.#A2 sin~2m11!pz

1 (
n50

`

(
m50

`

@z2n11
2m ~ t !e2 i ~2n11!kx1c.c.#A2 cos2mpz,

~3.8!

which also takes the mirror glide symmetry~3.4! into ac-
count.

The introduction of the combined fieldz was also moti-
vated by the wish to fulfill the boundary condition~2.2! or
~3.7! for the concentration field exactly. However, the fo
mulation of the concentration balance in terms of thez field
causes a severe theoretical drawback for small Lewis n
bersL and separation ratiosc of orderO(1), that are typi-
cally realized in liquid mixtures:z and T have the same
order of magnitude according to Eq.~3.5!. But in the balance
equation~3.6! for z the diffusive term enters with weightL
5O(0.01) and the temperature withO(1). This means that
for an appropriate solution of Eq.~3.6! for a particularz
mode temperature modes are necessary which are 1/L times,
i.e., about 100 times, smaller than thez mode under consid-
eration. Despite the fact that a relevant contribution of hig
temperature modes was not observed either in experim
or in simulations they are necessary in Eq.~3.6! if the z field
is introduced and small Lewis numbers are considered. T
is mainly the reason why earlier Galerkin approximatio
using thez field and only a few temperature modes did n
succeed in describing nonlinear TW convection in bina
liquid mixtures @21,23,25–27#. In binary gas mixtures with
typically L5O(1) this problem does not occur@19#.

C. Solution of the system of mode equations

After projecting the balance equations forT and z onto
the bases used in the mode expansions~3.3! for T and ~3.8!
for z one gets ordinary differential equations for the mo
amplitudes of the temperature and thez field,

X~ t !5„T2n
2~m11!~ t !,T2n11

2m11~ t !,z2n
2m11~ t !,z2n11

2m ~ t !…T.

The column vectorX is written here as the transpose of
row vector.

In the case of SOC the amplitudes are constant and h
to be chosen real in order to be compatible with the veloc
ansatz~3.1! for v[0. The flow amplitudewmax appears via
Eq. ~3.1! in the T and z field equations via the convectiv
nonlinearity and in addition as an inhomogeneous contri
tion w]zTcond52w from the conductive part,Tcond52z, of
the temperature field~3.3!. Thus the mode equations for SO
states take the form

MSOC~wmax!•X5BSOC~wmax!. ~3.9!
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Here, the matrixMSOC(wmax) of mode coupling coefficients
containswmax from the convective nonlinearity. The mome
tum balance in Eq.~2.1b! provides the relation between th
Rayleigh numberR and the velocity amplitudewmax,

R5
wmax

a•XSOC~wmax!
, ~3.10!

containing the solutionXSOC5MSOC
21

•BSOC of Eq. ~3.9! de-
pending onwmax. The vectora contains all projection coef
ficients. The pressure gradient in the momentum balanc
Eq. ~2.1b! may be eliminated by taking the curl of the ba
ance equation. The nonlinearity of Eq.~2.1b! vanishes in the
projection procedure when using only one velocity mo
Now, the solution procedure is obvious: Solving the line
system~3.9! for a given convective amplitude and insertin
the result into Eq.~3.10! yields the Rayleigh number of tha
SOC state with the convective amplitudewmax. Thus the
bifurcation diagramR(wmax) or wmax(R) may be calculated

Finding the TW solution is slightly more difficult sinc
the modes are time dependent:

XTW~ t !5„T̂2n
2~m11!ei2nvt, T̂2n11

2m11ei ~2n11!vt,

ẑ2n
2m11ei2nvt, ẑ2n11

2m ei ~2n11!vt
…

T.

The form of the time dependence is determined by the
that the TWs are stationary in a frame comoving withv
5v/k. Therefore the angular frequency of thenth lateral
Fourier mode~lower index of the mode amplitudes! is nv
with v being the basic frequency of the TW. With the com
plex vector of TW mode amplitudes

X̂TW5„T̂2n
2~m11! , T̂2n11

2m11 , ẑ2n
2m11 ,ẑ2n11

2m
…

T

the system of the projected balance equations reduces
more to a linear algebraic system

MTW~v,wmax!•X̂TW5BTW~wmax!, ~3.11!

where, however, the matrixMTW of mode coupling coeffi-
cients is complex. Another complex equation~or two real
ones! generated by the momentum balance relates the
real groupsv andwmax with the Rayleigh numberR and the
separation ratioc,

S a11•X̂TW a12•X̂TW

a21•X̂TW a22•X̂TW
D S 1/R

c D 5S b1•X̂TW

b2•X̂TW
D , ~3.12!

with aik , bi being vectors of projection coefficients.
A possibility to solve the system is to solve Eq.~3.11! for

a given combination (v,wmax) and to use the resulting
X̂TW(v,wmax) for solving Eq.~3.12! with respect to (1/R,c).
This means thatR andc are uniquely determined for a give
combination (v2,wmax

2 ). The relevant parameters are here t
squaresv2 andwmax

2 since left- and right-traveling waves ar
symmetry degenerated and the convective amplitudewmax
was chosen to be positive by Eq.~3.1!.

This result is illustrated in Fig. 3: The TW states fill th
v2-wmax

2 plane. The lines are connecting states along a
bifurcation branch for a particular separation ratio. The c
of

.
r

ct

ce

o

e

-

trol parameterR varies along a particular line betweenRosc

at the Hopf bifurcation (wmax50) andR* at the SOC-TW
transition (v250) in a way that can be nonmonotonous. Th
value ofv2 for wmax

2 50 is vH
2 , i.e., the square of the Hop

frequencyvH . The dotted line represents the position of th
saddle nodes in the diagramsv(R) or wmax(R). It vanishes
in the vicinity of c520.01 since for weaker Soret coupling
only an unstable lower TW bifurcation branch exists witho
any saddle node. These topological features will be discus
later in this article.

D. Comparison with finite difference numerical results

In Fig. 4 we give a quantitative comparison of bifurcatio
diagrams computed by the above presented numerical Ga
kin method and those obtained by a finite difference MA
scheme with a full representation of the fields. In our Gal
kin scheme, we used one velocity mode and up to 19 te
perature andz field modes in each direction. So, we com
puted 761 real mode amplitudes in the case of T
convection.

For both SOC and TW states the pairs of diagrams co
cide. The most evident discrepancy can be observed in
end pointr * of traveling wave convection in Fig. 4~d!: The
MAC results with a discretization ofdx5dz50.05 ~solid
circles! predict r * .1.65 @16#, the Galerkin scheme~dashed
line! r * .1.495. In order to elucidate this deviation we pe
formed a finite difference calculation withdx5dz50.025
~open lozenges! and observedr * .1.45, i.e., close to the
value of the Galerkin scheme which used modes up to
wave number 19p in both directions. The variation ofr *
with the spatial resolution of the MAC scheme is caused
concentration boundary layers at the plates: Galerkin met
and the finer resolving MAC scheme show the same thi
ness which is smaller than that predicted by the worse
solving methoddx5dz50.05. Now, the SOC-TW transition
may be interpreted as a boundary layer instability@28# that
occurs if the SOC boundary layer thickness}(L/wmax)

1/3

FIG. 3. TW states in thewmax
2 -v2 plane for L50.01 ands

510. The separation ratioc is constant on each solid line. It varie
logarithmically from line to line and has the value shown at the l
ordinate. The dotted line gives the positions of the TW sad
nodes.
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exceeds a certain value when reducingr or reducing the
convective amplitude. This critical thickness is reached
higher amplitudes when using a numerical method that p
duces larger boundary layers. Thusr * .1.45 is a more ad-
equate value forL50.01, s510, andc520.25 thanr *
.1.65 @16#.

The deviations in the bifurcation diagrams for the va
anceM of the concentration in Figs. 4~b! and 4~e! are mainly
due to the shift in the frequency bifurcation branches. T
means that the dependence of the concentration distribu
on the frequency is reproduced well.

The convective heat transportN21 @Figs. 4~c!, 4~f!# in
our Galerkin approximation is carried by only one veloc
mode so that the actual values may be expected to be la
the higher the forcing, i.e., the Rayleigh numberr . This typi-
cal behavior can be observed also for the pure fluidc50.
There, a discrepancy between full MAC results and o
Galerkin approximation of about 6% atr 52 is seen.

IV. RESULTS

A. Soret coupling and bifurcation topology

The dependence of the bifurcation topology on t
strength of the Soret coupling, say in the range20.25,c,0,
was not yet discussed in the literature@14,16,28# in detail:
On the one hand, the directly integrating numerical meth
@14,16# require large amounts of CPU time due to critic
slowing down near the saddle node positionsr SOC

s and r TW
s .

On the other hand, the Soret effect was only implemen
incompletely in a theoretical approach@28#. The same ap-

FIG. 4. Comparison of bifurcation diagrams of frequenciesv
~a!, ~d!, varianceM of the concentration field~b!, ~e!, and Nusselt
numberN ~c!, ~f! calculated by our Galerkin method and a fini
difference MAC scheme. Results of the Galerkin method are sh
by solid ~SOC! and dashed~TW! lines. MAC results with a spatia
resolution ofdx5dz50.05 @16# are shown by filled circles~TW!,
open squares~SOC!, and open triangles~phase fixed, unstable
SOCs!. More accurate MAC results (dx5dz50.025) are displayed
as open lozenges. The dotted lines show results of a pure fluic
50: thick dots—Galerkin, thin dots—MAC.
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plies to the transition pointr * of TW to stationary convec-
tion. The Galerkin method presented in the last section d
not suffer from these disadvantages and it yields also
whole unstable branches directly without any numeri
tricks. Since it computes only fixed points the intrinsic tim
scale of the system doesnot enter the problem. However, a
additional stability analysis of the computed states is nec
sary.

1. Strong negativec

The investigation of the variation of the bifurcation sc
nario with the separation ratioc has shown forstrongnega-
tive couplings a very interesting feature@17#: the develop-
ment of a lower stable TW branch out of the bump seen
Fig. 1 in the unstable branch forc520.25. Forc&20.4
two stable, convective TW solutions exist, opening up
possibility of the coexistence of two different traveling stat
in onecontainer. Furthermore, all these TWs were found
display universal scaling properties@17#. ~i! The mixingM ,
i.e., the concentration variance varies linearly with the T
frequency.~ii ! The latter itself is uniquely fixed by the ‘‘dis
tance,’’ r (wmax,c)2r (wmax,c50), of the TW state’s loca-
tion (r ,wmax) on the TW bifurcation branch from the pur
fluid (c50) convection coordinates in ther -wmax bifurca-
tion diagram. Thus bifurcation properties, spatial structure
the concentration distribution, and TW dynamics show
strong Soret coupling a peculiar scaling behavior. For a d
cussion of the characteristic changes in the bifurcation top
ogy atstrongSoret coupling see Ref.@17#.

2. Weak negativec

On the side ofweaknegative Soret couplings, i.e.,c→0,
the motion of the saddle nodesr SOC

s and r TW
s and of the

SOC-TW merging pointr * in the r -c plane was not eluci-
dated except for the vanishing of stable TW convection
c.20.01 in mixtures with ethanol-water paramete
L50.01 ands510 @16#. To fill this gap we discuss in Figs
5–7 the bifurcation properties of TWs and SOCs in the ran
20.25,c,0. In Fig. 5 we show TW and SOC bifurcatio
diagrams ofwmax

2 vs r for severalc as indicated. In the cas
of the strongest couplingc520.05@Fig. 5~a!# the same situ-
ation as forc520.25~Fig. 1! is observed except for the fac
that herer * ,r osc so that a SOC state is observed wh
heating above threshold. The stationary bifurcation thresh
r stat is negative as is the case for allc,2L/(11L)52 1

101

for L50.01 @20,19#: Thus the SOC branch is disconnect
with the ground statewmax

2 [0 at the positiver axis. The
shape of the SOC branch does not change when reducin
strength of the Soret effect because the tricritical separa
ratio for SOCs,cSOC

t , scales with2L3 @29# and is effec-
tively 0 for small Lewis numbers. The most evident effect
the motion of the SOC-TW transition pointr * along the
SOC branch towards the SOC saddle node. Forc520.02
@Fig. 5~b!#, the TW and SOC saddle nodes coincide; f
c520.01 @Fig. 5~c!# the TW branch merges with the SO
branch at the SOC saddle node. The transition from SOC
a pair of symmetry degenerated TWs atr * which is a pitch-
fork bifurcation of the TW frequency is still backwards i
the sense that the frequency bifurcation is subcritical. Diff
ent toc520.02 we can observe forc520.01 TWs also for

n
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4244 57ST. HOLLINGER AND M. LÜCKE
control parameters smaller than those of all SOCs, i.e.,
extended state with the smallest Rayleigh number is no
TW and no longer a SOC. This is different from the behav
for c,20.02 where SOCs exist also at Rayleigh numb
not allowing TWs.

In Fig. 5~d! with c520.0085 the TW branch merge
with the lower, unstable SOC branch which then becom
stable beyond its saddle node. But the TW saddle is
found at smaller amplitudes and Rayleigh numbers than
of the SOCs. The consequences are as follows: The lo
TW branch locates unstable TWs which become stable a
saddle. However, they change stability once more si
stable TWs may not merge with the unstable SOC bran
The only possibility is the existence of an additional bifu
cation point — here to a modulated TW—on the upper T
branch betweenr TW

s andr * . This scenario is investigated i
more detail in the next subsection, IV A 3.

Here, we continue the discussion of the changes in
bifurcation topology of ethanol-water mixtures forc→0. At
c520.007 in Fig. 5~e! the TW saddle has vanished and t
whole TW branch is unstable. The next significant change
the topology occurs at the tricritical separation ratiocTW

t .
2531025 @29#. Therefore atc52431025 we observe in
Fig. 5~f! a supercritically bifurcating TW branch. It is stab
just at the onset and then becomes unstable with respe
MTWs. At the codimension-2 pointcCT523.52631025

@29# the TW branch vanishes completely. For separation
tios c betweencTW

t and cCT there is also a necessity of

FIG. 5. Bifurcation diagrams ofwmax
2 versus reduced Rayleig

numberr at weak Soret couplings andL50.01,s510. Open loz-
enges represent SOCs, filled lozenges TWs. Results were com
with our Galerkin method.
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change in stability along the supercritically bifurcating T
branch ending on the unstable SOC branch.

3. Modulated TWs

We have checked the scenario for the appearance
MTWs more explicitly for a parameter combination which
realized in 3He-4He mixtures rather than in ethanol-wate
namely,L50.03, s51, andc520.055. In 3He-4He this
scenario occurs in a four times broader range of the con
parameter†r P@1.0612, 1.0614#, see Fig. 6~a!‡ than is real-
ized in ethanol-water mixtures†r P@1.01375, 1.01380#, see
Fig. 5~d!‡.

Sufficiently above the oscillatory thresholdr osc
51.088 27 (vH53.8467, kc53.1152) stable SOCs~filled
triangles! can be realized according to Fig. 6~a!. When re-
ducing the heating rater we approach the SOC saddle
aboutr SOC

s .1.061 39. Below that, the system falls down o
the branch of TWs which is oscillatory unstable~open
squares! at r SOC

s . The upper stable TW branch~filled circles!
turns unstable atr MTW.1.061 25 shortly above the sadd
r TW

s . The oscillatory unstable TWs~open squares! get modu-
lated by a frequency at least ten times smaller than the b
frequency of the TW itself — compare the frequencies

ted FIG. 6. Bifurcation diagrams of convective amplitudewmax ~a!
and frequencyv ~b! for fluids with L50.03,s51, andc520.055.
Graph~c! shows eigenvalues determining the stability of the TW
open ~filled! symbols correspond to unstable, RegTW.0 ~stable,
RegTW,0) states~stationary: ImgTW50; oscillatory: ImgTWÞ0).
The states corresponding to the small filled circles are not show
~a! and ~b!.
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FIG. 7. Phase diagram of thec depen-
dence in mixtures withL50.01 ands510 in
a double logarithmical plotr 21 vs c. SOC
properties are shown by dotted lines~saddle
node r SOC

s : open triangles up; bifurcation
r stat: open triangles down!. Solid lines corre-
spond to points in the TW bifurcation dia
grams ~Hopf bifurcation r osc: filled squares;
SOC-TW transitionr * : open lozenges; saddl
noder TW

s : filled circles!.
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Fig. 6~b! and the imaginary parts of the relevant eigenvalu
in Fig. 6~c!. The instability of the TWs on their uppe
branch, i.e., the transition atr MTW from filled circles to open
squares, gives birth to MTWs with slowly breathing amp
tude. The type of the instability of the TWs changes on
upper TW branch atr .1.061 41 from oscillatory to station
ary ~open circles! in order to merge appropriately with th
stationary unstable lower SOC branch~open triangles!.

This scenario has also been discussed in a minimal m
by Knobloch and Moore@30#. They, however, investigated
system with stress-free and, more importantly, permea
boundaries without adequately resolving the boundary
ers. We give here evidence for MTWs in binary mixtur
with realistic boundary conditions realized in the expe
ments. Note, however, the experimental investigation
quires a control of the temperature difference of about 1024.

4. Phase diagram

Our results are summarized in a phase diagram in Fi
where thec dependence ofr * ~open lozenges!, SOC saddle
~open triangles up!, and TW saddle~filled circles! are dis-
played together with the linear stability thresholds of t
basic state~stationary: open triangles down; oscillator
filled squares!. Stable TW states on the upper TW bifurc
tion branch are located in the shaded region of Fig. 7. T
inset in the upper right corner covers separation ratios
tween c520.05 andc520.005. In this inset we have
scaledr 21 by A2c in order to map the SOC saddle nod
position r SOC

s approximately onto a constant since itsc de-
pendence may be fitted very well by

r SOC
s .111.636A2Lc. ~4.1!

However, in view of the fact that the exponent in Eq.~4.1! is
not exactly 1/2 it is not surprising thatr SOC

s is not exactly
constant in the inset of Fig. 7. The range of existence of
MTWs is too small to be visible in Fig. 7.

The changes of the bifurcation topology induced by
creasing the strength of the negative Soret coupling bey
values of 20.25 including a detailed phase diagram f
cP@20.7,20.2# were discussed in Ref.@17#: There, two
s
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stable, nonlinear TW branches have been discovered foc
&20.4 in mixtures withL5O(0.01) ands5O(10).

B. Concentration distribution and stream function

Figure 8 shows a combined bifurcation diagram of co
vective amplitudewmax and phase velocityv vs reduced
Rayleigh numberr . The TW states have been computed w
our Galerkin method using the one-mode velocity field a
proximation~3.1!. Four states are labeled byA–D in agree-
ment with Fig. 1.

We want to discuss here the changes in the concentra
distribution when moving along the TW bifurcation branc
and their relation to the structural changes of the stre
function

f̃~x,z!5
wmax

kC1~0!
sin kx C1~z!1vz ~4.2!

FIG. 8. Bifurcation diagram of convective amplitudewmax and
phase velocityv vs reduced Rayleigh numberr for TWs in a mix-
ture with L50.01, s510, c520.25, andk5p. The stable~un-
stable! branches are shown by solid~dotted forwmax and dashed for
v) lines. LettersA–D identify states discussed in the text.
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4246 57ST. HOLLINGER AND M. LÜCKE
for the velocity field~3.1! in the frame that is comoving with
the TW phase velocityv. Note that in this frame the velocity
field is stationary so that passive particles would move al
the streamlines of Eq.~4.2!.

The first occurrence of local extrema inf̃(x,z), Eq. ~4.2!,
gives rise to the first appearance of areas of closed stre
lines. That happens fork5p at the velocity ratio x
5wmax/v50.9807. Thus, forx&1, i.e., in all TW states
between the Hopf bifurcation thresholdr osc and stateA the
streamlines are all open. Increasing the convective amplit
wmax yields decreasing phase velocityv and increasing val-
ues ofx so that areas of closed streamlines appear that g
at the expense of those occupied by open streamlines.
v50, i.e., at the pointD only closed streamlines are ob
served.

Without feedback into bouyancy, concentration is a p
sive scalar transported by means of convection and diffus
~for the discussion of the Soret coupling in the bulk equ
tions see Sec. IV C!. Then one can apply the results of pa
sive scalar theory, e.g.,@31,32#. It explains that within closed
streamlines a weakly diffusing scalar is homogenized. T
behavior is elucidated in Fig. 9 where we show lateral a
vertical concentration profiles for statesA–D labeled in Fig.
8. In statesB, C, andD wherex.1 and therefore areas o
open streamlines exist we see a plateau characteristic of
profiles. However, stateA with only open streamlines show
no such plateaus.

Note that the lateral concentration wave profiles betw
the Hopf bifurcation and stateA are basically harmonic an
that their amplitudes increase with increasing convective
plitude. This amplitude growth of the harmonic concent
tion wave occurs as long as there are not yet closed stre
lines, i.e., up to a limiting point in the vicinity of stateA. The

FIG. 9. Lateral and vertical concentration profiles of the fo
states identified in Figs. 1 and 8.
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amplitude of the wave profile of stateB in Fig. 9 is larger
than that of stateA as the lateral profiles are not taken at t
center of the closed streamlines but in the center of the c
vection cell. Beyond this maximum amplitude the concent
tion wave crests are ‘‘cut off’’ and a plateau develops w
the appearance of closed streamlines. The plateau exten
i.e., the region of constant concentration within the areas
closed streamlines, broadens with increasingx while simul-
taneously the plateau value of the concentration wave
duces. Furthermore, a small concentration peak at the l
ing front of the right-traveling wave develops. It is caused
the advective injection of the concentration at the plates i
the areas of closed streamlines. The lateral profile of statA
has only a very weak, not visible asymmetry with respec
reflection atx561/2 whereas the asymmetry in stateB is
obvious and gets more and more pronounced inC and D.
The advective injection of concentration into the regions
closed streamlines takes — with diffusion being small co
pared to advection — the form of an inwards spiraling co
centration jet that can be seen in Fig. 3 of Ref.@16#.

This strong relation between streamlines and concen
tion distribution is also demonstrated in Fig. 10 where
have plotted the concentration fieldC vs the stream function
f̃ in the frame comoving with the TW state traveling to th
right. Just at the Hopf bifurcation threshold the stream fu
tion in the comoving frame isf̃5vz5vHz/k reflecting a
vanishing convective velocity field in the laboratory fram
Via the conductive concentration profileCcond52cz we get
the relationCcond(f̃)52(kc/vH)f̃.0.070f̃ ~dotted lines
in Fig. 10! between concentration and stream function w
f̃ varying between2v/2 andv/2, i.e., between21.78 and
1.78. In stateA, the conductive concentration distribution

r

FIG. 10. ConcentrationC vs stream functionf̃ in the comoving
frame for the states identified in Figs. 1 and 8. The dotted li
referring to the conductive state are explained in the text. SincC

and f̃ were evaluated on a grid some of the fine structure see
the plots reflects the grid discretization.
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57 4247INFLUENCE OF THE SORET EFFECT ON CONVECTION . . .
slightly deformed and the stream function varies betwe
21.4 and 1.4, which are the values at the top and bot
plates. At these boundaries the concentration is in contra
the stream function not constant so that a vertical shap
C(f̃) is observed there. In stateB there are already sma
areas of closed streamlines with equilibrated concentrat
In these regionsC(f̃) is a constant. Moving along the TW
bifurcation branch the areas of these regions keep on incr
ing via stateC to stateD, which is a SOC state. In this sta
we observe a remarkable concentration variation around
mean value 0 only in a small stream function interval arou
0, the separatrix in this state. This is a strong boundary la
phenomenon caused by the smallness of Lewis numbeL
5O(0.01) in comparison with the convective amplitud
wmax5O(10).

C. Soret coupling and concentration current

1. Comoving frame of reference

The impact of the Soret coupling on the concentrat
current in a TW is best understood by studying the curren
a frame comoving with the TW’s phase velocityv. In this
frame, the velocity fieldũ(x,z)5(2]zf̃,0,]xf̃) is well ap-
proximated by the ansatz~4.2! according to ansatz~3.1! and
the discussion of Fig. 2. The corresponding streamlines
be seen in Fig. 11~a! for a TW state withv54/p, i.e., v
54.

In the comoving frame the concentration currentJ̃ is
given by

J̃5 ũC2L¹~C2cT!. ~4.3!

FIG. 11. Concentration currents in a TW propagating to
right in the comoving frame (L50.01, s510, c520.25, andv
54) with complete Soret coupling~left column! and averaged,
boundary Soret forcing~right column!. For details see text. The to

row ~a! shows the total concentration currentJ̃, Eq. ~4.3!, in the left

column and the modified currentJ̃modified, Eq. ~4.5!, in the right

column each together with the streamlines ofũ. The scaling factor
for the lengths of the arrows is 0.5 relative to the units of lateral
vertical axes. Row~b! shows the influence of the Soret couplin
more explicitly. Left column:Lc¹T ~complete coupling!; right col-
umn: 2LcNez ~averaged coupling!. In row ~b!, the arrow lengths
had to be magnified by a factor 30 relative to those of the top
in order to make them visible.
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In a relaxed TW state the relation

] tC5052¹• J̃

holds so thatJ̃ is divergence-free. It is shown as a vect
field plot in Fig. 11~a! in the left column together with the
streamlines of the velocity fieldũ for a TW propagating to
the right. The structure of the current can be explained
follows: In the closed streamlines of the right rolls of Fig. 1
concentration is homogenized to a level close to that of
upper plate. This is due to the vicinity of the right roll to th
plate where the higher concentration (C.0) is observed for
negative Soret couplings and heating from below. The
area of closed streamlines is located next to the lower p
and contains therefore the lower concentration (C,0). The
two different signs of concentration — the mean concen
tion is normalized to zero — are the reason for the conc
tration currentJ̃ to rotate clockwise in both clockwise an
counterclockwise rotating rolls. In the vicinity of the cent
open streamline that meanders between the rolls, a lin
vanishing concentration current exists. It also vanishes n
the center of the rolls where the velocityũ vanishes.

At the plates the concentration current is purely late
since due to the impermeable boundary conditionJ̃•ez50. It
is mainly given by2vC being negative~positive! at the top
~bottom! plate with C.0 (C,0). The contribution from
lateral concentration gradients along the plates to the con
tration current~4.3! is multiplied by the Lewis numberL
5O(0.01) and can therefore be neglected there. The t
perature, and consequently the Soret effect, does not con
ute at all toJ̃•ex at the plates since the temperature is fix
there.

2. Approximate Soret induced current

Next, we discuss the influence of the temperature field
the concentration current~4.3! in the bulk. We do this by
studying the left column of Fig. 11~b!. There,Lc¹T is plot-
ted by arrows whose lengths are magnified by a factor
relative to that ofJ̃ in Fig. 11~a!. For negative Soret coupling
Lc¹T is parallel to the diffusive heat current2¹T pointing
upwards in the system heated from below. The import
thing is the existence of this current and its mean upwa
direction and not the small modulations. We ignore the
small lateral modulations by replacingLc¹T by an adequate
mean. For this mean we choose the mean ofLc¹T at the
plates, namely,

^Lc¹T&x,z561/252LcNez , ~4.4!

in order to guarantee the impermeability of the plates in
lateral mean. A global averaging ofLc¹T would lead to
2Lcez differing from our choice only by a factorN5O~1!
and violating the impermeability by the same amount.

The replacement ofLc¹T by the mean~4.4! leads to the
modified concentration current
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4248 57ST. HOLLINGER AND M. LÜCKE
J̃modified5 ũC2L¹C2LcNez ~4.5!

shown in the right column of Fig. 11~a!. Therefore in the
modified concentration balance

05] tC52¹• J̃modified52¹•@ ũC2L¹C# ~4.6!

the temperature field has disappeared. It occurs only in
boundary condition

05ez• J̃modified52L]zC2LcN atz561/2.

This allows the concentration field to be described by

C~x,z;t !52cNz1 (
n50

`

(
m50

`

@C2n
2m11~ t !e22inkx1c.c.#

3A2 sin~2m11!pz

1 (
n50

`

(
m50

`

@C2n11
2m ~ t !e2 i ~2n11!kx1c.c.#

3A2 cos2mpz.

Since now the actual concentration balance is solved and
the balance for thez field the above discussed problems w
the relevance of temperature modes that are 1/L times
smaller than thez-field modes no longer occur. Cons
quently, the temperature field can now be represented by
simplest approximation

T~x,z,t !52z1T0
2~ t !A2 sin2pz1@T1

1~ t !e2 ikx

1c.c.#A2 cospz ~4.7!

just like in the classical Lorenz model@33#. The advantage o
this procedure is that only for the concentration field is
many-mode Galerkin representation necessary and the

FIG. 12. Bifurcation diagrams of TW frequencies. Symbols
fer to correct Soret coupling and full mode field representati
Lines were obtained by the laterally averaged Soret effect~4.5! and
the reduced temperature representation~4.7!. The unstable states fo
the complete coupling have been dropped for reasons of cla
Parameters areL50.01 ands510.
e
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perature can be modeled by those modes which are obse
in the fields and not additionally by those becoming nec
sary for numerical reasons.

Bifurcation diagrams of the frequency computed by th
approximate method~solid lines! are displayed in Fig. 12
and compared with the ‘‘exact’’ results~symbols! as de-
scribed in Sec. III C over a wide range of Soret couplin
We have chosen bifurcation diagrams for the frequency si
it is most sensitive to an insufficient mode truncation. F
separation ratiosc.20.15 no differences are observe
whereas for stronger couplings (c520.25) at high heating
rates deviations become visible. The reason for this is
neglect of temperature modes higher than those incorpor
in Eq. ~4.7!. At high heating rates they become relevant: T
maximum of the second lateral temperature mode
reached forr 51.6 about 6% of the size of the first one (3
for the third relative to the first! †see also@16#, Fig. 5~b!‡.
Thus the simplest ansatz for the temperature field~4.7! cuts
off at least 10% of the spectrum leading to comparable er
in the bifurcation diagram, especially in the vicinity of th
SOC-TW transition.

V. CONCLUSION

We have given a detailed analysis of the influence of
Soret effect on thermal convection in binary liquid mixture
As a tool we used a many-mode Galerkin method combi
with an approximation in the velocity field: It is truncated b
a single mode which holds for convection in fluids wi
Prandtl numberss*1. The mean flow in traveling wave
~TWs! was recognized as unimportant since it is very sm
and contributes only unsystematically to the main TW pro
erties. This truncation of the velocity led to a very simp
and efficient solution procedure for the nonlinear TW a
SOC fixed points by only solving linear equations. Th
opened up the possibility for a detailed elucidation of t
changes in the combined bifurcation topology of station
and traveling states, especially the existence range of TW
the control and fluid parameter plane. Together with the
vestigation of strong Soret couplings@17# interesting fields
for experiments are opened: the bistability of slow and f
traveling waves and the occurrence of modulated trave
waves with slowly breathing amplitude. The classification
the states is facilitated by a detailed phase diagram. As
additional insight it was found that the order parameters T
frequency and TW convective velocity determine the cont
parameters Rayleigh number and separation ratio unique

Eliminating the intrinsic time scale from the computatio
of the fixed points allowed besides the determination of
furcation points and saddle nodes the investigation of
stable states. In this regime the transition from weakly
strongly nonlinear TWs is observed and may be underst
in the framework of the intimate relation between concent
tion distribution and the structure of the flow and the chan
in this relation along the bifurcation branch.

As a further result the reason for the failure of earl
Galerkin approximations for the convection in binary liqu
mixtures was revealed: In order toexactlyfulfill the concen-
tration boundary condition which is coupled to the tempe
ture field earlier approaches used a combination of conc
tration and temperature field without resolving th
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57 4249INFLUENCE OF THE SORET EFFECT ON CONVECTION . . .
temperature field adequately. When using this combi
field for small Lewis numbersL!1 a resolution of the tem
perature is required that goes beyond the dominating mo
seen in simulations and experiments. Although the contri
tions of higher modes to the temperature field are small t
are essential in the balance equations formulated with
combined field. A way out of this artificial theoretical d
lemma is obtained by investigating the concentration curr
It is mainly influenced by the lateral average of the tempe
ture gradient in the system. This allows us to ignore the S
effect in the bulk equation of the concentration balance~bulk
ko

B
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v.
d
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et

Soret effect! and to truncate the concentration field with a
adequate boundary condition~boundary Soret effect! di-
rectly. Then, the foundations of a more compact descript
and solution for the convection in binary liquid mixtures a
laid @34#.
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