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Convection in a layer heated from below with a nearly insulating boundary
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The problem of two- and three-dimensional finite amplitude thermal convection in a fluid layer heated from
below is analyzed in the case when one boundary has a much higher and the other boundary has a much lower
thermal conductivity than the fluid. Both stress-free and no-slip boundary conditions for the velocity field are
considered. It is shown that two-dimensional convection rolls are stable for Rayleigh nhumbers not too far above
the critical valueR, for the onset of convection. But at a Rayleigh numBgiess than twice the critical value
they become unstable and are replaced by hexaroll convectigme “hexarolls” denotes a new planform
intermediate to hexagons and roll&\t an even higher value dR time dependent convection is found.
[S1063-651%98)04904-9

PACS numbgs): 47.20.Bp, 47.20.Ky, 47.27.Te, 47.54.

[. INTRODUCTION of the two boundaries are reversed such that the temperature
T, at the upper stress-free boundary is now prescribed. In the

Traditionally the problem of Rayleigh-Bard convection third case C both boundaries are assumed to be rigid. The
in a fluid layer heated from below has been considered foresults of the analysis in the latter case will be the same
boundaries with high thermal conductivity such that thewhether the lower boundary is nearly insulating and the up-
boundary temperatures could be regarded as fixed. It ha@er is highly conducting or vice versa because we are assum-
been known for some time, however, that the thermal coning the Boussinesq approximation. For simplicity we shall
ductivity of the boundary may have a strong influence on thaise a lower nearly insulating boundary in case C. It is pos-
type of convection flow that is realized in the fluid layer. Sible, of course, to consider the problem with two stress-free
When both boundaries are much less conducting than thoundaries. But since the realization of such a case is experi-
fluid, the wavelength of convection flow becomes very largementally difficult—though not impossiblsee Goldstein and
in comparison with the height of the laygt] and square Graham/[5])—and because it does not offer special theoret-
pattern convection will be realized instead of two- ical advantages, we shall not pursue it here. The simple ana-
dimensional convection rollg2,3]. When one boundary has lytical solutions that are possible when symmetric highly
a very high thermal conductivity and the other a very lowconducting or nearly insulating boundaries are used disap-
one then a new instability of convection rolls enters andpear, of course, when asymmetric combinations of boundary
leads to the replacements of rolls by a three-dimensional pagonditions are assumed.
tern of convection, which has been called hexaroll convec- Usingd as length scalel®/ « as time scale, where is the
tion in [4]. This result was found in the case of a highly thermal diffusivity, andT,— T, as scale of the temperature,
conducting no-slip lower boundary and a stress-free nearlyve write the equations of motion for the velocity vector
insulating upper boundary]. The goal of the present paper and the heat equation for the deviati@nof the temperature
is to generalize these results and to explore the stability progrom its static distribution in dimensionless form,
erties of the hexaroll patterns.

The paper starts with a brief outline in Sec. Il of the
mathematical problem and the numerical scheme used for
the approximation of solutions. Three different combinations
of boundary conditions are then explored in Secs. IlI-V, the V.u=0 (1b)
last of which extends the work of Rg#] into the domain of '
time dependent convection. The paper finishes with an out-

J
EU‘FU'VU)Pl:_VW'i‘R@k"-VzU, (1a)

look on future work and possible laboratory experiments. 9 +u- V) ®=u-k+ V20 (10)
at '
Il. MATHEMATICAL FORMULATION wherek is the vertical unit vector and where the Prandtl
OF THE PROBLEM numberP and the Rayleigh numbe satisfy the definitions
We consider horizontal fluid layers of thickned$eated P=vix, R=yg(T,—T,)d% k. )

from below with three different types of boundary condi-

tions. Case A corresponds to a lower rigid boundary with ag denotes the acceleration of gravityjs the thermal expan-
prescribed temperatug, and an upper stress-free boundary sivity, and v is the kinematic viscosity. Using a Cartesian
which is nearly thermally insulating. For the static solution system of coordinates with ttecoordinate in the direction
of pure conduction the constant temperatUgewill be real-  of k, we write the boundary conditions for the three cases, A,
ized at this latter boundary. In case B the thermal propertie8, and C, in the following form:
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case A: u=VX(VXkep)+VXkiy+U(z), (6)

u=0, O®=0 at z=0, (3a  where the mean velocity field usually vanishes. We shall
return to the possibility of a mean flow in Sec VII. By taking
P thez component of the curl and of the (curipf Eq. (1a) we
Ekx u=0, u-k=0= —(0—-0)=0 at z=1, obtain two scalar equations fef and ¢,

(3b)
case B: V4A2¢—RA2®:P1(k~VX(VXu-Vu)+%V2A2¢>,
o B (73

u=0, ®:E(®_®):O at z=0, (49

V2A, = P1<—k-VX(u-Vu)+%A2¢//). (7b)

J

—kXu=0, u-k=0=0 at z=1, (4b) ) i

Iz To obtain steady solutions for Eq&’), (1c) we employ the

c: Galerkin method and expand the dependent variables in
case L complete systems of functions that satisfy all boundary con-
ditions,
_ 9 _
u=0, =E(®—)=O at z=0, (59
b= E aImnexp{iI axx+imayy}gn(z)v (88
u=0, ®=0 at z=1, (5b) .m.n

where O indicates the horizontal average &. We have %
made use of the property that the Rayleigh number is based = > Cimnexplil ax+imayyth,(2), (8b)
on the average temperature at the nonconducting boundary l,mn
which requires the vanishing d® at this boundary. The
continuation of the temperature field into the nearly insulat- o x
ing boundary which is assumed to extend over a verticalg — i i i
distance of several heights of the fluid layer then leads to the® I%n Dimnexpl axx+|mayy}fn(z)+n§1 Doorsin N2,
boundary condition for the fluctuating component of the tem- (80
perature field as has been discussef4in

To solve the problems posed by Ha) together with the where the summation ovérm runs through all integer val-
three types of boundary conditioi§3), (4), and(5) we first  ues except for the combination=1=0 and the summation
eliminate the equation of continuity by introducing the gen-over n runs through all positive integers. The functions
eral representation for the solenoidal velocity field fn.0n,h, assume the form

f,=h,=sin(n— 3)7z
_sinhB(1-2) sin B(1-2) for n=1,...~ incaseA, (99
9= "sinhg,  sing,

f,=sin(n— 3)mw(z—1), h,=sin(n—3)nz
_sinh B,(1—2)  sin By(1-2) for n=1,...~ incaseB, (9b)
= sinhg,  sing,

f,=sin(n— 3)m(z—1), h,=sinnwz for n=1,... )

sinh yy(z— 3)  sin yy(z— 3)
On= — - — foreven n ]
sinh; 7y, sing 7y, in case C. (90

coshyy(z—3) cosyn(z— 3)
= - forodd n
COS}’% Yn CO% Yn )
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FIG. 2. Nusselt number Nu as a function of the Rayleigh num-
ber R for convection in case C witP=0.1 (solid lineg, P=0.71
(dashed curvgs and P=2.5 (dotted curves The thin lines apply
for rolls (a,=2.4), thick lines apply to hexarollsaf,= o, =1.2).

FIG. 1. Isothermdqupper ploj and streamlineglower plot of
convection rolls in a layer with upper rigid insulating and lower
rigid isothermal boundary foR=3000, a=2.55, P=0.71.

where in contrast to the summation in expressi@)sthe
casel=m=0 must be included in the summation. Only in
the exceptional case=d=0 must we drop the coefficients

The numbersg, ,y, are obtained as ordered roots of the With subscriptd =m=0 and add the sum
equations
E Bomsin nwz
cothB,—cotB,=0 for n=1,... >, n

1 1 in expression(10¢). According to Floquet theory, expres-
coth= y,—cot= y,=0 foreven n, sions(10) represent the most general ansatz for infinitesimal

2 2 disturbances. After projection of the linearized equations for
the disturbances onto the system of expansion functions a
system of linear homogeneous algebraic equations for the

unknown coefficientsa;mn, Bimn, Cimn iS Obtained with the

L growth rateo as eigenvalue. For a given steady solution of
After projection of Egs.(7) and (1) onto the systems of ¢ f5rm (g) with the parameter®, P, a, , a, the eigenvalue

expansion functions(8) a system of nonlinear algebraic . .an pe determined as a function lofand d. Whenever
equations for the unknown coeffiCientmn, Dimn, and  here exists an eigenvalue with positive real paro, the

Cimn IS obtained which can be solved by the Newton-gieaqy solution is unstable. Otherwise we shall regard it as
Raphson iteration method after a truncation scheme has begg,pa

introduced. Following earlier work of this kind we shall ne-
glect all coefficients and corresponding equations with sub- IIl. STEADY CONVECTION ROLLS
scripts satisfying

1 1
tanhz yn+tan§ vo=0 forodd n.

The boundary condition for the temperature at the nearly
[+m+n>N, insulating boundary is less constraining than at a well con-
ducting boundary corresponding =0. It thus must be

where the truncation parametdly must be chosen suffi- expected that the critical value for the onset of convection is

ciently large such that properties of physical interest do nofower when a well conducting boundary is replaced by a

change significantly wheN is replaced byN+—2. nearly insulating one. The critical values obtained in the

The stability of steady solutions of the for(B) can be three cases are as follows:

studied through the imposition of infinitesimal disturbances case A:

E=exp{ibx+idy+at}|;nE,mnexp{ilaxx+imayy}gn(z), R:=669.00, ac=2.09, (118
(103 case B:

R.=816.75, a.=2.215, (11b)

g=explibx+idy+ot} > Cmexplil ax+imayyth,(2),

" (10b)

case C:
R.=1295.78, a.=2.552 (119

in agreement with the values ¢i]. In order to describe
two-dimensional convection rolls we use representaf®)n
(100 with

O=explibx+idy+ot} >, Bimeexplil axx+imayy}fa(2),
I,m,n
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FIG. 3. Same as Fig. 2, but for the kinetic enefgy, instead of FIG. 5. Stability boundaries of two-dimensional rolls in case B
Nu. for P=0.71. The domain of stable rolls is bounded by the onset of
the Eckhaus instabilitydashed ling by the onset of the subhar-
_ _ _ monic varicose instabilitydash-dotted ling and by the onset of the
Aimn=Bimn=Cima =0 for 1#0 (123 skewed varicose instagﬁitydash-double—dotted >|/ir)eAIso shown
and are the cross-roll instability boundasgolid line and the neutral
curve for the onset of convectiofouble-dash-dotted line The
ao-mn=Qomn,  Bo-mn=bPomn, Comn=0 forall m,n, numbers denote the values ofat the onset of instability.
12b
(120 rolls, /=0, the kinetic energy is given by
where the latter condition anticipates the existence of a ver-
tical plane of symmetry for the rolls. While the convection at 1
onset is not very different from that found in layers with EPO':§<|VX(VXk¢)|2>’ (13
fixed temperatures at the boundaries, the distribution of iso-
therms changes rather strongly as the amplitude of conveavhere the angular brackets indicate the average over the fluid
tion increases. As indicated in Fig. 1 the isotherms are pullethyer. Profiles of the mean temperature are shown in Fig. 4
into the interior of the layer from the nearly insulating for cases B and C. For profiles in case A see Fig. p4df
boundary such that the horizontal gradient of the temperaturBlease notice that theinterval — 0.5<z=<0.5 has been used
tends to exceed the vertical one. incorrectly in the latter figure instead of<tz=<1. The pro-

In Fig. 2 the convective heat transport given by the Nusiles in case C are nearly antisymmetric about the center of
selt number Nu has been plotted as a function of the Raythe layer while in cases A and B the average temperature of
leigh number. The curves for case C show a similar depenthe layer is shifted towards the mean temperature of the up-
dence as the curve obtained for case A [#i]. The per stress-free boundary. This property indicates that the
corresponding curves for the kinetic energy are shown irasymmetry of the velocity boundary conditions has a much
Fig. 3. Since the toroidal component of motion vanishes forstronger influence on the mean temperature profile than the

asymmetry of the temperature boundary conditions.

1.0
IV. INSTABILITIES OF CONVECTION ROLLS
The onset of instabilities of various types is shown as a
z function of R and« in Figs. 5 and 6 for cases B and C with
P=0.71. All lines in this diagram indicate locations at which
the maximum real paid, of the growth rater goes through
0.5+ 2500 T
R
2000 1
0.0
-0.5 1500 |
FIG. 4. The horizontally averaged temperature as a profile of .

heightz in cases B withR=4000 (dashed linesand R=15 000 2 2.5 3
(dotted line$ and in case C withR=4000 (solid lineg for P
=0.71(thick lines andP=7.0 (thin lines. FIG. 6. Same as Fig. 5, but in case C.
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FIG. 7. Same as Fig. 5, but in case C R#7. FIG. 9. The kinetic energy of the toroidal component of the
velocity for hexaroll convection as a function Bfin case C with

zero. The qualitative features of these diagrams resembf@=0-1 (solid ling), P=0.71 (dashed ling and P=2.5 (dotted
those found in the standard Rayleighred problem[s] ~ Surve. In all casesa,=ay,=1.2 has been used.
except for the new subharmonic varicose instability bound-
ary which appears to be typical for layers with strongly
asymmetric temperature boundary conditions. As in the case The nature of the subharmonic varicose instability may
A treated in[4], this instability leads to the onset of hexaroll suggest a transition from rolls to hexagonal convection cells
convection as we shall discuss in the next section. The maxsince the strongest growth is found for valueshotlose to
mum growth rate of this instability is always reached for the\/§ay/2. But an intermediate pattern between rolls and hexa-
value d=a,/2 and for finite values ob which have been gons evolves as asymptotic steady state from the growing
indicated in Figs. 5 and 6. In the caseR& 7 for which only  disturbances. This solution has been called the hexaroll so-
the stability diagram for case C has been computed, the sulltion and is described by representati@ with the follow-
harmonic varicose instability is preceded by the knot instailNg Symmetry properties:
bility as shown in Fig. 7. We thus conclude that the addi-

V. STEADY HEXAROLL CONVECTION

tional asymmetry of the velocity boundary condition in case mn=Bimn=Cimn=0 for I+m=odd, (143
A contributes just a little bit to promote the onset of the
subharmonic varicose instability as shown in Fig. g 4f a_1mn=aimn-P_1mn=bimn:C—imn=—Cimn, (14D

& —mn=&mn, 01 -mn=Bimn,C1—=mn="Cimn. (140

In representatiori8) «, now denotes half the value of, of

the roll solution from which the hexarolls bifurcate. In Fig. 8
hexaroll convection is shown for various Prandtl numbers in
case C. The heat transport of hexarolls is less than that of the
two-dimensional rolls from which they evolve as is evident
from Fig. 2. The same property holds for the energy of the

FIG. 8. Lines of constant vertical velocity in the plares0.9
(top row), z=0.5 (middle row, and z=0.1 (bottom row of FIG. 10. Lines of constant vertical velocity in the horizontal
hexaroll solutions in case C fd?=0.1, R=1700 (left column), planesz=0.9,0.5,0.1(left to right) of the hexaroll solution in case
P=0.71, R=5000 (middle column, and P=2.5, R=6000 (right A with the parameter®=0.1, R=2500, a,=1.25, ay=1.1 (up-
column. The wave numbers a®,= a,=1.2 in all cases exceptin per row and P=2.5, R=4000, a,=a,=1.0 (y direction is left
the caseP=2.5 whereay,=1.1 (y direction is left to righf. to right).
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FIG. 11. Isotherms in the vertical plangs-0 (upper plo} and

x=lay, (lower ploy for the hexaroll solution in case A witP
=2.5, R=4000, ay=a,=1.0.
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poloidal component of motion as can be seen in Fig. 3. Part

of the kinetic energy resides now in the energy of the toroi- FIG. 13. Kinetic energies of the poloidal component of motion
dal component of motion Epol (solid line for rolls, dashed line for hexarolls, and dotted line

for asymmetric drifting hexaroljsand of the toroidal component of
1 motion E,,, (dash-dotted line for hexarolls, dash-double-dotted line
EtorE§<|VXk'/I|2> (15) for1 2symmit2c drifting hexarol)sin case A withP=0.71, a,
=12, ay=1.1.

shown in Fig. 9. But the latter energy always remains a smallonq for the poloidal kinetic energy which has been plotted
fraction of E,,;. The hexaroll solution in case A is shown in Fig. 13 forP=0.71 only. The main effect of the Prandt|
Fig. 10 for two different Prandtl numbers. A split of the area, mber on the properties of convection is due to the depen-
of rising motion into four sections can be noticed in the casgjance orP of the transition from two- to three-dimensional

of P=0.1, at least in the upper part of the layer. A similar 5,5 as is evident from Fig. 12 and from the comparisons of
tendency, but much weaker, can also be observedPfor rigs 6 and 7.

=0.1 in case C when the Rayleigh number is increased. In
general it appears that the morphology of the convection
motion depends more strongly on the Prandtl and on the VI. INSTABILITIES OF STEADY HEXAROLLS

Rayleigh number than on the velocity condition at the upper . )
boundary. Because of the large area occupied by the de- The stability of the steady hexaroll solutions can be stud-

scending plume even more isotherms are pulled in from théd with the same general method as in the case of rolls. But
nearly insulating upper boundary by hexaroll convectionthe use of the full _representandﬂO) for thg disturbances
than by rolls as can be seen from Fig. 11. But in case A aif@ds to huge matrices for the determination of the growth
well as in case C the heat transport of the hexaroll solution i§at€S o Since the basic rectangular periodicity interval 0
less than that of the corresponding roll solution as is demon=X<2m/ay, 0<y<2m/a, already covers the horizontal
strated in Fig. 12. Three typical values of the Prandtl numbef€@ of two hexaroll cells, it is likely that subharmonic insta-
P have been chosen to indicate the variation of the hedglliti€s will not play an important role and that the major
transport withP. As in other problems of convection with at Mechanisms of instability will correspond to the cased

least one rigid boundary, the heat transport by convectior 0- Using this assumption we gain a major numerical ad-
rolls varies very little forP=1 and decreases with decreas- Vantage in that the disturbances separate into eight classes

ing Prandtl number foP<1. A similar dependence can be Decause of the symmetri¢s4) of the steady hexaroll solu-
tions. Denoting the symmetriesl4a, (14b), (14¢ by

e, C, C, respectively, we denote the opposite symmetries

2 T
amn=bimn=Cmn=0 for I+m=even (0),
Nu-1 (16a
1t TABLE |. Instabilities of steady hexaroll convection.
Case P ay ay Ry ® Symmetry
A 0.1 1.25 1.1 944 1.54 oCS
0.71 1.2 11 1846 0 eCSs
1050 2(;00 3600 40'00 5000 0.71 14 11 1807 0 0SC
R 25 10 1.0 2494 0 eCs
FIG. 12. Nusselt number Nu as a function of the Rayleigh num- also unstable for
ber for rolls(thin lines and steady hexaroll convectidgthick lines 1729<R<1969 esSC
in case A for P=0.1 (ax=1.25, y=1.1; solid line}, P C 0.1 12 12 2221 1.90 eCC
=0.71 (#,=1.2, @,=1.1; dashed lings and P=25 (a, 071 12 12 4961 0 eSC
=1.0, a,=1.0; dotted lines The basic roll wave number is given 25 1.2 1.1 ~8400 0 eCC

by 2a,.
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] TABLE IlI. Instabilities of drifting asymmetric hexarolls in case
-7 A with P=0.71, a,=1.2, a,=1.1.
ol Ry ) Symmetry of disturbances
1989 0 eSCteSS
Nu-1 2140 0 0SC+0SS

0.5 F
VIl. TIME DEPENDENT HEXAROLL CONVECTION

. . . The evolution of the instabilities listed in Table | has been
1000 R 2000 followed through integration in time only in case A with
=0.71. For this purpose representati@) is assumed with
FIG. 14. Nusselt number for the same case as in Fig. 13. Alséime dependent coefficients,n(t),bimn(t),Cimn(t) and a

shown is the frequency of the drifting asymmetric hexarolls. system of ordinary differential equations in time is obtained
in place of the system of nonlinear algebraic equations in the
- b ——b _ S case of the steady hexaroll solutions. Although the onset of

a_imn Amn:O—imn Imn C—Iimn= Cimn ( )

&16b) instability of the steady hexarolls &=1733 occurs in the
form of monotonously growing disturbances it evolves into
an oscillatory form of convection at finite amplitude. The

A -mn= ~ &~ mnsBiI-mn= ~ Pimn:Cl-mn=Cimn  (S), angular frequency» is shown in Fig. 14 together with the

(160 Nusselt number in dependence RnAs must be expected on

the basis of the stability analysis starts at zero; it ends at a
by 0,S,S as indicated. The eight symmetry classes of disturdinite value at a Rayleigh number of about 2191 where nu-
bances are now given by merically convergent solutions ceased to exist. The oscilla-
tory hexaroll solution actually corresponds to hexarolls drift-
ing in they direction as a shape preserving traveling wave.

By replacingy by y —ct with c= w/a, the drifting hexarolls

become steady with respect to the drifting frame of refer-

depending on whether they share the respective symmetgnce. Accordingly, the coefficient,,,bmn,Cimn Can be
with the steady hexarolls or not. Neither a complete explo-obtained as solutions of algebraic equations just as in the
ration of the region of existence of steady hexaroll solutionsase of the steady hexaroll solutions. Figure 15 shows an
in the a-a-R-P parameter space nor an investigation of theexample of these solutions, called asymmetric drifting
region of stability within the region of existence has beenhexarolls, in the drifting frame of reference. There are al-
undertaken. Instead the hexaroll solutions have been exways two drifting asymmetric hexaroll solutions differing
plored with the wave numbeks, and«, fixed close to their  only by the sign of the coefficients with theCSsymmetry
critical values in cases A and C. The main results for then the solution. These two solutions correspond to opposite
onset of instabilities of these solutions are listed in Table |.directions of the drift in they direction and to opposite mean

flows. Because the drifting hexarolls no longer possess a

plane of symmetryy=const, as the steady hexarolls do

which are symmetric with respect to plage-2nm/«a, for

all integern, a mean flow in they direction must be ex-

pected. The mean flow, obeys the equation

eCCeCSeSCeSSoCC,0CS0SCoSS (17

0.5

0.0

0.5

FIG. 15. Lines of constant vertical velocity in the planes FIG. 16. Profiles of the mean flow in tlyedirection correspond-
=0.9 (upper lef}, z=0.5 (lower left), andz=0.1 (upper righf and  ing to drifting asymmetric hexarolls in case A wih=0.71, a,
isotherms in the plang=0.5 (lower righy for drifting asymmetric ~ =1.2, «,=1.1 for the Rayleigh numbeiR=2000(solid line) and
hexarolls in case A witlR=2000, P=0.71, a,=1.2, ay=1.1. R=2190(dashed ling
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a &
ot (922
where the bar indicates the average overxheplane.

Because the asymmetric drifting hexarolls represented bKeA change in the boundary conditions of a fluid layer

modes of the symmetry classe€ C andeCSare steady in ated from below usually does not change the properties of
; @e convection flow dramatically. There exist singular cases

uch as convection rolls in the presence of stress-free bound-
ries with fixed temperature which exhibit a finite increase of
he convective heat transport in the limit of vanishing Prandtl
umber in contrast to all other forms of convection in this
imit. But apart from this exception variations in the bound-
ary conditions for the velocity field usually affect the prop-
eCC+eCS eSC+eSS 0CC+0CS 0SC+oSS erties of convgt_:tion only in a quantitative way. Thermal
(19 boundary conditions can have a strong influence on the pa}t—
tern of convection and on its dynamics as the analysis of this
The stability analysis of asymmetric drifting hexarolls with paper indicates. The appearance of three-dimensional
respect to these classes of disturbances indicates an instakiiexaroll convection relatively close to the onset of convec-
ity with respect to the first class of the four classes of disturtion and the transition to a drifting form of this convection
bances as shown in Table IIl. Only at a much higher value ofre unusual at low Rayleigh numbers. The mean flow asso-
R do disturbances of the fourth class begin to grow. Whertiated with the drifting pattern is of particular interest since
the evolution of these growing disturbances is followed spaprocesses that induce such features usually are found only at
tially and temporally chaotic convection flows are found. Of much higher Rayleigh numbers in convection layers. It thus
special interest is the mean flow connected with the travelings highly desirable that careful experiments are initiated for
asymmetric hexaroll solutions. The profiles of the mean flowobservations of the new features predicted by the theory of
in the y direction are shown in Fig. 16 for two different [4] and its extensions described in the present paper.

Rayleigh numbers. Its direction changes with the direction of
Uy(z,t)=A2¢(a§Z¢—axl/l), (18)  propagation of the asymmetric drifting hexarolls.

VIIl. CONCLUDING REMARKS

carried out in the same way as in the case of stead
hexarolls. The difference is that the disturbances do not sep
rate into eight classes when no changes in the horizont
periodicity are allowed as discussed in Sec. VI, but into fourI
classes instead. These classes are
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