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Convection in a layer heated from below with a nearly insulating boundary

R. M. Clever and F. H. Busse
Institute of Geophysics and Planetary Physics, University of California at Los Angeles, Los Angeles, California 90024

and Institute of Physics, University of Bayreuth, D-95440 Bayreuth, Germany
~Received 29 September 1997!

The problem of two- and three-dimensional finite amplitude thermal convection in a fluid layer heated from
below is analyzed in the case when one boundary has a much higher and the other boundary has a much lower
thermal conductivity than the fluid. Both stress-free and no-slip boundary conditions for the velocity field are
considered. It is shown that two-dimensional convection rolls are stable for Rayleigh numbers not too far above
the critical valueRc for the onset of convection. But at a Rayleigh numberRII less than twice the critical value
they become unstable and are replaced by hexaroll convection.~Here ‘‘hexarolls’’ denotes a new planform
intermediate to hexagons and rolls.! At an even higher value ofR time dependent convection is found.
@S1063-651X~98!04904-6#

PACS number~s!: 47.20.Bp, 47.20.Ky, 47.27.Te, 47.54.1r
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I. INTRODUCTION

Traditionally the problem of Rayleigh-Be´nard convection
in a fluid layer heated from below has been considered
boundaries with high thermal conductivity such that t
boundary temperatures could be regarded as fixed. It
been known for some time, however, that the thermal c
ductivity of the boundary may have a strong influence on
type of convection flow that is realized in the fluid laye
When both boundaries are much less conducting than
fluid, the wavelength of convection flow becomes very lar
in comparison with the height of the layer@1# and square
pattern convection will be realized instead of tw
dimensional convection rolls@2,3#. When one boundary ha
a very high thermal conductivity and the other a very lo
one then a new instability of convection rolls enters a
leads to the replacements of rolls by a three-dimensional
tern of convection, which has been called hexaroll conv
tion in @4#. This result was found in the case of a high
conducting no-slip lower boundary and a stress-free ne
insulating upper boundary@4#. The goal of the present pape
is to generalize these results and to explore the stability p
erties of the hexaroll patterns.

The paper starts with a brief outline in Sec. II of th
mathematical problem and the numerical scheme used
the approximation of solutions. Three different combinatio
of boundary conditions are then explored in Secs. III–V,
last of which extends the work of Ref.@4# into the domain of
time dependent convection. The paper finishes with an
look on future work and possible laboratory experiments

II. MATHEMATICAL FORMULATION
OF THE PROBLEM

We consider horizontal fluid layers of thicknessd heated
from below with three different types of boundary cond
tions. Case A corresponds to a lower rigid boundary wit
prescribed temperatureT2 and an upper stress-free bounda
which is nearly thermally insulating. For the static soluti
of pure conduction the constant temperatureT1 will be real-
ized at this latter boundary. In case B the thermal proper
571063-651X/98/57~4!/4198~8!/$15.00
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of the two boundaries are reversed such that the tempera
T1 at the upper stress-free boundary is now prescribed. In
third case C both boundaries are assumed to be rigid.
results of the analysis in the latter case will be the sa
whether the lower boundary is nearly insulating and the
per is highly conducting or vice versa because we are ass
ing the Boussinesq approximation. For simplicity we sh
use a lower nearly insulating boundary in case C. It is p
sible, of course, to consider the problem with two stress-f
boundaries. But since the realization of such a case is exp
mentally difficult—though not impossible~see Goldstein and
Graham,@5#!—and because it does not offer special theor
ical advantages, we shall not pursue it here. The simple a
lytical solutions that are possible when symmetric high
conducting or nearly insulating boundaries are used dis
pear, of course, when asymmetric combinations of bound
conditions are assumed.

Usingd as length scale,d2/k as time scale, wherek is the
thermal diffusivity, andT22T1 as scale of the temperature
we write the equations of motion for the velocity vectoru
and the heat equation for the deviationQ of the temperature
from its static distribution in dimensionless form,

S ]

]t
u1u•¹uD P2152¹p1RQk1¹2u, ~1a!

¹•u50, ~1b!

S ]

]t
1u•¹DQ5u•k1¹2Q, ~1c!

where k is the vertical unit vector and where the Pran
numberP and the Rayleigh numberR satisfy the definitions

P5n/k, R5gg~T22T1!d3/kn. ~2!

g denotes the acceleration of gravity,g is the thermal expan-
sivity, and n is the kinematic viscosity. Using a Cartesia
system of coordinates with thez coordinate in the direction
of k, we write the boundary conditions for the three cases
B, and C, in the following form:
4198 © 1998 The American Physical Society
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57 4199CONVECTION IN A LAYER HEATED FROM BELOW . . .
case A:

u50, Q50 at z50, ~3a!

]

]z
k3u50, u•k5Q̄5

]

]z
~Q2Q̄!50 at z51,

~3b!

case B:

u50, Q̄5
]

]z
~Q2Q̄!50 at z50, ~4a!

]

]z
k3u50, u•k5Q50 at z51, ~4b!

case C:

u50, Q̄5
]

]z
~Q2Q̄!50 at z50, ~5a!

u50, Q50 at z51, ~5b!

where Q̄ indicates the horizontal average ofQ. We have
made use of the property that the Rayleigh number is ba
on the average temperature at the nonconducting boun
which requires the vanishing ofQ̄ at this boundary. The
continuation of the temperature field into the nearly insu
ing boundary which is assumed to extend over a vert
distance of several heights of the fluid layer then leads to
boundary condition for the fluctuating component of the te
perature field as has been discussed in@4#.

To solve the problems posed by Eq.~1! together with the
three types of boundary conditions~3!, ~4!, and ~5! we first
eliminate the equation of continuity by introducing the ge
eral representation for the solenoidal velocity field
ed
ry

-
l
e
-

-

u5¹3~¹3kf!1¹3kc1U~z!, ~6!

where the mean velocity fieldU usually vanishes. We sha
return to the possibility of a mean flow in Sec VII. By takin
thez component of the curl and of the (curl)2 of Eq. ~1a! we
obtain two scalar equations forf andc,

¹4D2f2RD2Q5P21S k•¹3~¹3u•¹u!1
]

]t
¹2D2f D ,

~7a!

¹2D2c5P21S 2k•¹3~u•¹u!1
]

]t
D2c D . ~7b!

To obtain steady solutions for Eqs.~7!, ~1c! we employ the
Galerkin method and expand the dependent variables
complete systems of functions that satisfy all boundary c
ditions,

f5 (
l ,m,n

`

almnexp$ i l axx1 imayy%gn~z!, ~8a!

c5 (
l ,m,n

`

clmnexp$ i l axx1 imayy%hn~z!, ~8b!

Q5 (
l ,m,n

`

blmnexp$ i l axx1 imayy% f n~z!1 (
n51

`

b00nsin npz,

~8c!

where the summation overl ,m runs through all integer val-
ues except for the combinationm5 l 50 and the summation
over n runs through all positive integers. The function
f n ,gn ,hn assume the form
f n5hn5sin~n2 1
2 !pz

gn5
sinh bn~12z!

sinh bn
2

sin bn~12z!

sin bn

J for n51, . . . ,̀ in case A, ~9a!

f n5sin~n2 1
2 !p~z21!, hn5sin~n2 1

2 !pz

gn5
sinh bn~12z!

sinh bn
2

sin bn~12z!

sin bn

J for n51, . . . ,̀ in case B, ~9b!

f n5sin~n2 1
2 !p~z21!, hn5sin npz for n51, . . . ,

gn5
sinh gn~z2 1

2 !

sinh1
2 gn

2
sin gn~z2 1

2 !

sin1
2 gn

for even n

5
coshgn~z2 1

2 !

cosh1
2 gn

2
cosgn~z2 1

2 !

cos1
2 gn

for odd n
6 in case C. ~9c!
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4200 57R. M. CLEVER AND F. H. BUSSE
The numbersbn ,gn are obtained as ordered roots of t
equations

cothbn2cotbn50 for n51, . . . ,̀ ,

coth
1

2
gn2cot

1

2
gn50 for even n,

tanh
1

2
gn1tan

1

2
gn50 for odd n.

After projection of Eqs.~7! and ~1c! onto the systems o
expansion functions~8! a system of nonlinear algebra
equations for the unknown coefficientsalmn , blmn , and
clmn is obtained which can be solved by the Newto
Raphson iteration method after a truncation scheme has
introduced. Following earlier work of this kind we shall n
glect all coefficients and corresponding equations with s
scripts satisfying

l 1m1n.NT ,

where the truncation parameterNT must be chosen suffi
ciently large such that properties of physical interest do
change significantly whenNT is replaced byNT22.

The stability of steady solutions of the form~8! can be
studied through the imposition of infinitesimal disturbanc

f̃5exp$ ibx1 idy1st% (
l ,m,n

ã lmnexp$ i l axx1 imayy%gn~z!,

~10a!

c̃5exp$ ibx1 idy1st% (
l ,m,n

c̃ lmnexp$ i l axx1 imayy%hn~z!,

~10b!

Q̃5exp$ ibx1 idy1st% (
l ,m,n

b̃ lmnexp$ i l axx1 imayy% f n~z!,

~10c!

FIG. 1. Isotherms~upper plot! and streamlines~lower plot! of
convection rolls in a layer with upper rigid insulating and low
rigid isothermal boundary forR53000, a52.55, P50.71.
-
en

-

t

where in contrast to the summation in expressions~8! the
casel 5m50 must be included in the summation. Only
the exceptional caseb5d50 must we drop the coefficient
with subscriptsl 5m50 and add the sum

(
n

b̃00nsin npz

in expression~10c!. According to Floquet theory, expres
sions~10! represent the most general ansatz for infinitesim
disturbances. After projection of the linearized equations
the disturbances onto the system of expansion function
system of linear homogeneous algebraic equations for
unknown coefficientsã lmn , b̃ lmn , c̃ lmn is obtained with the
growth rates as eigenvalue. For a given steady solution
the form ~8! with the parametersR,P,ax ,ay the eigenvalue
s can be determined as a function ofb and d. Whenever
there exists an eigenvalues with positive real parts r the
steady solution is unstable. Otherwise we shall regard i
stable.

III. STEADY CONVECTION ROLLS

The boundary condition for the temperature at the nea
insulating boundary is less constraining than at a well c
ducting boundary corresponding toQ50. It thus must be
expected that the critical value for the onset of convection
lower when a well conducting boundary is replaced by
nearly insulating one. The critical values obtained in t
three cases are as follows:

case A:

Rc5669.00, ac52.09, ~11a!

case B:

Rc5816.75, ac52.215, ~11b!

case C:

Rc51295.78, ac52.552 ~11c!

in agreement with the values of@1#. In order to describe
two-dimensional convection rolls we use representation~8!
with

FIG. 2. Nusselt number Nu as a function of the Rayleigh nu
ber R for convection in case C withP50.1 ~solid lines!, P50.71
~dashed curves!, and P52.5 ~dotted curves!. The thin lines apply
for rolls (ay52.4), thick lines apply to hexarolls (ax5ay51.2).
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57 4201CONVECTION IN A LAYER HEATED FROM BELOW . . .
almn5blmn5clmn50 for l 5” 0 ~12a!

and

a02mn5a0mn , b02mn5b0mn , c0mn50 for all m,n,
~12b!

where the latter condition anticipates the existence of a
tical plane of symmetry for the rolls. While the convection
onset is not very different from that found in layers wi
fixed temperatures at the boundaries, the distribution of
therms changes rather strongly as the amplitude of con
tion increases. As indicated in Fig. 1 the isotherms are pu
into the interior of the layer from the nearly insulatin
boundary such that the horizontal gradient of the tempera
tends to exceed the vertical one.

In Fig. 2 the convective heat transport given by the N
selt number Nu has been plotted as a function of the R
leigh number. The curves for case C show a similar dep
dence as the curve obtained for case A in@4#. The
corresponding curves for the kinetic energy are shown
Fig. 3. Since the toroidal component of motion vanishes

FIG. 4. The horizontally averaged temperature as a profile
height z in cases B withR54000 ~dashed lines! and R515 000
~dotted lines! and in case C withR54000 ~solid lines! for P
50.71 ~thick lines! andP57.0 ~thin lines!.

FIG. 3. Same as Fig. 2, but for the kinetic energyEpol instead of
Nu.
r-
t
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rolls, c[0, the kinetic energy is given by

Epol5
1

2
^u¹3~¹3kf!u2&, ~13!

where the angular brackets indicate the average over the
layer. Profiles of the mean temperature are shown in Fig
for cases B and C. For profiles in case A see Fig. 5 of@4#.
Please notice that thez interval20.5<z<0.5 has been used
incorrectly in the latter figure instead of 0<z<1. The pro-
files in case C are nearly antisymmetric about the cente
the layer while in cases A and B the average temperatur
the layer is shifted towards the mean temperature of the
per stress-free boundary. This property indicates that
asymmetry of the velocity boundary conditions has a mu
stronger influence on the mean temperature profile than
asymmetry of the temperature boundary conditions.

IV. INSTABILITIES OF CONVECTION ROLLS

The onset of instabilities of various types is shown a
function ofR anda in Figs. 5 and 6 for cases B and C wit
P50.71. All lines in this diagram indicate locations at whic
the maximum real parts r of the growth rates goes through

f

FIG. 5. Stability boundaries of two-dimensional rolls in case
for P50.71. The domain of stable rolls is bounded by the onse
the Eckhaus instability~dashed line!, by the onset of the subhar
monic varicose instability~dash-dotted line!, and by the onset of the
skewed varicose instability~dash-double-dotted line!. Also shown
are the cross-roll instability boundary~solid line! and the neutral
curve for the onset of convection~double-dash-dotted line!. The
numbers denote the values ofb at the onset of instability.

FIG. 6. Same as Fig. 5, but in case C.
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4202 57R. M. CLEVER AND F. H. BUSSE
zero. The qualitative features of these diagrams resem
those found in the standard Rayleigh-Be´nard problem@6#
except for the new subharmonic varicose instability bou
ary which appears to be typical for layers with strong
asymmetric temperature boundary conditions. As in the c
A treated in@4#, this instability leads to the onset of hexaro
convection as we shall discuss in the next section. The m
mum growth rate of this instability is always reached for t
value d5ay/2 and for finite values ofb which have been
indicated in Figs. 5 and 6. In the case ofP57 for which only
the stability diagram for case C has been computed, the
harmonic varicose instability is preceded by the knot ins
bility as shown in Fig. 7. We thus conclude that the ad
tional asymmetry of the velocity boundary condition in ca
A contributes just a little bit to promote the onset of t
subharmonic varicose instability as shown in Fig. 6 of@4#.

FIG. 7. Same as Fig. 5, but in case C forP57.

FIG. 8. Lines of constant vertical velocity in the planesz50.9
~top row!, z50.5 ~middle row!, and z50.1 ~bottom row! of
hexaroll solutions in case C forP50.1, R51700 ~left column!,
P50.71, R55000 ~middle column!, and P52.5, R56000 ~right
column!. The wave numbers areax5ay51.2 in all cases except in
the caseP52.5 whereay51.1 (y direction is left to right!.
le

-

se
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-
-

V. STEADY HEXAROLL CONVECTION

The nature of the subharmonic varicose instability m
suggest a transition from rolls to hexagonal convection c
since the strongest growth is found for values ofb close to
A3ay/2. But an intermediate pattern between rolls and he
gons evolves as asymptotic steady state from the grow
disturbances. This solution has been called the hexaroll
lution and is described by representation~8! with the follow-
ing symmetry properties:

almn5blmn5clmn50 for l 1m5odd, ~14a!

a2 lmn5almn ,b2 lmn5blmn ,c2 lmn52clmn , ~14b!

al 2mn5almn ,bl 2mn5blmn ,cl 2mn52clmn . ~14c!

In representation~8! ay now denotes half the value ofay of
the roll solution from which the hexarolls bifurcate. In Fig.
hexaroll convection is shown for various Prandtl numbers
case C. The heat transport of hexarolls is less than that o
two-dimensional rolls from which they evolve as is evide
from Fig. 2. The same property holds for the energy of

FIG. 9. The kinetic energy of the toroidal component of t
velocity for hexaroll convection as a function ofR in case C with
P50.1 ~solid line!, P50.71 ~dashed line!, and P52.5 ~dotted
curve!. In all casesax5ay51.2 has been used.

FIG. 10. Lines of constant vertical velocity in the horizont
planesz50.9,0.5,0.1~left to right! of the hexaroll solution in case
A with the parametersP50.1, R52500, ax51.25, ay51.1 ~up-
per row! and P52.5, R54000, ax5ay51.0 (y direction is left
to right!.
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57 4203CONVECTION IN A LAYER HEATED FROM BELOW . . .
poloidal component of motion as can be seen in Fig. 3. P
of the kinetic energy resides now in the energy of the tor
dal component of motion

Etor[
1

2
^u¹3kcu2& ~15!

shown in Fig. 9. But the latter energy always remains a sm
fraction ofEpol . The hexaroll solution in case A is shown
Fig. 10 for two different Prandtl numbers. A split of the ar
of rising motion into four sections can be noticed in the ca
of P50.1, at least in the upper part of the layer. A simil
tendency, but much weaker, can also be observed foP
50.1 in case C when the Rayleigh number is increased
general it appears that the morphology of the convec
motion depends more strongly on the Prandtl and on
Rayleigh number than on the velocity condition at the up
boundary. Because of the large area occupied by the
scending plume even more isotherms are pulled in from
nearly insulating upper boundary by hexaroll convect
than by rolls as can be seen from Fig. 11. But in case A
well as in case C the heat transport of the hexaroll solutio
less than that of the corresponding roll solution as is dem
strated in Fig. 12. Three typical values of the Prandtl num
P have been chosen to indicate the variation of the h
transport withP. As in other problems of convection with a
least one rigid boundary, the heat transport by convec
rolls varies very little forP>1 and decreases with decrea
ing Prandtl number forP,1. A similar dependence can b

FIG. 11. Isotherms in the vertical planesx50 ~upper plot! and
x5p/ax ~lower plot! for the hexaroll solution in case A withP
52.5, R54000, ax5ay51.0.

FIG. 12. Nusselt number Nu as a function of the Rayleigh nu
ber for rolls~thin lines! and steady hexaroll convection~thick lines!
in case A for P50.1 (ax51.25, ay51.1; solid lines!, P
50.71 (ax51.2, ay51.1; dashed lines!, and P52.5 (ax

51.0, ay51.0; dotted lines!. The basic roll wave number is give
by 2ay .
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found for the poloidal kinetic energy which has been plott
in Fig. 13 for P50.71 only. The main effect of the Prand
number on the properties of convection is due to the dep
dence onP of the transition from two- to three-dimension
flows as is evident from Fig. 12 and from the comparisons
Figs. 6 and 7.

VI. INSTABILITIES OF STEADY HEXAROLLS

The stability of the steady hexaroll solutions can be st
ied with the same general method as in the case of rolls.
the use of the full representation~10! for the disturbances
leads to huge matrices for the determination of the grow
rates s. Since the basic rectangular periodicity interval
<x,2p/ax , 0<y,2p/ay already covers the horizonta
area of two hexaroll cells, it is likely that subharmonic inst
bilities will not play an important role and that the majo
mechanisms of instability will correspond to the caseb5d
50. Using this assumption we gain a major numerical a
vantage in that the disturbances separate into eight cla
because of the symmetries~14! of the steady hexaroll solu
tions. Denoting the symmetries~14a!, ~14b!, ~14c! by
e, C, C, respectively, we denote the opposite symmetri

almn5blmn5clmn50 for l 1m5even ~o!,
~16a!

TABLE I. Instabilities of steady hexaroll convection.

Case P ax ay RIII v Symmetry

A 0.1 1.25 1.1 944 1.54 oCS
0.71 1.2 1.1 1846 0 eCS
0.71 1.4 1.1 1807 0 oSC
2.5 1.0 1.0 2494 0 eCS

also unstable for
1729,R,1969 eSC

C 0.1 1.2 1.2 2221 1.90 eCC
0.71 1.2 1.2 4961 0 eSC
2.5 1.2 1.1 '8400 0 eCC

-

FIG. 13. Kinetic energies of the poloidal component of moti
Epol ~solid line for rolls, dashed line for hexarolls, and dotted li
for asymmetric drifting hexarolls!, and of the toroidal component o
motion Etor ~dash-dotted line for hexarolls, dash-double-dotted l
for asymmetric drifting hexarolls! in case A with P50.71, ax

51.2, ay51.1.
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4204 57R. M. CLEVER AND F. H. BUSSE
a2 lmn52almn ,b2 lmn52blmn ,c2 lmn5clmn ~S!,
~16b!

al 2mn52al 2mn ,bl 2mn52blmn ,cl 2mn5clmn ~S!,
~16c!

by o,S,S as indicated. The eight symmetry classes of dist
bances are now given by

eCC,eCS,eSC,eSS,oCC,oCS,oSC,oSS ~17!

depending on whether they share the respective symm
with the steady hexarolls or not. Neither a complete exp
ration of the region of existence of steady hexaroll solutio
in theax-ay-R-P parameter space nor an investigation of t
region of stability within the region of existence has be
undertaken. Instead the hexaroll solutions have been
plored with the wave numbersax anday fixed close to their
critical values in cases A and C. The main results for
onset of instabilities of these solutions are listed in Table

FIG. 14. Nusselt number for the same case as in Fig. 13. A
shown is the frequency of the drifting asymmetric hexarolls.

FIG. 15. Lines of constant vertical velocity in the planesz
50.9 ~upper left!, z50.5 ~lower left!, andz50.1 ~upper right! and
isotherms in the planez50.5 ~lower right! for drifting asymmetric
hexarolls in case A withR52000, P50.71, ax51.2, ay51.1.
r-

try
-
s

n
x-

e
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VII. TIME DEPENDENT HEXAROLL CONVECTION

The evolution of the instabilities listed in Table I has be
followed through integration in time only in case A withP
50.71. For this purpose representation~8! is assumed with
time dependent coefficientsalmn(t),blmn(t),clmn(t) and a
system of ordinary differential equations in time is obtain
in place of the system of nonlinear algebraic equations in
case of the steady hexaroll solutions. Although the onse
instability of the steady hexarolls atR51733 occurs in the
form of monotonously growing disturbances it evolves in
an oscillatory form of convection at finite amplitude. Th
angular frequencyv is shown in Fig. 14 together with the
Nusselt number in dependence onR. As must be expected on
the basis of the stability analysisv starts at zero; it ends at
finite value at a Rayleigh number of about 2191 where
merically convergent solutions ceased to exist. The osc
tory hexaroll solution actually corresponds to hexarolls dr
ing in they direction as a shape preserving traveling wa
By replacingy by y2ct with c5v/ay the drifting hexarolls
become steady with respect to the drifting frame of ref
ence. Accordingly, the coefficientsalmn ,blmn ,clmn can be
obtained as solutions of algebraic equations just as in
case of the steady hexaroll solutions. Figure 15 shows
example of these solutions, called asymmetric drifti
hexarolls, in the drifting frame of reference. There are
ways two drifting asymmetric hexaroll solutions differin
only by the sign of the coefficients with theeCSsymmetry
in the solution. These two solutions correspond to oppo
directions of the drift in they direction and to opposite mea
flows. Because the drifting hexarolls no longer posses
plane of symmetry,y5const, as the steady hexarolls d
which are symmetric with respect to planey52np/ay for
all integer n, a mean flow in they direction must be ex-
pected. The mean flowUy obeys the equation

TABLE II. Instabilities of drifting asymmetric hexarolls in cas
A with P50.71, ax51.2, ay51.1.

RIV v Symmetry of disturbances

1989 0 eSC1eSS
2140 0 oSC1oSS

o

FIG. 16. Profiles of the mean flow in they direction correspond-
ing to drifting asymmetric hexarolls in case A withP50.71, ax

51.2, ay51.1 for the Rayleigh numbersR52000~solid line! and
R52190 ~dashed line!.
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57 4205CONVECTION IN A LAYER HEATED FROM BELOW . . .
S ]

]t
2

]2

]z2D Uy~z,t !5D2f~]yz
2 f2]xc!, ~18!

where the bar indicates the average over thex-y plane.
Because the asymmetric drifting hexarolls represented

modes of the symmetry classeseCC andeCSare steady in
the appropriate reference frame, the stability analysis ca
carried out in the same way as in the case of ste
hexarolls. The difference is that the disturbances do not s
rate into eight classes when no changes in the horizo
periodicity are allowed as discussed in Sec. VI, but into fo
classes instead. These classes are

eCC1eCS, eSC1eSS, oCC1oCS, oSC1oSS.
~19!

The stability analysis of asymmetric drifting hexarolls wi
respect to these classes of disturbances indicates an ins
ity with respect to the first class of the four classes of dist
bances as shown in Table II. Only at a much higher value
R do disturbances of the fourth class begin to grow. Wh
the evolution of these growing disturbances is followed s
tially and temporally chaotic convection flows are found.
special interest is the mean flow connected with the trave
asymmetric hexaroll solutions. The profiles of the mean fl
in the y direction are shown in Fig. 16 for two differen
uid
y
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Rayleigh numbers. Its direction changes with the direction
propagation of the asymmetric drifting hexarolls.

VIII. CONCLUDING REMARKS

A change in the boundary conditions of a fluid lay
heated from below usually does not change the propertie
the convection flow dramatically. There exist singular ca
such as convection rolls in the presence of stress-free bo
aries with fixed temperature which exhibit a finite increase
the convective heat transport in the limit of vanishing Pran
number in contrast to all other forms of convection in th
limit. But apart from this exception variations in the boun
ary conditions for the velocity field usually affect the pro
erties of convection only in a quantitative way. Therm
boundary conditions can have a strong influence on the
tern of convection and on its dynamics as the analysis of
paper indicates. The appearance of three-dimensio
hexaroll convection relatively close to the onset of conv
tion and the transition to a drifting form of this convectio
are unusual at low Rayleigh numbers. The mean flow as
ciated with the drifting pattern is of particular interest sin
processes that induce such features usually are found on
much higher Rayleigh numbers in convection layers. It th
is highly desirable that careful experiments are initiated
observations of the new features predicted by the theory
@4# and its extensions described in the present paper.
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