
PHYSICAL REVIEW E APRIL 1998VOLUME 57, NUMBER 4
Electrical conductivity in a dilute gas far from equilibrium

V. Garzó
Departamento de Fı´sica, Universidad de Extremadura, E-06071 Badajoz, Spain

~Received 29 September 1997!

Electrical conductivity of a minor constituent of charged particles through a background of neutral particles
is studied in the limit of small electrical fields. The neutral gas is in a steady state with both arbitrary velocity
and temperature gradients. The results are obtained from the Gross-Krook model@Phys. Rev.102, 593~1956!#
of the Boltzmann equation for a binary mixture. The transport properties of the charged species are obtained
from a perturbation expansion in powers of the electrical field. In the first order, the current density obeys a
generalized Ohm’s law where an electrical conductivity tensor is identified. The nonzero elements of this
tensor are nonlinear functions of the shear rate, the mass ratio, and the force constant ratio. The results show
that, in general, the presence of the shear produces an inhibition in the diffusion of charged particles.
@S1063-651X~98!04704-7#

PACS number~s!: 51.10.1y, 05.20.Dd, 05.60.1w, 47.50.1d
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I. INTRODUCTION

An interesting problem in nonequilibrium statistical m
chanics is the description of transport properties ofcharged
particles immersed in a bath ofneutral particles and sub-
jected to a constant electric fieldE. The system can be see
as a binary mixture of fluids, one of them is constituted
particles, e.g., ions, whose electric charge~positive or nega-
tive! is different from zero. Nevertheless, the general stu
of these systems is certainly much more complicated t
that of ordinary fluids since now one needs to consider
Coulomb interaction between charged particles. This co
plexity leads one to analyze first more tractable situations
which a thorough description can be offered. A possible w
to avoid the Coulomb interaction is to assume that the c
centration of charged particles~labeled with the index 1) is
much smaller than that of neutral particles~labeled with the
index 2), so that charged particles are so dilute that th
mutual interactions can be neglected. Furthermore, the s
of the neutral fluid is not affected by the presence of
charged species. Under these conditions~tracer limit !, one
can only take into account elastic collisions of charge
neutral and neutral-neutral type. The analysis of transp
processes occurring in such systems is an important prob
in chemistry and physics@1# with applications to aeronomy
astrophysics, and other areas@2#.

When the bath is at equilibrium and the electric field
weak, the current densityj1 obeys the phenomenologica
Ohm’s law, namely,j15s0E, s0 being the electrical con
ductivity coefficient. In the case of dilute gases, the expr
sion of s0 can be obtained, for instance, from the conve
tional Chapman-Enskog expansion@3#. This situation has
been widely investigated in the past few years in differ
contexts@4–6#. However, much less is known when the ne
tral gas is far from equilibrium. If the electric field is as
sumed to be small, one expects that Ohm’s law still app
although a conductivity tensors i j rather than a scalar ma
be identified. This tensor must be a function of the noneq
librium parameters~hydrodynamic gradients! as well as of
the parameters characterizing the mixture~mass and size ra
tios!.
571063-651X/98/57~4!/4186~12!/$15.00
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In order to capture the relevant aspects of such a nonlin
problem we choose a binary mixture in the low-density
gime. In this case, the state of the mixture is characterized
the one-particle velocity distribution functionsf i(r ,v;t)
( i[1,2). As stated above, we consider a mixture in the tra
limit, namely, when the molar fraction of the charged pa
ticles 1 is much smaller than one. In this case, it is n
necessary to consider the Coulomb interaction and the
netic equations describing this situation reduce to a~closed!
Boltzmann equation for the velocity distribution of neutr
particles f 2, and a Boltzmann-Lorentz equation for the di
tribution f 1 of charged particles. In addition, the neutral g
is constituted by nonpolarizable molecules so that the co
sponding polarization force is neglected. We also assu
that the neutral gas is in steady planar Couette flow, nam
the system is enclosed between two parallel plates in rela
motion and kept at different temperatures. Consequen
there are two parameters measuring the distance from e
librium: the shear rate and the thermal gradient. Our goa
to evaluate the influence of such nonequilibrium parame
on the diffusion of charged particles in the limit of sma
electric fields.

Unfortunately, due to the mathematical difficulties em
bodied in the Couette flow problem, no analytic solution h
been found to the Boltzmann equation, even for a single g
For this reason, here we start from the well-known Gro
Krook ~GK! kinetic model@7# for binary mixtures. The GK
model is constructed in the same spirit as the Bhatna
Gross-Krook~BGK! model@8# of a single gas, for which an
exactdescription of the planar Couette flow state has be
given @9,10#. The reliability of the GK model has been a
sessed in several nonequilibrium problems@11# by compari-
son with exact results@12# and Monte Carlo simulations@13#
of the Boltzmann equation.

Since the state of the neutral gas is well characterized,
solve the Boltzmann-Lorentz equation corresponding to
charged particles by performing a perturbation expansion
powers of the electric field. In contrast to the convention
Chapman-Enskog method, the zeroth-order approximatio
not the local equilibrium but a nonequilibrium state wi
arbitrary values of the shear rate and the thermal gradient
4186 © 1998 The American Physical Society
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57 4187ELECTRICAL CONDUCTIVITY IN A DILUTE GAS FAR . . .
first order in the field, we get an explicit expression of t
electrical conductivity tensors i j . According to the geometry
of the problem, there are five nonzero elements:sxx , syy ,
szz, sxy , andsyx . They are highly nonlinear functions o
the shear rate and the ratios of mass and force constan
general, these elements decrease with the shear rate s
the Couette flow produces an inhibition on the current el
trical density. The fact that all these elements are differ
shows clearly the anisotropy induced by the Couette flow
the transport of charge.

II. DESCRIPTION OF THE PROBLEM

Let us consider a low-density binary mixture composed
charged particles~of massm1, chargeq, and number density
n1) and neutral particles~of massm2 and number density
n2). We assume thatn1!n2, so that the interactions o
charged–charged type can be neglected in the kinetic e
tion of f 1. In addition, the smallness of the ration1 /n2 al-
lows us also to suppose that the state of the neutral gas i
influenced by the ion or electron motion. Consequently, o
elastic interactions of type 1-2 and 2-2 will be considered
our description. We assume finally that on the mixture ac
uniform electric fieldE that generates a current of charg
particles. Under these conditions, the set of coupled Bo
mann equations reads

]

]t
f 11v•¹f 11

qE

m1
•

]

]v
f 15J12@ f 1 , f 2#, ~1!

]

]t
f 21v•¹f 25J22@ f 2 , f 2#, ~2!

f i(r ,v;t) being the one-particle velocity distribution functio
of speciesi ( i 51,2) andJi j @ f i , f j # is the Boltzmann colli-
sion operator. From the distributionf i , one defines the num
ber density and mean velocity of speciesi , respectively, as

ni5E dvf i , ~3!

ui5
1

ni
E dvvf i . ~4!

It is also convenient to define a temperatureTi for each spe-
cies, which is a measure of its mean kinetic energy per p
ticle. It is given by

3

2
nikBTi5

mi

2 E dv~v2ui !
2f i , ~5!

wherekB is the Boltzmann constant.
Due to the complicated mathematical structure of the

eratorsJi j , it is a very hard task to solve the set of equatio
~1! and ~2!, especially in far from equilibrium situations. I
order to overcome such a problem, one possibility is to us
simplified kinetic model that retains the main qualitative a
pects of the true Boltzmann collision operator. Here, we c
sider the well-known GK model@7#, in which case the exac
collision integralsJi j are replaced by relaxation terms of th
form
. In
that
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f
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Ji j
GK52n i j ~ f i2 f i j !, ~6!

wheren i j is an effective collision frequency and the refe
ence distribution functionsf i j are

f i j 5ni S mi

2pkBTi j
D 3/2

expS 2
mi

2kBTi j
~v2ui j !

2D , ~7!

with

ui j 5
miui1mjuj

mi1mj
, ~8!

Ti j 5Ti12
mimj

~mi1mj !
2F ~Tj2Ti !1

mj

6kB
~ui2uj !

2G . ~9!

The above expressions are obtained by requiring that
mentum and energy moments ofJi j

GK be the same as those o
the Boltzmann operator for Maxwell molecules~i.e., an in-
teraction potential of the formF i j 5k i j r

24). This allows one
to identify n i j as @7#

n i j 5AnjFk i j

mi1mj

mimj
G1/2

, ~10!

whereA54p30.422. It must be remarked that the resu
derived in this paper could be in principle extended to m
general potentials.

According to Eq.~6!, the effect of the collisions on par
ticles of speciesi is to produce a tendency toward a referen
state characterized by the distributionf i j . This function de-
pends on space and time only through the densityni , the
mean velocitiesui and uj , and the partial temperaturesTi
and Tj . All these quantities are moments of the veloc
distribution functionsf i and f j that must be determined sel
consistently, so the GK kinetic model is actuallymorenon-
linear than the original bilinear Boltzmann equation and co
sequently, it can be used to evaluate nonlinear trans
properties. The results obtained in the past few years con
the usefulness of this model in such nonequilibrium situ
tions @11–14#.

We describe now the problem we are interested in. Le
assume that the neutral gas is in steady planar Couette fl
namely, it is enclosed between two parallel plates~normal to
the y axis! in relative motion~along thex axis! and kept at
different temperatures. The Couette flow is not an idealiz
state since it can be generated in computer simulations
means of realistic boundary conditions@15#. These boundary
conditions lead to combined heat and momentum transp
In this state, no explicit solution of the Boltzmann equati
valid for arbitrary values of the velocity and temperatu
gradients is known, although a perturbation solution throu
super-Burnett order has been recently obtained@16#. Never-
theless, an exact description can be given if one uses
BGK approximation@8#. In this case, Eq.~1! becomes

vy

]

]y
f 252n22~ f 22 f 22!. ~11!
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4188 57V. GARZÓ
The solution is characterized by a uniform pressurep2 and
linear velocity and parabolic temperature profiles with
spect to a scaled space variable, i.e.,

p2[n2kBT25 const, ~12!

1

n22~y!

]

]y
u2,x5a5 const, ~13!

F 1

n22~y!

]

]yG2

T252
2m2

kB
g~a!5 const. ~14!

The dimensionless parameterg(a) is a nonlinear function of
the reducedshear ratea through the implicit equation@9#

a25g
2F2~g!13F1~g!

F1~g!
, ~15!

whereFr(x)[@(d/dx)x# rF0(x) and

F0~x!5
2

xE0

`

dtte2t2/2K0~2x21/4t1/2!, ~16!

K0 being the zeroth-order modified Bessel function@17#.
From the profiles~12!–~14!, one may derive the expres

sions of the momentum and heat fluxes@9#. Furthermore, an
explicit expression for the velocity distribution functionf 2
has been also derived@10#. Now, our objective is to solve the
kinetic equation forf 1 when an external field is applied.

III. ELECTRICAL CONDUCTIVITY TENSOR UNDER
HEAT AND MOMENTUM TRANSPORT

Under the geometry established in the Couette flow pr
lem and assuming that after a certain transient stage
charged particles reach a steady state, Eq.~1! becomes

vy

]

]y
f 11

qE

m1
•

]

]v
f 152n12~ f 12 f 12!, ~17!

where, according to Eq.~10!,

n125v2S 11m

2 D 1/2

n22. ~18!

Here, m[m2 /m1 is the mass ratio andv[(k12/k22)
1/4 is

the force constant ratio@18#. We are interested in analyzin
the influence of the Couette flow on the electrical curr
density. To this end, we shall follow a perturbation sche
in the same spirit as in the Chapman-Enskog method@3#.
Assuming that the strength of the electric field is weak,
perform an expansion takingE as the perturbation paramete
The main feature of this expansion is that the zeroth-or
approximation is a nonequilibrium state with arbitrarily lar
velocity and temperature gradients. As a consequence
corresponding transport coefficients will be nonlinear fun
tions of both gradients. In the same way as the Chapm
Enskog solution, it is expected that the expansion actu
could be divergent although sufficiently asymptotic to
useful in the limit of small electric fields. Thus, we writef 1
in the form
-

-
he

t
e

e

r

he
-
n-
ly

f 15 f 1
~k!1O~Ek11!, ~19!

where the approximationf 1
(k) contains all the contributions

up to orderk in E, although it is a highly nonlinear function
of the shear rate and the thermal gradient. The correspon
hydrodynamic fieldsu12 andT12 must also be expanded in
similar way. By substituting these expansions into Eq.~17!,
one gets a hierarchy of equations for the different distrib
tions f 1

(k) . Here, we will restrict our calculations to the firs
order in the external field.

The zeroth-order approximation is concerned with a s
ation where no external field is applied on the system a
consequently, the current density vanishes. This refere
state has been widely analyzed by Garzo´ and Santos@19# and
now we offer a brief account of the main results. Thus, wh
E50, u1

(0)5u2, and the state of the charged particles is ch
acterized by the profiles

p12
~0![n2kBT12

~0!5 const, ~20!

1

n12~y!

]

]y
u12,x

~0! 5 ã5 const, ~21!

F 1

n12~y!

]

]yG2

T12
~0!52

2m1

kB
g̃5 const. ~22!

Here,u12
(0)5u1

(0) , T12
(0)/T25x12M (12x), M[m/(11m)2,

x[T1
(0)/T2, and

ã[
a

v2A~11m!/2
, ~23!

g̃[
2m

11m

x12M ~12x!

v4
g. ~24!

The only unknown is the temperature ratiox, which is the
solution to the following implicit equation:

2F̃21S 32
ã2

g̃
D F̃15

3

g̃

M ~12x!

x12M ~12x!
, ~25!

where F̃ r[Fr( g̃ ). The solution of Eq.~25! gives x as a
function ofa, m, andv. The temperature ratio varies mono
tonically with the shear rate from 1~when a→0) to 1/m
~whena→`). From this quantity, the partial contributions o
the charged particles to the pressure tensor and the hea
can be calculated. Their explicit expressions can be foun
Ref. @19#.

In addition, the velocity distribution function of the
charged particles can also be obtained. This is one of
main advantages of using kinetic models. The distribut
f 1

(0) represents the reference state around which we carry
our expansion. It can be written a
f 1

(0)5n1(m1/2pkBT2)3/2F(j), where
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F~j!5v2S 11m

2m D 1/2

@x12M ~12x!#23/2
2a~11a!3/2

eujyu
E

t0

t1
dt@2t2~12a!t2#25/2

3expH 2v2S 11m

2m D 1/2 2a

11a

12t

ejy
2@x12M ~12x!#23/2

11a

2t2~12a!t2 F S jx1
2aa

11a

12t

m1/2e
D 2

1jy
21jz

2G J .

~26!
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Here, (t0 ,t1)5(0,1) if jy.0 and (t0 ,t1)5@1,2/(12a)# if
jy,0. Besides,j[(m1/2kBT2)1/2(v2u2),

e[
1

n22
S 2kBT2

m2
D 1/2 1

T2

]

]y
T2 ~27!

is a reduced thermal gradient, and

a[
e

~e218g!1/2
. ~28!

The nonlinear dependence ofF(j) on the reduced gradient
a and e and on the parameters of the mixturem and v is
apparent. This implies that, in general, the GK distributi
f 1

(0) is highly distorted with respect to the local equilibriu
Maxwellian @19#.

Let us assume now that we disturb the above refere
state by applying a weak electric fieldE. Our goal is to get
the electrical conductivity tensor when only terms up to fi
order in the field are retained. This tensor is identified fro
the electrical current density, which gives the mean veloc
of the charged particles relative to the neutral particles.
first order, it is defined as

j1
~1!5qE dvV f 1

~1! , ~29!

whereV5v2u2. On physical grounds, since we are inte
ested in a situation where the current of charged particle
only generated by the action of the external field, we a
assume that the molar fractionx15n1 /n2 is constant. As a
consequence, no mutual diffusion due to a concentration
dient appears in the system. By substituting the expan
~19! into Eq. ~17!, one gets the kinetic equation

vy

]

]y
f 1

~1!1
qE

m1
•

]

]V
f 1

~0!52n12~ f 1
~1!2 f 12

~1!!, ~30!

where f 12
(1) is given by

f 12
~1!5F11

m1

n1kBT12
~0!

1

q~11m!
V• j1

~1!

1S m1V2

2kBT12
~0!

2
3

2D S T12
~1!

T12
~0!

21D G f 12
~0! ~31!

and
ce

t

y
t

is
o

a-
n

f 12
~0!5n1S m1

2pkBT12
~0!D 3/2

expS 2
m1V2

2kBT12
~0!D . ~32!

The ratioT12
(1)/T12

(0) is defined as

x1S T12
~1!

T12
~0!

21D 5~122M !
p1

~1!2p1
~0!

p12
~0!

, ~33!

where

p1
~k!5

m1

3 E dvV2f 1
~k! ~34!

is the partial pressure of charged species.
Before solving the general nonlinear problem, it is i

structive to get the conductivity coefficients0 when the bath
is at equilibrium. In this case, the first term on the left-ha
side of Eq.~30! vanishes~homogeneous state!, u250, and
T125T15T2. A simple calculation yields the usual Ohm
law, i.e. j1

(1)5s0E with

s05
m11m2

m1m2

q2n1

n12
. ~35!

The mass balance equation associated with the charged
ticles implies that the current density is uniform. Accordin
to Eq. ~35!, this requires that the ration1(y)/n12(y)5const.
For Maxwell molecules,n12(y)}n2(y) so thats0 is a con-
stant if and only if the molar fractionn1 /n2 is also constant.
This shows the consistency of the assumption previously
tablished, at least in the absence of hydrodynamic gradie

In order to evaluate the current density when the mixt
is in steady Couette flow, let us consider the formal solut
to Eq. ~30! given by

f 1
~1!5S 11

vy

n12

]

]yD 21S f 12
~1!2

q

m1n12
E•

]

]V
f 1

~0!D . ~36!

Notice that when the operator@11(vy /n12)(]/]y)#21 acts
on the quantities appearing on its right side, only ter
through first order in the electric field need to be consider
On the other hand, the solution~36! is still formal sincef 12

(1)

depends on the unknown momentsj1
(1) andp1

(1) . The calcu-
lation of these moments is quite tedious and is carried ou
the Appendix. According to these results, the electrical c
rent density can be recast into the form of a generali
Ohm’s law

j 1,i
~1!5s i j Ej . ~37!
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The explicit expressions of the nonzero elements of the c
ductivity tensors i j are given in the Appendix. Equation~37!
describes the transport of a minor constituent of charged
ticles through a background of neutral species far from eq
librium in the limit of small electric fields. The nonzero ele
ments of the conductivity tensor provide all the informati
about the physical mechanisms involved in this nonlin
problem. It must be also remarked that upon deriving
~37! no restriction on the mass and force constant ratios h
been considered.

According to the symmetry of the Couette flow, the re
evant elements of the conductivity tensor aresxx , syy , szz,
sxy , andsyx . These elements are nonlinear functions of
shear ratea, the mass ratiom, and the force constant ratiov,
but they do not depend explicitly on the thermal gradie
This is probably due to the particular interaction model co
sidered. Whena50, s i j 5s0d i j , and one recovers the fa
miliar Ohm law ~35! for the current. The diagonal elemen
s i i can be interpreted as generalizations of the electrical c
ductivity coefficients0 since they couple thei th component
of the current density to thei th component of the electric
field. The fact that these three elements are different cle
shows the high anisotropy induced in the system by the C
ette flow. In Figs. 1, 2, and 3 we plot the reduced eleme
sxx /s0, syy /s0, andszz/s0, respectively, as a function o

FIG. 1. Shear-rate dependence ofsxx /s0 for v51 and three
values of the mass ratiom[m2 /m1: ~a! m510; ~b! m51; and~c!
m50.5.

FIG. 2. Same as in Fig. 1, but forsyy /s0.
n-

r-
i-

r
.

ve

e

t.
-

n-
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u-
ts

the reduced shear rate forv51 and three values of the mas
ratio. In general, we observe that the diagonal elements
crease as the shear rate increases whatever the mass
considered is. At a given value of the mass rat
szz.sxx.syy . Further, for finite shear rates, the inhibitio
of the diagonal elements i i with a is more significant when
the neutral particles are lighter than the charged partic
The nondiagonal elementssxy andsyx measure cross effect
in the transport of charged particles. For instance, thex ele-
ment of the electric field creates a current density paralle
the direction of velocity and temperature gradients (y axis!.
Since both off-diagonal elements are different, the cond
tivity tensor is nonsymmetric. While thexy element is nega-
tive, the yx element is positive although its value is ve
small for all the shear rates and mass ratios considered.
means that the current density along they axis is practically
generated by the component of the field parallel to the dir
tion of the gradients. In Fig. 4, we show the shear-rate
pendence of2sxy /s0. We see that the magnitude of th
coefficient always increases with the shear rate. Once
behavior of the elements of the conductivity tensor has b
analyzed, it is also interesting to study the effect of the sh
rate on the current densityj1

(1) . For the sake of simplicity, let
us assume thatEx5Ez50 so that the electric field is paralle
to the direction of the gradients. In Fig. 5 we plot the ma
nitude of the current density relative to its linear value, i.
C(a)[u j1

(1)(a)u/u j1
(1)(0)u for the same cases as in the prev

FIG. 3. Same as in Fig. 1, but forszz/s0.

FIG. 4. Same as in Fig. 1, but for2sxy /s0.
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57 4191ELECTRICAL CONDUCTIVITY IN A DILUTE GAS FAR . . .
ous figures. In general, we observe that the shear rate inh
the transport of charged particles. This inhibition is mo
significant when the particles of the neutral gas are hea
than that of ionized gas. Only in the case of mass ra
smaller than one is there a small region of values ofa for
which the relative current density is enhanced by the sh
rate.

IV. DISCUSSION

In this paper we have addressed the study of trans
properties of an ensemble of charged test particles diffus
in a background neutral gas under the action of a weak e
tric field. The molar fraction of the charged particle
x15n1 /n2 is so small that the elastic interactions of charge
neutral and neutral-neutral type are the dominant ones.
assumption simplifies the description as we do have no
consider the complex long-range nature of the Coulo
force. In these conditions, the current densityj1 induced by
the electric fieldE is the main transport property of the pro
lem. Usually, this current is measured in a steady homo
neous situation, namely, when the neutral gas is at equ
rium. In this case, the phenomenological Ohm la
establishes a linear relation betweenj1 and E through the
electrical conductivity coefficients0. Now we have general
ized the above description to the case in which the neu
gas is far from equilibrium. Specifically, we have consider
a rarefied neutral gas under steady Couette flow. Our purp
has been to get the current density for arbitrarily large vel
ity and temperature gradients in the limit of small elect
fields. Furthermore, charged and neutral particles are
chanically different. To the best of our knowledge, this is t
first derivation of an explicit expression of the flux o
charged particles under such extreme conditions.

Due to the mathematical complexity of the Boltzma
collision operators, we have used the nonlinear GK mo
for binary mixtures of Maxwell molecules. In the tracer lim
(x1!1), the kinetic equation for the distribution functionf 2
of the excess gas reduces to the BGK equation of a single
for which an exact solution in the steady Couette flow
known @9,10#. The knowledge off 2 allows us to solve the
corresponding Boltzmann-Lorentz equation for the veloc
distribution f 1 of the charged particles by means of a pert

FIG. 5. Same as in Fig. 1, but for the ratioC(a)
[u j1

(1)(a)u/u j1
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bation expansion in powers of the electric field. The zero
order approximation corresponds to a nonequilibrium st
characterized by the absence of diffusion but witharbitrary
values of the velocity and temperature gradients and the
rameters of the mixture@19#. In the first order of the expan
sion, we obtain that the current density obeys a general
Ohm’s law where an electric conductivity tensors i j can be
identified. The nonzero elements of this tensor are hig
nonlinear functions of the shear rate, the mass ratio, and
force constant ratio. Since we have taken the electric field
lie along the three axes, according to the symmetry of
Couette flow, there exist five relevant~different! elements of
s i j : three diagonals and two off-diagonals (xy andyx). The
shear-rate dependence of the diagonal elements is quite
lar, namely, they decrease as the shear rate increases.
decrease is more significant as the mass of the neutral g
lighter than that of charged gas. With respect to the o
diagonal elements, the magnitude ofsxy increases with the
shear rate whilesyx is practically zero. In general, the ne
consequence of the presence of the Couette flow is to
duce an inhibition on the transport of charge.

Although the kinetics of charge carriers in metals a
semiconductors is of greater practical value than that o
gases, it is evident that the latter is one of the most inter
ing applications of the Boltzmann equation. In this conte
the situation studied here may be useful for understand
processes ocurring in gas discharges or in the high-latit
ionosphere. On the other hand, we are fully aware that
tracer limit considered here is certainly a restriction that o
would like to get rid of. Beyond this limit, it is evident tha
the main difficulty is to incorporate the long range nature
the Coulomb interactions in our kinetic model. Perhaps
first possibility could be to assume that the Coulomb pot
tial acts on every charged particle as if it were due to
external field~Vlassov approximation!. Under these condi-
tions, one could take the results reported here as the re
ence state and introduce the Coulomb interaction in a per
bation way.

ACKNOWLEDGMENTS

This research has been supported by the DGICYT~Spain!
through Grant No. PB94-1021.

APPENDIX

In this appendix we derive the expressions of the nonz
elements of the conductivity tensors i j . Introducing the op-
erator]s[(1/n12)]/]y, the formal solution~36! can be writ-
ten as

f 1
~1!5~11Vy]s!

21S f 12
~1!2

q

m1n12
Ei

]

]Vi
f 1

~0!D
5 (

k50

`

~2]s!
kVy

kS f 12
~1!2

q

m1n12
Ei

]

]Vi
f 1

~0!D
[L I1L II . ~A1!

The first term of the right-hand side of Eq.~A1!, L I, is iden-
tical to the one appearing in the tracer diffusion proble
under Couette flow@20#. In that problem, the transport o
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tracer particles is generated by a concentration gradient~par-
allel to they axis! instead of a constant electric field. Co
sequently, the contribution ofL I to j 1,x

(1) , j 1,y
(1) , and p1

(1) is
formally the same as the one obtained in the Appendix
Ref. @20#, except that now the molar fractionx1 is constant.
This implies that all the terms proportional to]sx1 in Eqs.
~A6!, ~A8!, and~A14! of Ref. @20# are now zero. Therefore
in this paper we have to explicitly compute the extra con
butions to j 1,x

(1) , j 1,y
(1) , andp1

(1) coming from the second term
of the right-hand sideL II , as well as the total contribution
~coming from L I1L II) to j 1,z

(1) , since this component wa
zero in the related diffusion problem. To this end, in t
same way as in Ref.@20#, we assume~to be verified later!
that ]s

2(T12
(1)/T12

(0))50.
Let us start with the calculation of the extra contributio
f

-

to the current density and the partial pressure coming fr
L II . This term can be decomposed into the form

L II52
qn2kB

m1n12p12
~0!

~Lx
II1Ly

II1Lz
II !, ~A2!

where

L i
II5Ei (

k50

`

~2]s!
kT12

~0!Vy
k ]

]Vi
f 1

~0! . ~A3!

The more involved contribution to the fluxes corresponds
Ly

II . Let us focus on its contribution. First, taking into a
count thatT12

(0) is a quadratic polynomial ins, Ly
II can be

rewritten as
er
Ly
II5T12

~0!(
k50

`

~2]s!
kVy

k ]

]Vy
f 1

~0!2~]sT12
~0!!(

k50

`

~k11!~2]s!
kVy

k11 ]

]Vy
f 1

~0!1
1

2
~]s

2T12
~0!!

3 (
k50

`

~k11!~k12!~2]s!
kVy

k12 ]

]Vy
f 1

~0![C11C21C3 , ~A4!

where theC1,2,3 can be easily identified.
The contribution toj 1,x

(1) is proportional to the integral

E dvVx~C11C21C3!. ~A5!

Let us evaluate each contribution separately. The first one is

E dvVxC152T12
~0!(

k50

`

~k11!E dvVx~2]s!
k11Vy

kf 1
~0!

52T12
~0!(

k50

`
~k11!~k12!

2 E dvVx~2]s!
k11Vy

kf 12
~0!

5T12
~0! ã (

k50

`
~k11!2~k12!

2 E dv~2]s!
kVy

kf 12
~0!5n1T12

~0! ã , ~A6!

where use has been made of the formal solution off 1
(0) , namely,

f 1
~0!5 (

k50

`

~2]s!
kVy

kf 12
~0! . ~A7!

The second contribution is given by

E dvVxC25~]sT12
~0!!(

k50

`

~k11!2E dvVx~2]s!
kVy

kf 1
~0!5~]sT12

~0!!(
k50

`
~k11!~2k217k16!

6 E dvVx~2]s!
kVy

kf 12
~0!

52~]sT12
~0!! ã (

k50

`
~k11!~k12!~2k2111k115!

6 E dv~2]s!
kVy

k11f 12
~0!50, ~A8!

since, according to thes dependence of the hydrodynamic fields, the order of the derivative]s increases faster than the pow
of s. The third contribution is
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E dvVxC352
1

2
~]s

2T12
~0!!(

k50

`

~k11!~k12!2E dvVx~2]s!
kVy

k11f 1
~0!

52
1

2
~]s

2T12
~0!!(

k50

`
~k11!~3k3123k2158k148!

12 E dvVx~2]s!
kVy

k11f 12
~0!

5
1

2
~]s

2T12
~0!! ã (

k50

`
~k11!~k12!~3k3132k21113k1132!

12 E dv~2]s!
kVy

k12f 12
~0!

5
1

6
x1~]s

2T12
~0!!

p12
~0! ã

m1
(
k50

`

~k11!~12k3164k21113k166!~2k11!! ~2k11!!! ~2 g̃ !k

5
1

6
x1~]s

2T12
~0!!

p12
~0! ã

m1
~12F̃4128F̃3121F̃215F̃1!, ~A9!

where in the last step use has been made of the asymptotic form of the functionsF̃ r , i.e. @9#,

F̃ r[Fr~ g̃ !5 (
k50

`

~k11!r~2k11!! ~2k11!!! ~2 g̃ !k. ~A10!

By collecting all the contributions, Eqs.~A5!, ~A8!, and~A9!, one gets that

E dvVxLy
II5n1T12

~0! ãF12 g̃ S 4F̃41
28

3
F̃317F̃21

5

3
F̃1D GEy . ~A11!

In the case ofj 1,y
(1) , one needs the results

E dvVyC152T12
~0!(

k50

`

~k11!E dvVy~2]s!
kVy

kf 1
~0!52T12

~0!(
k50

`
~k11!~k12!

2 E dv~2]s!
kVy

kf 12
~0!52n1T12

~0! ,

~A12!

E dvVyC250, ~A13!

E dvVyC352
1

2
~]s

2T12
~0!!(

k50

`

~k11!~k12!~k13!E dv~2]s!
kVy

k12f 1
~0!

52
1

2
~]s

2T12
~0!!(

k50

`
~k11!~k319k2126k124!

4 E dv~2]s!
kVy

k12f 12
~0!

52
1

2
x1~]s

2T12
~0!!

p12
~0!

m1
(
k50

`

~2k319k2113k16!~2k11!! ~2k11!!! ~2 g̃ !k

52
1

2
x1~]s

2T12
~0!!

p12
~0!

m1
~2F̃313F̃21F̃1!. ~A14!

Consequently, the contribution toj 1,y
(1) from Ly

II is

E dvVyLy
II 5n1T12

~0!@ g̃ ~2F̃313F̃21F̃1!21#Ey . ~A15!

In the case ofj 1,z
(1) , it is easy to see that

E dvVzLy
II50. ~A16!

Let us consider now the contribution ofLy
II to the partial pressurep1

(1) . It is proportional to the integral

E dvV2~C11C21C3!. ~A17!



4194 57V. GARZÓ
The first contribution is

E dvV2C150 ~A18!

when one takes into account the operator identity

]s
kV25V2]s

k22 ãk]s
k21Vx2 ã2k~k21!]s

k22 . ~A19!

The second contribution is

E dvV2C25~]sT12
~0!!(

k50

`

~k11!E dv@2Vy
k121~k11!V2Vy

k#~2]s!
kf 1

~0!

5~]sT12
~0!!(

k50

`

~k11!~k12!~2]s!
kE dvVy

k12f 12
~0!1~]sT12

~0!!(
k50

`
~k11!~2k217k16!

6 E dvV2Vy
k~2]s!

kf 12
~0!

5
x1p12

~0!

m1
~]sT12

~0!!(
k50

`

~k11!~2k11!! ~2k11!!! ~2 g̃ !k12
x1p12

~0!

m1
~]sT12

~0!!

3 (
k50

`

~4k217k13!~2k!! ~2k13!!! ~2 g̃ !k1
1

3

x1p12
~0!

m1
~]sT12

~0!! ã2

3 (
k50

`

~2k13!~8k2130k128!~k11!~2k11!! ~2k11!!! ~2 g̃ !k

5
x1p12

~0!

m1
~]sT12

~0!!F312F̃12 g̃ S 32

3
F̃5140F̃41

160

3
F̃3130F̃216F̃1D1

2

3
ã2~8F̃4118F̃3113F̃213F̃1!G .

~A20!

The third contribution is

E dvV2C352
1

2
~]s

2T12
~0!!(

k50

`

~k11!~k12!E dv@2Vy
k131~k12!V2Vy

k11#~2]s!
kf 1

~0!

52
1

3
~]s

2T12
~0!!(

k50

`

~k11!~k215k16!~2]s!
kE dvVy

k13f 12
~0!2

1

24
~]s

2T12
~0!!

3 (
k50

`

~k11!~3k3123k2158k148!E dvV2Vy
k11~2]s!

kf 12
~0!

5
8

3

x1p12
~0!

m1
g̃ ~]sT12

~0!!(
k50

`

~k11!2~2k13!~2k217k16!~2k11!! ~2k11!!! ~2 g̃ !k2
1

3

x1p12
~0!

m1
g̃ ~]sT12

~0!!

3 (
k50

`

~k11!2~2k15!~12k3164k21113k166!~2k11!! ~2k11!!! ~2 g̃ !k2
2

3

x1p12
~0!

m1
g̃ ~]sT12

~0!! ã2

3 (
k50

`

~k11!2~2k13!2~k12!~12k31100k21277k1255!~2k11!! ~2k11!!! ~2 g̃ !k

52
1

3

x1p12
~0!

m1
g̃ ~]sT12

~0!!@23F̃21113F̃312~95F̃4162F̃5112F̃6!

12 ã2~48F̃81352F̃711024F̃611500F̃511157F̃41443F̃3166F̃2!#, ~A21!
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where use has been made of the identity

]s
2k11T12

~0!5~k11!~2k11!~]sT12
~0!!]s

2kT12
~0!k . ~A22!

The total contribution to the partial pressure coming fromLy
II

can be easily obtained from Eqs.~A18!, ~A20!, and~A21!.
The remaining contributions to the fluxes coming fro

the termsLx,z
II andL I ~in the case ofj 1,z

(1)) can be obtained by
following similar mathematical steps as the ones made w
Ly

II . The algebra is very tedious and here we only quote
final results:

1

Ex
E dvVxLx

II5
1

Ez
E dvVzLz

II5n1T12
~0!F2

3
g̃ ~2F̃21F̃1!21G ,

~A23!

E dvVy,zLx
II5E dvVx,yLz

II50, ~A24!

qE dvVzL
I5

1

11m
~122g̃ F̃1!, ~A25!

E dvV2Lz
II50, ~A26!

E dvV2Lx
II52

x1p12
~0!

m1
~]sT12

~0!! ãF4

3
g̃ ~8F̃6128F̃5134F̃4

117F̃313F̃2!2~2F̃21F̃1!GEx . ~A27!

Now we are in conditions to write the explicit expressio
h
e

of j1
(1) andp1

(1) . To close the problem one needs to know t
derivative ]s(T12

(1)/T12
(0)). This can be obtained by applyin

the operator]s on both sides of the relation which defines t
partial pressure. The calculation leads to]s

2(T12
(1)/T12

(0))50,
which confirms the assumption previously established. T
explicit expression of]s(T12

(1)/T12
(0)) is not very illuminating

and will be omitted here. Therefore, by taking into accou
the results derived in Ref.@20# and using all the relations
obtained in this Appendix, one may finally recast the curr
density into the form of a generalized Ohm’s law, Eq.~37!,
where the nonzero elements of the conductivity tensor
given by

szz5s0

m

3

322g̃ ~ F̃112F̃2!

2F̃1g̃1m
, ~A28!

syy5s0m
N1

N2
, ~A29!

sxy5s0

syyN41mN5

N3
ã , ~A30!

sxx5s0

m

3

N6

N2
, ~A31!

syx5s0

2sxxA51mA6ã2

ãN7

, ~A32!

wheres0 is given by Eq.~35! and
N15
4

3
g̃lA5@ F̃1~5F̃1g̃115F̃2g̃128F̃3g̃112F̃4g̃23!26F̃2~3F̃2g̃12F̃3g̃21!#

1~2F̃1g̃1m!@2A1F̃1g̃l1~2A3l24A4g̃l11!~ F̃1g̃13F̃2g̃12F̃3g̃21!#, ~A33!

N254A5g̃l@ F̃0F̃112F̃2~2F̃1g̃14F̃2g̃1m!#1~2F̃1g̃1m!@4A2F̃1g̃l2~2A3l24A4g̃l11!~2F̃1g̃14F̃2g̃1m!#,
~A34!

N358A5F̃2g̃2~2F̃1g̃1m!~2A3l24A4g̃l11!, ~A35!

N458A2F̃2g̃l1F̃0~2A3l24A4g̃l11!, ~A36!

N55@12 1
3 g̃ ~5F̃1121F̃2128F̃3112F̃4!#~2A3l24A4g̃l11!24A1F̃2g̃l, ~A37!

N65~2F̃1g̃14F̃2g̃23!@~2F̃1g̃14F̃2g̃1m!~2A3l24A4g̃l11!24A2F̃1g̃l#

26 ã2A6g̃l@ F̃0F̃112F̃2~2F̃1g̃14F̃2g̃1m!#, ~A38!

N75
4A2F̃1g̃l2~2F̃1g̃14F̃2g̃1m!~2A3l24A4g̃l11!

2F̃1g̃l
. ~A39!
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In the above expressions we have introduced the coefficients

A15212
2

3
F̃11

g̃

9
@18F̃11113F̃21273F̃31310F̃4112~13F̃512F̃6!#1

2

9F̃1

@3F̃11F̃2~13266g̃ !1F̃3~182443g̃ !

1F̃4~821157g̃ !24g̃ ~375F̃51256F̃6188F̃7112F̃8!#@3b2 g̃ ~3F̃112F̃2!#, ~A40!

A25
F̃0

6F̃1

~3F̃112F̃2!2
2

F̃1g̃
~ F̃02F̃1!b, ~A41!

A35
1

12
~ F̃015!2

g̃

6F̃1

@6F̃0F̃12~ F̃1
214F̃2

2!#2
F̃2

F̃1

b, ~A42!

A45
1

12g̃ F̃1

@8g̃ F̃2~3F̃112F̃2!1F̃0~ F̃11F̃2!2F̃1
22F̃2#2

1

8g̃2F̃1

~ F̃012F̃1g̃116F̃2g̃21!b, ~A43!
u

ial
rm
A55

2

3

F̃2

F̃1

g̃ ~2F̃213F̃1!22
F̃2

F̃1

b, ~A44!

A65 2
3 @ F̃112F̃22 4

3 g̃ ~8F̃6128F̃5134F̃4117F̃313F̃2!#.
~A45!

Here,l52M2152(11m2)/(11m)2, and

b[
M ~12x!

x12M ~12x!
. ~A46!

In the limit of small shear rates, the elements of the cond
tivity tensor behave as

syy

s0
'12

2

15

5m2118m15

v4m
a2, ~A47!

sxy

s0
'2

1

v2S 2

11m D 1/211m

m
a, ~A48!

syx

s0
'

2

15v6

~213m!~11m2!

@~11m!/2#3/2m
a3, ~A49!

sxx

s0
'

szz

s0
'12

4

5v4
a2. ~A50!
re

f
e,
c-

From the knowledge of the current density, the part
pressure can also be obtained. It can be written in the fo

p1
~1!2p1

~0!52
5

6

~11m!3

m2

qkBn1

m1n12
2 ~VxEx1VyEy!

]T2

]y
,

~A51!

where

Vx52
6

5

m

~11m!3
@x12M ~12x!#

3
1

N8
S mA622A2syx12

A5sxx

ã
D , ~A52!

Vy52
6

5

m

~11m!3
@x12M ~12x!#

3
1

N8
S mA122A2syy12

A5sxy

ã
D , ~A53!

and

N85112A3l24A4g̃l. ~A54!
s
,

@1# E. A. Mason and E. W. McDaniel,Transport Properties of
Ions in Gases~Wiley, New York, 1988!.

@2# M. H. Rees,Physics and Chemistry of the Upper Atmosphe
~Cambridge University Press, Cambridge, England, 1989!; J.
R. Stallcop and H. Partridge, Phys. Rev. A32, 639 ~1985!; P.
M. Banks and G. Kokarts,Aeronomy~Academic Press, New
York, 1973!.

@3# S. Chapman and T. G. Cowling,The Mathematical Theory o
Nonuniform Gases~Cambridge University Press, Cambridg
1970!.
@4# L. C. Woods,An Introduction to the Kinetic Theory of Gase
and Magnetoplasmas~Oxford University Press, Oxford
1993!.

@5# L. Ferrari, Physica A93, 531 ~1978!; 101, 491 ~1980!; 133,
103 ~1985!.

@6# A. S. Clarke and B. Shizgal, Phys. Rev. E49, 347
~1994!.

@7# E. P. Gross and M. Krook, Phys. Rev.102, 593 ~1956!.
@8# P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev.94,

511 ~1954!.



ev

al

ize

57 4197ELECTRICAL CONDUCTIVITY IN A DILUTE GAS FAR . . .
@9# J. J. Brey, A. Santos, and J. W. Dufty, Phys. Rev. A36, 2842
~1987!.

@10# C. S. Kim, J. W. Dufty, A. Santos, and J. J. Brey, Phys. R
A 40, 7165~1989!.
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