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Electrical conductivity in a dilute gas far from equilibrium
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Electrical conductivity of a minor constituent of charged particles through a background of neutral particles
is studied in the limit of small electrical fields. The neutral gas is in a steady state with both arbitrary velocity
and temperature gradients. The results are obtained from the Gross-Krook[Plogel Rev102, 593(1956 ]
of the Boltzmann equation for a binary mixture. The transport properties of the charged species are obtained
from a perturbation expansion in powers of the electrical field. In the first order, the current density obeys a
generalized Ohm’s law where an electrical conductivity tensor is identified. The nonzero elements of this
tensor are nonlinear functions of the shear rate, the mass ratio, and the force constant ratio. The results show
that, in general, the presence of the shear produces an inhibition in the diffusion of charged particles.
[S1063-651%98)04704-7

PACS numbgs): 51.10:+y, 05.20.Dd, 05.60-w, 47.50+d

[. INTRODUCTION In order to capture the relevant aspects of such a nonlinear
problem we choose a binary mixture in the low-density re-
An interesting problem in nonequilibrium statistical me- gime. In this case, the state of the mixture is characterized by
chanics is the description of transport propertieslvdrged the one-particle velocity distribution function$;(r,v;t)
particles immersed in a bath ofeutral particles and sub- (i=1,2). As stated above, we consider a mixture in the tracer
jected to a constant electric fiell The system can be seen limit, namely, when the molar fraction of the charged par-
as a binary mixture of fluids, one of them is constituted byticles 1 is much smaller than one. In this case, it is not
particles, e.g., ions, whose electric chafgesitive or nega- necessary to consider the Coulomb interaction and the ki-
tive) is different from zero. Nevertheless, the general studynetic equations describing this situation reduce tolased
of these systems is certainly much more complicated thaBoltzmann equation for the velocity distribution of neutral
that of ordinary fluids since now one needs to consider th@articlesf,, and a Boltzmann-Lorentz equation for the dis-
Coulomb interaction between charged particles. This comtribution f, of charged particles. In addition, the neutral gas
plexity leads one to analyze first more tractable situations fofs constituted by nonpolarizable molecules so that the corre-
which a thorough description can be offered. A possible waysponding polarization force is neglected. We also assume
to avoid the Coulomb interaction is to assume that the conthat the neutral gas is in steady planar Couette flow, namely,
centration of charged particlélbeled with the index 1) is the system is enclosed between two parallel plates in relative
much smaller than that of neutral particligabeled with the motion and kept at different temperatures. Consequently,
index 2), so that charged particles are so dilute that theithere are two parameters measuring the distance from equi-
mutual interactions can be neglected. Furthermore, the statibrium: the shear rate and the thermal gradient. Our goal is
of the neutral fluid is not affected by the presence of theto evaluate the influence of such nonequilibrium parameters
charged species. Under these conditi¢inacer limit), one  on the diffusion of charged particles in the limit of small
can only take into account elastic collisions of charged-electric fields.
neutral and neutral-neutral type. The analysis of transport Unfortunately, due to the mathematical difficulties em-
processes occurring in such systems is an important probletwodied in the Couette flow problem, no analytic solution has
in chemistry and physickl] with applications to aeronomy, been found to the Boltzmann equation, even for a single gas.
astrophysics, and other arday. For this reason, here we start from the well-known Gross-
When the bath is at equilibrium and the electric field isKrook (GK) kinetic model[7] for binary mixtures. The GK
weak, the current densitj; obeys the phenomenological model is constructed in the same spirit as the Bhatnagar-
Ohm'’s law, namelyj,=o(E, o being the electrical con- Gross-Krook(BGK) model[8] of a single gas, for which an
ductivity coefficient. In the case of dilute gases, the expresexactdescription of the planar Couette flow state has been
sion of o, can be obtained, for instance, from the conven-given[9,10]. The reliability of the GK model has been as-
tional Chapman-Enskog expansid8]. This situation has sessed in several nonequilibrium problefh&] by compari-
been widely investigated in the past few years in differentson with exact resulfsl 2] and Monte Carlo simulatior{4 3]
contextg4-6]. However, much less is known when the neu- of the Boltzmann equation.
tral gas is far from equilibrium. If the electric field is as-  Since the state of the neutral gas is well characterized, we
sumed to be small, one expects that Ohm’s law still appliesolve the Boltzmann-Lorentz equation corresponding to the
although a conductivity tensar;; rather than a scalar may charged particles by performing a perturbation expansion in
be identified. This tensor must be a function of the nonequipowers of the electric field. In contrast to the conventional
librium parameterghydrodynamic gradientsas well as of Chapman-Enskog method, the zeroth-order approximation is
the parameters characterizing the mixt(mass and size ra- not the local equilibrium but a nonequilibrium state with
tios). arbitrary values of the shear rate and the thermal gradient. To
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first order in the field, we get an explicit expression of the JiCJ_BK: — v (fi— 1), (6)
electrical conductivity tensar;; . According to the geometry
of the problem, there are five nonzero elements;, oyy,  \yhere v;j is an effective collision frequency and the refer-

077, Oxy, andoy,. They are highly nonlinear functions of once distribution functions; are
the shear rate and the ratios of mass and force constants. In !

general, these elements decrease with the shear rate so that m |32 m
the Couette flow produces an inhibition on the current elec- fi; :ni( ! ) exr( ! (v— u”)z G
trical density. The fact that all these elements are different 27kgTj 2kgT;
shows clearly the anisotropy induced by the Couette flow in
the transport of charge. with
Il. DESCRIPTION OF THE PROBLEM U — T ;U )
omitm;

Let us consider a low-density binary mixture composed of
charged particleéof massm;, chargeq, and number density
n;) and neutral particlesof massm, and number density
n,). We assume thah;<n,, so that the interactions of
charged—charged type can be neglected in the kinetic equa-
tion of f4. In addition, the smallness of the ratig /n, al-

T:T+2& (T_T)+ﬂ(u_u)2 (9)
T mmp2lt T ek

I S0 t that the state of th tral . _The above expressions are obtained by requiring that mo-
OWS Us also to suppose that the state of the neutral gas Is ngt, v,y ang energy moments < be the same as those of

influenced by the ion or electron motion. Consequently, only, ; )
elastic interactions of type 1-2 and 2-2 will be considered inthe Boltzmann operator for Maxwell moleculéi., an in

i i L= ‘e _4 i
our description. We assume finally that on the mixture acts %gr%%ﬁﬁypgt_eggﬁff the forrb;; = «jr ). This allows one
uniform electric fieldE that generates a current of charged "
particles. Under these conditions, the set of coupled Boltz-

_ m; +m; |2
mann equations reads vij=An Kijﬁ : (10)
im;
1% Qe J
EfﬁV'Vfﬁ m, E,fl—le[fl'fﬂ’ @) WhereA=4mx0.422. It must be remarked that the results

derived in this paper could be in principle extended to more
d general potentials.
5t fa V- Via=Jdad T2, o], 2 According to Eq.(6), the effect of the collisions on par-
ticles of species is to produce a tendency toward a reference

f,(r,v;t) being the one-particle velocity distribution function State characterized by the distributign. This function de-
of species (i=1,2) andJ;[f;,f;] is the Boltzmann colli- Pends on space and time only through the densjtythe
sion operator. From the distributidn, one defines the num- mean velocitiesy; andu;, and the partial temperaturés

ber density and mean velocity of speciesespectively, as and T;. All these quantities are moments of the velocity
distribution functions; andf; that must be determined self-

consistently, so the GK kinetic model is actuathore non-
ni= f dvf;, 3 linear than the original bilinear Boltzmann equation and con-
sequently, it can be used to evaluate nonlinear transport
1 properties. The results obtained in the past few years confirm
u.——J dwvf;. (4 the usefulness of this model in such nonequilibrium situa-
n; .
tions[11-14.
It is also convenient to define a temperatiliydfor each spe- We describe now the problem we are interested in. Let us
cies, which is a measure of its mean kinetic energy per par@SSume Fh_at the neutral gas is in steady planar Couette flow,
ticle. It is given by namely,_lt is enclqsed bet_ween two paralle! platesrmal to
they axis) in relative motion(along thex axis) and kept at
3 m; different temperatures. The Couette flow is not an idealized
EnikBTi:?J dv(v—u)?f;, (5)  state since it can be generated in computer simulations by
means of realistic boundary conditiofib]. These boundary
conditions lead to combined heat and momentum transport.

wherekg is the Boltzmann constant. hi licit solut £ th | '
Due to the complicated mathematical structure of the opln this state, no explicit solution of the .BO tzmann equation
valid for arbitrary values of the velocity and temperature

erators];; , itis a very hard task to solve the set of equations i . d .
(1) and (2), especially in far from equilibrium situations. In gradients is known, although a perturbation solution through

order to overcome such a problem, one possibility is to use uper-Burnett order has been recently obtaifi). Never-

. o : : P theless, an exact description can be given if one uses the
simplified kinetic model that retains the main qualitative as- ' o .
P q BGK approximation8]. In this case, Eq(1l) becomes

pects of the true Boltzmann collision operator. Here, we con-
sider the well-known GK moddl7], in which case the exact
collision integralsJ;; are replaced by relaxation terms of the

J
form Uwazz_sz(fz_fzz)- (11
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The solution is characterized by a uniform presspyeand f1:f<lk>+o(Ek+l), (19
linear velocity and parabolic temperature profiles with re-

spect to a scaled space variable, i.e., where the approximatiof{) contains all the contributions

(12) up to orderk in E, although it is a highly nonlinear function

=n,kgT,= const, i i
P2=N2Ke 12 of the shear rate and the thermal gradient. The corresponding

1 9 hydrodynamic fieldsi;, and T4, must also be expanded in a
———— —u,,=a= const, (13)  similar way. By substituting these expansions into Ed),
vay) dy one gets a hierarchy of equations for the different distribu-

tions f{ . Here, we will restrict our calculations to the first
(14) order in the external field.
The zeroth-order approximation is concerned with a situ-
) ) ) ) ) ation where no external field is applied on the system and,
The dimensionless parametgfa) is a nonlinear function of ~ consequently, the current density vanishes. This reference

v(a)= const.

1 arT_ 2m,
voly) dy] % Kg

the reducedshear ratea through the implicit equatiof9] state has been widely analyzed by Gaand Santo§19] and
now we offer a brief account of the main results. Thus, when
2_ 72':2( Y)+3Fa(y) 15 E=0 u{®=u,, and the state of the charged particles is char-
Fi(y) acterized by the profiles
whereF,(x)=[(d/dx)x]"Fy(x) and
' ° P9 =n,kgT{Y= const, (20)
2 ©
Fo¥) =5 J dtte 2K o(2x~ V4 12), (16) 1 s
0 ~
) a—u(loz)f a= const, (21)
K, being the zeroth-order modified Bessel functjd)]. vidy) 9y
From the profileg12)—(14), one may derive the expres-
sions of the momentum and heat flu8$. Furthermore, an 1 92 © 2m;—
explicit expression for the velocity distribution functidn vly) 3y T=— P const. (22

has been also derivg¢d0]. Now, our objective is to solve the

kinetic equation forf; when an external field is applied.
q ! PP Here, uQ=ul®, T/T,=x+2M(1—x), M=pu/(1+ w)?,

=T1(0)
I1l. ELECTRICAL CONDUCTIVITY TENSOR UNDER X=T3'/T, and

HEAT AND MOMENTUM TRANSPORT

Under the geometry established in the Couette flow prob- A= ;1 (23
lem and assuming that after a certain transient stage the o> \(1+ w)/2
charged particles reach a steady state, (Egbecomes
d qE o ~_ 2p x+2M(@2-X) (24)
Uwal'f'm_l'wfl:_b'lz(fl_flz), (17) Y 1+/-L w4 Y-

where, according to E10), The only unknown is the temperature rajio which is the

12 solution to the following implicit equation:

1+u
Voo. (18)

Vo= w (T

2F,+ (25)

a’\_- 3 M(1-y)
Here, u=m,/m, is the mass ratio and=(x,/ k)" is 3- 7 1:'5 X+2M(1—y)’
the force constant ratifil8]. We are interested in analyzing
the influence of the Couette flow on the electrical current ~ ~ . .
density. To this end, we shall follow a perturbation schemevhere F=F(y). The solution of Eq.(25) gives x as a
in the same spirit as in the Chapman-Enskog metfgjd  function ofa, 4, andw. The temperature ratio varies mono-
Assuming that the strength of the electric field is weak, wetonically with the shear rate from iwhena—0) to 1ju
perform an expansion takir§ as the perturbation parameter. (Whena——c0). From this quantity, the partial contributions of
The main feature of this expansion is that the zeroth-ordethe charged particles to the pressure tensor and the heat flux
approximation is a nonequilibrium state with arbitrarily large can be calculated. Their explicit expressions can be found in
velocity and temperature gradients. As a consequence, tHef.[19].
corresponding transport coefficients will be nonlinear func- In addition, the velocity distribution function of the
tions of both gradients. In the same way as the Chapmarpharged particles can also be obtained. This is one of the
Enskog solution, it is expected that the expansion actuallynain advantages of using kinetic models. The distribution
could be divergent although sufficiently asymptotic to beflO represents the reference state around which we carry out
useful in the limit of small electric fields. Thus, we write our expansion. It can be written as
in the form fO=n,(m/27kgT,)¥%D (&), where
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1+pu)\ 2 2a(1+a)¥2 t
<I><§)=w2(—“) D+ 2M (1079222 [ g (1 aye?) 2
2/~L 6|§y| to
1+p\2 20 1-t 1+a 2ac 1-t
_ .2 _ _ -3/2 2 2
XeXp[ 7 1o < [x+2M(1-x)] (1) &t Tra 12 +ETE |-
(26)
|
?er% ([é), 121 (g 12 if /{32k>'(|? )an((j to.t 1)) [1,2/(1- )] if O m, 312 my V2 @)
< esidesg=(m v—u =n| ———| exp ———|.
y veee 2 2 kT 2kgTY
1(2kgT,\¥21 o
€= _( B 2) — T, (27)  The ratioT()/ T is defined as
Yo\ My T dy
T p—pl®
is a reduced thermal gradient, and x| =g -1 (1-2[\/0%, (33)
T 12
€ (28)  where
o= —"——"—""--:.
(62+8’y)l/2
m
(__1 2¢(K)
The nonlinear dependence @f(£) on the reduced gradients P1 3 f vV (34

a and e and on the parameters of the mixtyreand o is
apparent. This implies that, in general, the GK distributionis the partial pressure of charged species.
(9 is highly distorted with respect to the local equilibrium  Before solving the general nonlinear problem, it is in-
Maxwellian[19]. structive to get the conductivity coefficieat, when the bath
Let us assume now that we disturb the above referencis at equilibrium. In this case, the first term on the left-hand
state by applying a weak electric fiell Our goal is to get side of Eq.(30) vanishes(homogeneous stateu,=0, and
the electrical conductivity tensor when only terms up to firstT12=T1=T,. A simple calculation yields the usual Ohm’s
order in the field are retained. This tensor is identified fromlaw, i.e. J(l)—a E with
the electrical current density, which gives the mean velocity
of the charged particles relative to the neutral particles. At
first order, it is defined as

m;+m, g2n;

o, (35

0'0: .
V12

The mass balance equation associated with the charged par-
ticles implies that the current density is uniform. According
to Eq. (35), this requires that the ratio;(y)/v;5(y) = const.

For Maxwell moleculesy5(y)«n,(y) so thato, is a con-

tant if and only if the molar fraction, /n, is also constant.

his shows the consistency of the assumption previously es-
tablished, at least in the absence of hydrodynamic gradients.
In order to evaluate the current density when the mixture
in steady Couette flow, let us consider the formal solution
0 Eq.(30) given by

jV=q f dww i, (29

whereV=v—u,. On physical grounds, since we are inter-
ested in a situation where the current of charged particles i
only generated by the action of the external field, we alsq
assume that the molar fraction=n,/n, is constant. As a
consequence, no mutual diffusion due to a concentration gra-
dient appears in the system. By substituting the expansio
(19) into Eq.(17), one gets the kinetic equation

P GE f<1>:(1+ﬂi>l(fu)_LE.if(m (36
Uy ayf m, avf(o): v (fV=13%), (30 ' V12 9y Yomyg, s Vot

Notice that when the operattﬁI:LﬂL(vylvlz)(a/ay)]*1 acts
wheref{}) is given by on the quantities appearing on its right side, only terms
through first order in the electric field need to be considered.

m, 1 On the other hand, the solutid@é) is still formal sincef{}

f=1+ @ i )V-j(ll) depends on the unknown mome§#8 andp{". The calcu-
NikgT 9 K lation of these moments is quite tedious and is carried out in
mv2 3 T<l> the Appendix. According to these results, the electrical cur-
= 1| f@ (31)  rent density can be recast into the form of a generalized

2kgTO  2/\ T 2 ohm'’s law

and

(37)

(1
ji¥=0iE;.
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FIG. 1. Shear-rate dependence @f,/o, for =1 and three FIG. 3. Same as in Fig. 1, but fer,,/ 0.
values of the mass ratip=m,/m;: (@) ©=10; (b) u=1; and(c)
u=0.5.

the reduced shear rate fer=1 and three values of the mass
ratio. In general, we observe that the diagonal elements de-
The explicit expressions of the nonzero elements of the corerease as the shear rate increases whatever the mass ratio
ductivity tensoro;; are given in the Appendix. Equati¢87) considered is. At a given value of the mass ratio,
describes the transport of a minor constituent of charged paw,,> o> 0oy, . Further, for finite shear rates, the inhibition
ticles through a background of neutral species far from equief the diagonal element;; with a is more significant when
librium in the limit of small electric fields. The nonzero ele- the neutral particles are lighter than the charged particles.
ments of the conductivity tensor provide all the information The nondiagonal elements,, ando,, measure cross effects
about the physical mechanisms involved in this nonlineain the transport of charged particles. For instance xtlee-
problem. It must be also remarked that upon deriving Eqment of the electric field creates a current density parallel to
(37) no restriction on the mass and force constant ratios havehe direction of velocity and temperature gradientsakis).
been considered. Since both off-diagonal elements are different, the conduc-
According to the symmetry of the Couette flow, the rel- tivity tensor is nonsymmetric. While they element is nega-
evant elements of the conductivity tensor atg, oyy, 0, tive, the yx element is positive although its value is very
oy, andoy,. These elements are nonlinear functions of thesmall for all the shear rates and mass ratios considered. This
shear rata, the mass ratig., and the force constant ratie, ~ means that the current density along thexis is practically
but they do not depend explicitly on the thermal gradient.generated by the component of the field parallel to the direc-
This is probably due to the particular interaction model con-ion of the gradients. In Fig. 4, we show the shear-rate de-
sidered. Whera=0, oj;=0,4;, and one recovers the fa- pendence of-oy,/0o. We see that the magnitude of this
miliar Ohm law (35) for the current. The diagonal elements coefficient always increases with the shear rate. Once the
oji can be interpreted as generalizations of the electrical corbehavior of the elements of the conductivity tensor has been
ductivity coefficiento since they couple theh component analyzed, it is also interesting to study the effect of the shear
of the current density to théth component of the electric rate on the current density") . For the sake of simplicity, let
field. The fact that these three elements are different clearlyis assume that,=E,=0 so that the electric field is parallel
shows the high anisotropy induced in the system by the Coup the direction of the gradients. In Fig. 5 we plot the mag-
ette flow. In Figs. 1, 2, and 3 we plot the reduced elementsjitude of the current density relative to its linear value, i.e.,
oxx/ 00, oyyl oo, @and o,/ o, respectively, as a function of (a)=|j{*)(a)|/[j{*'(0)]| for the same cases as in the previ-
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FIG. 2. Same as in Fig. 1, but fer,,/oy. FIG. 4. Same as in Fig. 1, but fef o,,/0y.
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110 pre e e ™ bation expansion in powers of the electric field. The zeroth-
order approximation corresponds to a nonequilibrium state
characterized by the absence of diffusion but vathitrary
values of the velocity and temperature gradients and the pa-
rameters of the mixturgl9]. In the first order of the expan-
sion, we obtain that the current density obeys a generalized
Ohm’s law where an electric conductivity tensef can be
identified. The nonzero elements of this tensor are highly
nonlinear functions of the shear rate, the mass ratio, and the
force constant ratio. Since we have taken the electric field to
lie along the three axes, according to the symmetry of the
0.60 “oteciltii b b Couette flow, there exist five relevafifferent elements of
0.0 0.2 0.4 06 08 1.0 oy; : three diagonals and two off-diagonasy(andyx). The
2 shear-rate dependence of the diagonal elements is quite simi-
lar, namely, they decrease as the shear rate increases. This
FIG. 5. Same as in Fig. 1, but for the ratit¥(a)  decrease is more significant as the mass of the neutral gas is
=[iP@i ). lighter than that of charged gas. With respect to the off-
diagonal elements, the magnitude @f, increases with the
ous figures. In general, we observe that the shear rate inhibithear rate whiler,, is practically zero. In general, the net
the transport of charged particles. This inhibition is moreconsequence of the presence of the Couette flow is to pro-
significant when the particles of the neutral gas are heavieduce an inhibition on the transport of charge.
than that of ionized gas. Only in the case of mass ratio Although the kinetics of charge carriers in metals and
smaller than one is there a small region of valuesadbr  semiconductors is of greater practical value than that of in
which the relative current density is enhanced by the sheagases, it is evident that the latter is one of the most interest-
rate. ing applications of the Boltzmann equation. In this context,
the situation studied here may be useful for understanding
processes ocurring in gas discharges or in the high-latitude
IV. DISCUSSION ionosphere. On the other hand, we are fully aware that the

In this paper we have addressed the study of transpoff@cer limit considered here is certainly a restriction that one
properties of an ensemble of charged test particles diffusinﬁiomd like to get rid of. Beyond this limit, it is evident that
in a background neutral gas under the action of a weak eledh® main difficulty is to incorporate the long range nature of
tric field. The molar fraction of the charged particles the Coulomb interactions in our kinetic model. Perhaps, a
x,=n,/n, is so small that the elastic interactions of charged-first possibility could be to assume that the Coulomb poten-
neutral and neutral-neutral type are the dominant ones. Thidl acts on every charged particle as if it were due to an
assumption simplifies the description as we do have not t§xternal field(Viassov approximation Under these condi-
consider the complex long-range nature of the CoulomBions, one could take the results reported here as the refer-
force. In these conditions, the current dengitynduced by ~ €nce state and introduce the Coulomb interaction in a pertur-

the electric fielcE is the main transport property of the prob- bation way.
lem. Usually, this current is measured in a steady homoge-
neous situation, namely, when the neutral gas is at equilib- ACKNOWLEDGMENTS
fium. I this _ case, th_e phenomenologmal Ohm law This research has been supported by the DGIGHaIn
establishes a linear relation betwejgnand E through the through Grant No. PB94-1021.
electrical conductivity coefficiento. Now we have general-
ized the above description to the case in which the neutral
gas is far from equilibrium. Specifically, we have considered
a rarefied neutral gas under steady Couette flow. Our purpose |n this appendix we derive the expressions of the nonzero
has been to get the current density for arbitrarily large velocglements of the conductivity tensof; . Introducing the op-
ity and temperature gradients in the limit of small electric eratorg=(1/v,,)3/dy, the formal solution(36) can be writ-
fields. Furthermore, charged and neutral particles are mggn as
chanically different. To the best of our knowledge, this is the
first derivation of an explicit expression of the flux of q d
charged particles under such extreme conditions. fiP=(1+Vya9 Y| 115 - Ei o f1
ged p . : Y TSP IRNAY
Due to the mathematical complexity of the Boltzmann
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APPENDIX

collision operators, we have used the nonlinear GK model = okl £(D q 9 0

for binary mixtures of Maxwell molecules. In the tracer limit :go (—=ds) Vy( fi5 - mlvlei Wfl )
(x1<€1), the kinetic equation for the distribution functidén !

of the excess gas reduces to the BGK equation of a single gas =A'+ Al (A1)

for which an exact solution in the steady Couette flow is

known [9,10]. The knowledge off, allows us to solve the The first term of the right-hand side of E@1), A', is iden-
corresponding Boltzmann-Lorentz equation for the velocitytical to the one appearing in the tracer diffusion problem
distribution f; of the charged particles by means of a pertur-under Couette flowf20]. In that problem, the transport of
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tracer particles is generated by a concentration gradgemt  to the current density and the partial pressure coming from
allel to they axis) instead of a constant electric field. Con- A'". This term can be decomposed into the form

sequently, the contribution o' to {5, j{}), and p{") is

formally the same as the one obtained in the Appendix of qnzkg

| 1l 1] 1l
Ref.[20], except that now the molar fraction is constant. Al=- My 1P (Ax+Ay+Az), (A2)
This implies that all the terms proportional #Qx, in Egs.
(A6), (AB), and(A14) of Ref.[20] are now zero. Therefore, where
in this paper we have to explicitly compute the extra contri- .
butions toj (), j{}), andp{™ coming from the second term AVZES (= a0FTIOVE f(0> A3)
of the right-hand side\", as well as the total contribution Js Yav :

(coming fromA'+A") to j{Y, since this component was
zero in the related diffusion problem. To this end, in theThe more involved contribution to the fluxes corresponds to

same way as in Ref20], we assumdto be verified later A” Let us focus on its contribution. First, taking into ac-
that 92(THIT9)=0. count thatT{) is a quadratic polynomial irs, A} can be
Let us start with the calculation of the extra contributionsrewritten as

- d 1
I (0) ky 7k (0) _ ankyk+t1l T £0) . T/ 22(0)
Ay=T E( as) vyﬁv ~(0:T2) 2 (k1) (=9 Vo 104 S (44T)
XE (k+1)(k+2)(— as)kvk*z f(o)—\Ifl+\If2+\I'3, (A4)

where the¥ , , ; can be easily identified.
The contribution tqj{}) is proportional to the integral

f AWV, (U, + T+ 1), (A5)

Let us evaluate each contribution separately. The first one is
J dw, ¥, =—TY i k+1) f dVV(— dg)* VT
Sry KD [ v
:T(lg)—ai (k+ 1);(k+ 2)j dv(—&s)kV‘QfS%):an(l%)a (A6)

where use has been made of the formal solutiofi{3f, namely,

=2 (0913 (A7)
The second contribution is given by
" (k+1)(2k?+ 7k+6
f AW, W= (3T )E k+1) fdvvx( 9o VEF P = (d,TD) Z (k* 1)( 5 )jdvvx( I VEFLY

(k+1)(k+2)(2k?*+ 11k + 15)
=—(3T%)a 2 5 dv(— a9 Vy "1 =0, (A8)

since, according to the dependence of the hydrodynamic fields, the order of the derivafiirecreases faster than the power
of s. The third contribution is
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1
f AW, Wy=— 5 (9 “”)2 (k+1)(k+2) fdvvx( ALV P
(k+1)(3k3+23k%+ 58+ 48)
(0))2 - J AWV, (— 9KV F L
(k+1)(k+2)(3k3+32k?+ 113k + 132
(0)) z 12 fdv( as)kvl;+2fgg)
=—x1(a2T(°) Z (k+1)(12k3+ 64k2+ 11K+ 66) (2k+1)! (2k+ 1) (— y)k

(0)

1 _ _ —
= 6xl(agT“’)) (12F4+ 28F 3+ 21F ,+5F ), (A9)

where in the last step use has been made of the asymptotic form of the furftiphs. [9],

F,=F (y)—E (k+ 1) (2k+ 1) (2k+ 1)1 (= )k (A10)

By collecting all the contributions, Eq$A5), (A8), and(A9), one gets that

f dw,Ay=nT{)a 3

~[ —~ 28 . 5.
1-7| 4F4+ 5 Fa+ TR+ 51 | |y (A11)

In the case of{}), one needs the results

= “ (k+1)(k+2)
J AWy W= -T2, (k+1) J AWy (=g VY = =T 3 ———— f dv(— a9 Vi =—nmT,

(A12)
f dw,¥,=0, (A13)
1
J dey\P3=—§(a2T(°>)E (k+ 1)(k+2)(k+3)J dv(—ag)kvy 2
k+1)(k3+9k?+ 26k + 24)
g3, DS [ avi-agvizng
1, p12 3, aL2 K
== 5¥a(d% T ) 2 (2k3+9K2+ 13+ 6)(2k+ 1)1 (2k+1)!1 (= y)
1 <1°; - - -
=——x1(<92T °>)—(2F3+3F2+ Fl). (A14)
1
Consequently, the contribution §§}) from A} is
J dwW, Ay =n T ¥(2F 5+ 3F,+F,) - 1]E,. (A15)
In the case of{Y, it is easy to see that
f dwV,Ay=0. (A16)

Let us consider now the contribution Af” to the partial pressurp{®. It is proportional to the integral

f dW2(W+W,+W,). (A17)
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The first contribution is
| awawi=o (A18)
when one takes into account the operator identity
oKV2=V25X—2akdt "V, —a’k(k— 1)k 2. (A19)

The second contribution is

f dvvzquz(@sﬂlog)k}:)o (k+1)f dV[2VEF 24+ (K+ 1) V2VE] (= a9 ¥ (¥

©

- k+1)(2k?+ 7k+6
=(aST<1g>)k§_)0(k+1)(k+2)(—as)k AW 2E D + (95T )}_}0( hl 6+ o)

f dvW2V(— dg) Y

% (0)

1p12 (0T, (ki 1)(2k-+ 1)1 (2k+ 1)1t (= 5)k+ 22082 (5 740)
l

o (0)
XKZO(4k2+7k+3)(2k)!(2k+3)!'( y)k+— 1p12(<9T ))a2

XKZO (2k+3)(8k?+ 30k +28)(k+1)(2k+ 1) (2k+ 1)1 (— p)K

_ lp12 ((9 T(o))

- 32 160\ 2, o
3+2F, | 5 Fs+40F + —Fat30F,+6F, | + 7a%(8F 4+ 18Fa+ 13F,+3Fy)|.

(A20)
The third contribution is
1 ee]
f deZ\P3=—§((9§T(1%))go (k+ 1)(k+2)f dv[ 2V 3+ (k+2) VAV (= gg)4F
1 ee]
=—§(a§T<1%))kZO (k+ 1)(k2+5k+6)(—as)kf vy S - S (a2T<°>)
x> (k+1)(3k3+23k2+58k+48)f dvWAVET (= g9
k=0
= 1p12” aTY 2 K+ 1)2(2k+3)(2K2+ Tk+6)(2k+ 1)! (2k+ 1)!! k 1p(1%)” T
—5 12) +1)%(2k+3)(2k?+ 7k+6)(2k+1)!( +)(—7)—— ¥(dsT12)
><2 (k+1)2(2k+5)(12<3+64k2+113k+66)(2k+1)'(2k+1)”(—y)"—— 1p12 = PRIPL

©

xkzo (k+1)2(2k+ 3)2(k+2)(12k3+ 1002+ 277+ 255)(2k+ 1) (2k+ 1) !! (— )X

1 1p12
3 m

V(9T N[ 23F ,+ 113F 3+ 2(95F 4+ 62F 5+ 12F 4)

+2a%(48F g+ 35F ;+ 1024 ¢+ 150(0F s + 1157 4+ 443 3+ 66F ,) ], (A21)
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where use has been made of the identity of j{Y andp{®. To close the problem one needs to know the
derivative a4(T'3/T{9). This can be obtained by applying
12 12
the operator on both sides of the relation which defines the
i i (1)y1(0)y —

The total contribution to the partial pressure coming frth partial pressure. The calculation Iea_dsa@ile /T12)=0,
can be easily obtained from Eq#\18), (A20), and(A21). which confirms the assumption previously established. The
The remaining contributions to the fluxes coming from €XPlicit expression ofy(TE/TE3) is not very illuminating
the termsA andA' (in the case O]c(ll)) can be obtained by and will be omitted here. Therefore, by taking into account

X,z Z

following similar mathematical steps as the ones made wittih€ results derived in Ref20] and using all the relations

I : : btained in this Appendix, one may finally recast the current
Ay . The algebra is very tedious and here we only quote th(gensity into the form of a generalized Ohm's law, E&?).

PTG = (k+ 1) (2k+ 1) (9T B TH . (A22)

final results: where the nonzero elements of the conductivity tensor are
1 1 2 given by
E—Xf dvaAQ:E—J deZA2=n1T(l%{§y(2F2+ Fy)—1/, o
3-29(F,+2F
(A23) Oz7= O'Oﬁ 2/-( ~1 2 ) (A28)
3 2Fyytpu
f dvvy A= f dvV, ,A}=0, (A24) N
1
1 Oyy= OoM N_2 , (A29)
q J dvaA':lTu—z”y‘Tfl), (A25)
H TyyNa+ uNs~
Tyy= 0 N, , (A30)
j dvw2Al=0, (A26)
m Neg
(0) Oxx=0075 (A31)
X1P ~ 4~ ~ ~ XX 3N
f deZAﬂzz%(&sT(l%))a 37(8F 6+ 28F5+34F, 2
1
20—XXA5+ /,LAGEZ
+17F3+3F,) — (2F,+Fy |Ey.  (A27) TSI T (A32)
Now we are in conditions to write the explicit expressionswhereoy is given by Eq.(35) and
4_ - - _ ~ — ~ _ ~ _— —— o~
Ny=3¥NAG[F1(5F, y+ 15F 7 + 268F 5y + 12F ;7 — 3) — 6F5(3F ;7 + 2F5y—1)]
+(2F Y+ m)[2AF yN + (2A5N — A, YN+ 1) (F, y+ 3F, y+ 2F3y—1)], (A33)

No=4AsyN[FoF 1+ 2F 2(2F, y+4F .3+ ) 1+ (2F 1 ¥+ w)[4AF 1 YN — (AN — 4A YN+ 1) (2F  y +4F v+ w1,

(A34)

Nz=8AsF,y— (2F 17+ u)(2AsN —4A, YA +1), (A35)

Ny=8A,F, Y\ +Fo(2AsN —4A, YA +1), (A36)

Ng=[1—17(5F+21F ,+ 28F 3+ 12F ;) (2AsA — 4A, YA + 1) — 4A,;F 5 YA, (A37)
Ne=(2Fy+4F,7—3)[(2Fy+4F ) y+ u)(2A3N — 4A, YA + 1) — 4A,F Y\ ]

—6a2Ag yN[FoF 1+ 2F,(2F vy +4F, 7+ u)], (A38)

No— AAF YN — (2F y+4F 7+ ) (2AN — 4A, YN +1) | (A39)

2F 7\
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In the above expressions we have introduced the coefficients

2 ~ ~ ~ ~ ~ — 2 - _~ = ~

3 9 9F,
+F4(8—1157y) —4y(375F 5+ 256F g+ 88F ,+ 12F 5) ][38— 7(3F 1+ 2F,)], (A40)
A,= Fo (3F,+2F,) 2 ——(Fo—F)B (A41)
2 6f|-:- 1 2 Fly 0 1 ’
A =i(’|E +5)—l[6'|E F —(E2+4E2)]—E/3 (A42)
3 12 0 6"‘:-'1 ori1 1 2 T:-l y

1 1
A,=——="[8YF,(3F,+2F,) +Fo(F1+F,) —Fi-F,]— 5o2F (F0+2F17+16F27 1B, (A43)

12yF, 8y%F

= From the knowledge of the current density, the partial

2Fe F
A5=§ IA:TZy(ZFZJr 3':1)_2!?2'8’ (A44)  pressure can also be obtained. It can be written in the form
1
Ag=2[E,+2E,— 5(8F ¢+ 268 o+ 34 .+ 178 5+ 3F,) . w_ o__ 5@+’ qu“l(Q Bt O,E )
Pi —Pi 3 2 y
(A45) “ myvi,
(A51)
Here,A=2M—1=—(1+ u?)/(1+ )2, and
here
_ Ma-x W
B= —X+2M(1_X)' (A46)
__6_&m
In the limit of small shear rates, the elements of the conduc- Q== 5 (1+M)3[X+2M(1_X)]
tivity tensor behave as
1 ASO-XX
Tyy 2 5u®+18u+5 X Ng| A6 A2yt 2= (A52)
T U (A47)
(0] 15 (1)4/.L
o 1) 2 \214, Y SPIVIPR
. O -~ Y 5 3
e Pk (A48) (1+u)
Ay 2Rt 28T (A53)
oy 2 (2+3u)(1+pud) N HAL™ £R20yy = |
RS LPY ad, (A49)
00 15w® [(1+ w)/2]%?u
and
o a 4
i~ Zx1-—ak (A50) -
oy Oy 50* Ng=1+2Az\ —4A,y\. (A54)
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