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Cascade and dynamo action in a shell model of magnetohydrodynamic turbulence

Peter Frick
Institute of Continuous Media Mechanics, Korolyov 1, 614061 Perm, Russia

Dmitriy Sokoloff
Department of Physics, Moscow State University, 119899 Moscow, Russia

~Received 27 June 1997!

A shell model of magnetohydrodynamic turbulence, which allows one to conserve all the integrals of motion
in both two and three dimensions, is proposed and studied. We demonstrate that this model reproduces basic
facts known in the small-scale turbulent dynamo theory. In particular, we consider a process of redistribution
of magnetic helicity generated by the mean-field dynamo, described in the model as magnetic forcing, into a
small-scale magnetic field. We argue that the resulting equilibrium magnetic field spectrum strongly depends
on the level of magnetic helicity and cross helicity, introduced by the large scales. The spectra with spectral
index ‘‘25/3’’ dominate if the cross helicity vanishes. If the level of cross helicity is high~correlated velocity
and magnetic field! the spectra depend on the magnetic helicity: the strong magnetic helicity suppresses any
cascade providing steep spectra, while the vanishing helicity of turbulent magnetic fields results in the occur-
rence of Kraichnan-Iroshnikov spectral index ‘‘23/2.’’ @S1063-651X~98!04103-8#

PACS number~s!: 47.27.Gs, 47.27.Eq, 47.65.1a, 91.25.Cw
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I. INTRODUCTION

A turbulent flow of electrically conductive fluid can i
principle generate magnetic field in two different ways. T
most well known is a generation of large-scale magnetic fi
under the actions of helicity and, possibly, differential ro
tion in a rotating body with a turbulent flow without reflec
tion symmetry ~see, e.g., Moffatt@1#!. This self-exciting
large-scale magnetic field being affected by turbulent vel
ity field also gives rise to small-scale magnetic fields, wh
play an important role in this dynamo process. However, i
also possible to excite small-scale magnetic fields by a
bulent flow, which is statistically symmetric in reflectio
This process was suggested by Batchelor@2#. A quantitative
description of a small-scale dynamo was given by Kazant
@3# and Kraichnan and Nagarajan@4# and developed by Vain
stein @5,6#. A kinematic model of turbulent dynamo consid
ered by Kazantsev@3# is based on a short–correlated veloc
field and has been thoroughly investigated by numerical
analytical methods~see, e.g., Novikovet al. @7#, Zeldovich
et al. @8#!. Some more realistic models of turbulent dynam
have been investigated numerically~e.g., Meneguzziet al.
@9#!.

Based on these studies the main properties of the tu
lent dynamo can be summarized as follows. The growth
of magnetic field is estimated asv/ l , wherev is a turbulent
velocity scale andl is a turbulent spatial scale. Self-excitin
turbulent magnetic fields are expected to be very interm
tent, organized in thin ropes, with the length of orderl and
the thickness of the order of dissipative scale of magn
field. A nonlinear stabilization of magnetic field growth
likely to occur on the level of equipartition with kinetic en
ergy.

However, the general situation with the turbulent dyna
is far from being completely understood. The turbulent d
namo properties can be model dependent, e.g., an aco
wave turbulent generates magnetic field much worse tha
571063-651X/98/57~4!/4155~10!/$15.00
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vortex short-correlated velocity field@10#.
The spectral properties of turbulent magnetic fields

also not very clear. Kinematic models of magnetic field ge
eration give a quite unusual spectrum, growing with wa
vector k and reaching the maximum near the dissipat
scale. Conventional considerations lead to the conclus
that a nonlinear regime should result in a spectrum that
cays withk and maximal nearl ~see, e.g., Ruzmaikin an
Shukurov@11#!. A quantitative description of this change i
spectral properties was suggested by Kulsrud and Ande
@12#. For small-scale magnetohydrodynamic~MHD! turbu-
lence, which develops under a strong large-scale magn
field, a dimensional analysis predicts ak23/2 power law
~Iroshnikov @13#, Kraichnan@14#!.

Possibilities of direct computer simulation, not to menti
analytical methods, are very restricted in the case of non
ear turbulent phenomena at large magnetic Reynolds n
bers. Therefore any reasonable simplification of correspo
ing equations seems to be very attractive. Below we deve
a description of a turbulent dynamo process in terms o
shell cascade model. The basic idea of these models
represent each spectral range of a turbulent velocity
magnetic field with a few variables and to describe magn
and kinetic energy evolution in terms of relatively simp
ordinary differential equations, ignoring details of its spat
distributions. In spite of the obvious fact that shell mode
give only a simplified description of turbulence, they appe
to be a reasonable tool in turbulent studies. In a certain se
consideration of the turbulent dynamo in terms of shell mo
els can be supplemented by consideration of cellular mo
@15,16# and closure methods of dynamo in maps@17# ~see for
review Childress and Gilbert@18#!. These methods focus a
tention on the spatial magnetic field distribution rather th
on the complicated hierarchical structure of velocity field

A number of shell models for MHD turbulence were pr
posed~Frick @19#, Gloaguenet al. @20#, Grappinet al. @21#,
Carbone@22#, Brandenburget al. @23#, Biskamp @24#! to
4155 © 1998 The American Physical Society
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4156 57PETER FRICK AND DMITRIY SOKOLOFF
verify its spectral properties. These models involved free
rameters and conserved only two invariants. Based on th
models the authors demonstrated the difference between
hydrodynamical and magnetohydrodynamical turbule
@19–21#, and studied the parameters of intermittency@22#.
However, none of these models was capable of givin
stable solution, such as Kraichnan-Iroshnikov’s law, for
stationary forced case. Biskamp obtained a solution clos
k23/2 by introducing an additional interaction of any variab
with the large-scale magnetic modeB0.

Recently, an integral of motion, which, in a sense, is sim
lar to helicity has been discovered for a class of hydro
namic shell models@25#. We generalize this idea to a she
model relevant for a turbulent dynamo and consider a mo
that enables one to conserve all the integrals of mo
known for MHD in two-dimensional~2D! and 3D cases
respectively. Our main aim is to investigate the properties
growing solution and to investigate the spectral propertie
stationary forced turbulence depending on the level of
magnetic helicity and the cross helicity, which are introduc
in the small scales by the large-scale MHD flow.

Generation of a turbulent magnetic field is a specific
phenomenon; according to Zeldovich’s theorem@26# an un-
bounded growth of magnetic field in 2D flow is impossib
In the present paper, we demonstrate that this result is
described by the shell model under consideration and c
pare the results for 2D and 3D cases. The essential differe
between 2D and 3D cases with respect to the turbulent
namo can be presented as follows. The first phase of m
netic field generation, i.e., stretching of a magnetic loop b
turbulent flow, is possible both in 3D and in 2D. In the latt
case this results in a temporary magnetic energy grow
However, a magnetic loop in 2D is closed or almost clos
During the stretching process some sections of the tube
an oppositely directed magnetic field meet, which leads t
local cancellation of magnetic field~see@27#!. This cancel-
lation results in final magnetic field decay. In contrast
twisting and folding of 3D magnetic line results in a ma
netic field growth.

Dynamo effects have been already studied in terms
MHD shell models. More than 10 years ago Gloaguenet al.
@20# studied a simple shell model, mainly concentrating
the dynamo effect. Frick@19# in his analysis of a shell mode
for 2D MHD turbulence showed that the Zeldovich antid
namo theorem holds true. However, it was still uncle
whether these fine properties of turbulence can be re
duced by a simple shell model, in which the spatial dime
sion ~2D or 3D cases! is described only in terms of conse
vation laws.

In this paper, we also demonstrate the role of quadr
invariants of motion~which are determined by 2D or 3D
conservation laws! in a stationary forced MHD turbulence
We show that control over the injection of these quantit
by external forces results in a corresponding change in s
tral properties of small-scale MHD turbulence.

The outline of the paper is as follows. After a brief sum
mary of the so-called Gledzer-Ohkitani-Yamada shell mod
we introduce in Sec. II a shell model for MHD turbulenc
Numerical study of free-decaying 2D and 3D MHD turb
lence is described in Sec. III A, the dependence of spec
laws in inertial range upon the forcing is shown in Sec. III
The discussion of the results is provided in Sec. IV.
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II. SHELL MODEL

A. Gledzer-Ohkitani-Yamada shell model for HD turbulence

The shell models were introduced in the 1970s@29,28# as
an attempt to mimic the Navier-Stokes equations via
namical systems with limited degrees of freedom. They
constructed by truncations of the Navier-Stokes equation
the Fourier space, retaining only one real or complex mo
Un as a representative of all the modes in the shell wit
wave number k ranging betweenkn5k0ln and kn11
5k0ln11. The parameterl characterizes the ratio betwee
two adjacent scales. It is one of the parameters of the mo
and is usually taken equal tol52 ~then every shell corre-
sponds to an octave of wave numbers!. Hereafter, we shall
use this value. The coupling between the shells is cho
such as to preserve the main symmetries and propertie
the Navier-Stokes equations. In this paper, we take fo
basis the so-called GOY shell model~Gledzer@28#, Ohkitani
and Yamada@31#! in the form introduced in@30#, which is
governed by the following set of complex ordinary differe
tial equations:

~dt1nkn
2!Un5 iknH Un11* Un12* 2

«

2
Un21* Un11*

2
~12«!

4
Un22* Un21* J 1 f n . ~1!

Here,* stands for the conjugate,f n is a random force, acting
only on the few shells nearn50, and« is a free parameter
Equation~1! gives the model of Gledzer@28# if «55/4 and
the model of Ohkitani and Yamada@31# if «51/2. The prop-
erties of this model for different values of« were investi-
gated by Biferaleet al. @30# and Fricket al. @32#. In a fully
developed turbulence, an important dynamical quantity is
spectral flux of energy. The corresponding quantity in t
shell models is the flux of energyPn from shells withk
,kn to shells withk>kn, which can be written as

Pn5 K ImFknUnUn21S 2
1

2
Un111

«21

4
Un22D G L , ~2!

where ^ & denotes the time averaging. The GOY class
shell models is also characterized by a number of conse
tion laws, in the inviscid, force-free limit. The conserve
quantityW can be written as

W5(
n

uUnu2zn, ~3!

wherez satisfies the quadratic equation@25#

~«21!z22«z1150. ~4!

This equation admits two solutions,z51 andz51/(«21).
The first solution corresponds to the energy conservation

E5(
n

uUnu2, ~5!
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57 4157CASCADE AND DYNAMO ACTION IN A SHELL MODEL . . .
which is a conserved quantity common to all shell mod
~for any «). The second solution corresponds to the cons
vation of a quantity

H5(
n

@sgn~«21!#nkn
a~«!uUnu2, ~6!

wherea(«)52 log2(u«21u/2). Here one can differentiate be
tween two cases. If«.1, the conservation value ofH is a
positively defined value, like generalized enstrophy, beca
sgn(«21)51. However, if«,1, then sgn(«21)521 and
the value ofH can be negative as well as positive. In th
case, Kadanoffet al. @25# considerH as an analog of helic-
ity.

B. Shell model for MHD turbulence

The MHD equations, written for the velocityuW and the
magnetic fieldBW in the dimensionless form, are

] tuW 1~uW •¹W !uW 5~BW •¹W !BW 2¹W S P1
B2

2 D1Re21DuW ,

] tBW 1~uW •¹W !BW 5~BW •¹W !uW 1Rm21DBW ,

¹W •uW 50, ¹W •BW 50. ~7!

Here Re is the Reynolds number, Rm5Re Prm is the mag-
netic Reynolds number, Prm is the magnetic Prandtl numbe
In the dissipationless limit Eqs.~7! conserve three quadrati
integrals. In a three-dimensional case, these are the tota
ergy Et , the cross helicityHC , and the magnetic helicity
HB ,

Et5E ~uW 21BW 2!dV, ~8!

HC5E ~uW •BW !dV, ~9!

HB5E ~AW •BW !dV, ~10!

whereBW 5 rotAW . In two dimensions the latter integral is re
placed by the square of vector potentialAW :

a5E ~AW •AW !dV. ~11!

It should be noted that the hydrodynamic helicity

HV5E ~uW •rotuW !dV ~12!

is conserved only ifBW→0W, i.e., in a kinematic problem. In
the kinematic limit the model also conserves a quan
analogous toHV .

Let us introduce now the shell model in the form

~dt1Re21kn
2!Un5 iknH ~Un11* Un12* 2Bn11* Bn12* !
s
r-

se

n-

y

2
«

2
~Un21* Un11* 2Bn21* Bn11* !

2
~12«!

4
~Un22* Un21* 2Bn22* Bn21* !J

1 f n . ~13!

~dt1Rem
21kn

2!Bn

5 iknH ~12«2«m!~Un11* Bn12* 2Bn11* Un12* !

1
«m

2
~Un21* Bn11* 2Bn21* Un11* !

1
~12«m!

4
~Un22* Bn21* 2Bn22* Un21* !J 1gn . ~14!

If Bn50, one again obtains GOY equation~1!. Equations
~13! and ~14! conserve the total energyEt and the cross
helicity HC for any«m . The value«m is determined from the
requirement of conservation of a sum, which correspond
the third integral. For 3D this sum is

HB5(
n

~21!nkn
21uBnu2, ~15!

which is conserved, if only«51/2 and«m51/3. For 2D the
sum is

a5(
n

kn
22uBnu2, ~16!

which gives«55/4 and«m521/3.
Let us note that« and«m are the only parameters in ou

model, which are connected with the dimension of the MH
problem under consideration. However, it is not obvious t
the choice«55/4, «m521/3 inevitably results in a mag
netic field decay. Later we will demonstrate that this fact
really true for our model.

Recall that the problem of turbulent dynamo is not r
stricted to 2D and 3D situations, only. Zeldovich@26# treated
a problem of 3D magnetic field enhancement in 2D hyd
dynamic flow. However, possibilities of GOY models are t
limited to choose« and«m in such a way as to conserve 2
quantities for hydrodynamic variables and 3D ones for m
netic variables.

The terms f n and gn correspond to hydrodynamic an
magnetic forcing, respectively. The first one is common
used in dynamo theory, though one can also consider a f
decaying turbulence with a magnetic field generation. T
approach can be a reasonable approximation, because
hydromagnetic decay time can be much larger than the t
of magnetic field growth. As for the termgn , its value is
related to the very essence of dynamo mechanism, sugg
ing the magnetic field generation without external currents
magnetic field sources. Therefore, in the dynamo theory
normally assumed thatgn50. However, looking for the
spectral properties of small-scale MHD turbulence, one
use this term to describe the action of the large-scale m
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4158 57PETER FRICK AND DMITRIY SOKOLOFF
netic field. We shall do this in Sec. III B in the context of th
stationary forced MHD turbulence.

C. Numerical implementation

A number of numerical experiments was performed in
framework of models under discussion. The number of sh
used in the simulations was typically of the order
30(24<n<27). The system was forced near the zero sh
(n50).

The time integration has been done using the fourth-or
Runge-Kutta method with fixed time step. We tried also
‘‘slaved leap frog’’ method, which gives the same resu
with comparable efficiency. The typical time step was 2
31026.

In shell models, each scale is described by only one mo
without reference to any spatial distribution. Therefore, s
tistics can be obtained only as time-averaged characteris
Runs up to 107 time steps appeared to be enough to ge
distinct picture of the process under consideration.

In addition to the above-mentioned quantities, we co
pute the structure functions defined by

sn~q!5^uznuq&, ~17!

wherezn is one of the shell variablesUn or Bn .

III. RESULTS

A. Magnetic energy evolution in free decaying turbulence

We consider here the shell model without any, even
drodynamic, forcing. Of course, this turbulence will decay
the remote future followed by the decay of magnetic fie
Thus, strictly speaking, we discuss here the transient sta
However, the decay time scale of turbulence appears to
much longer than the time scale of the development of
steady-state magnetic field distribution.

The initial distribution of energy corresponds in all cas
to EV(k);EB(k);k22 ~for n>0), but the level of magnetic
energy spectrum has been taken essentially lower than
kinetic one (EV;1, EB;0.0001EV). The Reynolds numbe
was Re5107, the magnetic Prandtl number Prm51023.

Figure 1 demonstrates the magnetic energy evolution

FIG. 1. Free decaying 3D MHD turbulence: kineticEV and
magneticEB energy vs time in nonlinear~thin lines! and linear
~thick lines! cases. Here and below all the variables in figures
given in dimensionless units.
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3D shell model. We see that very soon, in time of orde
~i.e., l /v in dimensional units! the magnetic energy reaches
level of about 1/10 of kinetic energy. There appears a re
tive long period of nonlinear evolution~about 20 dimension-
less time units!, after which a steady state is achieved. Ma
netic and kinetic energy are approximately equal, though
magnetic energy periodically takes slightly lower values.
very slow decay of turbulence due to viscosity and Ohm
losses is also visible.

Also shown in Fig. 1 is the corresponding kinematic r
sult, where any backaction of magnetic field on the flow
neglected. Now, the magnetic field growth is unbounded.
us note that the kinematic growth is rather more intermitt
than continuous: from time to time the growth is interrupt
by the periods of temporal decay. The temporal evolut
during the nonlinear regime is much more regular.

These results are in general agreement with the avail
knowledge concerning 3D turbulent dynamo. Howev
some specific features should be mentioned. Direct comp
simulations of a turbulent dynamo in terms of comple
MHD equations usually demonstrate that the magnetic
ergy is several times lower than the kinetic one~see, e.g.,
@9#!. We are inclined to identify this result with the first stag
of the nonlinear evolution presented in Fig. 1. Because di
numerical simulations are extremely time consuming, it
very difficult to gain deep insight into nonlinear evolutio
Our simulations support the concept that the turbulent
namo gives an~intermittent! growth of magnetic field and
magnetic energy, not only the growth of ensemble averag
magnetic energy~see, e.g.,@8#!. Let us note that this conclu
sion is not always valid. Indeed, the equation

]f

]t
5Uf1nDf ~18!

in the unbounded space, whereU is a short-correlated ran
dom function with vanishing mean value, demonstrates
exponential growth of the ensemble averaged energy^f2&
and a simultaneous decay of each realization of random fi
f with probability 1. In other words, a growth of ensemb
averagê f2& for Eq. ~18! appears only as a result of expo
nentially rare realizations ofU @8#. Since the analysis of the
Kazantsev equation gives information concerning the av
aged values of̂ H2&, one needs an additional treatment
typical realization.

The results of numerical simulation for the 2D case a
presented in Fig. 2. The magnetic energy for nonlinear,
well as kinematic, cases are slowly decaying in time. T
decay is, however, intermittent and the intermittency is mu
more pronounced in the kinematic case. We note that
magnetic energy decay in the 2D case has the time s
much longer thanl /v. To clarify this fact, we present also th
spectral distribution of kineticEV and magneticEB energy in
different stages of evolution~for the 2D case see Figs. 3 an
4!. It is remarkable that the magnetic energy, being mu
less than the kinetic one~Fig. 2!, is in equipartition with the
kinetic energy in some wavelength range, which correspo
to relatively small scales, preceding the dissipative onesn
'6 – 8 in Fig. 3!. The magnetic energy decay in this ran
occurs with the same rate as that of energy. This persiste
of turbulent magnetic field could not be treated in Zeldo

e
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57 4159CASCADE AND DYNAMO ACTION IN A SHELL MODEL . . .
ich’s @26# analysis. The kinetic energy keeps almost the sa
value during the whole time of evolution in both cases~Fig.
2!, while in 2D a stable level of the total kinetic energ
reflects only the fact of energy condensation in the la
scales, where the influence of the magnetic field is ne
gible. However, the situation in the small scales is quite d
ferent~compare Fig. 3 and Fig. 4!: in the nonlinear case, th
small-scale kinetic energy becomes accessible to the dyn
mechanism and is involved in its action, so the spectr
EV(k);k23 is established at a later stage of evolution for
n>0. In the linear case, the initial distribution of kinet
energy@EV(k);k22, which is a slow decay for 2D# leads to
a typical two-dimensional scenario of the spectrum evolut
with an inverse energy transfer and a direct enstrophy tra
fer. As a result, the energy in large-scale shells~up to n
about 5! for t530 becomes higher than fort50, and only
for n.5 is there an interval of the enstrophy transfer w
the spectrum likek23 ~see Fig. 4!.

Let us note that the points in the figures indicate the
ergy of a shell, i.e., the energy of the whole octave of wa
numbers. Therefore, if the energy spectrum is governed
the power lawE(k);k2a, the shell energy distribution give
the slope, which is different by a unit, i.e.,E(n);kn

12a . So,
the well pronounced power behavior of magnetic energyEB
in the intermediate scales (0<n<8) at later time of the 2D
linear decay~Fig. 4! gives EB(n);kn and corresponds to
EB(k);k0;const.

FIG. 2. Free decaying 2D MHD turbulence: kineticEV and
magneticEB energy vs time in nonlinear~thin lines! and linear
~thick lines! cases.

FIG. 3. Free decaying 2D MHD turbulence~nonlinear case!:
evolution of spectra of kineticEV and magneticEB energy.
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Figures 5 and 6 present the spectra for the 3D case. In
linear case~Fig. 6! the spectra show that the infinite grow
of magnetic energy occurs at an intermediate range of sca
limited by dissipation at higher wave numbers.

The spectra for 3D nonlinear force-free evolution a
given in Fig. 5. It can be readily seen that there is no unifi
spectral slope for the magnetic and the kinetic energy. T
spectral slope for the kinetic energy is very similar to Ko
mogorov’s ‘‘25/3’’ law ~shown in Fig. 5 by solid line!, and
the magnetic spectrum for the range of largek is evidently
steeper~something likek22). It is quite obvious that both are
steeper than Kraichnan-Iroshnikov’s ‘‘23/2’’ law.

One can also note that at the early stage of evoluti
when the magnetic energy remains significantly lower th
the kinetic one, the magnetic energy shows the distribut
like EB(k);k21 @in Figs. 5 and 6EB(n);const for 2<n
<6]. This spectrum is discussed by Ruzmaikin and Shu
rov @11#.

For the range of moderatek both 2D and 3D models give
growing power law magnetic spectra, typical for analytic
theories of small-scale dynamo. However, in agreement w
analytical predictions, this range is more pronounced in
2D model~we are grateful to D. Biskamp, who attracted o
attention to this fact!.

To clarify the spectral index problem we consider the s

FIG. 4. Free decaying 2D MHD turbulence~linear case!: evolu-
tion of spectra of kineticEV and magneticEB energy.

FIG. 5. Free decaying 3D MHD turbulence~nonlinear case!:
evolution of spectra of kineticEV and magneticEB energy.
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4160 57PETER FRICK AND DMITRIY SOKOLOFF
tionary forced MHD turbulence. The results of this study a
presented in the next section.

B. Spectral index in stationary forced MHD turbulence

The turbulent magnetic field, produced by the small-sc
dynamo, does not possess a noticeable magnetic helicityHB .
On the other hand, generation of small-scale magnetic fi
due to a turbulent decay of the large-scale magnetic fi
creates the small-scale helical magnetic field. Indeed, the
tal magnetic field can be presented asH5B1b, whereB is
the large-scale magnetic field andb the small-scale one. In
contrast to magnetic helicity of the fieldH, which obeys the
conservation law, the magnetic helicity of the large-sc
field B is not a conserved quantity, because its diffusion
governed by theturbulentdiffusivity. Since the turbulent dif-
fusivity is not negligible, the large-scale magnetic fieldB is
not frozen into the flow. Hence, we conclude that it is ne
essary to introduce the magnetic helicity into the small sca
to compensate the growing helicity of the large-scale m
netic field. This helicity, as well as the other effects of larg
scale magnetic field, should be described in our mo
through the magnetic forcegn , because our shell model ha
no quantities responsible for the large-scale magnetic fie

We simulate the Equations~13! and~14! for different ini-
tial conditions and forcesf n and gn . Now Re51010, Prm
51. We start with the situation corresponding to 3D MH
turbulence (e50.5, em50.33) and consider the stationa
forced hydrodynamic turbulence@the magnetic forcegn50
and the kinematic force acting only in the zero shell:f 0
50.002(11 i #. For t50 a seed magnetic field has been
troduced as a weak white noise. The stationary spectra
tained by time averaging over the interval 5,t,25 are pre-
sented in Fig. 7, showing a Kolmogorov-type spect
distribution with a slow but stable dominance of magne
energy in the whole inertial range. The total values of ene
(EV51.1, EB50.7) reflect only the relatively low level o
magnetic energy in the largest scales~for n,2). The spectral
flux of energy is shown in the lower panel of Fig. 7. We p
separately the flux of kinetic energy, the flux of magne
energy, and their sum, called the total flux. The latter
approximately constant for 2,n,20 and supports the fac
that a state with well developed cascade transfer of ene

FIG. 6. Free decaying 3D MHD turbulence~linear case!: evolu-
tion of spectra of kineticEV and magneticEB energy.
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has been established. Although the magnetic energy is la
than the kinetic one, the kinetic flux evidently dominates
all scales up to the dissipative ones. It should be emphas
that the steady-state value of cross helicity is low (HC
;0.05), as well as the level of magnetic helicity, which
HB;0.001. It is remarkable that the magnetic energy flux
relatively large, and is much larger than the kinematic one
the small scale range.

Now, we consider a simultaneous kinetic and magne
forcing in the same scales by changing the initial value
cross helicityHC and magnetic helicityHB and controlling
the input of both quantities by the external forces.

If both HC andHB remain much less than the energy, t
stationary state is quite similar to that of pure mechani
forcing. The only difference is that the large-scale range
the magnetic energy spectrum becomes more similar to
kinetic one. The results do not change, if the initial distrib
tion of the variablesBn and the forcesf n andgn provide the
highest level of magnetic helicityHB;EB , and a low level
of cross helicity. This case is presented in Fig. 8, where
5,n,15 the spectrum is fitted byE(k);k21.6960.02.

The Kolmogorov-type spectra also appear in the cor
sponding 2D case~Fig. 9!. Let us note that in pure hydrody
namic 2D turbulence the Kolmogorov’s inertial range wi
direct cascade of energy does not appear due to the enstr
conservation. However, the magnetic field violates this c
servation law, and a direct cascade with corresponding p
duction of enstrophy is expected for 2D MHD turbulen
@19#.

An unexpected result has been obtained for the ca
shown in Fig. 10. The simultaneous input of large-scale cr

FIG. 7. Energy spectra and fluxes in stationary forced 3D MH
turbulence. Only the mechanical forcef n is active (gn50).
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and magnetic helicities completely destroys the cascade
cess. No inertial range with a constant spectral flux of ene
is visible. Let us emphasize that the energy flux in Fig. 10
an order of magnitude lower than in other figures. The slo
of the spectrum becomes very steep and gives for the s
range of scales 5,n,15 the value21.9060.04.

A state with a spectral distribution like the Kraichna
Iroshnikov solution with the spectral index ‘‘23/2’’ appears
only in the case when the forcing provides vanishing m
netic helicity, the cross helicity being of the same order
magnitude as the energy~Fig. 11!. Though the spectrum pre

FIG. 8. Energy spectra and fluxes in stationary forced 3D MH
turbulence. The mechanical and the magnetic forces provide e
inputs of energy in the shell with numbern50 ( f 05g0). The in-
puts of HB and HC are controlled by the values off 21 and g21.
Here the magnetic helicity is strong and the cross helicity is w
(HB;EB;EU , HC;0).

FIG. 9. Energy spectra in stationary forced two-dimensio
MHD turbulence (HC;0).
o-
y
s
e
e

-
f

sented on this plot is complicated, a power law range w
index ‘‘23/2’’ seems to be visible and a relatively consta
energy flux is present.

IV. DISCUSSION

Our shell model of MHD turbulence is evidently a dras
simplification of the detailed spatial-temporal picture
MHD turbulence governed by the Navier-Stokes and Ma
well equations. However, the performed analyses dem
strate that the model correctly reproduces the bulk of inf
mation on the small-scale dynamo known from the previo
studies of the Kazantsev equation, as well as from nume
A small-scale dynamo can be investigated to some exten
direct asymptotic analysis of the explicit solution of indu
tion equation in terms of Wiener functional integrals@33#.
This direct method supports the results known from the a
lytical studies of the Kazantsev equation. However, their
plications are restricted by the following fact.

There is an analogy between magnetic field behavio
2D turbulent flow and temporal amplification of temperatu
gradients in a turbulent flow@26#. Obviously, temperature
differences in a turbulent flow can only decrease with tim
provided no external heating is available. However, tempe
ture gradients in 3D, as well as in 2D turbulence, are tem
rary, growing due to a mixing of hot and cold fluid particle
This analogy is not applicable to the magnetic field in 3
turbulence, where the small-scale dynamo is active and m
netic field in a kinematic approximation has an infinite rath
than a temporal growth. This fine difference is a well-know
problem in verification of direct analytical investigation o

al

k

l

FIG. 10. Energy spectra and fluxes in stationary forced
MHD turbulence. Here both cross-helicity magnetic helicity a
large (HC;Eu;EB , HB;EB).
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4162 57PETER FRICK AND DMITRIY SOKOLOFF
the induction equation in a turbulent flow and to some ext
of the Kazantsev equation, because it is a challenging tas
follow in the above analysis~see the discussion in@33#!.

However, the shell models are free of this problem.
verify this fact, we consider a shell model for temperatu
evolution in a turbulent flow, which uses the same GO
equation for the velocity pulsations and the correspond
equation for the temperature variablesTn , which conserves
in a diffusionless limit only one quadratic quantityET

5(Tn
2 :

@dt1~Re!21kn
2#Un5 iknH Un11* Un12* 2

«

2
Un21* Un11*

2
~12«!

4
Un22* Un21* J , ~19!

~dt1~Re Pr!21kn
2!Tn5 iknH ~Un11* Tn12* 1Tn11* Un12* !

1
1

2
~Un21* Tn11* 1Tn21* Un11* !

2
1

4
~Un22* Tn21* 1Tn22* Un21* !J .

~20!

We have analyzed the force-free decay described by E
~19! and ~20! for the same initial conditions as for MHD
turbulence. For thermal energy the time behavior in 2D a

FIG. 11. Energy spectra and fluxes in stationary forced
MHD turbulence with a high level of cross helicity and a low lev
of magnetic helicity (HC;Eu;EB , HB;0).
t
to

e

g

s.

d

3D is very similar. The evolution of the thermal energy a
temperature gradients is shown in Fig. 12 for 3D cases.
might be expected, the thermal energy is a smoothly dec
ing quantity, while the temperature gradients exhibit a te
poral growth followed by a decay.

Now we can summarize with more confidence the res
obtained by our shell model, which could hardly be verifi
in analytical or numerical studies of small scale dynamo.

~1! The transition from kinematic dynamo to equilibrium
magnetic field distribution appears to be a relatively lo
process lasting a dozen turnover times. At this stage, m
netic energy grows by about an order of magnitude.

~2! In the kinematic, as well as in the nonlinear appro
mation, the magnetic field decay in 2D turbulence is a v
slow process. It takes many dozens of turnover times
involves many stages of temporal magnetic field amplifi
tions.

~3! An existence of large-scale magnetic field can ess
tially modify the properties of small-scale fields generated
a turbulent flow. The latter strongly depend on the cro
helicity and the magnetic helicity generated by the larg
scale MHD flow and introduced by it in the small scales.
the cross helicity is a kind of measure of correlations b
tween the velocity and the magnetic fields, our results m
that if U andB are not correlated~at leastHC is close to 0)
one gets the Kolmogorov-type solution with spectra close
the ‘‘25/3’’ law. This state is independent of the level of th
magnetic helicityHB .

~4! If the magnetic and velocity fields are correlated, t
Kolmogorov state is not established. Then the result depe
on the magnetic helicity.

~5! The high level ofHB suppresses any cascade of e
ergy. The spectral energy flux decreases and the spectra
come steep. This occurs when the velocity and magn
fields are correlated and the magnetic helicity is negligib
In this case, an Iroshnikov-Kraichnan-type state is est
lished. Let us emphasize once more that our result is v
different from the result of Biskamp, who has obtained t
Iroshnikov-Kraichnan state in a shell model by introduci
an additional interaction of any shell with the shell, whic
describes the largest scale of magnetic field. His model
rectly followed the basic idea that the Iroshnikov-Kraichn
state appears as a result of direct interactions of the velo

FIG. 12. Free decaying 3D turbulence with passive scalar~tem-
perature!: the kinetic energyEV , the energy of temperature pulsa
tions ET , and the mean square of gradients of temperatureE¹T vs
time.
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57 4163CASCADE AND DYNAMO ACTION IN A SHELL MODEL . . .
pulsationsdv l and magnetic pulsationsdBl of given scalel
with the large-scale magnetic field. In our case the mo
includes only the local interactions and the effect of t
large-scale magnetic field is provided only by the input fl
of the quadratic quantities, conserved by the MHD turb
lence.

In our numerical experiments we have also checked
behavior of higher structure functions, which should refl
the level of intermittency of the cascade processes. Howe
it should be emphasized that one can consider only the
intermittency in a system like shell models, and that the m
unexpected result, obtained by the shell models, was
they reproduce with a good accuracy the behavior of
structure functions in a real hydrodynamic turbulence.

To compare the pure hydrodynamic Kolmogorov st
and the magnetohydrodynamic Kolmogorov-type state~we
study the case when only the kinetic energy is introduced
the system, for which the spectra are shown in Fig. 7! we
present in Table I the scale exponentszq for the structure
functions of orderq, which are defined by

Sq~ l !; l zq. ~21!

Given in the table are the six lower-scale exponents. The
column gives the order numberq, the second one shows th
classical 1949-year Kolmogorov dimensional prediction
the scale exponents~following the linear lawzq5q/3). The
third column shows the experimental values for a turbul
flow given in @34#, the next one presents the values obtain

TABLE I. Scale exponentszq for the structure functions of dif-
ferent orderq.

q zq

K41 HD experi- HD shell MHD shell model
mend@34# model @32# U B

1 1/3 0.40 0.3460.01 0.3360.01
2 2/3 0.71 0.71 0.6660.02 0.6460.02
3 1 1 1.02 0.9460.03 0.9160.04
4 4/3 1.28 1.27 1.2060.04 1.1760.06
5 5/3 1.53 1.53 1.4560.07 1.4060.10
6 2 1.78 1.81 1.6560.10 1.6260.14
-
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by the hydrodynamic GOY shell model@32#. These two col-
umns demonstrate that the values given by the shell mo
are not far from the experimental values. The two last c
umns give the scale exponents, calculated by our MHD s
model in the case when the system was forced only by
‘‘mechanical’’ force f 0 and has a ‘‘25/3’’ spectral distribu-
tion.

Two conclusions can be drawn from the data in the tab
First of all, regardless of the shape of the spectra, wh
display a well pronounced ‘‘25/3’’ law, the state of the sys-
tem does not correspond to the Kolmogorov turbulence.
us recall that for hydrodynamical turbulencez351, which
proves to be untrue in the MHD state. Secondly, the leve
intermittency in MHD turbulence is higher than in the h
drodynamic case and the level of intermittency for the m
netic field is slightly higher than in the velocity field.

To conclude, let us emphasize once more that the s
models reproducing correctly many features of turbul
flows are a drastic simplification of fluid motion equation
In particular, they ignore any information on the spat
structure of motion and involve only the spatial dimensi
through the conservation laws. This fact is especially impr
sive in the magnetohydrodynamic turbulence, where
main understanding of physical processes resulting in m
netic field generation is gained from the topological analy
of magnetic tubes net.

From the viewpoint of the shell model theory the on
difference between 2D and 3D shell models is the differ
choice of the model coefficients. By restricting ourselves
the shell model theory, it is difficult to motivate why th
choicee55/4,em521/3 leads to magnetic field decay.

Two explanations of this fact can be proposed. Eithe
possible to avoid the topological arguments in explanation
the difference between the 2D and 3D flows, or to ident
topological features of the flow in the coefficients of the sh
model.
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