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Cascade and dynamo action in a shell model of magnetohydrodynamic turbulence
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A shell model of magnetohydrodynamic turbulence, which allows one to conserve all the integrals of motion
in both two and three dimensions, is proposed and studied. We demonstrate that this model reproduces basic
facts known in the small-scale turbulent dynamo theory. In particular, we consider a process of redistribution
of magnetic helicity generated by the mean-field dynamo, described in the model as magnetic forcing, into a
small-scale magnetic field. We argue that the resulting equilibrium magnetic field spectrum strongly depends
on the level of magnetic helicity and cross helicity, introduced by the large scales. The spectra with spectral
index “—5/3" dominate if the cross helicity vanishes. If the level of cross helicity is Hgitrelated velocity
and magnetic fieldthe spectra depend on the magnetic helicity: the strong magnetic helicity suppresses any
cascade providing steep spectra, while the vanishing helicity of turbulent magnetic fields results in the occur-
rence of Kraichnan-lroshnikov spectral index-3/2.” [S1063-651X98)04103-§

PACS numbg(s): 47.27.Gs, 47.27.Eq, 47.6ba, 91.25.Cw

I. INTRODUCTION vortex short-correlated velocity fie[d.O].
The spectral properties of turbulent magnetic fields are

A turbulent flow of electrically conductive fluid can in also not very clear. Kinematic models of magnetic field gen-
principle generate magnetic field in two different ways. Theeration give a quite unusual spectrum, growing with wave
most well known is a generation of large-scale magnetic fieldrector k and reaching the maximum near the dissipation
under the actions of helicity and, possibly, differential rota-scale. Conventional considerations lead to the conclusion
tion in a rotating body with a turbulent flow without reflec- that a nonlinear regime should result in a spectrum that de-
tion symmetry (see, e.g., Moffatf1]). This self-exciting cays withk and maximal neat (see, e.g., Ruzmaikin and
large-scale magnetic field being affected by turbulent velocShukurov[11]). A quantitative description of this change in
ity field also gives rise to small-scale magnetic fields, whichspectral properties was suggested by Kulsrud and Anderson
play an important role in this dynamo process. However, it i§12]. For small-scale magnetohydrodynantidHD) turbu-
also possible to excite small-scale magnetic fields by a turlence, which develops under a strong large-scale magnetic
bulent flow, which is statistically symmetric in reflection. field, a dimensional analysis predicts ka *?> power law
This process was suggested by Batchglr A quantitative  (Iroshnikov[13], Kraichnan[14]).
description of a small-scale dynamo was given by Kazantsev Possibilities of direct computer simulation, not to mention
[3] and Kraichnan and Nagarajg#ll and developed by Vain- analytical methods, are very restricted in the case of nonlin-
stein[5,6]. A kinematic model of turbulent dynamo consid- ear turbulent phenomena at large magnetic Reynolds num-
ered by Kazantsep] is based on a short—correlated velocity bers. Therefore any reasonable simplification of correspond-
field and has been thoroughly investigated by numerical anthg equations seems to be very attractive. Below we develop
analytical methodgsee, e.g., Novikowt al. [7], Zeldovich  a description of a turbulent dynamo process in terms of a
et al. [8]). Some more realistic models of turbulent dynamoshell cascade model. The basic idea of these models is to
have been investigated numericallg.g., Meneguzzet al.  represent each spectral range of a turbulent velocity and
[9)). magnetic field with a few variables and to describe magnetic

Based on these studies the main properties of the turbuand kinetic energy evolution in terms of relatively simple
lent dynamo can be summarized as follows. The growth raterdinary differential equations, ignoring details of its spatial
of magnetic field is estimated a$l, wherev is a turbulent  distributions. In spite of the obvious fact that shell models
velocity scale and is a turbulent spatial scale. Self-exciting give only a simplified description of turbulence, they appear
turbulent magnetic fields are expected to be very intermitio be a reasonable tool in turbulent studies. In a certain sense,
tent, organized in thin ropes, with the length of ortleand  consideration of the turbulent dynamo in terms of shell mod-
the thickness of the order of dissipative scale of magnetiels can be supplemented by consideration of cellular models
field. A nonlinear stabilization of magnetic field growth is [15,16 and closure methods of dynamo in mp3] (see for
likely to occur on the level of equipartition with kinetic en- review Childress and GilbeftL8]). These methods focus at-
ergy. tention on the spatial magnetic field distribution rather than

However, the general situation with the turbulent dynamoon the complicated hierarchical structure of velocity field.
is far from being completely understood. The turbulent dy- A number of shell models for MHD turbulence were pro-
namo properties can be model dependent, e.g., an acousposed(Frick [19], Gloaguenet al.[20], Grappinet al. [21],
wave turbulent generates magnetic field much worse than @arbone[22], Brandenburget al. [23], Biskamp [24]) to
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verify its spectral properties. These models involved free pa- Il. SHELL MODEL
rameters and conserved only two invariants. Based on thes I
models the authors demonstrated the difference between th%’ Gledzer-Ohkitani-yamada shell model for HD turbulence
hydrodynamical and magnetohydrodynamical turbulence The shell models were introduced in the 19728,28 as
[19-21], and studied the parameters of intermittelﬁégz]: an attempt to mimic the Navier-Stokes equations via dy-
However, none of these models was capable of giving @mamical systems with limited degrees of freedom. They are
stable solution, such as Kraichnan-lroshnikov’s law, for aconstructed by truncations of the Navier-Stokes equations in
stationary forced case. Biskamp obtained a solution close tghe Fourier space, retaining only one real or complex mode
k™32 by introducing an additional interaction of any variable J | as a representative of all the modes in the shell with a
with the large-scale magnetic modg. ____wave numberk ranging betweenk,=ko\" and k.,
Recently, an integral of motion, which, in a sense, is simi-_ koA"*1. The parametek characterizes the ratio between
lar to helicity has been discovered for a class of hydrodyy, o adjacent scales. It is one of the parameters of the model,

e e o e 1 oo 15 usualy taken equal =2 (ien every shell corte-
y ponds to an octave of wave numbeidereafter, we shall

that enables one to conserve all the integrals of motion . . .
known for MHD in two-dimensionak2D) and 3D cases, use this value. The coupling between the shells is chosen

respectively. Our main aim is to investigate the properties oEUCh as o preserve the main symmetries and properties of

rowing solution and to investigate the spectral properties ohe Navier-Stokes equations. In this paper, we take for a
growing gate the sp prop asis the so-called GOY shell mod@ledzer28], Ohkitani
stationary forced turbulence depending on the level of th

. L - . ; nd Yamadd31]) in the form introduced irf30], which is
m?ﬁge;ﬁgﬁlggeasng tr;ﬁecqgfserjseg;:gﬁv:g?lg\;\? introduce governed by the following set of complex ordinary differen-
y 9 : tial equations:

Generation of a turbulent magnetic field is a specific 3D

phenomenon; according to Zeldovich’'s theorg26] an un- e

bounded growth of magnetic field in 2D flow is impossible. (di+ vkﬁ)Unzikn[ ur Ut — Euﬁ_lu;ﬁﬂ

In the present paper, we demonstrate that this result is well

described by the shell model under consideration and com- (1-e)

pare the results for 2D and 3D cases. The essential difference — 2 Un2Un g tfa 1)

between 2D and 3D cases with respect to the turbulent dy-
namo can be presented as follows. The first phase of mag- . . .

netic field gengration, _i.e., stretghing of a magnetic loop by %ﬁregnsttﬁg?gﬁﬁgﬁ;ﬁggﬁéﬁ da rgng?rnggorgfér?“:t'gg
turbulent flow, is possible both in 3D and in 2D. In the latter y J € P '

case this results in a temporary magnetic energy growtfEduation(1) gives the model of Gledzge8] if ¢=5/4 and

However, a magnetic loop in 2D is closed or almost closed® Model of Ohkitani and Yamadal] if &=1/2. The prop-

During the stretching process some sections of the tube witR!ti€S ©Of this model for different values ef were investi-
an oppositely directed magnetic field meet, which leads to §at€d by Biferaleet al. [30] and Fricket al. [32]. In a fully
local cancellation of magnetic fielsee[27]). This cancel- developed turbulence, an important dynamical quantity is the
lation results in final magnetic field decay. In contrast, aSPectral flux of energy. The corresponding quantity in the
twisting and folding of 3D magnetic line results in a mag- Shell models is the flux of energhl, from shells withk
netic field growth. <k, to shells withk=k,,, which can be written as

Dynamo effects have been already studied in terms of
MHD shell models. More than 10 years ago Gloagetal. M= < Im
[20] studied a simple shell model, mainly concentrating on n
the dynamo effect. Frickl9] in his analysis of a shell model

namo theorem holds true. However, it was still unclearghe|l models is also characterized by a number of conserva-
whether these fine properties of turbulence can be reprajon |aws, in the inviscid, force-free limit. The conserved
duced by a simple shell model, in which the spatial dimen-yantityW can be written as

sion (2D or 3D casesis described only in terms of conser-
vation laws.
In this paper, we also demonstrate the role of quadratic W:E |U,|22", 3
invariants of motion(which are determined by 2D or 3D n
conservation lawsin a stationary forced MHD turbulence.
We show that control over the injection of these guantitieswherez satisfies the quadratic equatif2b]
by external forces results in a corresponding change in spec-
tral properties of small-scale MHD turbulence. (e—1)z°—ez+1=0. (4
The outline of the paper is as follows. After a brief sum-
mary of the so-called Gledzer-Ohkitani-Yamada shell modeITI-
we introduce in Sec. Il a shell model for MHD turbulence.
Numerical study of free-decaying 2D and 3D MHD turbu-
lence is described in Sec. Il A, the dependence of spectral
laws in inertial range upon the forcing is shown in Sec. Il B. E=E U2, (5)
The discussion of the results is provided in Sec. IV. n

1 e—1
annUnfl - Eun+1+ TUn—z

his equation admits two solutions=1 andz=1/(e—1).
The first solution corresponds to the energy conservation:
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which is a conserved quantity common to all shell models €
(for any &). The second solution corresponds to the conser- —5(Ui1Un = BBy
vation of a quantity
_a- 8)(u* U* ,—B* ,B* ))
H=2 [sgrie—1)1%;(e)|U0/% 6 ? e
+f,. (13
wherea(e) = —log,(le—1|/2). Here one can differentiate be-
tween two cases. l§>1, the conservation value ¢f is a  (d,+Re,'k?)B,
positively defined value, like generalized enstrophy, because
sgne—1)=1. However, ife<1, then sgné—1)=—1 and )
the value ofH can be negative as well as positive. In this =ikn (1—e—em)(UR,1BR 2~ B 1UR L)
case, Kadanofét al. [25] considerH as an analog of helic-
ity.
+ ?m(U:—lB:-#l_B:—lU:-%—l)
B. Shell model for MHD turbulence (1 )
- “&m
The MHD equations, written for the velocity and the R (UR-2Br-1—BroUp D) +0n. (19

magnetic fieldB in the dimensionless form, are

If B,=0, one again obtains GOY equatigh). Equations

C e e ee of o B " 13) and (14 the total d th
(G _(B. _ L2 | 4Ret ( .).an (14) conserve the total e_nerg;‘zt an e cross
aut(u-Vyu=(B-V)B-V| P 2 Re™Au, helicity H¢ for anye,,. The values,, is determined from the
requirement of conservation of a sum, which corresponds to
B+ (u-V)B=(B-V)u+Rm !AB, the third integral. For 3D this sum is
V-u=0, V-B=0. (7) He=>, (—1)";[Bn/2, (15)
n

Here Re is the Reynolds number, RRe Py, is the mag-

netic Reynolds number, Riis the magnetic Prandtl number. Which is conserved, if only = 1/2 ande,=1/3. For 2D the
In the dissipationless limit Eq$7) conserve three quadratic Sum is

integrals. In a three-dimensional case, these are the total en-

ergy E;, the cross helicityH-, and the magnetic helicity azZ k’ZIBnIZ (16)
Hg, : ’
e 20 which givese =5/4 ande,= —1/3.
E _j (u™+B9av, ®) Let us note that ande,, are the only parameters in our

model, which are connected with the dimension of the MHD
- - problem under consideration. However, it is not obvious that
Hc=f (u-B)dVv, (9 the choicee=5/4, e,,= —1/3 inevitably results in a mag-
netic field decay. Later we will demonstrate that this fact is
oo really true for our model.
HB:J (A-B)dV, (10 Recall that the problem of turbulent dynamo is not re-
stricted to 2D and 3D situations, only. Zeldovi@6] treated
a problem of 3D magnetic field enhancement in 2D hydro-
dynamic flow. However, possibilities of GOY models are too
limited to chooses ande,, in such a way as to conserve 2D
quantities for hydrodynamic variables and 3D ones for mag-
=f (A-A)dV. (11)  netic variables.

The termsf, and g, correspond to hydrodynamic and
magnetic forcing, respectively. The first one is commonly
used in dynamo theory, though one can also consider a free-

.. decaying turbulence with a magnetic field generation. This
Hv:f (u-rotu)dVv (120  approach can be a reasonable approximation, because the
hydromagnetic decay time can be much larger than the time
is conserved only iB—0, i.e., in a kinematic problem. In oflmagnetlcr; field growth. As ;‘or the terrgn,hlts value is
the kinematic limit the model also conserves a quant|tyre ated to the very essence of dynamo mechanism, suggest-
analogous tdH,, . ing the magnetic field generation without external currents as
L . . magnetic field sources. Therefore, in the dynamo theory it is
et us introduce now the shell model in the form n .
normally assumed thagj,,=0. However, looking for the
spectral properties of small-scale MHD turbulence, one can
(di+Re k32U, =ik, [(U Uh ,—Br B o) use this term to describe the action of the large-scale mag-

whereB= rotA. In two dimensions the latter integral is re-
placed by the square of vector potenrl?al

It should be noted that the hydrodynamic helicity
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3D shell model. We see that very soon, in time of order 1
(i.e.,l/v in dimensional unitsthe magnetic energy reaches a
level of about 1/10 of kinetic energy. There appears a rela-
tive long period of nonlinear evolutiofabout 20 dimension-
less time unitg after which a steady state is achieved. Mag-
netic and kinetic energy are approximately equal, though the
magnetic energy periodically takes slightly lower values. A
very slow decay of turbulence due to viscosity and Ohmic
losses is also visible.
Also shown in Fig. 1 is the corresponding kinematic re-
sult, where any backaction of magnetic field on the flow is
o 10 20 30 40 50 60 70 8 90 100 neglected. Now, the magnetic field_growth is uanundeq. Let
t us note that the kinematic growth is rather more intermittent
. . than continuous: from time to time the growth is interrupted
FIG. 1. Free decaying 3D MHD turbulence: kinetity and 1 the periods of temporal decay. The temporal evolution
magneticEg energy vs time in nonlineafthin lines and linear  y,jng the nonlinear regime is much more regular.
(thick lines cases. Here and below all the variables in figures are  ose yasyits are in general agreement with the available
given in dimensionless units. knowledge concerning 3D turbulent dynamo. However,
some specific features should be mentioned. Direct computer
simulations of a turbulent dynamo in terms of complete
MHD equations usually demonstrate that the magnetic en-
ergy is several times lower than the kinetic ofsee, e.g.,
C. Numerical implementation [9]). We are inclined to identify this result with the first stage

A number of numerical experiments was performed in thelf the nonlinear evolution presented in Fig. 1. Because direct
framework of models under discussion. The number of shell§umerical simulations are extremely time consuming, it is
used in the simulations was typically of the order of Very difficult to gain deep insight into nonlinear evolution.
30(—4<n=27). The system was forced near the zero shelPUr simulations support the concept that the turbulent dy-
(n=0). namo gives ar(intermitteny growth of magnetic field and'

The time integration has been done using the fourth-ordefagnetic energy, not only the growth of ensemble averaging
Runge-Kutta method with fixed time step. We tried also théMagnetic energysee, e.g.[8]). Let us note that this conclu-
“slaved leap frog” method, which gives the same resultsSion is not always valid. Indeed, the equation
with comparable efficiency. The typical time step was 2.5 i
X107°. “=U¢+vAd (18)

In shell models, each scale is described by only one mode, at
without reference to any spatial distribution. Therefore, sta-
tistics can be obtained only as time-averaged characteristici) the unbounded space, whedeis a short-correlated ran-
Runs up to 10 time steps appeared to be enough to get alom function with vanishing mean value, demonstrates an

10000

100 |

0.01

0.0001

netic field. We shall do this in Sec. Il B in the context of the
stationary forced MHD turbulence.

distinct picture of the process under consideration. exponential growth of the ensemble averaged enétf)
In addition to the above-mentioned quantities, we com-and a simultaneous decay of each realization of random field
pute the structure functions defined by ¢ with probability 1. In other words, a growth of ensemble
average( ¢2) for Eq. (18) appears only as a result of expo-
sn(a)=(]z,|9), (17 nentially rare realizations dfl [8]. Since the analysis of the
) . Kazantsev equation gives information concerning the aver-
wherez, is one of the shell variabled,, or By, . aged values ofH?), one needs an additional treatment of
typical realization.
ll. RESULTS The results of numerical simulation for the 2D case are

presented in Fig. 2. The magnetic energy for nonlinear, as
well as kinematic, cases are slowly decaying in time. This
We consider here the shell model without any, even hydecay is, however, intermittent and the intermittency is much
drodynamic, forcing. Of course, this turbulence will decay inmore pronounced in the kinematic case. We note that the
the remote future followed by the decay of magnetic field. magnetic energy decay in the 2D case has the time scale
Thus, strictly speaking, we discuss here the transient statesiuch longer thah/v. To clarify this fact, we present also the
However, the decay time scale of turbulence appears to b&pectral distribution of kineti&,, and magneti€g energy in
much longer than the time scale of the development of thelifferent stages of evolutiotfor the 2D case see Figs. 3 and
steady-state magnetic field distribution. 4). It is remarkable that the magnetic energy, being much
The initial distribution of energy corresponds in all casesless than the kinetic ong-ig. 2), is in equipartition with the
to Ey(k) ~Eg(k)~k 2 (for n=0), but the level of magnetic kinetic energy in some wavelength range, which corresponds
energy spectrum has been taken essentially lower than the relatively small scales, preceding the dissipative omes (
kinetic one Ey~1, Eg~0.000E,). The Reynolds number =~6-8 in Fig. 3. The magnetic energy decay in this range
was Re=10’, the magnetic Prandtl numberR¢ 10 3. occurs with the same rate as that of energy. This persistence
Figure 1 demonstrates the magnetic energy evolution in af turbulent magnetic field could not be treated in Zeldov-

A. Magnetic energy evolution in free decaying turbulence
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FIG. 2. Free decaying 2D MHD turbulence: kinetis, and
magneticEg energy vs time in nonlineatthin lines and linear
(thick lines cases.

FIG. 4. Free decaying 2D MHD turbulené@ear casg evolu-
tion of spectra of kineti&,, and magneti€g energy.

ich’s [26] analysis. The kinetic energy keeps almost the same  Figures 5 and 6 present the spectra for the 3D case. In the
value during the whole time of evolution in both ca$E&).  |inear caseFig. 6) the spectra show that the infinite growth
2), while in 2D a stable level of the total kinetic energy of magnetic energy occurs at an intermediate range of scales,
reflects only the fact of energy condensation in the largqimited by dissipation at higher wave numbers.

scales, where the influence of the magnetic field is negli- The spectra for 3D nonlinear force-free evolution are
gible. However, the situation in the small scales is quite dif-gjven in Fig. 5. It can be readily seen that there is no unified
ferent(compare Fig. 3 and Fig.)4in the nonlinear case, the spectral slope for the magnetic and the kinetic energy. The
small-scale kinetic energy becomes accessible to the dynamgectral slope for the kinetic energy is very similar to Kol-
mechanism and is involved in its action, so the SpeCtrUm‘nogorov’s “—5/3" law (Shown in F|g 5 by solid ||nh and
E\/(k)"“k73 is established at a later stage of evolution for a.”the magnetic Spectrum for the range of |atg$ e\/ident|y
n=0. In the linear case, the initial distribution of kinetic steepefsomething likek 2). It is quite obvious that both are
energy[ Ey(k)~k ™2, which is a slow decay for 2Deads to  steeper than Kraichnan-Iroshnikov's—3/2" law.

a typical two-dimensional scenario of the spectrum evolution  One can also note that at the early stage of evolution,
with an inverse energy transfer and a direct enstrophy transyhen the magnetic energy remains significantly lower than
fer. As a result, the energy in large-scale shéllp ton  the kinetic one, the magnetic energy shows the distribution
about § for t=30 becomes higher than for=0, and only  |ike Eg(k)~k™? [in Figs. 5 and 6Eg(n)~const for 2<n

for n>5 is there an interval of the enstrophy transfer with<g]. This spectrum is discussed by Ruzmaikin and Shuku-
the spectrum liké& 2 (see Fig. 4 rov [11].

Let us note that the points in the figures indicate the en-  For the range of moderateboth 2D and 3D models give
ergy of a shell, i.e., the energy of the whole octave of waveyrowing power law magnetic spectra, typical for analytical
numbers. Therefore, if the energy spectrum is governed byheories of small-scale dynamo. However, in agreement with
the power lawnE (k) ~k™, the shell energy distribution gives analytical predictions, this range is more pronounced in the
the slope, which is different by a unit, i.€(n)~k;i~*. So, 2D model(we are grateful to D. Biskamp, who attracted our
the well pronounced power behavior of magnetic endtgy attention to this fagt
in the intermediate scales €n=8) at later time of the 2D To clarify the spectral index problem we consider the sta-
linear decay(Fig. 4) gives Eg(n)~k, and corresponds to
Eg(k)~k%~const.

0 Oé T T T 0r e
0,920 Ey(1<t<2) o b
- o SN Ep(1<t<2) « - - °
o o ° Ep(4<t<6) e
10k o O.,9,%. Bv(30<t<40) o - -10 .
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InE " .:3..00(.). ° T inE(n i 7
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[ J
40 1 1 .I 1 40 I I I ® I
5 0 5 n 10 15 20 -5 0 5 n 10 15 20
FIG. 3. Free decaying 2D MHD turbulendeonlinear case FIG. 5. Free decaying 3D MHD turbulendeonlinear case

evolution of spectra of kineti&€, and magneticEg energy. evolution of spectra of kineti&, and magneti&g energy.
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FIG. 6. Free decaying 3D MHD turbulen¢dnear casg evolu- Weotar —
tion of spectra of kineti&,, and magneti&g energy. 0.06 1 1
tionary forced MHD turbulence. The results of this study are 1 004 - 7
presented in the next section. - |
B. Spectral index in stationary forced MHD turbulence
- 0
The turbulent magnetic field, produced by the small-scale
dynamo, does not possess a noticeable magnetic hefigity 0.02 ! . ! ' ! ‘
On the other hand, generation of small-scale magnetic fielc -5 0 5 10 15 20 25 30

due to a turbulent decay of the large-scale magnetic field

creates the small-scale helical magnetic field. Indeed, the to- FIG. 7. Energy spectra and fluxes in stationary forced 3D MHD
tal magnetic field can be presentedths B+b, whereB is  turbulence. Only the mechanical forég is active @,=0).

the large-scale magnetic field abdthe small-scale one. In

contrast to magnetic helicity of the fietd, which obeys the 55 peen established. Although the magnetic energy is larger
conservation law, the magnetic helicity of the large-scalgnan the kinetic one, the kinetic flux evidently dominates in
field B is not a conserved quantity, because its diffusion isg|| scales up to the dissipative ones. It should be emphasized
governed by theurbulentdiffusivity. Since the turbulent dif-  that the steady-state value of cross helicity is lot#(
fusivity is not negligible, the large-scale magnetic fi@ds ~0.05), as well as the level of magnetic helicity, which is
not frozen into the flow. Hence, we conclude that it is nec-Hg~0.001. It is remarkable that the magnetic energy flux is
essary to introduce the magnetic helicity into the small scalegelatively large, and is much larger than the kinematic one at
to compensate the growing helicity of the large-scale magthe small scale range.

netic field. This helicity, as well as the other effects of large- Now, we consider a simultaneous kinetic and magnetic
scale magnetic field, should be described in our modeforcing in the same scales by changing the initial value of
through the magnetic forog,,, because our shell model has cross helicityH- and magnetic helicity4g and controlling

no quantities responsible for the large-scale magnetic field.the input of both quantities by the external forces.

We simulate the Equation¢3) and(14) for different ini- If both H; andHg remain much less than the energy, the
tial conditions and forces, and g,,. Now Re=10%, Pr,  stationary state is quite similar to that of pure mechanical
=1. We start with the situation corresponding to 3D MHD forcing. The only difference is that the large-scale range of
turbulence €=0.5,¢,=0.33) and consider the stationary the magnetic energy spectrum becomes more similar to the
forced hydrodynamic turbulend¢he magnetic forcey,=0 kinetic one. The results do not change, if the initial distribu-
and the kinematic force acting only in the zero shél: tion of the variable®, and the forced, andg, provide the
=0.002(1+i]. Fort=0 a seed magnetic field has been in- highest level of magnetic helicitlg~Eg, and a low level
troduced as a weak white noise. The stationary spectra olof cross helicity. This case is presented in Fig. 8, where for
tained by time averaging over the intervak5<25 are pre- 5<n<15 the spectrum is fitted big(k)~k 169002
sented in Fig. 7, showing a Kolmogorov-type spectral The Kolmogorov-type spectra also appear in the corre-
distribution with a slow but stable dominance of magneticsponding 2D caséFig. 9). Let us note that in pure hydrody-
energy in the whole inertial range. The total values of energynamic 2D turbulence the Kolmogorov's inertial range with
(Ey=1.1,Ez=0.7) reflect only the relatively low level of direct cascade of energy does not appear due to the enstrophy
magnetic energy in the largest scalfss n<2). The spectral conservation. However, the magnetic field violates this con-
flux of energy is shown in the lower panel of Fig. 7. We plot servation law, and a direct cascade with corresponding pro-
separately the flux of kinetic energy, the flux of magneticduction of enstrophy is expected for 2D MHD turbulence
energy, and their sum, called the total flux. The latter is[19].
approximately constant for<2n<20 and supports the fact An unexpected result has been obtained for the case,
that a state with well developed cascade transfer of energshown in Fig. 10. The simultaneous input of large-scale cross



57 CASCADE AND DYNAMO ACTION IN A SHELL MODEL . .. 4161

5 T T T T T T 5 T T T T T T
Ev © Ev o
0+ .9'3-. Epg o A+ 0 oe.... Eg o -
o%e
5t STy ~ kT - 5| N -
o8 ®e
of 3 LY
-10 ] s : ~ 210 b 8 n
InE, ) InEy ®s
In2 °%4 in2 8s
.15 F o® . 15 | g 7
o® Oce
o2 oe
-20 ] . 20 | os i
8 8

-25 - 8 — 225 | 8 4

30 1 I 1 i 1 1 -30 1 1 1 1 1 8

5 0 ] 10 15 20 25 30 -5 0 5 10 15 20 25 30
n n
0.1 T T T T T T 0.01 T T T T T T
HV [¢]
0.08 |- . 0.008 |- Hp o
Htotal —
0.06 F - 0.006 N
1 004} ] II 0.004 -
0.02 - 7 0.002 | b
0 0 *-o-o
-0.02 % ' ' . ' : -0.002 '
-5 0 5 10 15 20 25 30 -5 25 30

FIG. 8. Energy spectra and fluxes in stationary forced 3D MHD  FIG. 10. Energy spectra and fluxes in stationary forced 3D
turbulence. The mechanical and the magnetic forces provide equdHD turbulence. Here both cross-helicity magnetic helicity are
inputs of energy in the shell with number=0 (fo=g,). The in-  large Hc~E,~Eg, Hg~Eg).
puts of Hg andH¢ are controlled by the values df ; andg_;.

Here the magnetic helicity is strong and the cross helicity is weelksented on this plot is complicated, a power law range with
(Hg~Eg~Ey, Hc~0). index “—3/2” seems to be visible and a relatively constant

. o energy flux is present.
and magnetic helicities completely destroys the cascade pro-

cess. No inertial range wilth a constant spectral flyx o_f energy IV. DISCUSSION

is visible. Let us emphasize that the energy flux in Fig. 10 is

an order of magnitude lower than in other figures. The slope Our shell model of MHD turbulence is evidently a drastic

of the spectrum becomes very steep and gives for the sansémplification of the detailed spatial-temporal picture of

range of scales §n<15 the value— 1.90+0.04. MHD turbulence governed by the Navier-Stokes and Max-
A state with a spectral distribution like the Kraichnan- well equations. However, the performed analyses demon-

Iroshnikov solution with the spectral index—3/2” appears strate that the model correctly reproduces the bulk of infor-

only in the case when the forcing provides vanishing mag+mation on the small-scale dynamo known from the previous

netic helicity, the cross helicity being of the same order ofstudies of the Kazantsev equation, as well as from numerics.

magnitude as the energkig. 11). Though the spectrum pre- A small-scale dynamo can be investigated to some extent by

direct asymptotic analysis of the explicit solution of induc-

5 : : , , , . tion equation in terms of Wiener functional integré&s3].
Ey o This direct method supports the results known from the ana-
0 Ep * 1 Iytical studies of the Kazantsev equation. However, their ap-

plications are restricted by the following fact.

There is an analogy between magnetic field behavior in
- 2D turbulent flow and temporal amplification of temperature
gradients in a turbulent flo}26]. Obviously, temperature
differences in a turbulent flow can only decrease with time
. provided no external heating is available. However, tempera-
ture gradients in 3D, as well as in 2D turbulence, are tempo-

B Y ] rary, growing due to a mixing of hot and cold fluid particles.
-30 1 1 : ! - ! This analogy is not applicable to the magnetic field in 3D
-5 0 5 o1 20 % 30 turbulence, where the small-scale dynamo is active and mag-

netic field in a kinematic approximation has an infinite rather
FIG. 9. Energy spectra in stationary forced two-dimensionalthan a temporal growth. This fine difference is a well-known
MHD turbulence Hc~0). problem in verification of direct analytical investigation of
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0.06 - = time.
m 004t - 3D is very similar. The evolution of the thermal energy and
temperature gradients is shown in Fig. 12 for 3D cases. As
002 - 0002000200 00, 7 might be expected, the thermal energy is a smoothly decay-
o LRI ing quantity, while the temperature gradients exhibit a tem-
0 v o . poral growth followed by a decay.
o0s L0 \ , . ) ) Now we can summarize with more confidence the result
s 0 5 10 15 20 25 30 obtained by our shell model, which could hardly be verified

in analytical or numerical studies of small scale dynamo.

(1) The transition from kinematic dynamo to equilibrium
magnetic field distribution appears to be a relatively long
process lasting a dozen turnover times. At this stage, mag-
netic energy grows by about an order of magnitude.

the induction equation in a turbulent flow and to some extent (2) In the kinematic, as well as in the nonlinear approxi-
of the Kazantsev equation, because it is a challenging task {§ation, the magnetic field decay in 2D turbulence is a very

FIG. 11. Energy spectra and fluxes in stationary forced 3D
MHD turbulence with a high level of cross helicity and a low level
of magnetic helicity H-~E ,~Eg, Hg~0).

follow in the above analysi&ee the discussion {i83]). _slow process. It takes many dozens of turnover times_and
However, the shell models are free of this problem. Tolnvolves many stages of temporal magnetic field amplifica-
tions.

verify this fact, we consider a shell model for temperature ) o
evolution in a turbulent flow, which uses the same GOY _ (3) An existence of large-scale magnetic field can essen-
equation for the velocity pulsations and the correspondind'a"y modify the properties of small-scale fields generated by
equation for the temperature variablgs, which conserves & turbulent flow. The latter strongly depend on the cross

in a diffusionless limit only one quadratic quantify; helicity and the magnetic helicity ggnerated by the large-
=S T2 scale MHD flow and introduced by it in the small scales. As
o

the cross helicity is a kind of measure of correlations be-
tween the velocity and the magnetic fields, our results mean
Uy U, that if U andB are not correlate¢at leastH is close to 0)
one gets the Kolmogorov-type solution with spectra close to
the “—5/3" law. This state is independent of the level of the
U’,’;_ZUr’;_lJ, (199  magnetic helicityHg .
(4) If the magnetic and velocity fields are correlated, the
Kolmogorov state is not established. Then the result depends
L2\ T —i * Tk * * on the magnetic helicity.
(d(Re PY ) T |kn[(Un+1Tn+2+Tn+1Un+2) (5) The high level ofHg suppresses any cascade of en-
1 ergy. The spectral energy flux decreases and the spectra be-
+o(UF_ Tr +TF U ) come steep. This occurs when the velocity and magnetic
2 fields are correlated and the magnetic helicity is negligible.
1 In this case, an Iroshnikov-Kraichnan-type state is estab-
— Z(U:72T:71+ Th LUr )i lished. Let us emphasize once more that our result is very
different from the result of Biskamp, who has obtained the
(20) Iroshnikov-Kraichnan state in a shell model by introducing
an additional interaction of any shell with the shell, which
We have analyzed the force-free decay described by Eqslescribes the largest scale of magnetic field. His model di-
(19) and (20) for the same initial conditions as for MHD rectly followed the basic idea that the Iroshnikov-Kraichnan
turbulence. For thermal energy the time behavior in 2D andtate appears as a result of direct interactions of the velocity

€

[dt+(Re)_lkr21]Un:ikn[U:+1U:+2_ 2

(1-¢)
4
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TABLE I. Scale exponentg, for the structure functions of dif- by the hydrodynamic GOY shell modgd2]. These two col-

ferent orderg. umns demonstrate that the values given by the shell model
are not far from the experimental values. The two last col-
q {q umns give the scale exponents, calculated by our MHD shell

model in the case when the system was forced only by the

K41 HD experi-  HD shell MHD shell model “mechanical” forcef, and has a “-5/3” spectral distribu-
mend[34] model[32] U B tion.
1 13 0.40 0.34001 0.330.01 ~Two conclusions can be drawn from the data in the tab]e.
o 23 071 071 066002 0.64-0.02 First of all, regardless of ‘t‘he Ehape of the spectra, which
3 1 1 1.02 0.94003 09T 0.04 display a well pronounced +5/3" law, the state of the sys-
tem does not correspond to the Kolmogorov turbulence. Let

4 43 1.28 1.27 128004 1.120.06 us recall that for hydrodynamical turbulen¢g=1, which
5 5B 1.53 1.53 1.450.07 1.40-0.10 proves to be untrue in the MHD state. Secondly, the level of
6 2 1.78 1.81 1.650.10 1.62:0.14  ntermittency in MHD turbulence is higher than in the hy-

drodynamic case and the level of intermittency for the mag-

. . ) , netic field is slightly higher than in the velocity field.
pulsationsdv, and magnetic pulsationss, of given scald To conclude, let us emphasize once more that the shell

with the large-scale magnetic field. In our case the model,,4e|s reproducing correctly many features of turbulent

includes only the local interactions and the effect of theqqs are 4 drastic simplification of fluid motion equations.
large-scale magnetic field is provided only by the input flux,, particular, they ignore any information on the spatial

gnt:hee quadratic quantities, conserved by the MHD turbu-gi,cre of motion and involve only the spatial dimension

. . through the conservation laws. This fact is especially impres-
In our numerical experiments we have also checked thgjye in the magnetohydrodynamic turbulence, where the

behavior of.highe_r structure functions, which should reflect, i, understanding of physical processes resulting in mag-
the level of intermittency of the cascade processes. Howevefeic field generation is gained from the topological analysis
it should be emphasized that one can consider only the timg; magnetic tubes net.

intermittency in a system like shell models, and that the most .0 the viewpoint of the shell model theory the only

unexpected result, obtained by the shell models, was thafitterence between 2D and 3D shell models is the different

they reproduce with a good accuracy the behavior of thehgice of the model coefficients. By restricting ourselves to
structure functions in a real hydrodynamic turbulence. the shell model theory, it is difficult to motivate why the

To compare the pure hydrodynamic Kolmogorov state;ygice ¢=5/4, ¢, = — 1/3 leads to magnetic field decay.

. Two explanations of this fact can be proposed. Either is
rﬂ)ossible to avoid the topological arguments in explanation of
the difference between the 2D and 3D flows, or to identify
topological features of the flow in the coefficients of the shell
model.

the system, for which the spectra are shown in Figweé
present in Table | the scale exponegtsfor the structure
functions of orderq, which are defined by
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