PHYSICAL REVIEW E VOLUME 57, NUMBER 4 APRIL 1998

Dynamical quantum chaos as fluid turbulence
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A quantum particle subject to a time-dependent force appears as if it were a collisionless turbulent fluid with
a tensorial pressure given by a known equation of state. Such a fluid may possess topological singularities such
as line vortices and sheet vortices, which are frozen in the fluid. Creation and destruction of these vortices are
only possible when the forcing potential is singular. In addition, when the initial data are of large scale, the
guantum fluctuations have a tendency to become steepened, characteristic of the classical compressible fluid in
forming shock waves, and the nonlinear steepening is halted by the wave dispersion in generating an abun-
dance of short waves. Chaotic quantum dynamics is expected to be governed by the interplay between wave
steepening and vortex interactiofi§1063-651X98)05702-X]

PACS numbg(s): 47.15.Ki, 47.15.Hg, 67.26:k

I. INTRODUCTION situation can only occur at the transition from a free particle
to a trapped particle in the presence of a potential well, i.e.,
Quantum mechanic€M) has long been thought to be a the resonant interactions. In this paper, a fluid description for
matured methodology for investigating atomic energy levelssuch dynamical quantum chaos will be given. This approach
through which transitions between different levels can bemakes extensive use of the analogy of a quantum particle to
theoretically computed. Since the energies of the emitteghe classical fluid. Coupling of the quantum particle to radia-
photons are experimentally detectable at high precision, thegon in the time-dependent potential, which yields energy
agreement between theories and experiments is often thouglaks, is not accounted for in this work. Hence only dissipa-
to verify QM. tionless quantum chaos is considered. A conceivable ex-
The domain of applications for quantum mechanics of thisample for such a system can be a quantum particle experi-
type is in fact rather restricted from the dynamical viewpoint.encing a rapidly varying gravitational field.
The fact that atoms have different energy levels only indi- A quantum system subject to a time-dependent potential
cates that they can be at different eigenstates or, from thearely has been analyzed in the literature partly because of
dynamical perspective, different stationary states. It is conthe complexity associated with it. However, with the present
ceivable that the time-dependent Safinger equation can fluid approach, it is possible to understand the important dy-
admit a much wider domain of solutions than the mere stanamical features, such as topological singularities, of the
tionary eigenstates. Specifically, when the system is subjeghaotic quantum system from its analogy to the better-
to (external time-dependent forces, the stationary states cannderstood classical fluid. In this regard, the fluid description
no longer exist. In classical mechanics, this situation is ofterof QM can be superior to the Schinger representation.
nonintegrable if the forces are nonlinear, and the system exHowever, the formulation of the conventional Soirger
hibits chaos. The quantum-mechanical counterpart of thequation also has its own great merits. In particular, the
time-dependent, nonintegrable Hamiltonian is expected t&chralinger equation is a linear equation, in contrast to the
exhibit peculiar behaviors, which we shall call the dynamicalnonlinear fluid equations. A seemingly turbulent quantum
quantum chaos to differentiate it from the other type of quanfluid described by the fluid equations can actually be decom-
tum chaos where the Hamiltonian is time independent buposed into many dynamically independent modes when the
nonintegrable. For the latter, the energy levels still existSchralinger representation is used. Thus the complicated
[1,2], but for the former, energy levels have no meaning anchonlinearities in the fluid equations turn out to be the non-
one is to understand such a system only through investigainear mixtures of these linear modes. From a mathematical
tions of the evolving wave functior{8]. perspective, it has long been suspected that the fluid turbu-
In fact, systems with time-dependent Hamiltonians are notence may possess certain underlying hidden integrals that
unfamiliar. However, in the standard treatments, one usuallpermit turbulence to exhibit intermitteng#—6] and coher-
considers the situations where the time-dependent force isnt structure$7]. In this regard, the Schdinger representa-
either a short pulse or adiabatic. In both cases, dynamicalon of QM already has offered a successful example that
quantum chaos can hardly occur, due either to having nancovers the hidden symmet(gr integrability inherent to
sufficient time for the system to respond or to the existencehe nonlinear quantum fluid. It is therefore the dual purpose
of an adiabatically invariant action. The true dynamicalof this work on the one hand, to utilize the fluid representa-
guantum chaos can occur when the time scale of the externgbn for extracting information about the dynamics of quan-
force is comparable té/E, whereE is the typical energy tum chaos and, on the other hand, to bring about how the
scale of the system. For a slowly varying external force, thisSchralinger representation leads to uncovering the hidden
symmetry in the turbulent quantum fluid.
Section Il derives a complete set of fluid equations, in-
* Electronic address: chiueh@joule.phy.ncu.edu.tw cluding the equation of state, from the Safirger equation;
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they can be used to evolve the quantum fluids. Section IINote that the pressure force for the quantum fluid satisfies
focuses on various dynamical properties of the singular vor— VP=pV (#2V?f/2f ). To write the pressure force in a
tices. Dynamical quantum chaos engages not only interaconserved form, one finds that the quantum pressure is in
tions of singular vortices but also nonlinear steepening ofact not a scalar but a tensor:
compressional fluctuations. These issues are addressed in

Sec. IV. A discussion is given in Sec. V. 2

\%

I. CONSERVATION EQUATIONS OF MASS,
MOMENTUM, AND ENERGY

Tensorial stress is a common feature for the classical colli-
sionless fluid and hence the quantum fluid for a single quan-

The quantum dynamics of a single particle is governed byjum particle is closely analogous to a classical collisionless
the local conservation laws of energy and momentum. MucHluid. ) .
like the classical fluids, these conservation laws must also be T0 make a further analogy to fluid mechanics, one may

constrained by the conservation of mass. The &tihger ~ construct the evolution equation for energy by taking the
equation reads innerproduct of Eq(4) with v. For notational simplicity, we

setw=#4V In(f) and it follows that

9 h?V? J|p p

i o+ =D [4=0, (@) i E(v2+wz+2¢) +V. E[V(vz—W2+d))+V‘(2WW)
whered is the potential of the external force and the particle H(V-v)W—(V ~w)v]) :p(ﬁ) 6)
mass has been set to unity. The conservation of mass, or the ot )’

continuity equation, is obtained by multiplying by Eq.(1) . . )
and keeping only the imaginary part. This yields wherepw?/2 is the internal energy of the quantum fluid and
the second term on the left-hand side is a tensorial energy
3 flux. With the help of Eqs(2) and(5), Eq. (4) and (6) may
_p+v.(pv):0' (2)  be turned into the conservation of momentum and energy
ot ordinarily described byT,z/dxz=—pdpl X, in the non-
relativistic limit, whereT .4 is the energy-momentum tensor
where we have decomposed the wave function into a reand the indicesr and 8 run from 0 to 3 in the Minkowsky
phaseS and real amplitudd, with p=f2; in addition, we  metrics. Without the continuity equation, these equations
have sety=fe'S" andv=VS. Equation(2) warrants that themselves may fully evolve the quantum particle as if it
the quantityfp d®x always remains a constant during the were a classical fluid. Alternatively, one may choose E2js.
dynamical evolution. This quantity is defined to be unity in and(4) to evolve the quantum fluid.
order forp to be interpreted as the probability density of the
particle. Ill. GENERATION OF VORTICES

The real part of the above operation yields ) ] ) ) )
In the following discussion, we will show that new vorti-

JS h2V2 (VS)2 ces in the quantum fluids aret allowe.d to be generated or
= b. 3) destroyed when the external potentialis a smooth and
at 2f 2 regular function of space. Only when the external potential
becomes singular or a multivalued function of space may the

Derivations for Eqs(2) and(3) are well known and are often Vortices possibly be generated or destroyed in quantum flu-
given in any standard textbook of quantum mechanics. Howids.
ever, less well known is that E€B) is familiar in fluid me- From Eq.(4) it is clear that the quantum “flow” can only
chanics, known as the Bernoulli equation, except for the difbe a potential flow, unles¥ X VS#0, which holds only
ference where the enthalpyl(p)=/(dP/p) for classical whenS is a multivalued function of space. When this is So,
fluids is now replaced by the quantum enthalpy, the first terninust have branch ling8] and other singularities. Familiar
on the right-hand side, for quantum “fluids.” In the classical €xamples of a multivalue8 can be found for the stationary
fluids, the pressure of an isentropic fluid is a function ofbound states with finite angular momenta. In these cases, the
densityP=P(p) and an alternative form of the equation of wave function can be expressed as
stateH=H(p) for classical fluids has a quantum counterpart (1, 0)e™ @
;—Iqs —rfiz(Vz\/Z)lz\/g. The quan;umh enthalpy, stemls . ¥ ’ '
rom the quantum fluctuations of the quantum particle in . . .
contrast to the thermal fluctuations of a collection of cIassica\Nherer is the (_jlstance to the for_ce cent@r,th_e poloidal
particles. angle,y the toroidal angle, aqd an mteger. In this ex_ample,

The momentum equaon can be easly dered o e PRESES] X, SHcex 82 muited betons
(3 by taking a gradient on both sides of it to obtain located atd=0. The construct of QM is such that at the
S singularity the probability density vanishes=0, so as to
§—V+V-Vv _ V(ﬁ vt Ve 4) suppress the contribution of this singularity to the probability
ot p 2f pY Q. of finding a quantum particle in this stdi®]. For example, if

p
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the density vanishes ab~r, Eq. (3) yields that V2f/f vortices will become impossible. These vortex-generating
~r~2, wherer refers to the radius in the cylindrical coordi- singular potentials include those that are multivalued func-
nate. If all terms in Eq(3) are comparable, it follows that tions of space.
v~r~1 corresponding to a singular line of finite angular A rotating potential is an example of the multivalued
momentum, i.e., a vortex line. A special case for the linefunction of space, for whiclW XV =0 over an extended
vortex is the ring vortex of zero size, corresponding a pointregion; it exerts a torque on the fluid, thereby generating
vortex. Both the line vortex and point vortex have finite en-vorticity. In this case, the right-hand side of E§) survives
ergies associated with thefof. Eq. (6) for the definition of and smooth vorticity can therefore be generated in the quan-
energy densityand therefore excitation of these objects istum fluid. The effects of a rotating potential are the same as
not forbidable from the energetic viewpoint. those of a magnetic field. In the presence of a magnetic field,
In addition, there can be surface singularities: sheet vorthe fluid velocity consists of a part that is irrotational and
tices. They occur when the velocity is expressed, for exanother that is rotational and proportional to the vector po-
ample, as {S/ox)+i(aS/ay)=[&(1—&)] Y% where ¢ tential. These smooth vorticity distributions must coalesce
(=x+iy) is a complex coordinate and henSés a nonana- into singular vortices after the rotating potential is turned off.
lytical function of space. The total angular momentum in the Finally, we remark further on the conventionally underex-
sheet vortex is quantized in units éfto ensure a single- plored sheet vortices. A stationary sheet vortex described
valued wave functiony away from the vortex sheet. In this above theoretically can be constructed in a quantum system
complex plane, a branch line must exist, running betwgen containing an infinitely thin plate of finite size located in a
=0 and 1 and defining a vortex sheet in they(z) space. region detached from the boundaries. The presence of the
Although the trajectory of the branch line in the compleximpenetrable plate yields a vanishing density at the plate,
plane can be arbitrary according to the above expression f@nd if circulation takes place around the plate, the plate will
the velocity, it is in fact defined by a lin@r surface in three be a natural site to house the sheet vortex. The strength of the
dimension$ of density void. The reason for associating alocal vorticity is not constant along the sheet; however, the
density void with a sheet vortex is the same as that for theirculation around the sheet must still be quantized. Once the
line vortex[8]. One may also understand this requirement bythin plate is removed and the system becomes force-free, the
examining the quantum pressure given in EJ; only when  vortex sheet will no longer be stationary. Although the sheet
the density vanishes can the pressure be finite at the vortesortex can be decomposed into many independent plane-
sheet. This is a singular line connecting the branch paints wave solutions in a force-free system, the sheet must remain
=0 and 1. The density profile near the sheet vortex can b#tact in accordance with Eq8). The survival of the sheet
f=|y|[1+c(x)y?], wherey is the direction perpendicular to Vvortex arises primarily from the strong initial correlations
the branch line an@(x) must be adjusted so as to match among the plane-wave solutions, which do not disperse and
satisfy Eq.(3). The sheet vortex also contains a finite energylead to the subsequent phase lock in the dynamics. This as-
and it is a much less singular object than the line vortex. pect of the dynamics can only be revealed in the framework
The equation of motion for the singular vortices can beof the fluid formulation and can hardly be detected directly
obtained by taking a curl on E¢4) after dividing both sides from the Schrdinger formulation.
by p. The resulting equation becomes

IV. GENERIC PICTURE OF TIME-DEPENDENT
J 0 0 -VXV
(&—I-FVV)(—)—(—) .Vv= —¢:O, (8) QUANTUM CHAOS

P p p It is instructive to question how the vortex lines or sheets

behave when they collide under the condition that the forcing

where w=V X VS. This equation simply describes conser- potential remains smooth and regular. Since the fluid ele-
vation of angular momentum in the fluid. The evolution of ments cannot overlap as a result of conservation of mass, if
fluids described by Eq$2), (4), and(6) contains no dissipa- the two singular vortices cross each other, the angular mo-
tion and hence the system is an ideal fluid. For a classicahentum for the fluid elements at the crossing will have to
ideal fluid, one often questions whether the fluid can develoghange. This will violate the frozen-in condition of vortices
vortex singularities within a finite time from an initially and hence such a process is not permissible. It thus follows
smooth data op andv [9]. According to the frozen-in con- that the vortices must rebound upon collision. The three-
dition of vortices[Eq. (8)], it appears that no new vortex dimensional topological characteristics of the vortex lines,
could be generated. such as links and knofd0-13 given by the initial condi-

What happens when a pair of vortices of opposite signgion, must therefore always persist as long as the frozen-in
are created at the same site and break up afterward? Thiendition is respected. Likewise, the three-dimensional to-
situation is only possible when a quantum fluid, initially con- pology of vortex sheets, such as toroidal twists, must persist
taining no density void, generates a pair of singular densitpver the evolution. Interactions for singular vortices de-
voids at the same location. Development of a singular denscribed above represent important dynamical features in
sity void requires the existence of a singulakterna) force  quantum chaos.
core, which expels the fluid from the core. Hence creation of Despite the inability of the quantum fluid to generate new
paired vortices requires the appearance of a pair of coalescesthgularities if no singular forcing potential is present, the
singular potential barriers, which later move apart from eaclquantum fluid does, however, have the tendency to develop
other. On the other hand, when the forcing potential is evsharp boundaries with large velocity gradients. This is due
erywhere smooth and regular, then creation or destruction girimarily to the nonlinear steepening effects of [E2). Sup-
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pose that the initial velocity and density are both smooth andt |x| —o. Another possible solution can be obtained from
vary on the spatial scale; in addition, the time-dependent Eq.(12) by using the variablé, and Eq.(12) is re-expressed
external forces are also of scale. Defining R as
=(|V9|)L/%, we may consider the regime whelRe>1. In
this regime, the “pressure” force, the first term on the right- 1 d*f _C
hand side of Eq(4), is much smaller than the inertial force, fdx 2% (13
the second term on the left. It immediately becomes obvious
that Eq.(4) is identical to the Euler equation of ideal classi- When C<0, f=cos(/Cx/2%), recovering the linear
cal fluids in the limit of zero pressure. An ideal classical fluid standing-wave solution of the Schiinger equation. Thus
without pressure is bound to steepen rapidly at the leadinthe nonlinear steepening in quantum fluids is halted by the
edges of disturbances to form surface discontinuifled. =~ wave dispersion that converts the available flow of kinetic
The nonlinear steepening has been understood to be causegergy into the internal energy, with the generation of an
by the fluid elements of higher velocities tending to runabundance of short waves. He is approximately the
faster and catch up with the slower fluid elements originallylarge-scale flow of kinetic energy.
located in front of them. This interpretation also holds for the Thus the second important aspect of the chaotic quantum
guantum fluids. Indeed, the short-wavelength matter wavedynamics can be pictured as follows. Large-scale fluctua-
have higher speeds and run faster than the long-wavelengtlons are injected into the system by the large-scale forces
waves, and naturally the wave steepening arises. and eventually develop sharp boundaries of large gradients
In reality, such steepening in classical fluids is stalled bythrough nonlinear steepening. Engulfed within the sharp
the small viscosity in yielding shock waves; similarly, wave boundaries is an abundance of short waves. Collisions
steepening in quantum fluids can also be halted by the dissamong these boundaries are possible, yielding even more
pationless quantum fluctuations. The dissipationless quantushaotic structures. In classical fluids, collisions of shock
fluctuations give rise to wave dispersion, which serves tavaves are the effective mechanisms for generating arrays of
counteract the wave steepening in the same way as dissipbre vortices in the postshock regiorjd4]. However, in
tion does for classical fluids. In fact, a dispersive classicauantum fluids, the singular vortices cannot be so generated.
fluid, such as the shallow-water wave, can also avoid the
shock formation by converting the flow of kinetic energy V. DISCUSSION
into solitons or solitary wave trains. The quantum fluids like-
wise permit solitary wave trains excited by the steepenin_g of The present formulation for quantum mechanics as an
large-scale flows. This will be shown below. To make a finaljnjtia|-value problem provides a useful perspective to view
connection between the classical and quantum fluids, thgpagtic quantum dynamics. In particular, the constraints on
quantity R defined above may be regarded as the Reynoldg,e eyolution of singular vortices can clearly reveal them-
number in the classical fluids in this context. selves through the nonlinear equation describing the conser-
To illustrate the solitary wave solutions, Ed®) and(3)  \ation of angular momentum. This aspect of quantum dy-
can be rearranged to become namics may indeed be difficult to detect when the linear
superposition of evolving plane-wave solutions is adopted
for analysis. On the other hand, this fluid formulation, when
closely compared with the Schtimger formulation, provides
a suggestion regarding how the long-sought hidden integrals
U A in fluid turbulence can be constructed.
U +u_-Vu_—- > Viu,=-V¢, (10 In the absence of a time-dependent potential, E3)s(4),
and(6) resemble the Navier-Stokes equations of the classical
) ) fluids. It is well known that the solutions to the Navier-
whereu.=v*w. For a force-free, static solution whes®  stokes equations are notoriously complicated in the regime
=0 andv=0, the two equations coincide and become thepf fylly developped turbulence. Likewise, when the initial
stationary Burger equation data of the quantum fluid is sufficiently complicated, con-
taining permissible(finite L? measurg singularities of all
sorts, the solution at any later time must also appear compli-
cated and one would have concluded that such a quantum
fluid is turbulent. Yet this quantum system is in fact inte-

In one dimension, the Burger equation is known to contairf"@Ple using the Schdinger formulation. In this regard, one

Mo,V ﬁvz ——vV 9
o TU+ VUt 5 VU =—Vg, ©)]

fi
w-Vw— 5 V2w=0. (11)

soliton solutions, which satisfy may attribute the integrability of the quantum fluid equations
(2), (4), and (6) to some kind of hidden symmetry, which
dw % disguises itself behind the deceptive complexity of the non-
—=—(W2-C), (12) linear fluid equations. Without arg priori knowledge about
dx 2 the relation of this set of nonlinear fluid equations to the

linear Schrdinger equation, it is inconceivable that one is
where C is an integration constant; the solution is a kink able detect this hidden symmetry, which only reveals itself
solitonw= \/C tanh(2/4) whenC is positive. However, this by a proper combination of the variablesndp to form the
kink solution cannot be a physical solution sinee  wave functiony.
«d[In(p)]/dx and this kink solution yields an infinite density =~ With this observation, one may turn the problem around
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and ask whether the Navier-Stokes equation may also corsubject under intense investigations in recent yghbs16|.
tain any similar hidden symmetry that leads to certain deThe possible potential applications of this subject area focus
grees of integrability in yielding the intermitten¢®—6] and  on the highT. superconductivity.
coherent structuref7] often observed in fluid turbulence. Finally, we shall comment on how one may proceed to
The expectation is also reinforced by the fact that fluid tur-numerically investigate the dynamical quantum chaos within
bulence may proceed without external forces. In this sensthe fluid framework. One may first single out the vortex sin-
the classical fluids may share similar symmetries with thegularity, which is located where the densjiy=0. One then
quantum fluids in the absence of external forces. At theause the Biot-Savart law to calculate the incompressible part
present time, there is no systematic way to detect hiddeof the potential flow. The compressional component of the
symmetries, if any, in three-dimensional Navier-Stokes syspotential flow is governed by an equation that results from
tems. A possible way to seek symmetries may be based amking a Laplacian of the Bernoulli equati¢8). In this step,
the Lagrangian of the Navier-Stokes equafib4]. However, one must replace¥S)? by v? to distinguish the compres-
inspired by the similarity between the quantum particles andional and incompressional velocity components. The den-
classical fluids, one may perhaps gain penetrating insightsity evolves according to the continuity equati@as usual.
for fluid turbulence if deeper connections between the fluidFinally, the singular vortices obey E(B), which is nothing
formulation of QM and the Schdinger equation are well more than the conservation of circulation per unit mass. In
understood. the case of line vortices, the strength of circulation associated
In sum, we have presented an unconventional perspectiwgith each line is quantized and hence one may simply trace
of the dissipationless chaotic quantum dynamics for a quansf the locations of the frozen ling47] or trace the locations
tum particle subject to a time-dependent force. This perspeaf density voids. In the case of sheet vortices, the situation
tive of the quantum dynamics makes an extensive analogy toan be more complex. Since the local vorticity on the sheet is
a classical ideal fluid, where the quantum fluctuations replacaot necessarily uniform, one not only needs to trace the lo-
the thermal fluctuations. The quantum fluctuations, resultingation of the vortex sheet but also records the change of
in wave dispersion, can play a similar role to the fluid vis-vorticity distribution on the sheet. Nonetheless, one may
cosity in stopping the formation of surface discontinuitieshandle this complication by considering the vortex sheet to
resulting from nonlinear wave steepening. Furthermore, thébe composed of an array of many vortex lines of given
singular vortices in quantum fluids cannot be created or destrengths; the frozen lines can be evolved independently.
stroyed if the potential is a smooth function of space. How-
ever, once init_ially given, t_hese vprtices must evolve in. a ACKNOWLEDGMENTS
specific way without changing their topological characteris-
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