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Universal singularity at the closure of a gap in a random matrix theory

E. Brezin' and S. Hikantfi
Y| aboratoire de Physique Theque, Ecole Normale Slgeure, 24 rue Lhomond 75231, Paris Cedex 05, France
’Department of Pure and Applied Sciences, University of Tokyo, Meguro-ku, Komaba, Tokyo 153, Japan
(Received 9 October 1997

We consider a Hamiltoniahl =Hy+V, in which H is a given nonrandom Hermitian matrix, akdis an
N> N Hermitian random matrix with a Gaussian probability distribution. We had shown before that Dyson’s
universality of the short-range correlations between energy levels holds at generic points of the spectrum
independently oH,. We consider here the case in which the spectruid pfs such that there is a gap in the
average density of eigenvaluestfwhich is thus split into two pieces. When the spectrunigfis tuned so
that the gap closes, a new class of universality appears for the energy correlations in the vicinity of this singular
point. [S1063-651X98)10604-9

PACS numbdis): 05.45+b, 05.40:+]

[. INTRODUCTION that case a similar tuning ¢, leads to the degeneracy of a
Bessel kernel, related to Painlelteequations.
We consider a Hamiltonian which is the sum of a given

deterministic partH, and of a random potentiad with a Il. DETERMINISTIC PLUS RANDOM HAMILTONIAN
Gaussian probability distribution. Although the measure is
not unitary invariant, one can still obtain the probability dis-
tribution for the eigenvalues dfi through the well-known
Itzykson-Zuber integra[1]. Generalizing a method intro-
duced by Kazako\2] for the density of eigenvalues, we
have found an exact representation of thkevel correlation 1 , 1
functions in terms of the determinant of arxn matrix P(H)=Ze_(N/2)T'V =z7e
whose matrix elements are given by a kerkej(\,u) [3—

5]. For generic values of andu in support of the average e are thus dealing with a Gaussian unitary ensemble
spectrum, we proved earlier that this kernel reduces univeimodified by the external matrix sourés,, which breaks the
sally to the sine-kernel of Dysdi6] as if H, was not there. unitary invariance of the measure. In previous wfBk5],
Consequently all the correlation functions, including thewe have discussed the density of state, the two-level corre-
level-spacing distribution, reduce to the Wigner-Dyson formlation function, and then-level correlations. For complete-

in the short distance regime independentlyHyf However, ness, here we briefly recall a few steps, but refer the inter-
at singular points of the spectrum the situation is differentested reader to our earlier work. The density of stete) is

For instance at the edge of the spectrum of the density of

state, the kernel is give_zn in tgrms of Airy functipns instead, p(\)= i(Trﬁ()\—H»: f+mﬂe‘Nt"U(t), 22

and a new class of universality for the correlations appears N —o 27T

[7-9]. In this paper, we investigate what happens when two

edge singularities collapse. The spectruntigfis thus tuned whereU(t) is the average “evolution” operator
which closes at the orgin through a fine turing of the pa- U(D)=(Tre).
g?rﬂit,evrvﬁihTzﬁ :gﬂgller?:jng:%;opgﬁéogégen?g:g\\;: Igiegzn_yve firsft integrate 9ve_r the unitary matrix Which diagonal-
values, but we shall prove that the results are independent &esH in Eq. (2'.1)' W'thQUt loss of ge.neralllty, We may as-
Ho, provided a gap closes. Near the origin, a new universa ume that Ho IS a dlagonal matrix _with eigenvalues
behavior appears, which is not of Airy type. The kernel ay, ... an). Th|s Is done with t.he help qf the well-known
which governs this new singularity will be discussed in de_ltzykson-Zuber integral for a unitary matrix [1],

tail. A relation to Painlevel differential equations and to a

two-dimensionalA, Garnier system is found. Higher multi- f dw exp TrAwBw™) =
critical behavior is also investigated. We also consider the

analogous problem with made of complex blocks, and in

We consider arNX N Hamiltonian matrixH=Hy+V,
whereH, is a given, nonrandom Hermitian matrix, axds

a random Gaussian Hermitian matrix. The probability distri-
bution P(H) is thus given by

(N/2)Tr(H2—2HOH)_ 2.1

2.3

defexp(a;b;)]

AAAGB) @9

whereA(A) is the Van der Monde determinant constructed
with the eigenvalues oA:

*Unite propre du Centre National de la Recherche Scientifique, N
Associe al’Ecole Normale Supeeure et al'Universite de Paris— AA=]] (a ~a)). (2.5
Sud. i<j
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We are then led to By using integral representations for tl&functions, and
repeating the previous steps, we obteb]
U= Z' A(H 2 dx; . .. dxyeNte Rao(N1,M2) =Kn(A 1, M) Kn(A 2N )

N —Kn(Ng A 2)Kn(h g ), (2.13
XA(Xq, ... ,x,@ex;{ - 52 X2+ N, apx;

with the kernel

(2.6
The normalization is fixed by Kn(Aphz)= (=1 lj Py
U(0)=N. 2.7 1'_\‘[ a,—it| 1
The integration over thg;’s may be done easily, if we note L u-it
that Xe—(N/Z)uz—(N/Z)tZ—Nit)\1+Nu)\2_ (2.14
f dxg- - dxgA(Xq, .. . ,xN)ex;{ _22 Xi2+ NE bix; Similar[y, the n-point functions are given in terms of the
determinant of thenxXn matrix whose elements are

Kn(AisNj) [5,13). In Ref. [3], this kernelKy(A1,\;) was
(2.8)  examined in the largét limit, for fixed N(A;—N\5). In this

limit one can evaluate the kern€.20 by the saddle-point

method. The result was found to be, up to a phase factor that

=A(by, ... ,bN)exp<gZ b?|.

Puttingb;=a;+itd,;, we obtain we omit here,
N N
—a,tit 2o L
_ e~ (NtI2)+ita,, 1
vo=3, 11 (%525 “a, - @9 Kn(hida)= = sifmyph)l, (219

The sum ovelN terms in Eq.(2.9) may then be replaced by

. . wherey=N(\1—\,). Apart from the scale dependence pro-
a contour integral in the complex plane, y=N(A1—1o). Ap P P

vided by the density of state, the n-point correlation func-
tion have thus a universal scaling limit, i.e., independent of

N .
_1 [ du u—a,+it o (NE2/2)+itNu the deterministic partl, of the random Hamiltonian.
2mi 421\ u—a, ' The largeN behavior of the density of state(\)
(210  =K(A,\) near the edge point is also universal. This univer-

sality has been investigated for the Airy cd3e8] and for
The contour of integration encloses all the eigenvags  the Bessel cag®]. We will show in Sec. Il that, similarly to
The Fourier transform with respect tagives the density of what occurs at the origin, we find a new class of universality
state in the presence of an arbitrary external sobfgenote  for the density of states and for timepoint functions.
that this representation is exact for finke
In the largeN limit, the one particle Green functid@(z)
is readily obtained10-12. Indeed one finds that lll. CRITICAL BEHAVIOR NEAR THE ORIGIN

We first consider the case where the eigenvaluebl pf

G(z)= 1 1 _ 1E 1 are = a, each value beini/2 times degenerate. The kernel
@={§"" “HotV/ N4 z-a,-G(2)’ in Eq. (2.14 becomes
(213 a +t2 N/2
For simplicity, we begin with the case in which half of the Kn(hah2)=(= 1)(N/2)+1J’ é 2
) i

eigenvalues, are equal to+a and half to—a. Whena is
larger than 1, one finds a gap in the spectrum which closes XLe—(N/Z)uz—(NIZ)tz—Nit>\1+Nu>\2 3.0
whena reaches 1. Then the density of state vanishes= u—it ' ’
from (2.12), p(A\)=\Y2 The density of state is plotted in
Fig. 2 of Ref.[11]. From this expression, setting;=X\,, we obtain the density

For then-point correlation function, we have of state p(\;). The derivative ofp(\) with respect tox

eliminates the factou—it in the denominator of Eq.3.1),

! 1 and leads to a factorized expression
Rn()\l,)\z, C. ,)\n)=<NTr5()\1—H)N p

d
SPO)=—B)PN), 32

Z| -~

1
XTré(Ay—H)- - - NTré()\n—H)>.

(2.12  where
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mation. Therefore the integral is over a path consisting of
four lines of steepest descent in the compleglane. Along

these straight lines, the variableis changed successively
into e*(™y ande* ™y, This leads to

d(N)= mZd_:Te—(N/2)t2+(N/2)In(a2+t2)—Nit)\’ (3.3

(/l()\ %ﬁe (N/2)u —(N/2) In(a —u? +Nu>\ (3.4)

P(X)=— Im[ﬁf e UMgruo_g xuw)| (313
For largeN the two integrals defining the functiorsand mJo
are given by a saddle point. When and X\, are near the ] 1 A o )
origin, the saddle points in the variableandu move to the  In which o=e™". The functionys(x) satisfies the differen-
origin. Therefore for obtaining the largs behavior of¢  fial equation
nearA =0 we can expand the logarithmic term in powers of - -
t. One sees readily that the coefficient of the quadratic term P (x) = —xe(x), 314
in t? vanishes folm=1; in fact three saddle points are merg-
ing at the origin whera reaches 1. We must then expand in
the exponential up to ordef, and we obtain

and again we find, from Ed3.13, the Taylor expansion

L LG ()X (2n)!
YOO= " 2 T it 1) (319

© dt 4
¢()\):J_ Ee—(NM)t = Nitx (3.5
and the large¢ behavior
Rescalingt to N~ Y4’ and setting\ = N~%x, we find that

. [2 ws [3V3 . 2m
. _ _© —1/3,(3/8)x 43, <"
B(x)=NV4g(N~ ) (3.6 px)=2\ g x e COS( g X 3 )
(3.16
has a largeN, finite x, limit given by
In fact, one may express the whole kerkg|(\;,\5) of
B(x)= Efmdt e (WA cog 1), 37 Ea.(3.1interms of the two functiong and ¢ in the scaling
mJo limit. Indeed, defining
This Fourier transform of the exponential eft* is known N=N"3%  A,=N"4y, (3.17
under the name of a Turrittin or Pearcey inteqfiat,15. We
ggg immediately verify that it satisfies the differential equa- K(%,y) =N N3\ 1 N3\ ) (3.18
. - in the largeN, finite-xx-andy limit,
¢"' (X) =XP(X). 3.8
uyw
From the integral representati@B.7) we obtain easily the R(X,y):f f <t4/4>—<u4/4>—itx( e_ —
Taylor expansion of this function at the origin —o 2mi © u-itw
1om e e e (3.19
2 & Hlgtz) D72 U—ite | U—ite®  u—ite 3/’ '
b)=3- 2 @1 (3.9 |
B ' wherew=e™", or, more explicitly,
and its asymptotic behavior at large ) o [(u* e —itx
K(x,y)=—f duj dt———F——F—
H(X)~ \/Si xl’3e(3’8>x4/3005( —3;3/5 x4/3—% . wit?
o
X [2iudsine sinho+ 2u?t(cosr sinho
(3.10

e L2
We return now to the second functi¢8.4). Similarly, in the sino- costy) + 2iut“cosr coshr

scaling limitN large,\ small, N®*\ finite, we may expand _ 3t¥(sino coshr+ cosr sinho 3.
up to orderu?, and define Vat¥( )], (3.20

whereo=yu/ 2.

5y — N4, N~ 3 R
Y0 =NY(N"). (3.19 In Appendix B, it is shown that the kernKl(x,y) may be
In the largeN, finite-x limit, we find expressed simply in terms e}f andfp as
()= f T gt (3.12 Rxy)= LV -9 ix_)y¢(y)—¢<x>w v

(3.21

This integral is no longer a contour integral around the sin-
gularities atu= =1 , but the result of a saddle-point approxi- Therefore, the density of state is given by



p(X)=—=[@"(X)P"(X)— "(X) ¢ (X) +XP(X) h(X)],
(3.22

and the connected correlation function for two eigenvalue
symmetric with respect to the origin,

pe(X, —x)=—[K(x,=X)]?, (3.23
is given through

N 1

KX, =x)= 29" ()¢ (%) (3.29

which we know both forx small in an expansion in even
powers ofx, and for largex, at which it behaves as

e

Using Taylor expansions ap(x) and g(x), we have the

expression for the kernél(x,y) by Eq.(3.21). For smallx
andy, it becomes

K(x —x)~32—xsm (3.25

R(x,y)z 2b+

a
s~ X2+ 2xy+2y?)

1
2272

b
+ —(3x*—12¢

50 y— 12x%y?+ 8xy>—2y%)

—( 5x5+ 30x°

5070 y+ 30x*y?—40x3y*

+30%y*—12xy°—12y%)+0(x®)|, (3.26

wherea=TI'(})=3.6256 andb=TI(3)=1.2254. In Appen-
dix C, we evaluate the kern®y(x,y) for several finiteN
cases, and confirm E@3.26).

The level-spacing probability is an important quantity for

the universality. The general distribution is given by the de-

terminant of the kernel in our systefd]. We consider the
probability E(s) of no eigenvalues in the interval
(—sl/2,s5/2). The same as ordinary random matrix theory
without an external source, the probabiliys) is given by

s/2

[

(="

n!

E(s )—Z

=0

n

x 11 dxdefK (X x)Tijo,...n- (3:27
For smalls, we have a series expansion te(s),
sl2 s/2
E(s)=1- Nf (x)dx+ f (X, x)K(y,y)
—s/2 —s/2
—K(x,y)K(y,x)]dx dy+ - - - (3.28

Using Eq.(3.12, andz=N"%%\, we have
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E(s)=1-N¥* e f/z (1+ 2 N32z2
J2m¥2) —sp\ T 4b
S 1
— —N3Z4+...|dz+ - --
8
3 3 5
:1_N3/4 F(4) S+iN3/ZE _iN3 E
\/5773/ 6b 2 20 2
+... (3.29
Then we take a scaling of the energyss— N~ %4,
I r'$) L@ s\® 1 55+
(9=1= 575" 6pl2) 202
(3.30
Using the expressions of E(3.26), we have
o)1 c’lab , (a® 7b? o 4lab
(8)=1-3+ 5195|720 900/ ~ 201600°
+0(s?) (3.3)
wherea=T'(3),b=T'(2),c=1/(27)%? and3 is
s/2
"§=J p(x)dx
—s2
Joer 2 b(s °® a (s\’
St 285 202) " 16802 T
(3.32

The quantitys is a function ofs. We have to use this vari-

able instead o$ since the density of state is not a constant in

the scaling limit, whereas, in the usual Wigner-Dyson case,

S =s. Therefore, it may be useful to writg(s) as a function

of S instead ofs. We have, in terms oF,
_abe 7b%c?\ [ 3 \°®

1800/ | 2bc
=1-3+1.697%6 *—16.3455 6+ 0(3 9).

17a%c?

E(S):l_ m'ﬁ'

4
Stg 2_bc> -

+0(3 8
(3.33

This result may be compared with the Wigner-Dyson case,
which reads

m? mt

E(s)=1-s+ sb+0(sP).

_S__

36 675 (3.39

The larges behavior may be obtained through a Padaly-
sis of the series expansion of E.33. In Appendix D, we
construct the Padapproximants for the quantit(s ), de-
fined by

R(3)= %InE(“s’ ), (3.39

and thereby obtain the larg@-behavior ofE(S ).
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IV. UNIVERSALITY distribution of the external source eigenvalugsovided a
gap closeg and are thus universal. We consider, for simplic-
We have analyzed the kernel near the origin when thety, the case in which the external source eigenvahieare
external source eigenvalues ag=*1. We will show that  distributed symmetrically around the origin. If we denote the
the results are independent, in the scaling limit, of thedistribution ofa, by py(a), the kernel is given by

K(zy,2)= J du 1 e~ (NI2)tP = (NI2)u?~Nitz; + Nuzo(N/2) fdapo(@)In[(a®+12)/(a? ~u?)] 4.1)

2 u—it

Expanding this expression for smalandu, we have

du 1 2 2 2,2 21N 4_ 4 4
K(z..2,)= i _ —(N/2)t“—(N/2)u“+ (N/2)(t+u?) fda[ pg(a)/a“] —Nitz; + Nuz, o — (N/2)(t*—u”) fda[ pg(a)/a ]_ 4.2
(21,20)= f—oc2’7T 27 u—it < € 4.2
|
Thus, if we have Then, this probability becomes complex, and we lose the
meaning of a probability distribution since it is not positive
d po(a) definite. We here simply pursue the analytic continuation of
a——— =1, 4.3 . ) .
a the diagonal eigenvalues, in the complex plane. By choos-

_ N ing the appropria’mg we can obtain an effective kernel,
we recover the previous kerng.19. The condition of Eq.  \hich starts witit2¢* 2 term in the exponent of the integrand,
(4.3 is the condition that the density of stag€\) starts

splitting. Indeed, we consider the equation which determines dt du 1
the Green function in the largs-limit [11,12, K(z1,22)=— j o7 T 2miu—it
_ po(@) x @~ NCI 24 (- 1)K 2) —Nitzy +Nuz, (5 )
G(z)—J a6 (4.4)

. ) o For k=2, the eigenvalues of the external souecgare
Putting z=0, noting that parity implies that R¥0)=0,  assumed to take the valuas=*a, = b, each one beint/4

when we take the imaginary part of Eg.4), we obtain times degenerate. For higher multicriticality, the conditions
( a) are
—t 5= 2, (53)
Therefore, as long aﬁda[po(a)/a2]<1 we find that the a® b
condition of Eq.(4.3) is equivalent tg(0)=0, and a gap is 1 1
present; but when the condition of E@t.3) is satisfied the i+ 5=0. (5.4)
gap closes and we recover the kernel that we considered a* b

hereabove. Therefore in the scaling regiikéz,,z,) near ) . . .
2,=2,=0 is indeed universal, i.e., independent mj(a), We theg obtain an effeqtlve action for_ the kernel Wh_lch starts
provided condition(4.3) is satisfied, or, equivalently, that a With at” term[Eq. (5.2)]in the largeN limit. The solution of

gap closes at the origin in the density of states. Egs. (§-3) /gmd (5.4 are a=(1/2"e (", and b
=(1/2Y%e™® The effective form of the kernel is thus

V. MULTICRITICAL BEHAVIOR = dt du 1 - _
K()\uu“):_f _ R —(N/3)(t°+u )7Nlt7\+Nu,u,.
We have obtained the universal behavior of the kernel —= 2m J 2l u=it
near the origin by the scaling of the enengy: N~¥x in the (5.9
largeN limit with a fixed x, when the spectrum di is such
that the quadratic terms inin the exponent of the integrand
vanish. Now we discuss the multicritical behavior in which
the exponent starts fronf<™2 term in the scaling limit, and
the energy\ is scaled byh =N~ 2kt 1)/(2k+2)y

Suppose that we begin with the Hermitian matiik 2
coupled toH,, which is a diagonal complex matrix. The K(x, Y)——[W"(X)lﬁ()/) " (X)P'(y)+ " (X)¢"(y)

probability distribution of the matrit is

The scaling limit is obtained by rescalingandu by N~ /6,
and\ andu by N™%8. The integration of Eq(5.5) shows a
Painlevell equation ofA, type.

Similarly to Eq.(3.21), we find

= ()P (Y)+ S P (Y)], (5.6)

_ —(N/2)Tr(H2-2H H)
P(H)= e ° G0 where ¢(x) and ¢(y) are defined by
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dt 4 1
¢(x)—f 5-¢ e (R Fitx, (5.7) P(C)=zexp—N Trc'C—N TrAC'C). (6.2

Noting that
du 6
— = A= (uPB)+ux
P(X) L > . (5.9 . 1 ; 1 1-|- .
@=\oNTom /= \NT2 c*c ©.3
The pathc of the integration is taken along four lines, start-

ing from the origin to infinity, andi is replaced on this lines we obtain a relation between the density of states,
asu=e*(™iy’ andu=e* ™y’ These functions satisfy
the differential equatlons

p(z2)= < =—Tré(z— M)> (6.4
° 1
38 P =~ 5Xé(X), (5.9  and
d® 1 (2)= <ETr5(z—CTC)> (6.5
38 YX) = 5 Xg(x). (5.10 N ’
which reads
In general, if we choose,=(*a,, ...,*ay), eacha; is
N/2k times degenerated, and if they satisfy p(2)= |z|76(22). (6.6)
k The two point correlation function is
— =Kk,
‘Zl a 1 1
Ry(21,2p) = < NTro(z- c'o) N1z CTC)> :
S Lo me23...k (5.1 7
, (m=23,...k), )
i=1 E,m Using the Itzykson-Zuber formula, we obtain the kernel in
) ) the presence of the external sourkge
the effective kernel becomes E@5.2). The scalingt
=N"YF2)t"  andz= N~k 1/I(+2)) gives the universal
P P © dt du/ 1
behavior in the largéd limit. K(zy,2 ):f — p—
12 —w 27 ) 2mi\u—it
VI. DEGENERACY OF BESSEL CASE
In a previous papef9], we considered an ensemble of 1+u H aV_it)e—ithl+uN22
matricesM, of the form 1+it) % (u—a,) '
(6.9
(0 ct When we puta,=0 and take the largdk limit, with shifts
M= c o/’ 6. t,u—Nt,Nu we obtain the Bessel kerngd].

If we choosea,=—1+a,—1+b, each one idN/2 times
in which C is anNXN complex random matrix, with prob- degenerated, and making the shiftssu—1 andt—t+i,
ability distribution the kernel is written by

N/2
—iNtz;+Nuz,+N(z1—2p)

N[(a—it)(b—it)
(u—a)(u—b)

» dt dul/

Kznz)=| 52 % 2m u—itl it

fw dt du 1

ut (NI2)In[1~ (afit)] + (N/2)In[1 - (b/it)] — (N/2)In[1 - (/)] ~ (NI In[1~ (b/u)] g~ iNtzy + Nuzp+ N(z, - 2p)
—w 2 ] 2@ u—it )

e
(6.9
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Taking the largeN limit with scalingst—Nt andu—Nu,  This integrall appears in Painlévgype Il with A, system,
we have, after expanding the logarithm to first order, two-dimensional Garnier systefd7]. The perturbative ex-
pansion of this kernel may be deduced from this integral
. representation.
K(Zl,Zz):Nj ﬂ ﬂ L The higher multicritical points are obtained by tuning the
— 2m ] 2mi u—it values ofa,; however, the next one, for instance, requires
the conditionsa; +a,+az+a,=0 anda?+a3+a3+a3=0
(a,=a;,a,a3,a4). Thus it is necessary to consider the
(6.10  complex values fora,, for example,a;=1, a,=—1, az
=i, anday=—1.
If a+b is nonvanishing, we have a Bessel kernel, which we
studied in an earlier publicatiof9]. The density of state is
obtained as the derivative &f(z,z); for example, in the case

 @lif20(a+b)+(1/2u)(a+ b)e—iN2t21+ N2uzy+N(z; - 2,)

VIl. SUMMARY AND DISCUSSIONS

at+b=2, In this paper, we have considered the critical scaling be-
havior when the two edges of the support of the eigenvalues
9K(z,2) :N3J ﬂea/t)—m@ f# ﬂe(l/uwuxz merge at one point. This has been studied within the Gauss-

Jz 2 2mi ' ian random matrix model with an external source. The cor-

(6.11 relation functions and the level-spacing distribution belong

then to a new universality class, different from the Wigner-
where we have put=N~2x2. The right hand side of Eq. Dyson case. y 9

(6.11 become$\|.3‘]§(2x)/4x2, and the density of state in EQ.  ~ Although our model is limited to Gaussian potentials, sev-
(6.6) has the universal form eral universality classes may be obtained by tuning the ex-
ternal source eigenvalues. It may be interesting to extend the
p(2)=NZJ5(2zN) +5(2zN)]. (6.12 study to more complicated cases like two-dimensional grav-
ity, for which the kernel has a similar expressid8].
The unitary matrix model at the transition point has also
en shown to be related to the Painléviype by consid-
ering non-Gaussian distributions on the unit circle; multi-
% critical behavior has also been investigated tHa'@. Our
K(X,Y)ZJ d(X+2)p(y+2z)dz, (6.13  Gaussian model with an external source is an alternative
0 model for tuning multicritical behavior; it gives concise and
exact expressions for finitdl, which are useful to derive

For the Bessel kernel of E¢6.10, we have an integral
representation. By an appropriate rescaling, the Bessel kerngl
reduces td8] e

where ; . ; :
simple closed expressions for the universal correlation func-
31(\/;) tions in the scaling limit.
d(X)= \/_ . (6.14 We have considered the critical case when a gap opens in
X

the density of states. Even in this case,tHevel correlation

antions are determined by the kernel, completely. There-
ore, we know that all the correlation functions become uni-
versal. After opening the gap, there is no more universality.

Using this representation, and the standard relations betwe
Bessel functiongy(x) andJ;(x), and by considering

w0 J( x+2) Jy( \/m) Indeed, if we average over the external source eigenvalues in
= f (x+2) dz, (6.15 some interval, when the gap opens, we obtain a Poisson-like
0 VX+2Z Vy+z behavior for the level-spacing probability distribution.

It has been shown that the Bessel kernel case has interest-

we easily obtain ing physical applications in several different problems, in-

(v _ cluding the random flux problem, two-state quantum Hall
1= 12= (=YK = VX (H0 Jo(Vy) effect[9,20], and the zero mode of a Dirac operafad]. It
— Y I,(VY) Io(VX), (6.16  should be interesting to discuss the physical applications of

the multicritical behavior discussed in this paper.
wherel,=1,(x—Yy,y—X). We have thus obtained a closed
expression for the kernel from this equation; we could also
have obtained it through the Christoffel-Darboux identity for
orthogonal polynomialéLaguerre polynomials in this case This work was supported by the CREST of JST.
Whena+b=0, we find a new scaling limit near the ori-
gin. Expanding the logarithmic terms in E®.9), we obtain
for the kernel, after rescaling;=N~2x? t=N~"(2¢",
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APPENDIX A: TWO-DIMENSIONAL PAINLEVE ~ II
EQUATION

= dt T N It is known that the differential equatidiil) is related to
1= J_w zexr{ ~ g (@Y i, 617 4 painlevel differential equation with arA, system, where
the notationA, stands for a two-dimensional Garnier system
This integral should be understood as a contour integral, anid.6,17]. When two saddle points merge, instead of three, the
it should be calculated by taking the residue at the originexponent in Eq(3.5) is only t3, and its Fourier transform is
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an Airy function; it is then related to Painlevewith an A; Pw
system, and the singurality near the edge of the density of el =8tw. (A9)
2

state is indeed described in terms of Airy functidgisg]. In
our case, two edges merge at the origin, three saddle poinfg generalw is given by
collapse together, and the Airy case degenerates.

Another mathematical interpretation of these functions —(u%2) - 2t 2t
may be obtained as follows. Let us note that the Painleve W= Le T, (A10)
equation is given by the nonlinear equation

d%q The functiong(x) in Eq. (3.8 satisfies the same differential
T 203+tq+ a. (A1)  equation(A9).
This equation is equivalent to the two equations APPENDIX B: KERNEL K(x.y)
q ¢ We have the following equation fd€(x,y), which is de-
d_q: p—q2— 5 (A2) rived by the contour integral representati@l):
n ,
Jd “ ~

dp 1 EK(x+z,y+z)=—¢(x+z):,//(y+z). (B1)
a=2pq+a+ X (A3)

From this equation, we have
These two equations in turn, may be viewed as Hamilton’s 5
equations based om(p,q)=23p?—p(g®+it)—(a+3)q. ) LR (Xt 2V 2V = —T (X 2)— (v 2)T (X +
Taking a=—3, p=0 is a solution; writing thenq (x y)azK(X zy+2) [(x+2)=(y+2)]$(x+2)

=(d/dt)in, one finds that ¢ satisfies [¢(t)]"=

—(t/2)¢(1), and thus thatp is an Airy function. X lzf(y+ 2)
The two-dimensional Hamiltonians for the Painlelle e .
equation @, system are[17] =—[¢"" (x+2)h(y+2)
Hy= (93— 01— t1) P2+ 20,P1Pa+ P3+2(q3+ 02— t2)ps Ty (y+2)]
Jd . N
+2(0192+ 110+ ) pot+ K4y, (Ad) == - [¢"(x+2)i(y+2)

Ho=0opi+2p1p2+2(Q10a+t10,+t2) Py
+2(g3— gy +1ty)pa+ k0s. (A5)
We have (,j=1,2)

+d(x+2)'(y+2)
—¢'(x+2)9' (y+2)]. (B2
Therefore, by integration, we obtain
aqj . (9H| &p] B (9H|

7 (AB)  (x—y)K(x+2,y+2)=—[@"(X+2)I(y+2)+ p(x+2)
XP'(y+2)— @' (x+2) ¢ (y+2)]

+C(x,y). (B3)

When k=0, the particular solution is given by

19

qi(0)=— = —In[e~w(ty,t,)],

2 a_tj Settingz=0 in this equation, it is then easy to prove that
p;(H)=0. (A7) 9.5 _
, ax " 3y COxY)=0, (B4)
Thenw(t,t,) satisfies the linear partial differential equa-
tions since we have
9w oW oW Jd d\. ~on
— =4t — — —+ = K(X,y) == d(X) §(y). (B5)
ati 4t1&,[1 +2t, o, +2w, ax | ay
2w oW Thus, from Eq(B4), we findC(x,y)=C(x—Y). Further set-
=4t — —4t,Ww, ting y=0 in Eq.(B3), and noting that/(0)= ¢"(0)=0, and,
dtydty dty from Eq.(3.19,
Fw__ow xK(x,0)= ' (x) %' (0), B6
i A8) (x,0)=4'()#'(0) (B6)
2 1

we find that the integral consta@t(x) is vanishing.
If we putt;=0 in these equations, we obtain Thus we have a simple expression f¢x,y) by
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. ¢ (0P (¥) = ") P(Y) — OO P (y) P
K(x.y)= v :
Yy 0.8
(B7)
which is the same as E@3.21). 0.6
SinceK(x,y) should be finite foy—x, we have the fol-
lowing constraint betweerb(x) and (x): 0.

' )P (X)— " (X)P(X)— d(X)"(x)=0.  (BY)

This identity is proved by considering the derivative

d R R R R R R 0.5 1 1.5 2 2.5 3
axlL® )P ()= ¢" ()P (X) = () ¢ (X)] x
R ~ . . FIG. 1. The level-spacing probabilitp(s) for the Wigner-
=—¢"" (X)P(X)— p(x) "' (x)=0. (B9) Dyson case, ang(3 ), are plotted by the Padapproximation

] ] ] ) (D5), wherex is s and's, respectively.
Then, by integration, we find that left hand side of E88)

is a constant, but it vanishes since, by puttiigO, we have 1 p
Ka(x,y)= E@ez

32
&' (0)=J(0)=4"(0)=0 from Egs.(3.9 and(3.15. saY

.
5 T9(2xy+ 2y?—x?)+ 22

APPENDIX C: FINITE- N CALCULATION 4 1
+§xy3—2x2y2—2x3y+ Ey“ +---], (CH
We consider some finitdt exact calcualtions for the den-
sity of state and for the correlation function near 0. The
derivative of the density of state is factor?zed as E‘ﬂz_). Kg(X,y) = i\/fe—s 8_7+ 3—93(2xy+ 2y2—x2)
We evaluatepy(\) of Eq. (3.3). The expansion at small is 27 N 3 8 8
easily done, and after the rescalings N34\, it gives, for
instance, in the casd=6, %47( %y"ur ngS— 2x2y2— 2x3y + %x“)
d(X)=$(0)(1—0.475 2%+ 0.090 1%*+ - - -),
€D +o, (Co)

which should be compared with expansi@®) in the large-
N limit  ¢(x)=¢(0)(1-0.337 98<.2+0-041 66&*+---).  where we have to scabe by N~3% to compare with Eq.
For ¢s(\), we determine the expansion for smalby com-  (3.26). After the scaling, we find that it tends to the universal

puting the residue in Eq3.4) as form in the largeN limit.
-1/2 1/2),5,1(2 8\ - 3
#(N)=CyN —)\—a N A +§ N N2 A APPENDIX D: PADE APPROXIMATION FOR LARGE S
For the Wigner-Dyson case, the probability of no eigen-
n 1 32_ ig Nt (C2) value in the interval £ s/2,s/2), E(s) is Gaussian for large
7NN N ' s. Therefore the guantitiR(s) defined by

where \=N¥¥ and Cy is a coefficient, which tends to 9
1/\/7r. Thus, in the largeN limit, for a fixed x, we obtain R(s)=—<InE(s) (DY)

8

. 1 2 , 12
lﬂ(X):—\/—;X 1—aX +aX~'- .

(C3) is proportional tos in the largeN limit.
We apply Padeanalysis forR(s) in the Wigner-Dyson
case, in which the exact expression R{s) is known. Using
There arex® andx’ terms, but they are order & ** and  the series oE(s) in Eq. (3.34, we have
are neglected in the largedimit. This result agrees with Eq.

(3.15 completely. ) a2 5 5 ).
Kn(x,y) is evaluated for smal (N=2, 4, and 6 by the R(s)=—|1+st+s™+| 1= o |s'+| 1= zem’s
contour integration Eq.3.1) to confirm the universal form of
(3.26). We have 41 77'2+ 't s, (1 77% 17 6
6 ' 225)° " 736 ' 675)°
K — Mo 11+4(2 +22—2+E4+—y3
Z(X!y)_ 27Te ( Xy y X ) 3y 3X w1 2772+ 121774 776 7+ D2
o " el00 2208° T ©?2

+oee, (Cc4

1
922 9y3y L 4
2"~ 2x er2X The[3,2] Padeapproximant forR(s) is given by



1+a;s+a,s%+azs’
1+b;s+b,s?

R(s)=— , (D3)
where a;=1.486 956, a,=1.904 78, a;=0.808 162, b,
=0.486 956, and,=0.417 829. Thus, in the largedimit,
E(s) is estimated to expf 0.967 09%2). The exact value is
known to beE(s) ~exp(— 72s%/8), wherew?/8=1.233. With
the [4,3] Pade the estimate is further improved as
a;=1.856 62,a,=2.569 53,a;=1.638 48,a,=0.424 931,
b,=0.856 623, b,=0.712 904, b;=0.165 575, and
E(s)~exp(—a,s72bs), wherea,/2b,=1.2832. This value is
very close to the exact solution. Using this Paqg@roxima-
tion for R(s), we obtain the behavior d&(s) for all region
of s by

E(s)=ex;{ Lsdx R(X)|. (D4)
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The level-spacing probabilitp(s) is obtained as the second
derivative ofE(s),

2 S
p(s)=g2E(s)= O%R(SH[R(S)]2 exp[ fodx R(x)}.
(D5)
The value ofp(s) by [4,3] Padeanalysis forR(s) is shown

in Fig. 1.

When we apply this Padanalysis for Eq(3.33 in terms
of 3, we have, for[3,2] Pade analysis, a;=2.1118,
a,=16.0318, a3=9.24379, b;=1.11179, b,=13.920,
and E(3 )~exp(—0.332G 2). In the large3 limit, 3 is
proportional tos* from Eq.(3.32. The level-spacing prob-
ability p(s) in this case is obtained from the second deriva-
tives of E(3 ) by 3. The result of[3,2] Padeanalysis for

p(S ) is shown in Fig. 1.

[1] C. Itzykson and J. -B. Zuber, J. Math. Phg4, 411(1980.

[2] V. A. Kazakov, Nucl. Phys. B854, 614 (1991J).

[3] E. Brezin and S. Hikami, Nucl. Phys. B79, 697 (1996.

[4] E. Brezin and S. Hikami, Phys. Rev. &5, 4067 (1997.

[5] E. Brezin and S. Hikami, Phys. Rev. &6, 264 (1997).

[6] F. J. Dyson, J. Math. Phy43, 90 (1972.

[7]1 M. J. Bowick and E. Brein, Phys. Lett. B268, 21 (1991).

[8] C. A. Tracy and H. Widom, Commun. Math. Phykb9 151
(19949; 161, 289(19949.

[9] E. Brezin, S. Hikami, and A. Zee, Nucl. Phys. B64, 411
(1996.

[10] E. Brezin and A. Zee, Phys. Rev. 89, 2588(1994.

[11] E. Brezin, S. Hikami, and A. Zee, Phys. Rev. &, 5442
(1995.

[12] L. A. Pastur, Theor. Math. Phy40, 67 (1972.

[13] T. Guhr, Ann. Phys(N.Y.) 250, 145(1996. The formula in
Eq. (2.14 was derived through a superspace Itzykson-Zuber
integral, in which the variables u and it appear as bosonic and
fermionic degree of freedom.

[14] H. L. Turrittin, Trans. Am. Math. Sod8, 304 (1950.

[15] T. Pearcey, Philos. Ma@7, 311(1946.

[16] R. Garnier, Ann. Sci. Ecole Norm. Supgi3, 177 (1926.

[17] K. Okamoto and H. Kimura, Q. J. MatB7, 61 (1986.

[18] C. A. Tracy and H. Widom, Commun. Math. Phys53 33
(1994.

[19] V. Periwal and D. Shevitz, Nucl. Phys. 814, 731(1990.

[20] S. Hikami, M. Shirai, and F. Wegner, Nucl. Phys4B8, 415
(1993.

[21] J. J. M. Verbaarschot and |. Zahed, Phys. Rev. [#3}.3852
(1993.



