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Synchronization of spatiotemporal chaos in asymmetrically coupled map lattices
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The synchronization of spatiotemporal chaos of two asymmetrically coupled map lattices is studied by
numerical simulations. It is found that the synchronization can be achieved by linking two spatially extended
systems with a common signal or signals through one-site connections. The synchronized states are found to be
closely related to the approaches used to synchronize the most upstream sites of the two spatially extended
systems. The effects of small backward diffusions and the local disturbances on the development of the
synchronized states are also discus$8d063-651X98)07404-2

PACS numbd(s): 05.45+b

The synchronization of chaotic systems has attracted comnerical simulation studies, and investigated the influence of
siderable attention in recent yedfls-11]. This synchroniza- the presence of the backward diffusion on the synchroniza-
tion has clear applications to communications, control andion of spatially extended systems, which are linked through
anticontrol of chaos in biomedical systems, and system idersingle-point coupling. o
tification. Furthermore, it may be responsible for the satura- TO demonstrate spatiotemporal synchronization of open
tion of the invariant characteristics of chaos in chains offlow systems, we consider the following ACMR2-25:
coupled nonlinear oscillators and in more complicated sys- P i i1 i1
tems. It is likely that control and synchronization of chaos ~ *n+1= (1= 717 72)T(xp) T 71Xy )+ v2f (x075), (1)
anq hyperchaqs_ play important roles in the workings of blo'wherexin is the amplitude associated with thth lattice site
logical and artificial neural networks.

o . at time step. We take the logistic maf(x) =1—ax? as the
Currently the synchronization of hyperchaotic system%cal element and choose the nonlineaatto be well within
has become an active research drEa-17), due to its po-

il licati . T | : the chaotic regime. We further assume that>y,=0.
tential applications in secure communications. In RES], it Wheny,=0, Eq.(1) reduces to the one-way coupled logistic
is shown that two one-way coupled map lattid€sCML)

¢ e lattice (OCLL). For open flow systems, the boundary condi-
[18-22 may be synchronized by linking the most upstreamyjgns will strongly influence the dynamical behavior of the
sites to a common chaotic signal, which is extracted from th%ystem. We consider the following two different boundary
same OCML system but with a periodic boundary condition P+N_

S , rconditions: (i) the periodic boundary conditior,, X,
or to a common stochastic signal. It is also found that the,q (i) the open boundary condition defined by

spatially periodic and temporally chaotic states may be ob-

served if the lattice size of the drive system is smaller than X = (1= ) FOXE) + 9o f (xD),
that of the response system. For other types of driving sig-
nals, no single-site-linking synchronization is reported. XE+1=(1— Yl)f(XwH ,ylf(xwfl).

In this paper, we study the synchronization of spatiotem-
poral chaoSTCO) of two asymmetrically coupled map lat- The replica of the open flow system to be synchronized is
tices (ACML) [23-25. When the backward diffusion con- given by
stants are set to zero, ACML reduces to OCML and so under
certain conditions, it is expected that the ACML may behave vyl  =(1—y,—y)f(y)+ 1 f (Y, H+1.f(y\), (2
in a similar way as the OCML does under certain circum-
stances. On the other hand, it has been shown that a nonwahich is driven away by some signa)}, derived from the
nishing backward diffusion may dramatically change the dy-drive systen(1) or is taken from a stochastic variable. Equa-
namical behavior of the system under consideraf®8]. In  tion (2) is, therefore, called the response system. Recently,
view of the influence of the downstream sites through themany different approaches to synchronize chaotic and hyper-
presence of backward diffusion couplings in an ACML sys-chaotic systems have been proposed. Among them are the
tem, it seems impossible to expect that the synchronizatioactive-passive decompositi¢APD), direct substitution, and
of STC can be attained via one-site connection when théeedback control approach. The success of these methods is
backward diffusion is appreciable. To understand the generdlased on whether all Lyapunov exponents of the response
features of the ACML systems, we performed extensive nusystem could be made negative. Generally speaking, to syn-
chronizing hyperchaotic or spatially extended systems, one
needs distributed linkings or at least some dense lattice of
*Electronic address: jiang@citlalli.uam.mx connecting nodes. In many applications, however, it is very
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FIG. 2. The suppression of spatiotemporal chaos by applying

FIG. 1. The propagation iOf siynchronlza}tlon front. The reduced foadback control approacB) to the first sites of two ACML's.
amplitude differencelx, (=y,—x,+n/200) is plotted against the |, system parameters are taken toabea’ =2, y,=0.51, and
space for every 400 iterations, starting from randomly chosen initialyzz 0.35

conditions. The system size M=200,a=1.9, y,=0.7, andy,
=0.1. The results are independent of the systems size and are quali-

tatively the same for different machines. [26]. As is expected, further increasing will destroy the

synchronization. Another interesting phenomenon is that if

- a<a’, the synchronization of spatiotemporal chaos may also
difficult to make a one-to-one contact between all elementge achieved. Nevertheless,df>a’, no synchronization is

of the drive and response systems. Therefore, it is of gregpserved.
theoretical and pl’actical intereSt to SearCh fOI’ the feW'pOint' We now turn to the feedback Contro| Scheme Of Chaos
linking synchronization schemes that are feasible for spasynchronization, which is defined as
tially extended systems.

In this paper, we apply different synchronization ap- x..,;=(1—b)[(1— 71— y2) f(x})+ y1fF(XN) + y,f(x3)]
proaches on the first sites of two ACML'’s. Since the bound-
ary conditions play an important role in the development of +bz,
spatiotemporal waves in open flow systems, we focus our 1 N 5
attention on two case¢A) The open boundary condition is ~ Yn+1= (1 =P)[(1=y1=¥2)F(yn) + y1f(yn) + v2f (yn)]
used for both the drive and the response systdBs the +bz, 3)
periodic boundary condition for the drive system while the ’
open boundary condition is assumed for the response systeiyhere z,, ;=1 — a’zﬁ or z,=&, with &, being a random
It is interesting to note that the computer simulation results ariable. It is expected that this kind of coupling may pro-
for open flow systems are often machine dependent, that igide a much stronger synchronization forcing because once

for certain values of system parameters, different computerge first sites are synchronized with the chaotic driving or
may yield qualitatively different behaviors. The results re-

ported here are only those properties that are, at least, quali 25
tatively the same for different machines. Our main results
can be summarized as follows.

(A) Open boundary conditions for both the drive and the 207
response system: In this case the sizes of both systems ar
assumed to be the same. We first couple the first sites of the
two systems to a common stochastic variable, ké;; &,
andyﬁz ¢, . Itis found that fory, fixed, there exists a criti-
cal value such that foy;> vy, , two systems may be synchro-
nized with each other. The same is true for connecting di-
rectly the first sites of the two systems, i.e(%=y,11. ,
Generally speaking, the increase of and a leads to the 5t
destabilization of the synchronized state, while the increase
of vy, may favor the synchronization. Next, we tried to use a
chaotic signal to drive the first sites. Here, we take tfat
=2z, andyﬁ= z, with z,.;=1—a’Z?. It is interesting to find
that ata=a’=2, y;=0.8, the synchronization is observed  FIG. 3. The traveling wave in a synchronized stataat?, y,
for y,=0.01, but not fory,=0, which indicates that the =0.51,y,=0.1,Nyg=22, andN,=100. The reduced amplitucé,
backward diffusion may possibly reduce the noise effects=y! +n/1000 is plotted against the spaicat every 2000 steps.
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FIG. 5. (a) The evolution of the initial pointlike disturbance of
! small amplitude at the left-hand boundary in a spatially uniform
08l © state. The system parameters Bre 400,a=2, y,=0.72, andy,
06 =0.1. The amplitude of the pointlike disturbancesis 10~ °. Note
- that the connection between two systems is cut off between the step
0.4+ 7200 and 8400. The local small perturbation is added at the step
ozl 8000. (b) The incipient development of the disturbance is shown
I every 6 iterations after the quenched perturbation is switched on at
1;? 0 the iteration 8000.
02}
04y back control approach may also result in the suppression of
06 T U spatiotemporal chaos through one-site control. Figure 2
o8l R | shows the spatial period-2 and temporal period-1 state ob-
ICRT tained by controlling the first site of the ACML, using Eg.
168 08 04 02 0 02 04 05 08 1 (3). It is worthwhile to point out that even for not very highly
vl asymmetrical couplings, the one-point control method still
o _ works.
FIG. 4. The return mapy(,"",yy) for i=31. The system param- e also studied the synchronization via mutual connec-

eters are the same as in Fig. 3, except that the size of the drivgons, or bidirectional couplings. In our case, we consider the
system is taken to b&) Ny=22, (b) Ny=23, and(c) Ny=24. following synchronization method:

Xh 1= (1=D)[(1=y1— y2) T + y2f ) + 72f (x3)]
stochastic driving, the attractor traced out by the first sites 1
will be nonchaotic, which implies that the nearby trajectories +bf(yn), 4)
will converge instead. We found that the synchronization can
be achieved even for moderate backward diffusions. Figure 1y}, . =(1—b)[(1— y;— y2) f(yH) + y1f (YN + yof (y2)]
shows a typical evolution of synchronization wave, starting 1
from the most upstream edge. It is remarkable that this feed- +hf(xp).
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We found that the synchronization of spatiotemporal chaopling, it is seen that the two systems remained synchronized.
can be achieved for moderate values of the linking constart some later time, we add a perturbation at the same site
b. At a=2, v;,=0.8, v,=0.05, andb=0.8, we found that that is used for passing the synchronization signal, for a very
the synchronized state is spatiotemporally periodic, indicatshort duration(a few iterationg and then we impose the
ing the suppression of spatiotemporal chaos through onesynchronizing force again. We found that the synchronized
point mutual couplings. state after removal of the synchronization linking is unstable
(B) The periodic drive system versus open response syge the weak noise, as is expected. The synchronizing force
tem: We consider only the synchronization of the drive sys-also plays a role of control, which makes the system stable
tem with periodic boundary condition and the response sysagainst external noise.
tem with open boundary condition via the direct substitution Another interesting feature found for the asymmetrically
method, i.e.x:=y%. In general, if the drive and response coupled map lattices is the generalized synchronization in
systems are of the same size, we found similar behavior as ihich the synchronization relationship is of the foryn
case(A). If, however, the drive and the response systems=¢(x(t)). For concreteness, we takg=Xx, ., which is
have different sizes, the synchronized states will vary. Foralled the space-shift and time-delay synchronization. The
instance, ifNy (the size of the drive systenis greater than synchronization is found for periodic boundary condition for
N, (the size of the response systeitnen all elements of the both the drive and the response systems with equal size. This
response system may be synchronized with those of the driiinding may be relevant for manipulating the message in the
system, except a small number of sites near the downstreasecure communicationsee Fig. 5.
edges. On the other hand,Nfy<<N,, then we may observe In conclusion, we have shown that synchronizing spa-
different behaviors, depending on the boundary conditiongiotemporal chaos in ACML systems may be achieved by
used by the drive and response systems. When the periodising one-site linking between the drive and the response
boundary condition is used in the drive system, the responsgystems. We have investigated the influence of the backward
system will exhibit temporally chaotic but spatially periodic diffusion on the development of the spatiotemporal states. It
patterns with periodNy. Depending on the size of the drive is interesting to find that different synchronization schemes
system, the system may show stationary, or traveling patmay give rise to different dynamical behaviors of the ACML
terns with irregular or relatively regular wave forms. By in- system, which marks the difference between the ACML and
spection of the attractor of the return maps, one finds perithe OCLL. It is clear that if there is no feedback to the first
odic doubling bifurcation as the size of the drive systemsite from its neighbor ,=0), then the synchronized state
varies(see Fig. 3. would be independent of the synchronization approach used.
Since our model system is convective unstable, arbitraryDur numerical results reveal that the conclusions drawn from
weak noise destroys the synchronized state. So it seems ithe study of the OCLL systems are generally not applicable
teresting to study the effects of the external perturbations oto open flow systems. In all our simulations carried out on
the synchronization of spatiotemporal chaos. Mathematicoupled map lattices, we noted that the properties of the
cally, when two systems are completely synchronized, theglynamical system may be qualitatively different by using
will remain synchronized even if the synchronizing coupling different machines. Such a difference becomes appreciable
is removed. In Fig. 4 we show the effect of quenched locawhen the system under consideration is highly asymmetri-
disturbance on the synchronized state. First we use the direcglly coupled, such as in OCLL. This problem might persist
substitution method at a single site to synchronize two hyin other spatially extended systems with asymmetrical cou-
perchaotic systems. When we turn off the synchronizing couplings.
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