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Noise and pattern formation in periodically driven Rayleigh-Benard convection
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We present a new model for periodically driven Rayleight&e convection with thermal noise, derived as
a truncated vertical mode expansion of a mean field approximation to the Oberbeck-Boussinesq equations. The
resulting model includes the continuous dependence on the horizontal wave number, and preserves the full
symmetries of the hydrodynamic equations as well as their inertial character. The model is shown to reduce to
a Swift-Hohenberg-like equation in the same limiting cases in which the Lorenz model reduces to an amplitude
equation. The order-disorder transition experimentally observed in the recurrent pattern formation near the
convective onset is studied by using both the present model and its above-mentioned limiting form, as well as
a generalization of the amplitude equation for modulated driving introduced by Schmitt akd[[Rhys. Rev.
A 44, 4986(1991)] and the generalized Lorenz model previously introduced by the aUtAbys. Rev. B55,
R3824(1997]. We show that all these models agree with the experimental data much closer than previous
models like the Swift-Hohenberg equation or the amplitude equation, though thermal noise alone still seems
insufficient to lead to a precise fit. The relationship between these models is discussed, and it is shown that the
inclusion of the continuous wave-number dependence, a consistent treatment of the driving time dependence,
and the inclusion of inertial effects are all relevant to the formulation of a model describing equally well both
the time-periodic and static driving cas€S1063-651X97)09812-7

PACS numbg(s): 47.20.Bp, 05.40+j, 47.20.Hw, 02.50.Ey

I. INTRODUCTION Cannell[3]. In this experiment the Rayleigh number(the
control parametgrof a Rayleigh-Beard cell was modulated
Pattern formation outside of equilibrium has become an time asR(t)/R.— 1= ¢€;+ & cos(wt), periodically crossing
very active field in the past several yedtd, in part pushed the static convection threshoRl=R.. The modulation was
forward by the advancement of experimental techniques alselected such that in each period a well-developed convec-
lowing the realization of quantitative experimefils-6], and  tive pattern was established and subsequently nearly or com-
in part by the continuing development of theoretical modelspletely vanished. It was observed that depending on the val-
[7-13. In particular, Rayleigh-Beard convection(RBC) ues of the experimental parameters the system presented an
has become a paradigm in the study of complex spatiotensrder-disorder transition, between situations in which the
poral behavior of nonequilibrium systems. same pattern reappeared at each cydi&terministic statg
The role of fluctuations in the initial stages of patternand situations in which the patterns at successive cycles were
formation was recognized early on as deserving detailed exincorrelatedstochastic stafe This change in behavior de-
amination[7]. Fluctuations in RBC below but not too near fined an order-disorder transition li®DTL) in the €3-6
the convection threshold can be considered to be currentlglane.
well understood, both qualitative and quantitatividy. This In the intervening years a number of models have been
understanding has been facilitated by the fact that, belowroposed to explain this ODT[15-19, but for all of them
threshold, the hydrodynamic equations can to a very goodgreement with the experimental data was achieved only by
approximation be linearized around the conductive state, antéking the noise strength as an adjustable parameter and set-
linear response theory applied. The same could in principléing its value to be~10*— 1 times the one computed from
be done well above threshold, by linearizing around a wellthermodynamic consideratiorf®0]. All these models are
developedmacroscopigconvective state which satisfies the based on Swift-Hohenbe(@H) or amplitude equations, and
nonlinear deterministic equatiorj44], though we are un- include a supercritical bifurcation at threshold, but the time
aware of any works implementing this approach in the literaimodulation of the driving is incorporatead hocin these
ture. The situation very close to threshold is far less clearequations, originally derived for a static Rayleigh number.
since there the linear and nonlinear terms and the thermdlhese models also share a purely dissipative behavior, being
fluctuations are all of comparable importance. In particularbased on differential equations which are of first order in
the effects of noise can be expected to be relevant in theme. Some of them have the additional shortcoming of not
dynamic onset of convection, when a system is sweptrespecting the full horizontal translational and rotational in-
through the convection threshold by externally modulatingvariance of the hydrodynamic equations. This leads to the
the control parameter. guestion of how much of their quantitative disagreement
A time-honored experiment still waiting for a full theoret- with the experimental data comes from these features.
ical explanation is the one performed by Meyer, Ahlers, and Several years ago Ahlers, Hohenberg, andKa]j 10] for-
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mulated a generalized Lorenz model for periodically drivenmodel in Sec. Il. With the aim of increasing legibility, most
RBC. They found that in this model the convection thresholdof the calculations have been deferred to the appendixes.
is nontrivial, contrary to what happens with models based on

SH or amplitude equations. Their model also reflected the Il. MODEL

inertial character of the hydrodynamic equations, reducing to
an amplitude equation only for large Prandtl numbgss.,
large dampingand vanishing modulation amplitude This We consider a fluid layer between two laterally infinite
made it a good starting point for investigating the possiblehorizontal plates {co<x,y<c) separated by a distanck
importance of these features for the description of the order@nd having a time-dependent temperature difference which
disorder transition. We recently extended this model by inWill be the control parameter driving the system. The density
cluding thermal noisg13], and found that the resulting Of the fluidisp, its temperature i3, its velocity isu, and its
model predicted an ODTL much nearer to the experimentaPressure i. The kinematic viscosity is denoted by the
data of Ref[s] than any of the previous ones, f|tt|ng the datathermal d|foS|V|ty by K, and the graVitational acceleration
with a noise intensity- 250 times the thermal one. However, by 9. We introduce dimensionless variables by the scaling
this model incorporates the rather crude approximations of— («/d)t, |=1/d, AT—R, whereR=(agd®AT)/(xv) is
restricting the horizontal wave number to that of the criticalthe Rayleigh number andiT is the average temperature dif-
mode atR=R,, and imposing a parallel roll structure. As ference between the lower and upper plates. Defining the
pointed out by GraharfiL2], in principle the rotational sym- Prandtl numbetr=v/«, the Oberbeck-Boussinesq equations
metry of the hydrodynamic equations must be broken by anyvith noise read10]

emerging patterrspontaneouslyather than by any external

A. Fundamental equations

agent. So the question arises if it is possible to formulate a (d+u-V)u=oV2u+oTz-Vp+V-s, (1a)
model retaining the desirable characteristics of the Lorenz )
model while respecting the full symmetries of the hydrody- (0 +u-V)T=VT-V.q, (1b)
namic equations.

The purpose of the present work is twofold. In the first V-u=0. (10

place we aim to derive a model equation for periodically . .
; . . . In these equations, the effect of thermal fluctuations has been
driven RBC which(a) respects the fullhorizonta) rotational . . i )
incorporated by adding the Langeviwhite) noise sources

and translational invariance of the hydrodynamic equations .
not imposinga priori any preferred convective structur®) andq [1,9]. These are assumed to be zero-mean Gaussian

preserves their main dynamical features, specifically the sjpJ10ISe fields with self-correlations

ertial” character embedded in their structure asyatemof (51, 0)Sim(1" 1)y =CeS(r —1") S(t—t') (8 Sjm+ Sim 1)

differential equations of first order in time, not trivially re- (2a)
ducible to a single first-order equatioft) accounts for the
fact that the nonlinear coupling comé least in pajtfrom (i(r,0)a;(r,t))y=cqd(r—r")s(t—t") 8, (2b)

the interaction of the velocity and temperature fields, and not
from the self-coupling of @inglefield; (d) does not project and thermodynamic intensities
the full noise terms of the hydrodynamic equations onto their
linearly most unstable mode; arid) includes the time de- ( kgT
pendence of the control parametds initio. This is done in Cs=
Sec. I, where we introduce a mean fi¢dF) approximation
to the Oberbeck-Boussines®B) equations and an expan-
sion in vertical eigenfunctions, allowing a self-consistent cal-bo
culation of the hydrodynamic fields’ self- and cross-
correlations, in terms of which the ODTL can be defined. u=0, z==3%, (4)

In the second place we aim to compare the main features
of this model with those of previous ones, in order to shedmore realistic than the technically simpler free-slip BC'’s.
some light on the question of which features must be incorNote that Eq(1c) then impliesd,u,=0 atz=+ 3.
porated in a “good” model equation able to account for the  For the temperature field, we will assume the sa®dect
main physical effects present in externally modulatedthermal contacBC'’s atz= = 3 as in the experimental setting
pattern-forming systems like the one in RH]. This is done  of Meyer, Ahlers, and Canne|B]: the temperature of the
in Sec. Ill, where we compare the model of Sec. Il wigh  upper plate will be taken as constant, while that of the lower
the reduction of the model of Sec. Il to a Swift-Hohenberg-plate will have a time-periodic modulation. The dimension-

like equation detailed in Appendix C1, valid for large |ess temperaturd in Egs. (1) is more conveniently ex-
Prandtl numbers and vanishing modulation amplitud®; pressed as

the stochastic Lorenz model recently introduced by the au-

thors[13]; and(c) the modulated-driving amplitude equation T(r,t)=T%z,t)+ 6(r,t) (5)
recently derived by Schmitt and tke [11], which we ex-

tend to include noise in Appendix C 2. We pay special attenin terms of the instantaneous conduction profifesatisfying
tion to the noise and nonlinear coupling terms of these modéhe heat conduction equation

equations, and discuss both the technical and physical valid- )

ity of the approximations introduced in the derivation of the HTo=d;T° (6)

2(Tdag/kv)?
g, Chy=—T7FT—.
T (cyd¥kg)

()

pdv?

For the velocity field, we will assumeigid vertical
undary condition$BC'’s)
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The periodic driving is accounted for by the BC's Equation(14g reduces to an identity fdr=z, so it does not
impose any restriction o(ui). Fori=x,y it reduces to
TY(—3,0)=T(t)=T+A cogwt), (78)
I¥(U,U,) = d(u,u,) =0, (15)
T3,0)=TY1)=T,. (7b)

so(uyu,) and(uyu,) must be quadratic functions af The

The deviationd from the conduction profile then vanishes at figid boundary conditionsi,=u,=u,=d,u,=0 at z= +3
z==+1. Defining the time-dependent Rayleigh number ~ then impose

RO=T'(t)—Tt)=T,— T,+A cogwt), (8) (uxuz)=(uyu,)=0. (16)

Equation(14b) will be used as a self-consistency condition
in what follows.
¢ _ 1 We now introduce a MF approximation to EgglL0),
Tz2H=Tu*+(z=2RO+S(zY), © based on the preceding cosiderrjgtions. Note that (i:ln Hgs.
the only nonlinear terms come from the material derivative
u-V. The usual way to linearize these equations is discarding
these terms by approximating Vu; andu-Vé by zero, i.e.,
one linearizes around the conductive state. This enhances
d greatly the solvability of the equations, but it is clearly a
dissatisfying approximation for a system that can be, at least
at some times, in a fully developed convective state. The MF
;055 = 00,00l + 0 8130, — 3,95 0+ (3,00 approximation consists in approximating thesg terms by .the
ensemble averagealues of the corresponding fields, that is

the conduction profile can in turn be separated as

where T+ (1/2—2z)R(t) is an instantaneouknear profile,
and S(z,t) is a deviation from linearity which vanishes only
for static drivingA =0 (see Appendix B 1 for full detai)s

Applying the transverse projection operaféix VX to
Eq. (1a), and using Eq(1¢), the pressure term is eliminate
and the OB equations are rewritten as

= 6ij01919)) (UjU— Sk ) s (10a
u- Vu;—u- V{u;), (179
0 0= 09;9;0—u,d,T°—=3;(6u; +q;) , (10b)
t i% 202 Loy~ q; U-Vo—u-V(6) (17by
wherei,j,k,/=x,y,z (sum over repeated indexes is under-

stood. The (rigid) BC’s for these equations are (note that we danot approximate the material derivative op-

erator itself. This is in the same spirit of the usual mean field
Uy=Uy=U,=3d,u,= =0, z==+3. (11)  approximation of statistical mechanics, which assumes that
the only important configuration near a critical point is the
_ o spatially uniform one[21]. For the ensemble averages we
B. Mean field approximation have(u;)=0, so in this approximation Eq§10) read

Let's make some considerations about the properties of

the averages of the fields, and 6 over the ensemble of 619}0U;i= 00,99\ + 0( 812095 = 9i97) = (90

realizations of the noiseg; ands;; . First we note that the — 8..010,0)Six (189
horizontal translational and rotational symmetry of the dif- . e
ferential operators in Eq$10), together with the statistical 0,0=3;0;0— U0, T~ 3;((6)u; + 7). (180

spatial homogeneity of the white noise fields, insure that the

stochastic fields;; and 6 are homogeneous in the horizontal We must stress that this is ancontrolledapproximation(as
coordinates. Having a laterally infinite system further insuress the usual linearization aroung= 0), whose accuracy must
that every spatially inhomogeneous configuration of the hype checked posterioriagainst the results of the correspond-
drodynamic fields, will appear with equal probability at ev- jng full equations in all cases where the last can be solved.
ery possible orientation and horizontal offset. Thus we have The pair of equations fou, and 6 in Egs. (18) is now

closed, and we will henceforth work with the systems
(u)=0 (12 Y

and &tVZUZ:UV4UZ+ UVEG—’_SZ(r!t)! (19a

(0), (6%, (6u, (uju;) independent ofx,y, 0u0=V20~uzd,(To+(60)) +Q(r,), (190

13 \where we used thatju; =0 and(6)=(6(z,t)), and defined
2_ 42 2 : .
fori,j=x,y,z, either in the macroscopic conductive or con- Vi=dyx+dy. The noisesS, and Q are defined as
vective states. Using these results, averaging Eds, and s U249 s _
remembering that differentiation operators can be taken out- S0, 1) = (02)V 0= 920,01 S (209
side the ensemble averages, we obtain
g Q(r,t)=— ;0. (20D)

— s 33712\ _ 311
0=0iz7,{uz) = 7 {uiuz), (143 and it is fairly direct to showsee Appendix B Rthat

I 0)y= 95 0)— 3 6u,). (14b) (S,(r,H)Q(r' t"))y=(S,(r,t))=(Q(r,t))=0, (214
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(SAr DS 1)) =—ced(t—t")V4V2s(r—r'), but [¥5,U,(2)U,n(2)dz and [3,,0,4(2) O (2)dz are non-
(21  vanishing except by parity.
Closely following the derivation of the Lorenz model
(Q(r,H)Q(r' t'")y=—cqd(t—t")V28(r—r') (219  [10,13, we retain only the lowest vertical modes leading to a

_ L nontrivial approximation, setting
for any set of test functions satisfying the BQ’kl). Con-

sidering( 6) as a given function of andt to be determined U,(X,Z,1) = Uo(X,1)U,o(2), (233
a posteriori Egs.(19) can be regarded as a systemnlinéar . .
stochastic partial differential equations which, though com- 0(X,z,t)= 0u(X,1)Oy(2) + 6,(X,1)O4(2), (23b

plicated, is amenable to standard analysis techniques.
Tz,t)=Ty+(112=2)R(1) + O(2) Syp(1) + O 1(2) Sy (1),

C. Truncated expansion in vertical eigenfunctions (239

We now introduce an expansion of the fieldgr,t) and ~ Wherex=(x,y), and we replaced(z,t) in the conductive
6(r,t) in vertical eigenfunctiond),(z) and ®,(z). These Profile by its expansion
eigenfunctions are obtained in Appendix A as static solutions - I
of the linear, noiseless OB equatiofig). As shown in Ap- S(2)=00(2)S(1)+01(2)S,() @49
pendix A, these eigenfunctions have definite paritgimnd  which is worked out in detail in Appendix B 1. Defining the

their correct orthonormality relations are inner product{fg}= i’zl,zf(z)g(z)dz, substituting expan-
1o sion(23) in Egs.(19) and in the consistency conditigth4b),
f Uzn(2) 0 (2)dZ= S, (22 and using the parity and orthonormality of the eigenfunc-
-1 tions, we obtain

H(VZ+{0oU%N U= (V] +2{OUs V2 +{OUEH U+ o{®:00}VZ 05+{0,S,}, (259
91 00=(V2+{U008}) 0o+ [{U U 10} R(1) = (Sy(t) +{ 01)){U 0U 50 111U 10+ {U 50}, (25h)
5’t<‘9_1> = {Uz1®,1'}<9_1> —{U1(0®oU,) ,}<‘9_0u_20>1 (250

where the primes denote derivatives with resped.tbdlote that the fundamental mo&g(t) of S(z,t) does not enter these
equations.
Fourier transforming fronx to k, and performing several partial integrations to symmetrize the inner products, we arrive

at
~ k?+2{U 00 o}k*+{0,U}}.— {0000}k ~
o=— , Bo+ VDLW Ey(K.1), 26
diUzo 2+ (U 00} Uzo Ukz*‘{uéo@é} ot VDy(K) Eu(k,t) (263
9 0p=—(K2+{U200}) G+ [{U U 10} R(1) = {U 0U 160 1}(Sy(1) + (1)) T 0+ VD 4(K) € (K, 1), (26b)
3 01)=—{U307}( 1) +{U000U1}( 60U 0), (260)

WhereUzj(k,t) and'éj(k,t) denote the Fourier transforms of the fieﬁﬁ(x,t) anda_j(x,t), respectively. Note tha{t@OU‘z’a
cannot be symmetrized {dJ},0,} because of nonvanishing surface terms. The symmetrization can instead be carried out for
{001} or {U,0U!Y}. HereZ, and¢, are zero-meaficompley Gaussian white noises with correlations

(TR (KD Ep(K 1)) =8,50(k—K')S(t—t") (27)
and intensities

{060}k +2{05051k>+ {040}
[K%+{U}@5}12

D,(k)=(2m)%ck (28a

D (k) = (27)2cq[{U U0} k?+{U U0} . (28b)

The relevant contributiof, (t) to the conductive profile’s deviation from linearity, is given in the long-time asymptotic regime
by
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(UL, @]1sinfwt)— o cog wt) We must now obtain evolution equations for the self-
Si(t)=Aw{zU,)} 271 . (29 correlations in(34). To this end we cast the evolution equa-

! "2 2 ~ ~
{Un101} + o tions for U, and 6, into the form

The expressions fdD,,, D4, andS; are explicitly derived in .
Appendix B. The numerical values of the inner products ap- Xak+f 7’ak,5er5krd2k’ =T, (35)
pearing in Eqs(26), (28) and(29) are given in Table Il

where a,8=U,0, Xu(t)=U,(k,t), and xg(t)="10q(k,t).
. _ _ . This is a direct generalization to a continuous intteaf the
Let us introduce[3] the dimensionless distance to the uysual expressiof22] for a system of coupled, linear ordi-

D. Order-disorder transition line

static threshold, nary stochastic differential equations. Hefe, are zero-
eo=(T = T)/R—1, (30 mean Gaussian white noises with

and the dimensionless modulation amplitude (TakOT g (1)) = (=) Ak i (36)

5=AIR;, (3) In our case Y gk = Yap(kit)o(k—k") and qux grr

=0q,s(K)o(k—k"), where
with R; the static critical Rayleigh numbdsee Appendix

A). The ODTL is experimentally determined as a curve in k*+2{U.,0 k2 +{0,Ul
the €,- & plane, below which the convective pattern develop- YuulK) =0 KA {UL00) , (373
ing in each cycle bears little or no resemblance with the one 200
developed in the previous cycle, whereas above this curve 5
the convective pattern remains essentially unchanged from (k)= — {©00o}k 37b)
cycle to cycle[3]. In terms of the stochastic fields of our Yugl &= Uk2+{U’O®(’)}'
model, this means that in the deterministic state the velocity g
field is essentially time periodic with the period of the forc- — ,
ng. Lo yHmep P Yau(ki)= ~{U0U o} RO+ [S1(0) +(92(1) HU U001},
’ ’ (370
Uo( X t+ 27 0) Uo(X, 1) Yac= ([ U o(X,1) 1D ae,  (32) L
< zO( ) 20( >as <[ 20( ] >as 700(k):k2+{uzoo}v (37d)
whereas in the stochastic state the velocity field at a given
time should be uncorrelated with the field after one period ofind
the forcing, givin
9 gving Uap(K)= 8,0 o(K). (38

{Uzo(X, 1427 @) Uzo(X,1))as=0. 33 Then the second-order equal-times cumulants obey the evo-

(Here the subscript “as” denotes that we are considering théution equations
averages in the asymptotic—long time—regime, to avoid _
any transient effects. Hence if we compute(u,(x,t X DX (D))= = V(K DGO X1 (1))

+ 27/ w) U,o(X,1) )55 for fixed & and increasing,, its value - yB,,(k,t)((xf}k,(t)xak(t)»
will increase from 0 to{[U,o(x,t)]%)s as the ODTL is ,
crossed, and the ODTL itself can be defindd] by the +lap(k)o(k—k'), (39)

tr H
value ep(9) of &, for which which are the corresponding generalizations to a continuous

index k of the well-known results for discrete indexgz2].

_ _ = )
(Uzo(X,t+ 27/ @) Uzo(X,1))as= 2 ([Uz0(X, 1) [as. (34) Defining as usual the equal-time structure fact®gg by

There is no clear-cut criterion to set the numeric factor on the * _ 2 ,
right-hand side tg, and any other value between zero and 1 (DX g (1)) = (2m)"Sep(k, ) S(k—k')  (40)
could instead be selected. However, it is found numerically
that the transition from stochastic to deterministic behavior is.
fairly steep as a function afy, as has already been observed
for alternative analytic definitions of the ODTL such as, e.g., _ _
those of Refs[16] and[18]. This makes the predicted ODTL 9:Suu(K; D) = =275u(K) Suu(k ) = 2yug(K) Sugl ks 1)
relatively insensitive to the precise value of the numeric fac- 1

tor in Eq. (34). Moreover, taking the numeric factor to pe 2quu(k) (418
makes our definition of the ODTL equivalent to the many (2 )

different ones found in the literatuf8,15,16,18. It must be

noted that the spatial average over the horizontal coordinates  diSus(K,t) = = ¥u(K, 1) Syu(K, ) = [ yuu(K)

is unnecessary in our definition, since the self-correlations in

Eqg. (34) turn out to be independent afbecause of the sta- T 700K 1Sk, D) = 7ug(K) Sgak,1),
tistical translational invariance of Eq&5). (41b)

nd noting thatS,,=S,,, we see that they obey the equa-
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FSge(K, 1) = = 27y5(K,1) Syga(k,t) — 27y 44(K) Sgg(k,t) ll. RESULTS AND DISCUSSION
1 A. Order-disorder transition line
+ w%a(k)- (419 We used the model introduced in Sec. Il to compute nu-

merically the ODTL for parameter values corresponding to
) ) the periodic-driving experiment of Meyer, Ahlers, and Can-
Note thatS,; will depend onk only through its moduluk, e [3]. We proceeded by first reducing Eqél), (42), and
at least in the long-time asymptotic regime, because of thess) 1o a finite system of ordinary differential equations
symmetries of Egs(41). This equation system must be (opg’s), discretizingk at intervalsAk and truncating the
supplemented by the consistency conditi®60), which,  gystem at a maximum valuk,,,. The value ofAk was
noting that(u,o) =0, can be cast as progressively diminished, and that &f,,, increased, until
further changes no longer affected the results. In our case it
_ — {U,®0UL} (= sufficed to takeAk=10 2q. and Kma=3q.. It must be
9(01)=—{U,01}(01)+ TJO Sue(k,t)k dk. noted that Eqs(41), (42), and(45) arenot differential equa-
(42) tions ink, the only term relating differerk values being the
integral ofS,, in Eq. (42). As long as this integral is com-

Equations(41) and (42) form a closed system of integrodif- puted to a sufficient precision, any discretizationkas ac-

ferential deterministicequations for the equal-time structure ceptable.

factors. This system must be numerically solved with arbi- ©f 9IVen vaIue; ok andd, we fgSt ;ntegra@ed ]Ehe ODE
trary initial conditions, and after reaching the long-time SYStem corresponding to E¢él) and(42), starting for sim-
asymptotic regime we calculate plicity each integration at=0 with null initial conditions for

S.(Kk,t). The ODE system was integrated successively over
o 1 time intervals of duratiom =27/w, until the structure fac-
<[u20(xvt)]2>as:_f S2(k,t)k dk (43 torsS,g(k,(n—1)T) andS,4(k,nT) consistently differed by
27 Jo less than one part in 10, at which time we considered that
the system had reached its time-periodic asymptotic regime.
[remember that u,(x,t))=0) where the superscript “as” We then integrated the ODE system corresponding tduthe

denotes the asymptotic form &;,(k,t)]. set of equationg41), (42), and (45) over one more period,
We must also find the second-order cumulants at differentaking as initial conditionsS,z(k,nT,nT) for the two-time
times. Defining the two-time structure factors by structure factors the corresponding values of their equal-time

counterpartsS, 5(k,nT). All the integrations were performed
<<X*k(t)X’3kr(t,)>>:(27T)ZS skt a(k—k'), (44) by a quality controlled fourth-order Runge-Kutta method
“ “ [24] with an overall relative precision of 16. In no case
did the value ofn exceed 25.
To find the ODTL, we selected several values of the driv-
ing modulation amplitude’ in the region of interest € §
3:Suu(K,t+ 7,1) = = ¥, (K) Syy(k, t+ 7,t) <0.5. For each value of we looked for a zero crossing of

_’YUH(k)SJ(}(kIt_FTVt)r (4569

and, using Eqgs(26), we find

fwsﬁﬁ(k,(nJr 1)T,nTkdk
9,Sup(K, 1+ 7,0) = — y,,(K,t+ 1) S (K, t+ 7,t) 0 _z (48)

— ya(KSukt+t), (45D J:Sf}f,(k,nT)k dk

where we used the nonanticipative chara¢®8] of U,, to by trying successive values of the mean driving until its
set(Ea(k,t+ T)Uzo(k’ ,t))=0 for 7>0. This system must be valueeg( o) fulfilling the transition conditior(47) was brack-
solved with initial conditionsS,z(k,t,t)=S,4(k,t), taking  eted within an interval no larger than 0.001. The resulting
(0,(t+ 1)) in yyu(k,t+17) to be the asymptotic solution of ODTL is shown in Fig. 1, where we pletj(8) as a function

Eq. (42), and computing the two-time velocity correlation as Of 6. The noise intensities; andc, were taken equal to their
thermodynamic valueg3), which, for the parameters of Ref.

_ . 1 (= [3], are
(Ut ) U0 | ST+ 70K d
0

Cs=7.206<10° 7, c,=3.312x10°“ (49
(46)
We also setw=1 as in Ref[3].

With these results, the ODTL is defined by the condition
B. Alternative approaches
fwsﬁﬁ(k,T,O)k dk= %jwsﬁﬁ(k,O)k dk, (47) Here we present, for comparison purposes, the ODTL's
0 0 computed from two different, alternative model equations.

The first one is a Swift-Hohenberg-like equation, which can
whereT=27/w. be derived from Eqgs(26) as an approximate limiting form
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FIG. 1. Order-disorder transition line predicted by the model of  FIG. 3. Order-disorder transition line predicted by the model of
this work (line). The circles are the experimental data of Meyer, this work (continuous lingand by the modulated-driving amplitude
Ahlers, and Cannell3]. equation(52) (dashed ling

for large Prandtl numbes- and small forcing amplitude. same way as is done for the static-forcing amplitude equation
As is shown in Appendix C 1, in this case the pair of sto-[8]. The MF approximation to this amplitude equation reads
chastic differential equation®6a and (26b), and the con- - )

sistency condition(260), can be reduced to the single sto- T A=[£205+ e(t) — €.~ G(|A[*) A+ Ea(X,1), (52

chastic differential equation . . . T
e d 'al equat where A(x,t) is the amplitude of the vertical velocity field.

Todp(X,t) =[ (€t €1) + 6 CO wt) + €,5,(1) The coefficients,, £, ¢, andg, and the intensit , of the
Gaussian white noise fieléy, are defined in Appendix C 2
—xM(V3+ qi)z—g<ﬁ>]ﬁx,t)+ JDE(x, ), for both free-slip and rigid BC's, and(t) = ey+ 6 cost).
The ODTL can be computed from this equation by the same
(50 procedure as for the SH equatipiB]. For rigid BC'’s, ther-
mal noise intensity, and parameter values corresponding to

where i(x,t) = Touo(x,t), and &(x,t) is a Gaussian white the experiments of Ref3], we obtain the ODTL shown in
noise with zero mean and Fig. 3.

(E0GDE0C,1)) = 80x=x") (t=t"). (52) C. Comparison of models and experiment
This equation has the same form as the MF approximation to The main formal differences between E§0) and the SH
the SH equation introduced in R¢fL9]. The ODTL can be equation are the nontrivial threshotd, the presence of the
computed from this equation by the same procedure of Rekxtra driving terme,S;(t), and the displacement of the criti-
[19]. This ODTL is shown in Fig. 2 for thermal noise inten- ¢cg] wave number frong, to a near valuej, . As shown in
sity and parameter values corresponding to the experimenjgppendix C 1 the threshold shif¢; and the extra driving
of Ref.[3], together with the one predicted by the SH equa-¢,S, (t) are almost negligible for all values of the mean forc-
tion for thermal noise. ing €, in the experiments of Meyer, Ahlers, and Canrfial,

The second alternative model equation is the amplitudeng the critical wavelength shift amounts to less than 4%;
equation for parallel convection rolls originally derived for hence these differences are not expected to be significant for
free-S"p BC'’s by Schmitt and Lake [11], which takes into the Comparison with the experiments_
account the time-periodic driving. As shown in App. C2,  The parameters, and x? in Eq. (50) are essentially the
thermal noise can be incorporated into this approach in thgame as for the SH equation, as shown in Appendix C 1.

This is somewhat to be expected, as these coefficients are
, : , , determined by the linear stability analysis of the hydrody-

0.30 L J namic equations. On the other hand, the parametenrsd D
are larger than their analogs in the SH equation. As can be
0.20 - seen in the derivation in Appendix C 1, their precise value
g Deterministic depends on the scaling relating,, and ¢, since they give
o010k 1 origin to the only terms in Eq(50) which are not homoge-
' . neous iny. It must be noted that any such scaling leaves
ool " Stochastic | constant the prod_uch. The scaling us_ed in writing Eq.
(50) was chosen in such a way as to display explicitly the

coefficientsry andg in the same form as they appear in the
SH equation, and with similar values.
In this context, it is worth noting that the thermal value
FIG. 2. Order-disorder transition line predicted by the model offor D in Eq. (50) exceeds the thermal noise intensity in the
this work (continuous ling its reduction to a Swift-Hohenberg-like SH equatior{1] by a factor of~40, as shown in Appendix
equation(50) (dashed ling and the SH equatiofdotted ling. C 1. By accounting for the many horizontal modes of the

0.00 0.10 0.20 5 0.30 0.40 0.50
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hydrodynamic equations which become linearly unstable jusThe periodic-driving amplitude equation of Rdfl1] as-
above the critical Rayleigh number, van Beijeren and Cohesumes a common amplitude for both the temperature and
[15] found that the effect of thermal noise on the SH equa~vertical velocity fields, which leads to single first-order

tion should be enhanced over the earlier estimate by Ahlerdifferential equation for this amplitude. This is in the same
et al.[2] by this same factor. The model presented here fullystanding as the hypothesis of a single order parameter used
accounts for the linear instability &>R. of horizontal in the derivation of the SH equatidi®]. For the periodic-
modes with wave numbers near to but different frém driving amplitude equation this leads in particular to the tem-
=(q,, for the only approximation involved in deriving the perature and vertical velocity fields having the same depen-
noise terms and thinear terms of Eqs(26a and(26b) is  dence on the horizontal coordinates. This is clearly not the
the truncation of the expansion in vertical eigenfunctionscase for the fields in Eqg26) (though it is true for the
Since the vertical modes we keep are the same as in theyrenz mode[13]), which even without noise have solutions
derivation of Ref[15], it was to be expected that we reach to j, \yhich the difference in horizontal coordinate dependence
a similar value for the noise intensity in a SH-like equation. yyas not reduce to a mere global phase factor. The inclusion

The °Ve“?‘” properties Of. the amplitude equqti(;ﬁﬂ) of noise further enhances this effect, in a way that is not
were extensively discussed in R¢L1]. Here we will just simple to include in the scheme of amplitude or SH equa-

note that, both for this equation and for the SH equation, th(i?ions. It is interesting to note that for the parameter ranges of

slope of the convective heat current as a function of thE’Ehe experiment by Meyer, Ahlers, and Canriél—which in

driving is known to be inversely proportional to the nonlin- ) .
ear coupling parameteg near the convection threshold particular has a moderate Prandtl number—the magnitude of

[2,11. As noted by Schmitt and lake [11], for time-  the noise inu, is much smaller than i, in Eqgs.(26). This
periodic driving this slope is much smaller than for staticmakes Eqs(26) very reminiscent of dspatially extended
driving, implying a correspondingly larger value fgr Cor-  Kramers equation, which is well known to be reducible to a
respondingly, the value fog in Eq. (50) is several times single Langevin equation only for large damping, corre-
larger than its value for the SH equation, as shown in Ap-sponding in our case to large Prandtl numbers and a driving
pendix C 1. not too near the convective threshold.

By comparing Figs. 1, 2, and 3 we can see that the model Other aspect deserving consideration is that the periodic-
introduced in this paper, its reduction to a Swift-Hohenberg-driving amplitude equatio62) reduces fors— 0 to the cor-
like equation, and the modulated-driving amplitude equatiorfesponding amplitude equation for static forcif®j, as is
all predict essentially the same ODTL for thermal noise.evident from its coefficients dependence with in Egs.
These ODTL's are also very close to the one predicted by théC15). In particular the value for the nonlinear coupling co-
generalized Lorenz model previously introduced by the auefficient reduces to the same one in the SH equaltidn
thors[13]. The main feature that all these model equationsHowever, this value fog is much smaller than the experi-
share is that they are derived from the start for time-periodignentally observed valugg], even accounting for the differ-
driving, which leads in all cases to a nontrivial convectionence in Prandtl number and cell aspect ratio between the
threshold. This feature clearly sets them apart from the usu@xperiments of Ref§2] and[3]. From the measurements by
SH or amplitude equations, in whose derivation the drivingAhlers et al. [2] of vertical heath flux versus driving in the
is assumed to be static, and its time dependence is introducgghatic case around the convection threshold, it is clear that the
a posteriori[1]. Their convection onset is thus trivial, and all value forg in the SH or the static amplitude equations is too
of them predict essentially the same thermal-noise ODTlsmall even in the static case. The same conclusion can be
that is shown in Fig. 2 for the SH equation. This suggests theirawn from numerical simulations of the SH equat[@3)].
likely hypothesis that any model equation correctly incorpo-Thus a proper model of periodic-driving convection should
rating the driving time dependence will predict approxi- not reduce in the static case to the static amplitude or SH
mately the same ODTL as the ones discussed here. Howevesguations with their static coefficients, but instead to similar
it must be emphasized that the ODTL predicted from Eqequations with an appropriately larger nonlinear coupling.
(52) is probably not meaningful, since for a significant partThis is precisely the case of EGO), which turns out to give
of the parameter range it is used well beyond its validitya value forg very similar to the experimental ones.
rangeA?g®<1 [11]. As is seen in Figs. 1, 2, and 3, thermal noise is still insuf-

On the other hand, the mentioned model equations tredicient for the predicted ODTL to match the experimental
convective structure in very different ways: The model intro-values of Ref.[3]. However, the predicted ODTL is still
duced here and its reduction to a Swift-Hohenberg-like equamuch nearer to the experimental values than that predicted
tion fully respect the translational and rotational symmetry offrom the MF approximation of the SH equatipt9] (or from
the hydrodynamic equations, so any structure appearingquivalent model equationshown in Fig. 2. It can be
above the convective threshold is spontaneously selected Ighown that a noise intensity 250 times the thermodynamic
the model dynamics. The Lorenz model and the amplitud@ne needs to be used for the SH equation to predict an ODTL
equation instead seleet priori some preferred convective near the one predicted by the present model for thermal
structure, so they do not allow f@pontaneousymmetry  noise. Hence the consistent incorporation of the driving time-
breaking. Thus, in spite of the numerical coincidence of thedependence reduces the misfit with the experimental values
ODTL'’s predicted by all these models, we think that the onefrom a factor~5x 10* for the noise in the SH equatida9]
introduced here is conceptually more appealing. to a much smaller factor-200. This is a step forward, as it

These model equations also differ in their attention to thedrastically reduces the requirements on any mechanism pro-
inertial effects embedded in the hydrodynamic equationsposed to account for the remaining misfit.
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It should be noted that even for the present model, flucassumed for their spatial and temporal variatiph®|. This
tuations in the temperature of the RayleighaBed cell is conceptually satisfying, since it is well known that sym-
plates are very unlikely to provide the needed correctionsmetry breaking in these systems occurs spontaneously, rather
Recasting the results of RfL9] in terms of multiplicative  than by external action. Though a rotationally covariant am-
noise in Eq.(50) shows that fluctuation intensities compa- plitude equation has been recently derived by Grah&2,
rable to that allowed in experimental settin®3,5] leave  even if the perturbative expansion developed by Schmitt and
the predicted ODTL unchanged, as is the case for the SiUcke[11] could be extended in this way it will undoubtedly
equation. lead to a very involved calculation, and the necessity of us-

ing it for Ag®~1 casts doubt about its possible usefulness
D. Concluding remarks in analyzing the experiments of R¢8].
. . . . On the other hand, the approach presented here retains a

In this work we derived a set of evolution equatid®) )| rotational (and translationalsymmetry in the horizontal
for the velocity and temperature fields, and 6 in &  pjane, even at times at which the system is well above the
Rayleigh-Beard cell with time-dependent forcing. The ap- convective threshold. The mean square values of the fields at
proach we implemented is fairly general, and can in principlenese times arécorrectly far from zero in the vicinity ofk
be extended to a number of pattern-forming systems with-q_  but the structure factors present no trace of rolls, hexa-
spontaneous symmetry breaking. The derivation relieons, or other symmetry-breaking structures. Part of these
heavily on two simplificating assumptions: the mean fieldpehavior is due to the presence of noise, in the same sense
approximation and the truncated expansion in vertical eigenthat the(asymptotig probability distribution for a noisy sys-
functions. tem above a pitchfork bifurcation retains the symmetry of the

The MF approximation has been previously applied to theyotential, while the deterministic solutions spontaneously
SH equatiorj19] and to the Lorenz model with noi§&3]. In  preak it[28]. But in the present case the MF approximation
all cases in which comparison with Monte Carlo integrationstrongly contributes to this effect: the assumption that the
of the corresponding full stochastic equations was availablesnsemble averages are spatially uniform is correct, but the
it has proved to be a very reliable method of computingmacroscopic states experimentally observed do not corre-
self-correlations. In particular, ODTL’s computed from the spond to these averages. The experimental observation time
MF approximation to the Lorenz model with noigE3] dif-  scale, while long compared with the time scale of the ther-
fer from the Monte Carlo results by 2-3%. The coincidencemodynamic noise, is much shorter than the times needed for
of the MF results for the SH equation with stochastic Simu-this noise to induce the System to switch between macro-
lations, like those in Ref26], is also striking. The technical scopically distinguishable convective states, at least while
advantage of the MF approximation is that the ensemble avyell-developed convection persists. This can be seen, e.g., in
erages of the fields are independent of the horizontal coordihe Fourier-transformed shadowgraphs obtained recently by
nates, enabling the use of linear analysis methods like Foup/u, Ahlers, and CannelE] for static forcing: below thresh-
rier transforms without the introduction of cumbersomeold the structure factor has full rotational invariance, show-
convolution terms. In this aspect, Eq26) are treated as ing an annular maximum &= 0., but above threshold it
linear equations for the fields. The introduction of the un-shows six very localized maxima with hexagonal symmetry
known field averages is not a complication, as long as all ongthough still fork=gq,). Given the symmetry of this experi-
is interested in are average quantitieS like the fields’ SE|fmenta| Setting’ itis to be expected that Shadowgraphs taken
correlations or structure factors: the effective linearization ofgyer g long enough time will show these peaks to drift under
Egs. (26) allows these quantities to be obtained solving athe influence of noise until they uniformly cover the cycle
closed, self-consistent system of equations like B4B.and k=g, corresponding to the rotation of the convective pat-

(42). o _ _ ~ . tern over all of its equivalent angular orientations; but this
The truncated expansion in vertical eigenfunctions is justime scale is far longer than the experimental one.
tified both by the largéinfinite, in our casgaspect ratio of This same translational and rotational symmetry precludes

typical Rayleigh-Beard cells, and by the smallness of the the inclusion of other disordering effects, such asstrac-
driving R(t)/R.—1 in the situations considered here, which tyral disorder introduced through defect nucleatithis is
constrain the amplitudes of highel’-order vertical modes t%]so true for any model assuming a given ordered pattern in
remain small at all timegl,10,11. For a driving well above  the convective state, such as the Lorenz m¢dé] or the

the convective threshold it is likely that more vertical modesampmude equatiofil1]). It is currently well known[1,30],

will have to be retained. This would require a treatment Ofthat under suitable CircumstanceS, the Spat|a||y inhomoge-
the vertical eigenfunctions more careful than the one givemeous state spontaneously emerging above threshold does
here, like, e.g., the one given by Crd&¥]. It is worth not-  not show a perfectperiodid array of rolls or cells, but a

ing that for the truncated expansi@8), the evolution equa-  collection of ordered domains with no overall correlation.
tion for u,o(X,t) would be linear in the fields even without The underlying reason for this is that the homogeneous state
assuming the MF approximation. bifurcates to the structured statelependenthat many loca-

It must be emphasized that, in contrast with other aptions, so even if the emerging state has the same structure
proaches like the introduction of amplitude equations or theeverywhere(e.g., rollg, it is improbable for these structures
Lorenz model, our scheme preserves the full translationalo emerge with the same orientation or spatial phase at all
and rotational symmetry of the Oberbeck-Boussinesq equdecations. This introduces an additional source of “random-
tions. No symmetry-breaking pattern is introduced in theness” (besides thermal noigén the bifurcation to a struc-
derivation, nor do asymmetric scaling properties need to béured state: it appears much less probable for the very same
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TABLE |. Coefficients for the vertical eigenfunctions.

n R, a; Rea, Ima, Cni» Chy Rec,,? Imc,,,? Rec;,? Imc;,?

0 1707.76 3.97370 2.125 87 5.194 39 1.475 27 8.907 25 0.098 06-4.538 55 7.664 87
1 24.988.4 7.256 94 3.664 40 7.370 66 1.426 99 2.365 89—2.369 26 0.868 90 3.23355
2 171763 10.4348 5.231 09 9.817 03 1.419 07 —0.002 43 —1.01382 0.879 21 0.504 80
3 756 886 13.5913 6.802 15 12.3773 1.416 50 —0.202 07 —0.201 14 0.27523 —0.07443
¥x107?)

pattern of domains to be reproduced from one cycle to the (ag_qz)saz+qusz: 0, (A53)

next, than to reproduce the same perfect pattern. Even for a

static experiment there is no guarantee that the domains will

eventually heal in a perfect pattefsome topological defects (&3— %0+ 9°R6=0, (A5b)
may survive indefinitely1]), and in experiments like the one

by Meyer, Ahlers, and Cann€llB] the control parameter is . e T T _Tiv o 2T = =u_Zm
cycled again below threshold sooner than the pattern healin\’(j”tr;~ BC's u.= uz=U; 24 EZ_O .and 0=0"= 0

can proceed. Thus it could be expected that the inclusion of 4” ¢’ =0, respectively, at=* 3 (the prlmeszdenote differ-
the effects of defect nucleation would lead to a predictecEntiation with respect ta). We will assumeg®>0, R>0.
ODTL for thermal noise nearer to the experimental data than NOW we must find the real eigenfunctions and the eigen-

the ones presented here. Work along these lines is iHalues of Eq.(AS). It is straightforward to see that the dif-
progress. ferential operator in EqA5a), with its boundary conditions,

is not Hermitian. Neither is the operator in E@5b), with

its boundary conditions. Hence the left and right eigenfunc-

tions of Eq.(A5a) will not be the same, and neither will
This work was supported in part by CONICOR Grant No.those of Eq.(A5b). However, it can be verified by partial

AIF-3854/95, SeCyT-UNC Grant No. 89/96, and CONICET integration that for any two function$(z) satisfying the
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Grant No. 653/1997. BC's of Eqg. (Aba), and g(z) satisfying the BC’s of Eq.
(A5b),
APPENDIX A: VERTICAL EIGENFUNCTIONS
We perform a standard linear stability analysis, looking (12 5> o3 12 2 o3
for the marginally stable solutions of the linearized, noiseless 71/29(2)((92—q )*f(z)dz= 71/2f(z)((9z—q )°9(z)dz
version of Egs(10) with static forcing; that is, we look for (A6)
solutions of
So we see that the right eigenfunctions of E&5a) will be
0=V +a(8,V?~d;9,) 6, (Ala)  identical (apart of multiplicative constantso the left eigen-
) functions of Eq.(A5b), and vice versa. Hence it suffices to
0=V<0+Ru,. (Alb)  find the right eigenfunctions for both EqgA5).
Here we made use of the fact that the static conduction pro., W& 100k for solutions of the formg = ¢'“%, u,=e'%
: e Substituting in Eqs(A5), a characteristic equation results in
file satisfies
both cases,
0=0T¢, TY(-3=T, TY)=T" (A2
. . (@®+0%)°=0’R, (A7)
with solution
T2)=(2—2)T'+ (i +2)T", (A3) which has six complex solutions o, | =1, 2, and 3, with
and defineR=T'-TY. The pair of equations far, andé in _ \/ﬁg__g
Eq. (A1) is closed. Fourier transforming from=(x,y) to a1(q,R)=V(g°R)"°~q*, (A8a)
q=(0dx.qy) gives
0= (2—q%)%0,— 070, (Ada) ay(0,R) =\E(~1+i3)(g?R) -2, (A8D)

(2 qa\DL BT
O anoTR: A as(q,R) = H(—-1-13)(°R)P-g2.  (A8C)
with BC's U,(q,2)=4d,U,(q,2)= 6(q,2)=0 atz=+1 (the

tilde denotes the transformed fieldS his pair of ordinary Note thataz= a3 (the asterisk denotes complex conjuga-
differential equations can be cast as a single equation faon). From the fact that both the differential equatidA)
eitheru, or 6, and their boundary conditions are everzinwe see that the
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eigenfunctions must have definite parity. Moreover, they will - co

depend on the wave numbegonly through its modulug, as a(qu;R):CI[ Sins} [@1(q,R)Z]
expected from the rotational invariance of E¢&1) in the
(x,y) plane. The eigenfunctions will also depend®nas a

parameter.
The eigenfunctions can be cast in the forms

co

* Sij[az(q,R)zHc.c. . (A9b)

C2

where the cosines and sines correspond respectively to even
co and odd eigenfunctions, and we assume thatindc; are
Si j

nile(a,R)z] real. Substituting the even form @f(q,z;R) in the BC's of

uy(q,z;R)= Ci{
(A5b) gives a homogeneous system of three linear equations

,|co for the coefficients,, c,, andch , whose coefficient matrix
+ cz[ Sins}[az(q,R)z]+c.c. . (A% o b2 2
cog a4/2) cog a,/2) cog a3/2)
M«(q,R) = — a% cog a4/2) — ag coq a,/2) - a% cod a3/2) . (A10)

ar(a2+g2)sin(ai/2)  ax(as+g?)sin(aal2)  as(ad+g?)sin(asl2)

Substituting the even form af,(q,z;R) in the BC's of Eq.(A5a) gives a completely equivalent system, with a coefficient
matrix

coq a4/2) coq a,/2) cog a3/2)
a?(a?+209%)cog a/2)  ad(ad+29?)cod ayl2) ai(as+2g?)cog agl2)

The corresponding coefficient matrices for the odd form#@f,z;R) andu,(q,z;R) are

sin(a;/2) sin(a,/2) sin(as/2)
Mo(q,R)= —af sin(a;/2) — aj sin(ay/2) — aj sin(a/2) (A12)
—ai(ai+g?)codar/2) —ay(as+0?)coganl2) — az(as+qg?)cod agl2)
and
sin(a4/2) sin(a,/2) sin(a/2)
Mo (q,R)= @y coS a4/2) @y COS anl2) a3 COY a3/2) , (A13)
a3(a2+209%)sin(a1/2)  a5(as+29%)sin(ayl2)  ai(as+2g?)sinasl2)

respectively.

The solvability conditions déde(q,R)=0 and de¥l;(q,R)  Ry(qo)=R.=1707.76, at which the first convective mode of
=0 both give the same equation relatipggindR, which we  the OB equations destabilizes. FR<R; all modes are

will not write here for brevity. Numerical analysis of this stable, and the system is in a purely conductive state. For any
equation finds a succession of curves ondhR plane where ~ given value ofR, all values ofq such thatR;(q) <R corre-
detM, vanishes. The solvability conditions d&1(g,R)=0 spond to linearly unstable modes of the OB equations with

and deM(q,R)=0 are equivalent too, and define another VaVelengtha.

t of the-R bl it d with the first To construct a complete, orthonormal set of vertical
set of curves on th@-R plane, Interspersed with the firs eigenfunctions, we must choose a fixed valuegofThough
ones. The first five of these curves are shown in Fig. 4

: . . it could seem conceptually more appealing, choosing for
Considered as functiong;(q), i=0,1,2 ... (the even and gach eigenfunction the corresponding critical vaiydor q

odd indexes correspond to even and odd eigenfunctions, rgyould not give mutually orthogonal left and right eigenfunc-
spectively, each of these curves has a minimum for progrestions, as they will belong in this case to different differential
sively increasing valuegqy<q;<q,<--- of q, from which  equations. We select, as usualg=q., and defineR;

it branches upwards in the R plane. The poinfqg,Ry(dg)) =R;(qy). The first four valuesR; are shown in Table I, as
corresponds to the well-known values of the critical wavewell as «;(q¢,R;) and @,(q.,R;). Accordingly, we take as
numbergy=q.=3.11632 and the critical Rayleigh number our velocity and temperature right eigenfunctions



57 NOISE AND PATTERN FORMATION IN PERIODICALLY ...

log,, R

FIG. 4. CurvesRi(q), i=0,...,4. Theminimum of Ry(q)
defines the pointd.,R,).

~ Cco
U,i(2)= uZ(qC’Z;Ri):Cill[ Sirj[al(qcvRi)z]

co
+ C{z{ Sirj[az(qc,Ri)z]Jrc.c. , (Al4a)
_ co
0i(2)=0(qc,z; Ri):Cil[ Sins}[al(%aRi)Z]
co
+ ciz[ Sirj[az(qc,Ri)z]Jrc.c.. (Al4b)

The corresponding coefficients; andcj; are the solu-
tions of the equation systems

!

Ci1 Ci1
M(qe,Ri)| Ci2| =0, M'(qe,R)| €2 | =0,
¢t ciy

(A15)

respectively, wheré stands for eitheM, or M, according
to the parity ofi, and similarly forM’. The coefficients;;

andcj; can be selected to give mutually normalized eigen-
functions. Their values for=0, 1, 2, and 3 are shown in

423

(a)

(b)

) |
0.0
z

0.5

FIG. 5. Vertical eigenfunctiond),(z) (a) and ®,(z) (b), n
=0, ...,3. Thenth eigenfunction has nodes in— 3<z<3.

1. Conductive profile

The instantaneous conductive profile is the solution of the
heat conduction equatigB) with the instantaneous, inhomo-
geneous BC'S7). It is convenient to separate it as a linear

profile plus a deviation from linearit$(z,t), i.e.,
T%z,t)=T,+ (1/2—2)R(t) +S(z,t), (B1)

where R(t) is the instantaneous Rayleigh numig8y. The
equation forS is then
8S=02S— (12— 2);R(1), (B2)

with homogeneous BC's at=+ 3. Substituting the trun-
cated expansion

S(z,1)=04(2)So(1) + 01(2)S,(1), (B3)

Table I. With no generality loss we have furthermore setyyjtiplying by U,;(z), and integrating ovez, we obtain

Cijzclj'
The first four normalized eigenfunctiondl,;(z) and

®,(2) are plotted in Fig. 5. They can be shown to form a

mutually orthonormal set, that is
J’llz
—-1/2

Note thatU,;(z) and ®,(z) have the parity of their index,
and showi nodes betweem= — ; and 3, as expected.

Uzi(z)®j(z)d2= 5” . (A16)

APPENDIX B: EXPANSIONS IN VERTICAL
EIGENFUNCTIONS

Si(t)=—{U101}Sy(t) —{U,1(1/2-2)}Aw sin(wt),
(B4)

where we used the orthonormality relatigh),i®;}=&j; .
We also se{U,;03}=0 because of the eigenfunction’s par-
ity, and {U,,07}=—{U,,01} by partial integration. The
positivity of {U,,®;} ensures the existence of a periodic
long-time asymptotic solution, which is

B {U,,0]}sin(wt) — » coq wt)
Si(t)=Aw{zUy} (UL007+ o2 . (B

Here we used the parity &f ,; to set{U,;}=0. The numeri-

In this appendix we derive the projections over the rel-cal values ofzU,;} and{U,,®1} are given in Table Il. An
evant vertical eigenfunctions of the instantaneous conductivexpression foiSy(t) can be found in the same way, but we

profile and of the noise amplitudes.

do not show it here sincg, does not enter Eq$26).
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TABLE Il. Inner products of the vertical eigenfunctions. where s;;(r,t) are zero-mean Gaussian white noise fields
with self-correlations given by Eq2a). A thoroughly simi-
{Uz0U 0} 0.781 901 {U20U 0} 9.340 89 lar procedure leads to
{0,0,} 1.297 86 {0,600} 12.8977 L cares o
(010} 135.587 (U,00 10.2284 (SAMDSAr',t"))=—csd(t—t")VI(Vo=3;) 6(r —r).
{ULE} 551.073 {U,0]} 40.8770 ®1)
{U,U,07} 4.966 78 {U,000U} 4.803 06 Fourier transforming fronx to k gives
{zU,} 0.173 930 _ _
(S (k,z,1)S,(k', 2" ,t"))=(2m)%csd(k—K") S(t—t')k?
2. Noise terms X (k*=32)?8(z-2'). (B12)
The noise term in Eq(19b) is The noise term in Eq(26b) is defined as
J . - 1/2 -
QrH=———ai(r.b), (B6) vDa(k)éa(k,t)=Qo(k.t)=f 1/2Uzo(Z)Q(k,z,t)dz,
| _

(B13)
where q;(r,t) are zero-mean Gaussian white noise fields ) ) . . )
with self-correlations given by Eq2b), andr; stands for the ~Which shows that it too is a zero-mean Gaussian white noise

ith component of. Then field. Its self-correlation is then

PR (9§ (k1) QoK' t"))y=(2m)%c8(k—k') S(t—t")

(Q(r,t)Q(r’,t’)>=cq6(t—t’)ﬁ—nﬁé(r—r’). (B7) 12 "
! XJ dzUzo(z)J dz'U,(2")

For any set of test functions iro<x,y<w, —i<z<j i i

satisfying the temperature vertical BC'd1l), we have X (k2—d2)8(z—2")

dy 6(Xx—x")=—d,8(x—x"), so we immediately obtain

(Q(r,)Q(r' ,t')y=—c,8(t—t")V2s(r—r') (B8

for any set of test functions in-o<x,y<w, —3<z<j
satisfying the velocity vertical BC'§11). Fourier transform-
ing from x to k gives

=(2m)2%cqd(k—K")o(t—t")
X[{U U 0tk?—{UUj%}]. (B14)
Integrating by parts the terfilU, U} to symmetrize the

inner product, we obtain the result in E¢27)—(28b).
The noise term in Eq(263 is defined as

(0% (k,z,t)O(K', 2’ ,t"))=(2m)%cqd(k—k") S(t—t")

X (k2= %) 8(z—2'). (B9 VDu(k)§u(k,t):5zo(k,t)=m
4
The noise term in Eq199 is 112 _
xf 04(2)S,(k,z,t)dz, (B15H)
S = oy 2L 27 B10 o
L1, 0)= 5 5r o a_rza_rj Esjk(f,t), (B10) then
|
% _ , k2 12 12 T,
K,t)S,o(k’,t"))=(27)cd(k—Kk")S(t—t’ —f dz e zf dzZ’0y(z')(ke—95)°8(z— 7'
(Sp(K,1)Syo(K" 7)) = (27)“Ccsd( ) &( )[k2+{Uéo@6}]2 I o(2) o o(Z")( 2)°6( )

{0000k —2{0,05}k?+ {00}

=(2m)%csd(k—k’)S(t—t')k? — (B16)
) [k?+{U5006}]
Integrating by parts to symmetrize the inner products, we obtain the result ifZ0s(28a).
|
APPENDIX C: ALTERNATIVE MODELS Closely following the procedure for the Lorenz model, we

1. Reduction to a Swift-Hohenberg-like equation first set

It is well known that for a larger and the small amplitude ~ 1 ~ —~
5 of the forcing, the Lorenz model of Refgl0,13 reduces Oo(k,t)= m[_atuzo(k't)_ Yuu(K) Uzo(K,1)
to a first-order amplitude equati¢@9]. Thus it is of interest
to study the same limit for Eq$26). + Dy (k) Ey(k,1)], (C1)
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which follows from_Eq.(26b). Using this and Eq(37), we
can integrate out#,) in Egs.(26) to obtain

(01)=(uZ)+(M[Ul), (C2)

whereM is a memory term exactly like the one in RELQ],
which is negligible for small modulation and near {ls¢atio

convective thresholdi.e., for ey<<1). Substituting in Eq.

(26a and takingo>1, we obtain

wu(K) + g5(K)
—Y(YUTZ)”(atuzak,t)
wu(K) Y(K) ,
:_|:_%_{UZOUZO}R(t)+{UZOUZO®1}
X[Sy(t)+(uZ)] [ Uso(k,t) + VD y(K) E ok, t)
’}’aa(k) —_—

In writing this equation, we neglected terms which become
small for o>1, in particular a second-order time derivative

of U, on the left hand side, and the memory tefi).
Defining

_ Yuu(de) + ¥ee(de)
o~ Yuel qc){u 20U zo} R’ €4

we rewrite Eq.(C3) as

TodtUo(K, t)
Yuu(K) ¥90(K) + vyl k){UZOUZO} Rc
Yuu(K) + ¥go(K)

Yuol k){UZOUZO}RC
Yuu(K) + vgo(K)
- {UZOUZOG)j’L}

{UZOUZO} Rc

Y0o(K) VD 4(K) €(K,1) = ¥uo(K) VD o(K) € (K, 1)
')’uu( k) + 7’00( k) '

= TO

—T0 60+5003wt)

Uk, 1)

[Sl(t)+<U§O>])

70
(CH

Now we expand th&-dependent coefficients of EG5)

in powers osz—qﬁ, in the same way as is done in the

derivation of the SH equation in R¢B(a)]. In particular, we
can see that

- Yuu(K) ¥0a(K) + Yyl k){UZOUZO} R¢
° Yuu(K) + 795(K)

=a(k®— ) +b(k*—gg)’=e;—x*(K*—q3)% (C6)

425

where we definede,;= —a?/(4b), x*=-b, and g2 =q?
—al/(2b). The remaining coefficients are evaluated kat
=(q,. Introducing#(k,t) = 7oU,o(k,t), we obtain
oK, 1) =[(€o+ €;) + & cog wt) + €,S,(1)
—x"(K¥= %)= gy T(k.b)
+DE(xk,t), (C7)

Where?is the Fourier antitransform of, and we defined

509D u(Go) + ¥5(40) D (e
D:Tgm(q) (90) * 7us(9e)Dolde) 8

[Yuu(do) + 7(90(qc)]2

Here&(k,t) is a zero mean Gaussian white noise field with
(E(k)E(K't"))=58(k—k')S8(t—t'). Fourier antitrans-
forming leads to Eq(50) of the main text.

For o=6, the numerical values of the coefficients are

70="5.409< 102,
€,=2.022x10 3,
x*=3.839x 103,
02 =10.44,
€;=—3.720< 103,
g=1.271,

JD=1.938<10"5.

The corresponding values for the SH equation[a&]
70="5.523<10" 2,
€,=0,
x*=3.810x1073,
g% =dg,
e,=0,
g=0.2330,
JD=0.3423<10" 5.

2. Amplitude equation for time-periodic driving

For modulated Rayleigh-Berd convection without noise

a modified amplitude equation was derived by Schmitt and
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Lucke [11]. They performed a systematic nonlinear pertur- (A, 0)=7O[14+A2:2(w)+O(A%] (C153
bation of the hydrodynamic field equations using a Poincare- ' ’
Lindstedt techniqgue combined with a multiple-scale analysis,
amounting to an expansion in powers ef{e;) 2, wheree, (N, 0)=O[1+A2822(w)+0O(A%], (C15b
is the reduced critical Rayleigh number for the convection
onset in the presence of modulation. The expansion is intro- _ o ol .
duced by assuming a parallel roll convective structure, defin- 9(A,0)=g'9[1+A%g®(w)+0O(A%], (C159
ing the slow length and time scal¥s= »"x andT,= 7"t in
addition to the fast variations ix andt, and setting eo(X,0)=K2e2(w) + O(K%), (C15d
€—€.=nert+ Plept e, (C9a

ke(A,0)=kP[1+ A% (w)+O(A%], (C15e
u(r,t)= nug(r,X,t,T)+ 7%uy(r,X,t,T)+---, (C9b ~
(1) =l A ) (CSh andA=A/(1+¢p) in terms of the main text parameters.

5 For free-slip BC’s, the zero modulation amplitude param-
6(r,t)=n0o(r,X,t, )+ 7°0:(r, X,t, ) +--+, (C9O  eters are

whereX={X;,X5, ...} andT={T,,T,, ...} denote all the

slow length and time scales. The hydrodynamic fields are ©)_ 2 o+l 200)_ 8
assumed to have the form TTe 2 g T2 2
37 3
(C16)
v(r, X,t,T)=AX,T)f(r,1), (C10

wherev stands for any of the fields; or 4, f(r,t) is an
eigenfunction taking into account the vertical BGisclud-
ing the time-periodic modulatiorand the assumed convec- gng the leading-order corrections are
tive structure, and

2
9(0):;' k=2,
v

3

2
(o+ 1)4g[1+?

7
A, D)= 78X, T) + 72AL (X, T) +-+-.  (C1D) A2 1+ %) ] . (C173
de

Inserting these expansions into the Oberbeck-Boussinesq
equations, the nonlinear problem is decomposed in a se-

guence of linear equations, each with inhomogeneities de- 2(2)_1 o 1+ 8w? N 3!
pending in general nonlinearly on previous “coefficients” ¢ 2 (o+ 1)2y 3(0+1)29 9% (0+1)%q8 d
(for details, see Ref11]). ¢ %Cl?b

Noise can be included in the above scheme by closely
following the same steps as for the static-forcing amplitude
equations, i.e., one must assume the appropriate scaling re- 1 o

lationships for the noise correlatiof8]. This leads to the (62>:§ 1 ZQ, (C17¢0
noise being included in the solvability condition of the per- (o+1)
turbative expansion at ordes®, which gives the first nonlin-
ear amplitude combination in the form , 1 1

9®=3 PR (C17d

707,A0=[ 2V + €2= 9| Aol JAg+ éa (X1, T2).
(C12
1 o

k(@ =

Here £, (X1,T,) is a zero-mean Gaussian white noise field g, (C17e

T4 404 +1)2
with self-correlation qc " (o+1)
whereg is given by

<§XO(X1 -T2)§A0(Xi T2))= D 60Xy~ X 8(To=T5).

(C13 ? 2 -1
G=||1+ 200 1+ 2 , (C18
Eliminating the slow auxiliary variables in favor of the origi- (o+1) (C (27)
nal ones gives, foA(x,t), the amplitude equation

andg"?=k{"2+ 72, The noise intensity is

THA=[E0*+ e~ e~ gIAIPIAT Ex(x, 1),  (C14

. . . . . . Cskg( kg"' 772)2
where the Gaussian white noise figdd(x,t) has intensity Dp=——i——

(C19
Da=Da,, (9" °E)?
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The coefficientE can be taken to be unity in all casiid], 9'9=0.6995-0.004% 1+0.0083 2, (C200
since its correction to ordeX? is very small. The coefficient

C is the same as introduced in EQa). k®=q,=3.1163, (C20d

Since the derivation of Schmitt and tke [11] relied on

an expansion in vertical modes similar to the one used in thend replacing

generalized Lorenz model of Ref10], the conversion to

rigid boundary conditions may be performed in the same 530)4—’Q§+{U£o®6}qg+{®ouiz'6 (C2))

way as for this model. So the rigid BC coefficients are ob-

tained by setting

(0 _0T05117
= (C20a
£20=0.148, (C20b

in Egs.(C17) and(C18. The noise intensityD , becomes

cke({Oo@ otk +{O@ o}k +{O50})

AT (@2 {U @41 (4 {U 0O} g2+ {OUh 2
(C22
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