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Noise and pattern formation in periodically driven Rayleigh-Bénard convection
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~Received 26 June 1997!

We present a new model for periodically driven Rayleigh-Be´nard convection with thermal noise, derived as
a truncated vertical mode expansion of a mean field approximation to the Oberbeck-Boussinesq equations. The
resulting model includes the continuous dependence on the horizontal wave number, and preserves the full
symmetries of the hydrodynamic equations as well as their inertial character. The model is shown to reduce to
a Swift-Hohenberg-like equation in the same limiting cases in which the Lorenz model reduces to an amplitude
equation. The order-disorder transition experimentally observed in the recurrent pattern formation near the
convective onset is studied by using both the present model and its above-mentioned limiting form, as well as
a generalization of the amplitude equation for modulated driving introduced by Schmitt and Lu¨cke @Phys. Rev.
A 44, 4986~1991!# and the generalized Lorenz model previously introduced by the authors@Phys. Rev. E55,
R3824~1997!#. We show that all these models agree with the experimental data much closer than previous
models like the Swift-Hohenberg equation or the amplitude equation, though thermal noise alone still seems
insufficient to lead to a precise fit. The relationship between these models is discussed, and it is shown that the
inclusion of the continuous wave-number dependence, a consistent treatment of the driving time dependence,
and the inclusion of inertial effects are all relevant to the formulation of a model describing equally well both
the time-periodic and static driving cases.@S1063-651X~97!09812-7#

PACS number~s!: 47.20.Bp, 05.40.1j, 47.20.Hw, 02.50.Ey
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I. INTRODUCTION

Pattern formation outside of equilibrium has become
very active field in the past several years@1#, in part pushed
forward by the advancement of experimental techniques
lowing the realization of quantitative experiments@2–6#, and
in part by the continuing development of theoretical mod
@7–13#. In particular, Rayleigh-Be´nard convection~RBC!
has become a paradigm in the study of complex spatiot
poral behavior of nonequilibrium systems.

The role of fluctuations in the initial stages of patte
formation was recognized early on as deserving detailed
amination@7#. Fluctuations in RBC below but not too nea
the convection threshold can be considered to be curre
well understood, both qualitative and quantitatively@5#. This
understanding has been facilitated by the fact that, be
threshold, the hydrodynamic equations can to a very g
approximation be linearized around the conductive state,
linear response theory applied. The same could in princ
be done well above threshold, by linearizing around a w
developed~macroscopic! convective state which satisfies th
nonlinear deterministic equations@14#, though we are un-
aware of any works implementing this approach in the lite
ture. The situation very close to threshold is far less cle
since there the linear and nonlinear terms and the ther
fluctuations are all of comparable importance. In particu
the effects of noise can be expected to be relevant in
dynamic onset of convection, when a system is swe
through the convection threshold by externally modulat
the control parameter.

A time-honored experiment still waiting for a full theore
ical explanation is the one performed by Meyer, Ahlers, a
571063-651X/98/57~1!/412~16!/$15.00
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Cannell@3#. In this experiment the Rayleigh numberR ~the
control parameter! of a Rayleigh-Be´nard cell was modulated
in time asR(t)/Rc215e01d cos(vt), periodically crossing
the static convection thresholdR5Rc . The modulation was
selected such that in each period a well-developed con
tive pattern was established and subsequently nearly or c
pletely vanished. It was observed that depending on the
ues of the experimental parameters the system presente
order-disorder transition, between situations in which
same pattern reappeared at each cycle~deterministic state!,
and situations in which the patterns at successive cycles w
uncorrelated~stochastic state!. This change in behavior de
fined an order-disorder transition line~ODTL! in the e0-d
plane.

In the intervening years a number of models have b
proposed to explain this ODTL@15–19#, but for all of them
agreement with the experimental data was achieved only
taking the noise strength as an adjustable parameter and
ting its value to be;104– 105 times the one computed from
thermodynamic considerations@20#. All these models are
based on Swift-Hohenberg~SH! or amplitude equations, an
include a supercritical bifurcation at threshold, but the tim
modulation of the driving is incorporatedad hoc in these
equations, originally derived for a static Rayleigh numb
These models also share a purely dissipative behavior, b
based on differential equations which are of first order
time. Some of them have the additional shortcoming of
respecting the full horizontal translational and rotational
variance of the hydrodynamic equations. This leads to
question of how much of their quantitative disagreem
with the experimental data comes from these features.

Several years ago Ahlers, Hohenberg, and Lu¨cke@10# for-
412 © 1998 The American Physical Society
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mulated a generalized Lorenz model for periodically driv
RBC. They found that in this model the convection thresh
is nontrivial, contrary to what happens with models based
SH or amplitude equations. Their model also reflected
inertial character of the hydrodynamic equations, reducing
an amplitude equation only for large Prandtl numbers~i.e.,
large damping! and vanishing modulation amplituded. This
made it a good starting point for investigating the possi
importance of these features for the description of the ord
disorder transition. We recently extended this model by
cluding thermal noise@13#, and found that the resulting
model predicted an ODTL much nearer to the experime
data of Ref.@3# than any of the previous ones, fitting the da
with a noise intensity;250 times the thermal one. Howeve
this model incorporates the rather crude approximations
restricting the horizontal wave number to that of the critic
mode atR5Rc , and imposing a parallel roll structure. A
pointed out by Graham@12#, in principle the rotational sym-
metry of the hydrodynamic equations must be broken by
emerging patternspontaneouslyrather than by any externa
agent. So the question arises if it is possible to formulat
model retaining the desirable characteristics of the Lor
model while respecting the full symmetries of the hydrod
namic equations.

The purpose of the present work is twofold. In the fi
place we aim to derive a model equation for periodica
driven RBC which~a! respects the full~horizontal! rotational
and translational invariance of the hydrodynamic equatio
not imposinga priori any preferred convective structure;~b!
preserves their main dynamical features, specifically the ‘
ertial’’ character embedded in their structure as asystemof
differential equations of first order in time, not trivially re
ducible to a single first-order equation;~c! accounts for the
fact that the nonlinear coupling comes~at least in part! from
the interaction of the velocity and temperature fields, and
from the self-coupling of asinglefield; ~d! does not project
the full noise terms of the hydrodynamic equations onto th
linearly most unstable mode; and~e! includes the time de-
pendence of the control parameterab initio. This is done in
Sec. II, where we introduce a mean field~MF! approximation
to the Oberbeck-Boussinesq~OB! equations and an expan
sion in vertical eigenfunctions, allowing a self-consistent c
culation of the hydrodynamic fields’ self- and cros
correlations, in terms of which the ODTL can be defined

In the second place we aim to compare the main featu
of this model with those of previous ones, in order to sh
some light on the question of which features must be inc
porated in a ‘‘good’’ model equation able to account for t
main physical effects present in externally modula
pattern-forming systems like the one in Ref.@3#. This is done
in Sec. III, where we compare the model of Sec. II with~a!
the reduction of the model of Sec. II to a Swift-Hohenbe
like equation detailed in Appendix C 1, valid for larg
Prandtl numbers and vanishing modulation amplitude;~b!
the stochastic Lorenz model recently introduced by the
thors@13#; and~c! the modulated-driving amplitude equatio
recently derived by Schmitt and Lu¨cke @11#, which we ex-
tend to include noise in Appendix C 2. We pay special att
tion to the noise and nonlinear coupling terms of these mo
equations, and discuss both the technical and physical v
ity of the approximations introduced in the derivation of t
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model in Sec. II. With the aim of increasing legibility, mo
of the calculations have been deferred to the appendixes

II. MODEL

A. Fundamental equations

We consider a fluid layer between two laterally infini
horizontal plates (2`<x,y<`) separated by a distanced,
and having a time-dependent temperature difference wh
will be the control parameter driving the system. The dens
of the fluid isr, its temperature isT, its velocity isu, and its
pressure isp. The kinematic viscosity is denoted byn, the
thermal diffusivity byk, and the gravitational acceleratio
by g. We introduce dimensionless variables by the scal
t→(k/d2)t, l→ l /d, DT→R, whereR5(agd3DT)/(kn) is
the Rayleigh number andDT is the average temperature di
ference between the lower and upper plates. Defining
Prandtl numbers5n/k, the Oberbeck-Boussinesq equatio
with noise read@10#

~] t1u•¹!u5s¹2u1sTẑ2¹p1¹•s, ~1a!

~] t1u•¹!T5¹2T2¹•q, ~1b!

¹•u50. ~1c!

In these equations, the effect of thermal fluctuations has b
incorporated by adding the Langevin~white! noise sourcess
and q @1,9#. These are assumed to be zero-mean Gaus
noise fields with self-correlations

^si j ~r ,t !slm~r 8,t8!&5csd~r2r 8!d~ t2t8!~d i l d jm1d imd j l !,
~2a!

^qi~r ,t !qj~r ,t !&5cqd~r2r 8!d~ t2t8!d i j , ~2b!

and thermodynamic intensities

cs5S kBT

rdn2D 2s3, cq5
2~Td3ag/kn!2

~cVd3/kB!
. ~3!

For the velocity field, we will assumerigid vertical
boundary conditions~BC’s!

u50, z56 1
2 , ~4!

more realistic than the technically simpler free-slip BC
Note that Eq.~1c! then implies]zuz50 at z56 1

2 .
For the temperature field, we will assume the sameperfect

thermal contactBC’s atz56 1
2 as in the experimental settin

of Meyer, Ahlers, and Cannell@3#: the temperature of the
upper plate will be taken as constant, while that of the low
plate will have a time-periodic modulation. The dimensio
less temperatureT in Eqs. ~1! is more conveniently ex-
pressed as

T~r ,t !5Tc~z,t !1u~r ,t ! ~5!

in terms of the instantaneous conduction profileTc satisfying
the heat conduction equation

] tT
c5]z

2Tc. ~6!
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414 57OSENDA, BRIOZZO, AND CÁCERES
The periodic driving is accounted for by the BC’s

Tc~2 1
2 ,t !5Tl~ t !5Tl1D cos~vt !, ~7a!

Tc~ 1
2 ,t !5Tu~ t !5Tu . ~7b!

The deviationu from the conduction profile then vanishes
z56 1

2 . Defining the time-dependent Rayleigh number

R~ t !5Tl~ t !2Tu~ t !5Tl2Tu1D cos~vt !, ~8!

the conduction profile can in turn be separated as

Tc~z,t !5Tu1~ 1
2 2z!R~ t !1S~z,t !, ~9!

where Tu1(1/22z)R(t) is an instantaneouslinear profile,
andS(z,t) is a deviation from linearity which vanishes on
for static drivingD50 ~see Appendix B 1 for full details!.

Applying the transverse projection operator¹3¹3 to
Eq. ~1a!, and using Eq.~1c!, the pressure term is eliminate
and the OB equations are rewritten as

] t] j] jui5s] j] j]k]kui1s~d iz] j] j2] i]z!u1~] i] j]k

2d i j ] l] l]k!~ujuk2sjk!, ~10a!

] tu5] j] ju2uz]zT
c2] j~uuj1qj ! , ~10b!

where i , j ,k,l 5x,y,z ~sum over repeated indexes is unde
stood!. The ~rigid! BC’s for these equations are

ux5uy5uz5]zuz5u50, z56 1
2 . ~11!

B. Mean field approximation

Let’s make some considerations about the properties
the averages of the fieldsui and u over the ensemble o
realizations of the noisesqi and si j . First we note that the
horizontal translational and rotational symmetry of the d
ferential operators in Eqs.~10!, together with the statistica
spatial homogeneity of the white noise fields, insure that
stochastic fieldsui andu are homogeneous in the horizont
coordinates. Having a laterally infinite system further insu
that every spatially inhomogeneous configuration of the
drodynamic fields, will appear with equal probability at e
ery possible orientation and horizontal offset. Thus we h

^ui&50 ~12!

and

^u&, ^u2&, ^uui&, ^uiuj& independent ofx,y,
~13!

for i , j 5x,y,z, either in the macroscopic conductive or co
vective states. Using these results, averaging Eqs.~10!, and
remembering that differentiation operators can be taken
side the ensemble averages, we obtain

05d iz]z
3^uz

2&2]z
3^uiuz&, ~14a!

] t^u&5]z
2^u&2]z^uuz&. ~14b!
-

of

-

e

s
-

e
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Equation~14a! reduces to an identity fori 5z, so it does not
impose any restriction on̂uz

2&. For i 5x,y it reduces to

]z
3^uxuz&5]z

3^uyuz&50, ~15!

so ^uxuz& and ^uyuz& must be quadratic functions ofz. The
rigid boundary conditionsux5uy5uz5]zuz50 at z56 1

2

then impose

^uxuz&5^uyuz&50. ~16!

Equation~14b! will be used as a self-consistency conditio
in what follows.

We now introduce a MF approximation to Eqs.~10!,
based on the preceding cosiderations. Note that in Eqs~1!
the only nonlinear terms come from the material derivati
u•¹. The usual way to linearize these equations is discard
these terms by approximatingu•¹uj andu•¹u by zero, i.e.,
one linearizes around the conductive state. This enhan
greatly the solvability of the equations, but it is clearly
dissatisfying approximation for a system that can be, at le
at some times, in a fully developed convective state. The
approximation consists in approximating these terms by
ensemble averagevalues of the corresponding fields, that

u•¹ui→u•¹^ui&, ~17a!

u•¹u→u•¹^u& ~17b!

~note that we donot approximate the material derivative op
erator itself!. This is in the same spirit of the usual mean fie
approximation of statistical mechanics, which assumes
the only important configuration near a critical point is t
spatially uniform one@21#. For the ensemble averages w
have^ui&50, so in this approximation Eqs.~10! read

] t] j] jui5s] j] j]k]kui1s~d iz] j] j2] i]z!u2~] i] j]k

2d i j ] l] l]k!sjk , ~18a!

] tu5] j] ju2uz]zT
c2] j~^u&uj1qj !. ~18b!

We must stress that this is anuncontrolledapproximation~as
is the usual linearization aroundu50), whose accuracy mus
be checkeda posterioriagainst the results of the correspon
ing full equations in all cases where the last can be solv

The pair of equations foruz and u in Eqs. ~18! is now
closed, and we will henceforth work with the systems

] t¹
2uz5s¹4uz1s¹'

2 u1Sz~r ,t !, ~19a!

] tu5¹2u2uz]z~Tc1^u&!1Q~r ,t !, ~19b!

where we used that] juj50 and^u&5^u(z,t)&, and defined
¹'

2 5]x
21]y

2 . The noisesSz andQ are defined as

Sz~r ,t !5~dz j¹
2]k2]z] j]k!sjk , ~20a!

Q~r ,t !52] jqj , ~20b!

and it is fairly direct to show~see Appendix B 2! that

^Sz~r ,t !Q~r 8,t8!&5^Sz~r ,t !&5^Q~r ,t !&50, ~21a!
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^Sz~r ,t !Sz~r 8,t8!&52csd~ t2t8!¹4¹'
2 d~r2r 8!,

~21b!

^Q~r ,t !Q~r 8,t8!&52cqd~ t2t8!¹2d~r2r 8! ~21c!

for any set of test functions satisfying the BC’s~11!. Con-
sidering^u& as a given function ofz and t to be determined
a posteriori, Eqs.~19! can be regarded as a system oflinear
stochastic partial differential equations which, though co
plicated, is amenable to standard analysis techniques.

C. Truncated expansion in vertical eigenfunctions

We now introduce an expansion of the fieldsuz(r ,t) and
u(r ,t) in vertical eigenfunctionsUzn(z) and Qn(z). These
eigenfunctions are obtained in Appendix A as static soluti
of the linear, noiseless OB equations~10!. As shown in Ap-
pendix A, these eigenfunctions have definite parity inz, and
their correct orthonormality relations are

E
21/2

1/2

Uzn~z!Qm~z!dz5dnm , ~22!
-

s

but *21/2
1/2 Uzn(z)Uzm(z)dz and*21/2

1/2 Qn(z)Qm(z)dz are non-
vanishing except by parity.

Closely following the derivation of the Lorenz mode
@10,13#, we retain only the lowest vertical modes leading to
nontrivial approximation, setting

uz~x,z,t !. ū z0~x,t !Uz0~z!, ~23a!

u~x,z,t !. ū 0~x,t !Q0~z!1 ū 1~x,t !Q1~z!, ~23b!

Tc~z,t !.Tu1~1/22z!R~ t !1Q0~z!S0~ t !1Q1~z!S1~ t !,
~23c!

wherex5(x,y), and we replacedS(z,t) in the conductive
profile by its expansion

S~z,t !.Q0~z!S0~ t !1Q1~z!S1~ t ! ~24!

which is worked out in detail in Appendix B 1. Defining th
inner product$ f g%5*21/2

1/2 f (z)g(z)dz, substituting expan-
sion ~23! in Eqs.~19! and in the consistency condition~14b!,
and using the parity and orthonormality of the eigenfun
tions, we obtain
e

arrive

out for

ime
] t~¹'
2 1$Q0Uz09 %! ū z05s~¹'

4 12$Q0Uz09 %¹'
2 1$Q0Uz0

iv %! ū z01s$Q0Q0%¹'
2 ū 01$Q0Sz%, ~25a!

] t ū 05~¹'
2 1$Uz0Q09%! ū 01@$Uz0Uz0%R~ t !2„S1~ t !1^ ū 1&…$Uz0Uz0Q18%# ū z01$Uz0Q%, ~25b!

] t^ ū 1&5$Uz1Q19%^ ū 1&2$Uz1~Q0Uz0!8%^ ū 0 ū z0&, ~25c!

where the primes denote derivatives with respect toz. Note that the fundamental modeS0(t) of S(z,t) does not enter thes
equations.

Fourier transforming fromx to k, and performing several partial integrations to symmetrize the inner products, we
at

] t ũz052s
k412$Uz08 Q08%k

21$Q0Uz0
iv %

k21$Uz08 Q08%
ũz01s

$Q0Q0%k
2

k21$Uz08 Q08%
ũ 01ADu~k! j̃ u~k,t !, ~26a!

] t ũ 052~k21$Uz08 Q08%! ũ 01@$Uz0Uz0%R~ t !2$Uz0Uz0Q18%„S1~ t !1^ ū 1&…# ũz01ADu~k! j̃ u~k,t !, ~26b!

] t^ ū 1&52$Uz18 Q18%^ ū 1&1$Uz0Q0Uz18 %^ ū 0 ū z0&, ~26c!

whereũz j(k,t) and ũ j (k,t) denote the Fourier transforms of the fieldsū z j(x,t) and ū j (x,t), respectively. Note that$Q0Uz0
iv %

cannot be symmetrized to$Uz09 Q09% because of nonvanishing surface terms. The symmetrization can instead be carried

$Q0Q0
iv% or $Uz0Uz0

iv %. Here j̃ u and j̃ u are zero-mean~complex! Gaussian white noises with correlations

^ j̃ a* ~k,t ! j̃ b~k8,t8!&5dabd~k2k8!d~ t2t8! ~27!

and intensities

Du~k!5~2p!2csk
2
$Q0Q0%k

412$Q08Q08%k
21$Q09Q09%

@k21$Uz08 Q08%#2
, ~28a!

Du~k!5~2p!2cq@$Uz0Uz0%k
21$Uz08 Uz08 %#. ~28b!

The relevant contributionS1(t) to the conductive profile’s deviation from linearity, is given in the long-time asymptotic reg
by
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S1~ t !5Dv$zUz1%
$Uz18 Q18%sin~vt !2v cos~vt !

$Uz18 Q18%
21v2

. ~29!

The expressions forDu , Du , andS1 are explicitly derived in
Appendix B. The numerical values of the inner products
pearing in Eqs.~26!, ~28! and ~29! are given in Table II.

D. Order-disorder transition line

Let us introduce@3# the dimensionless distance to th
static threshold,

e05~Tl2Tu!/Rc21, ~30!

and the dimensionless modulation amplitude

d5D/Rc , ~31!

with Rc the static critical Rayleigh number~see Appendix
A!. The ODTL is experimentally determined as a curve
thee0-d plane, below which the convective pattern develo
ing in each cycle bears little or no resemblance with the
developed in the previous cycle, whereas above this cu
the convective pattern remains essentially unchanged f
cycle to cycle@3#. In terms of the stochastic fields of ou
model, this means that in the deterministic state the velo
field is essentially time periodic with the period of the for
ing, i.e.,

^ ū z0~x,t12p/v! ū z0~x,t !&as5^@ ū z0~x,t !#2&as, ~32!

whereas in the stochastic state the velocity field at a gi
time should be uncorrelated with the field after one period
the forcing, giving

^ ū z0~x,t12p/v! ū z0~x,t !&as50. ~33!

~Here the subscript ‘‘as’’ denotes that we are considering
averages in the asymptotic—long time—regime, to av
any transient effects.! Hence if we compute^ ū z0(x,t
12p/v) ū z0(x,t)&as for fixed d and increasinge0 , its value
will increase from 0 to^@ ū z0(x,t)#2&as as the ODTL is
crossed, and the ODTL itself can be defined@13# by the
valuee0

tr(d) of e0 for which

^ ū z0~x,t12p/v! ū z0~x,t !&as5
1
2 ^@ ū z0~x,t !#2&as. ~34!

There is no clear-cut criterion to set the numeric factor on
right-hand side to1

2, and any other value between zero and
could instead be selected. However, it is found numeric
that the transition from stochastic to deterministic behavio
fairly steep as a function ofe0 , as has already been observ
for alternative analytic definitions of the ODTL such as, e.
those of Refs.@16# and@18#. This makes the predicted ODT
relatively insensitive to the precise value of the numeric f
tor in Eq. ~34!. Moreover, taking the numeric factor to be1

2

makes our definition of the ODTL equivalent to the ma
different ones found in the literature@3,15,16,18#. It must be
noted that the spatial average over the horizontal coordin
is unnecessary in our definition, since the self-correlation
Eq. ~34! turn out to be independent ofx because of the sta
tistical translational invariance of Eqs.~25!.
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We must now obtain evolution equations for the se
correlations in~34!. To this end we cast the evolution equ
tions for ũz0 and ũ 0 into the form

ẋak1E gak,bk8xbk8d
2k85Gak , ~35!

where a,b5u,u, xuk(t)5 ũz0(k,t), and xuk(t)5 ũ 0(k,t).
This is a direct generalization to a continuous indexk of the
usual expression@22# for a system of coupled, linear ordi
nary stochastic differential equations. HereGak are zero-
mean Gaussian white noises with

^Gak* ~ t !Gbk8~ t8!&5d~ t2t8!qak,bk8 . ~36!

In our case gak,bk85gab(k,t)d(k2k8) and qak,bk8
5qab(k)d(k2k8), where

guu~k!5s
k412$Uz08 Q08%k

21$Q0Uz0
iv %

k21$Uz08 Q08%
, ~37a!

guu~k!52s
$Q0Q0%k

2

k21$Uz08 Q08%
, ~37b!

guu~k,t !52$Uz0Uz0%R~ t !1@S1~ t !1^ ū 1~ t !&#$Uz0Uz0Q18%,
~37c!

guu~k!5k21$Uz08 Q08%, ~37d!

and

qab~k!5dabDa~k!. ~38!

Then the second-order equal-times cumulants obey the
lution equations

] t^^xak* ~ t !xbk8~ t !&&52gah~k,t !^^xhk* ~ t !xbk8~ t !&&

2gbh~k,t !^^xhk8
* ~ t !xak~ t !&&

1qab~k!d~k2k8!, ~39!

which are the corresponding generalizations to a continu
index k of the well-known results for discrete indexes@22#.
Defining as usual the equal-time structure factorsSab by

^^xak* ~ t !xbk8~ t !&&5~2p!2Sab~k,t !d~k2k8! ~40!

and noting thatSuu5Suu , we see that they obey the equ
tions

] tSuu~k,t !522guu~k!Suu~k,t !22guu~k!Suu~k,t !

1
1

~2p!2
quu~k!, ~41a!

] tSuu~k,t !52guu~k,t !Suu~k,t !2@guu~k!

1guu~k!#Suu~k,t !2guu~k!Suu~k,t !,

~41b!
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] tSuu~k,t !522guu~k,t !Suu~k,t !22guu~k!Suu~k,t !

1
1

~2p!2
quu~k!. ~41c!

Note thatSab will depend onk only through its modulusk,
at least in the long-time asymptotic regime, because of
symmetries of Eqs.~41!. This equation system must b
supplemented by the consistency condition~26c!, which,
noting that^ ū z0&50, can be cast as

] t^ ū 1&52$Uz18 Q18%^ ū 1&1
$Uz0Q0Uz18 %

2p E
0

`

Suu~k,t !k dk.

~42!

Equations~41! and ~42! form a closed system of integrodif
ferentialdeterministicequations for the equal-time structu
factors. This system must be numerically solved with ar
trary initial conditions, and after reaching the long-tim
asymptotic regime we calculate

^@ ū z0~x,t !#2&as5
1

2pE0

`

Suu
as~k,t !k dk ~43!

@remember that̂ ū z0(x,t)&50) where the superscript ‘‘as’
denotes the asymptotic form ofSuu(k,t)].

We must also find the second-order cumulants at differ
times. Defining the two-time structure factors by

^^xak* ~ t !xbk8~ t8!&&5~2p!2Sab~k,t,t8!d~k2k8!, ~44!

and, using Eqs.~26!, we find

]tSuu~k,t1t,t !52guu~k!Suu~k,t1t,t !

2guu~k!Suu~k,t1t,t !, ~45a!

]tSuu~k,t1t,t !52guu~k,t1t!Suu~k,t1t,t !

2guu~k!Suu~k,t1t,t !, ~45b!

where we used the nonanticipative character@23# of ũz0 to
set^ j̃ a(k,t1t) ũz0(k8,t)&50 for t.0. This system must be
solved with initial conditionsSab(k,t,t)5Sab(k,t), taking

^ ū 1(t1t)& in guu(k,t1t) to be the asymptotic solution o
Eq. ~42!, and computing the two-time velocity correlation

^ ū z0~x,t1t! ū z0~x,t !&as5
1

2pE0

`

Suu
as~k,t1t,t !k dk.

~46!

With these results, the ODTL is defined by the condition

E
0

`

Suu
as~k,T,0!k dk5 1

2 E
0

`

Suu
as~k,0!k dk, ~47!

whereT52p/v.
e

i-

nt

III. RESULTS AND DISCUSSION

A. Order-disorder transition line

We used the model introduced in Sec. II to compute n
merically the ODTL for parameter values corresponding
the periodic-driving experiment of Meyer, Ahlers, and Ca
nell @3#. We proceeded by first reducing Eqs.~41!, ~42!, and
~45! to a finite system of ordinary differential equation
~ODE’s!, discretizingk at intervalsDk and truncating the
system at a maximum valuekmax. The value ofDk was
progressively diminished, and that ofkmax increased, until
further changes no longer affected the results. In our cas
sufficed to takeDk51022qc and kmax53qc . It must be
noted that Eqs.~41!, ~42!, and~45! arenot differential equa-
tions ink, the only term relating differentk values being the
integral ofSuu in Eq. ~42!. As long as this integral is com
puted to a sufficient precision, any discretization ofk is ac-
ceptable.

For given values ofe0 andd, we first integrated the ODE
system corresponding to Eqs.~41! and~42!, starting for sim-
plicity each integration att50 with null initial conditions for
Sab(k,t). The ODE system was integrated successively o
time intervals of durationT52p/v, until the structure fac-
torsSab„k,(n21)T… andSab(k,nT) consistently differed by
less than one part in 1024, at which time we considered tha
the system had reached its time-periodic asymptotic regi
We then integrated the ODE system corresponding to thefull
set of equations~41!, ~42!, and ~45! over one more period
taking as initial conditionsSab(k,nT,nT) for the two-time
structure factors the corresponding values of their equal-t
counterpartsSab(k,nT). All the integrations were performed
by a quality controlled fourth-order Runge-Kutta meth
@24# with an overall relative precision of 1028. In no case
did the value ofn exceed 25.

To find the ODTL, we selected several values of the dr
ing modulation amplituded in the region of interest 0<d
&0.5. For each value ofd we looked for a zero crossing o

E
0

`

Suu
as

„k,~n11!T,nT…k dk

E
0

`

Suu
as~k,nT!k dk

2
1

2
~48!

by trying successive values of the mean drivinge0 , until its
valuee0

tr(d) fulfilling the transition condition~47! was brack-
eted within an interval no larger than 0.001. The result
ODTL is shown in Fig. 1, where we plote0

tr(d) as a function
of d. The noise intensitiescs andcq were taken equal to thei
thermodynamic values~3!, which, for the parameters of Re
@3#, are

cs57.20631027, cq53.31231024. ~49!

We also setv51 as in Ref.@3#.

B. Alternative approaches

Here we present, for comparison purposes, the ODT
computed from two different, alternative model equatio
The first one is a Swift-Hohenberg-like equation, which c
be derived from Eqs.~26! as an approximate limiting form
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418 57OSENDA, BRIOZZO, AND CÁCERES
for large Prandtl numbers and small forcing amplituded.
As is shown in Appendix C 1, in this case the pair of s
chastic differential equations~26a! and ~26b!, and the con-
sistency condition~26c!, can be reduced to the single st
chastic differential equation

t0] tc̄ ~x,t !5@~e01e1!1d cos~vt !1e2S1~ t !

2x4~¹21q
*
2 !22g^ c̄2&# c̄~x,t !1ADj~x,t !,

~50!

where c̄ (x,t)5t0 ū z0(x,t), and j(x,t) is a Gaussian white
noise with zero mean and

^j~x,t !j~x8,t8!&5d~x2x8!d~ t2t8!. ~51!

This equation has the same form as the MF approximatio
the SH equation introduced in Ref.@19#. The ODTL can be
computed from this equation by the same procedure of R
@19#. This ODTL is shown in Fig. 2 for thermal noise inten
sity and parameter values corresponding to the experim
of Ref. @3#, together with the one predicted by the SH equ
tion for thermal noise.

The second alternative model equation is the amplit
equation for parallel convection rolls originally derived f
free-slip BC’s by Schmitt and Lu¨cke @11#, which takes into
account the time-periodic driving. As shown in App. C
thermal noise can be incorporated into this approach in

FIG. 1. Order-disorder transition line predicted by the model
this work ~line!. The circles are the experimental data of Mey
Ahlers, and Cannell@3#.

FIG. 2. Order-disorder transition line predicted by the model
this work ~continuous line!, its reduction to a Swift-Hohenberg-like
equation~50! ~dashed line!, and the SH equation~dotted line!.
-

to

f.

ts
-

e

e

same way as is done for the static-forcing amplitude equa
@8#. The MF approximation to this amplitude equation rea

t] tA5@j2]x
21e~ t !2ec2g^uAu2&#A1jA~x,t !, ~52!

whereA(x,t) is the amplitude of the vertical velocity field
The coefficientst, j2, ec , andg, and the intensityDA of the
Gaussian white noise fieldjA , are defined in Appendix C 2
for both free-slip and rigid BC’s, ande(t)5e01d cos(vt).
The ODTL can be computed from this equation by the sa
procedure as for the SH equation@19#. For rigid BC’s, ther-
mal noise intensity, and parameter values correspondin
the experiments of Ref.@3#, we obtain the ODTL shown in
Fig. 3.

C. Comparison of models and experiment

The main formal differences between Eq.~50! and the SH
equation are the nontrivial thresholde1 , the presence of the
extra driving terme2S1(t), and the displacement of the crit
cal wave number fromqc to a near valueq* . As shown in
Appendix C 1 the threshold shifte1 and the extra driving
e2S1(t) are almost negligible for all values of the mean for
ing e0 in the experiments of Meyer, Ahlers, and Cannell@3#,
and the critical wavelength shift amounts to less than 4
hence these differences are not expected to be significan
the comparison with the experiments.

The parameterst0 andx2 in Eq. ~50! are essentially the
same as for the SH equation, as shown in Appendix C
This is somewhat to be expected, as these coefficients
determined by the linear stability analysis of the hydrod
namic equations. On the other hand, the parametersg andD
are larger than their analogs in the SH equation. As can
seen in the derivation in Appendix C 1, their precise va
depends on the scaling relatingū z0 and c̄ , since they give
origin to the only terms in Eq.~50! which are not homoge-
neous inc̄ . It must be noted that any such scaling leav
constant the productgD. The scaling used in writing Eq
~50! was chosen in such a way as to display explicitly t
coefficientst0 andg in the same form as they appear in th
SH equation, and with similar values.

In this context, it is worth noting that the thermal valu
for D in Eq. ~50! exceeds the thermal noise intensity in t
SH equation@1# by a factor of;40, as shown in Appendix
C 1. By accounting for the many horizontal modes of t

f
,

f

FIG. 3. Order-disorder transition line predicted by the model
this work ~continuous line! and by the modulated-driving amplitud
equation~52! ~dashed line!.
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hydrodynamic equations which become linearly unstable
above the critical Rayleigh number, van Beijeren and Co
@15# found that the effect of thermal noise on the SH eq
tion should be enhanced over the earlier estimate by Ah
et al. @2# by this same factor. The model presented here fu
accounts for the linear instability atR.Rc of horizontal
modes with wave numbers near to but different fromk
5qc , for the only approximation involved in deriving th
noise terms and thelinear terms of Eqs.~26a! and ~26b! is
the truncation of the expansion in vertical eigenfunctio
Since the vertical modes we keep are the same as in
derivation of Ref.@15#, it was to be expected that we reach
a similar value for the noise intensity in a SH-like equatio

The overall properties of the amplitude equation~52!
were extensively discussed in Ref.@11#. Here we will just
note that, both for this equation and for the SH equation,
slope of the convective heat current as a function of
driving is known to be inversely proportional to the nonli
ear coupling parameterg near the convection threshol
@2,11#. As noted by Schmitt and Lu¨cke @11#, for time-
periodic driving this slope is much smaller than for sta
driving, implying a correspondingly larger value forg. Cor-
respondingly, the value forg in Eq. ~50! is several times
larger than its value for the SH equation, as shown in A
pendix C 1.

By comparing Figs. 1, 2, and 3 we can see that the mo
introduced in this paper, its reduction to a Swift-Hohenbe
like equation, and the modulated-driving amplitude equat
all predict essentially the same ODTL for thermal nois
These ODTL’s are also very close to the one predicted by
generalized Lorenz model previously introduced by the
thors @13#. The main feature that all these model equatio
share is that they are derived from the start for time-perio
driving, which leads in all cases to a nontrivial convecti
threshold. This feature clearly sets them apart from the u
SH or amplitude equations, in whose derivation the driv
is assumed to be static, and its time dependence is introd
a posteriori@1#. Their convection onset is thus trivial, and a
of them predict essentially the same thermal-noise OD
that is shown in Fig. 2 for the SH equation. This suggests
likely hypothesis that any model equation correctly incorp
rating the driving time dependence will predict appro
mately the same ODTL as the ones discussed here. How
it must be emphasized that the ODTL predicted from E
~52! is probably not meaningful, since for a significant pa
of the parameter range it is used well beyond its valid
rangeD̃2g(2)!1 @11#.

On the other hand, the mentioned model equations t
convective structure in very different ways: The model int
duced here and its reduction to a Swift-Hohenberg-like eq
tion fully respect the translational and rotational symmetry
the hydrodynamic equations, so any structure appea
above the convective threshold is spontaneously selecte
the model dynamics. The Lorenz model and the amplitu
equation instead selecta priori some preferred convectiv
structure, so they do not allow forspontaneoussymmetry
breaking. Thus, in spite of the numerical coincidence of
ODTL’s predicted by all these models, we think that the o
introduced here is conceptually more appealing.

These model equations also differ in their attention to
inertial effects embedded in the hydrodynamic equatio
st
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The periodic-driving amplitude equation of Ref.@11# as-
sumes a common amplitude for both the temperature
vertical velocity fields, which leads to asingle first-order
differential equation for this amplitude. This is in the sam
standing as the hypothesis of a single order parameter
in the derivation of the SH equation@9#. For the periodic-
driving amplitude equation this leads in particular to the te
perature and vertical velocity fields having the same dep
dence on the horizontal coordinates. This is clearly not
case for the fields in Eqs.~26! ~though it is true for the
Lorenz model@13#!, which even without noise have solution
in which the difference in horizontal coordinate dependen
does not reduce to a mere global phase factor. The inclu
of noise further enhances this effect, in a way that is
simple to include in the scheme of amplitude or SH eq
tions. It is interesting to note that for the parameter range
the experiment by Meyer, Ahlers, and Cannell@3#—which in
particular has a moderate Prandtl number—the magnitud

the noise inũz0 is much smaller than inũ 0 in Eqs.~26!. This
makes Eqs.~26! very reminiscent of a~spatially extended!
Kramers equation, which is well known to be reducible to
single Langevin equation only for large damping, corr
sponding in our case to large Prandtl numbers and a driv
not too near the convective threshold.

Other aspect deserving consideration is that the perio
driving amplitude equation~52! reduces ford→0 to the cor-
responding amplitude equation for static forcing@2#, as is
evident from its coefficients dependence withD̃ in Eqs.
~C15!. In particular the value for the nonlinear coupling c
efficient reduces to the same one in the SH equation@1#.
However, this value forg is much smaller than the exper
mentally observed values@2#, even accounting for the differ
ence in Prandtl number and cell aspect ratio between
experiments of Refs.@2# and@3#. From the measurements b
Ahlers et al. @2# of vertical heath flux versus driving in th
static case around the convection threshold, it is clear tha
value forg in the SH or the static amplitude equations is t
small even in the static case. The same conclusion can
drawn from numerical simulations of the SH equation@25#.
Thus a proper model of periodic-driving convection shou
not reduce in the static case to the static amplitude or
equations with their static coefficients, but instead to sim
equations with an appropriately larger nonlinear couplin
This is precisely the case of Eq.~50!, which turns out to give
a value forg very similar to the experimental ones.

As is seen in Figs. 1, 2, and 3, thermal noise is still ins
ficient for the predicted ODTL to match the experimen
values of Ref.@3#. However, the predicted ODTL is stil
much nearer to the experimental values than that predi
from the MF approximation of the SH equation@19# ~or from
equivalent model equations! shown in Fig. 2. It can be
shown that a noise intensity;250 times the thermodynami
one needs to be used for the SH equation to predict an OD
near the one predicted by the present model for ther
noise. Hence the consistent incorporation of the driving tim
dependence reduces the misfit with the experimental va
from a factor;53104 for the noise in the SH equation@19#
to a much smaller factor;200. This is a step forward, as
drastically reduces the requirements on any mechanism
posed to account for the remaining misfit.
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420 57OSENDA, BRIOZZO, AND CÁCERES
It should be noted that even for the present model, fl
tuations in the temperature of the Rayleigh-Be´nard cell
plates are very unlikely to provide the needed correctio
Recasting the results of Ref.@19# in terms of multiplicative
noise in Eq.~50! shows that fluctuation intensities comp
rable to that allowed in experimental settings@2,3,5# leave
the predicted ODTL unchanged, as is the case for the
equation.

D. Concluding remarks

In this work we derived a set of evolution equations~26!
for the velocity and temperature fieldsuz and u in a
Rayleigh-Bénard cell with time-dependent forcing. The a
proach we implemented is fairly general, and can in princi
be extended to a number of pattern-forming systems w
spontaneous symmetry breaking. The derivation re
heavily on two simplificating assumptions: the mean fie
approximation and the truncated expansion in vertical eig
functions.

The MF approximation has been previously applied to
SH equation@19# and to the Lorenz model with noise@13#. In
all cases in which comparison with Monte Carlo integrati
of the corresponding full stochastic equations was availa
it has proved to be a very reliable method of comput
self-correlations. In particular, ODTL’s computed from th
MF approximation to the Lorenz model with noise@13# dif-
fer from the Monte Carlo results by 2–3 %. The coinciden
of the MF results for the SH equation with stochastic sim
lations, like those in Ref.@26#, is also striking. The technica
advantage of the MF approximation is that the ensemble
erages of the fields are independent of the horizontal coo
nates, enabling the use of linear analysis methods like F
rier transforms without the introduction of cumbersom
convolution terms. In this aspect, Eqs.~26! are treated as
linear equations for the fields. The introduction of the u
known field averages is not a complication, as long as all
is interested in are average quantities like the fields’ s
correlations or structure factors: the effective linearization
Eqs. ~26! allows these quantities to be obtained solving
closed, self-consistent system of equations like Eqs.~41! and
~42!.

The truncated expansion in vertical eigenfunctions is j
tified both by the large~infinite, in our case! aspect ratio of
typical Rayleigh-Be´nard cells, and by the smallness of th
driving R(t)/Rc21 in the situations considered here, whi
constrain the amplitudes of higher-order vertical modes
remain small at all times@1,10,11#. For a driving well above
the convective threshold it is likely that more vertical mod
will have to be retained. This would require a treatment
the vertical eigenfunctions more careful than the one gi
here, like, e.g., the one given by Cross@27#. It is worth not-
ing that for the truncated expansion~23!, the evolution equa-
tion for ū z0(x,t) would be linear in the fields even withou
assuming the MF approximation.

It must be emphasized that, in contrast with other
proaches like the introduction of amplitude equations or
Lorenz model, our scheme preserves the full translatio
and rotational symmetry of the Oberbeck-Boussinesq eq
tions. No symmetry-breaking pattern is introduced in t
derivation, nor do asymmetric scaling properties need to
-
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assumed for their spatial and temporal variations@12#. This
is conceptually satisfying, since it is well known that sym
metry breaking in these systems occurs spontaneously, ra
than by external action. Though a rotationally covariant a
plitude equation has been recently derived by Graham@12#,
even if the perturbative expansion developed by Schmitt
Lücke@11# could be extended in this way it will undoubted
lead to a very involved calculation, and the necessity of
ing it for D̃g(2);1 casts doubt about its possible usefulne
in analyzing the experiments of Ref.@3#.

On the other hand, the approach presented here reta
full rotational ~and translational! symmetry in the horizonta
plane, even at times at which the system is well above
convective threshold. The mean square values of the field
these times are~correctly! far from zero in the vicinity ofk
5qc , but the structure factors present no trace of rolls, he
gons, or other symmetry-breaking structures. Part of th
behavior is due to the presence of noise, in the same s
that the~asymptotic! probability distribution for a noisy sys
tem above a pitchfork bifurcation retains the symmetry of
potential, while the deterministic solutions spontaneou
break it @28#. But in the present case the MF approximati
strongly contributes to this effect: the assumption that
ensemble averages are spatially uniform is correct, but
macroscopic states experimentally observed do not co
spond to these averages. The experimental observation
scale, while long compared with the time scale of the th
modynamic noise, is much shorter than the times needed
this noise to induce the system to switch between mac
scopically distinguishable convective states, at least w
well-developed convection persists. This can be seen, e.g
the Fourier-transformed shadowgraphs obtained recently
Wu, Ahlers, and Cannell@5# for static forcing: below thresh-
old the structure factor has full rotational invariance, sho
ing an annular maximum atk5qc , but above threshold it
shows six very localized maxima with hexagonal symme
~though still fork5qc). Given the symmetry of this experi
mental setting, it is to be expected that shadowgraphs ta
over a long enough time will show these peaks to drift un
the influence of noise until they uniformly cover the cyc
k5qc , corresponding to the rotation of the convective p
tern over all of its equivalent angular orientations; but th
time scale is far longer than the experimental one.

This same translational and rotational symmetry preclu
the inclusion of other disordering effects, such as thestruc-
tural disorder introduced through defect nucleation~this is
also true for any model assuming a given ordered patter
the convective state, such as the Lorenz model@10# or the
amplitude equation@11#!. It is currently well known@1,30#,
that under suitable circumstances, the spatially inhomo
neous state spontaneously emerging above threshold
not show a perfect~periodic! array of rolls or cells, but a
collection of ordered domains with no overall correlatio
The underlying reason for this is that the homogeneous s
bifurcates to the structured stateindependentlyat many loca-
tions, so even if the emerging state has the same struc
everywhere~e.g., rolls!, it is improbable for these structure
to emerge with the same orientation or spatial phase a
locations. This introduces an additional source of ‘‘rando
ness’’ ~besides thermal noise! in the bifurcation to a struc-
tured state: it appears much less probable for the very s
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TABLE I. Coefficients for the vertical eigenfunctions.

n Rn a1 Rea2 Ima2 cn1 , cn18 Recn2
a Imcn2

a Recn28
a Imcn28

a

0 1707.76 3.973 70 2.125 87 5.194 39 1.475 27 8.907 25 0.098 0624.538 55 7.664 87
1 24 988.4 7.256 94 3.664 40 7.370 66 1.426 99 2.365 8922.369 26 0.868 90 3.233 55
2 171 763 10.4348 5.231 09 9.817 03 1.419 07 20.002 43 21.013 82 0.879 21 0.504 80
3 756 886 13.5913 6.802 15 12.3773 1.416 50 20.202 07 20.201 14 0.275 23 20.074 43
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pattern of domains to be reproduced from one cycle to
next, than to reproduce the same perfect pattern. Even f
static experiment there is no guarantee that the domains
eventually heal in a perfect pattern~some topological defect
may survive indefinitely@1#!, and in experiments like the on
by Meyer, Ahlers, and Cannell@3# the control parameter is
cycled again below threshold sooner than the pattern hea
can proceed. Thus it could be expected that the inclusio
the effects of defect nucleation would lead to a predic
ODTL for thermal noise nearer to the experimental data t
the ones presented here. Work along these lines is
progress.
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APPENDIX A: VERTICAL EIGENFUNCTIONS

We perform a standard linear stability analysis, looki
for the marginally stable solutions of the linearized, noisel
version of Eqs.~10! with static forcing; that is, we look for
solutions of

05s¹4ui1s~d iz¹
22] i]z!u, ~A1a!

05¹2u1Ruz . ~A1b!

Here we made use of the fact that the static conduction
file satisfies

05]z
2Tc, Tc~2 1

2 !5Tl , Tc~ 1
2 !5Tu, ~A2!

with solution

Tc~z!5~ 1
2 2z!Tl1~ 1

2 1z!Tu, ~A3!

and definedR5Tl2Tu. The pair of equations foruz andu in
Eq. ~A1! is closed. Fourier transforming fromx5(x,y) to
q5(qx ,qy) gives

05s~]z
22q2!2ũz2sq2 ũ , ~A4a!

05~]z
22q2! ũ 1R ũz , ~A4b!

with BC’s ũz(q,z)5]zũz(q,z)5 ũ (q,z)50 at z56 1
2 ~the

tilde denotes the transformed fields!. This pair of ordinary
differential equations can be cast as a single equation
either ũz or ũ ,
e
a

ill

ng
of
d
n
in

.

s

o-

or

~]z
22q2!3ũz1q2R ũz50, ~A5a!

~]z
22q2!3 ũ 1q2Rũ 50, ~A5b!

with BC’s ũz5 ũz85 ũz
iv22q2ũz950 and ũ 5 ũ 95 ũ -

2q2 ũ 850, respectively, atz56 1
2 ~the primes denote differ-

entiation with respect toz). We will assumeq2.0, R.0.
Now we must find the real eigenfunctions and the eig

values of Eq.~A5!. It is straightforward to see that the dif
ferential operator in Eq.~A5a!, with its boundary conditions
is not Hermitian. Neither is the operator in Eq.~A5b!, with
its boundary conditions. Hence the left and right eigenfu
tions of Eq. ~A5a! will not be the same, and neither wi
those of Eq.~A5b!. However, it can be verified by partia
integration that for any two functionsf (z) satisfying the
BC’s of Eq. ~A5a!, and g(z) satisfying the BC’s of Eq.
~A5b!,

E
21/2

1/2

g~z!~]z
22q2!3f ~z!dz5E

21/2

1/2

f ~z!~]z
22q2!3g~z!dz.

~A6!

So we see that the right eigenfunctions of Eq.~A5a! will be
identical~apart of multiplicative constants! to the left eigen-
functions of Eq.~A5b!, and vice versa. Hence it suffices
find the right eigenfunctions for both Eqs.~A5!.

We look for solutions of the formũ 5eiaz, ũz5eiaz.
Substituting in Eqs.~A5!, a characteristic equation results
both cases,

~a21q2!35q2R, ~A7!

which has six complex solutions6a l , l 51, 2, and 3, with

a1~q,R!5A~q2R!1/32q2, ~A8a!

a2~q,R!5A 1
2 ~211 iA3!~q2R!1/32q2, ~A8b!

a3~q,R!5A 1
2 ~212 iA3!~q2R!1/32q2. ~A8c!

Note thata35a2* ~the asterisk denotes complex conjug
tion!. From the fact that both the differential equations~A5!
and their boundary conditions are even inz, we see that the
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eigenfunctions must have definite parity. Moreover, they w
depend on the wave numberq only through its modulusq, as
expected from the rotational invariance of Eqs.~A1! in the
(x,y) plane. The eigenfunctions will also depend onR, as a
parameter.

The eigenfunctions can be cast in the forms

ũz~q,z;R!5c18H cos
sinJ @a1~q,R!z#

1Fc28H cos
sinJ @a2~q,R!z#1c.c.G , ~A9a!
s

e
t
4

,
es

ve
er
l
ũ ~q,z;R!5c1H cos

sinJ @a1~q,R!z#

1Fc2H cos
sinJ @a2~q,R!z#1c.c.G , ~A9b!

where the cosines and sines correspond respectively to
and odd eigenfunctions, and we assume thatc1 and c18 are

real. Substituting the even form ofũ (q,z;R) in the BC’s of
~A5b! gives a homogeneous system of three linear equat
for the coefficientsc1 , c2, andc2* , whose coefficient matrix
is
nt
Me~q,R!5S cos~a1/2! cos~a2/2! cos~a3/2!

2a1
2 cos~a1/2! 2a2

2 cos~a2/2! 2a3
2 cos~a3/2!

a1~a1
21q2!sin~a1/2! a2~a2

21q2!sin~a2/2! a3~a3
21q2!sin~a3/2!

D . ~A10!

Substituting the even form ofũz(q,z;R) in the BC’s of Eq.~A5a! gives a completely equivalent system, with a coefficie
matrix

Me8~q,R!5S cos~a1/2! cos~a2/2! cos~a3/2!

2a1 sin~a1/2! 2a2 sin~a2/2! 2a3 sin~a3/2!

a1
2~a1

212q2!cos~a1/2! a2
2~a2

212q2!cos~a2/2! a3
2~a3

212q2!cos~a3/2!
D . ~A11!

The corresponding coefficient matrices for the odd forms ofũ (q,z;R) and ũz(q,z;R) are

Mo~q,R!5S sin~a1/2! sin~a2/2! sin~a3/2!

2a1
2 sin~a1/2! 2a2

2 sin~a2/2! 2a3
2 sin~a3/2!

2a1~a1
21q2!cos~a1/2! 2a2~a2

21q2!cos~a2/2! 2a3~a3
21q2!cos~a3/2!

D ~A12!

and

Mo8~q,R!5S sin~a1/2! sin~a2/2! sin~a3/2!

a1 cos~a1/2! a2 cos~a2/2! a3 cos~a3/2!

a1
2~a1

212q2!sin~a1/2! a2
2~a2

212q2!sin~a2/2! a3
2~a3

212q2!sin~a3/2!
D , ~A13!

respectively.
of

any

ith

al

for

c-
ial
The solvability conditions detMe(q,R)50 and detMe8(q,R)
50 both give the same equation relatingq andR, which we
will not write here for brevity. Numerical analysis of thi
equation finds a succession of curves on theq-R plane where
detMe vanishes. The solvability conditions detMo(q,R)50
and detMo8(q,R)50 are equivalent too, and define anoth
set of curves on theq-R plane, interspersed with the firs
ones. The first five of these curves are shown in Fig.
Considered as functionsRi(q), i 50,1,2, . . . ~the even and
odd indexes correspond to even and odd eigenfunctions
spectively!, each of these curves has a minimum for progr
sively increasing valuesq0,q1,q2,••• of q, from which
it branches upwards in theq-R plane. The point„q0 ,R0(q0)…
corresponds to the well-known values of the critical wa
numberq05qc53.11632 and the critical Rayleigh numb
r

.

re-
-

R0(q0)5Rc51707.76, at which the first convective mode
the OB equations destabilizes. ForR,Rc all modes are
stable, and the system is in a purely conductive state. For
given value ofR, all values ofq such thatRi(q),R corre-
spond to linearly unstable modes of the OB equations w
wavelengthq.

To construct a complete, orthonormal set of vertic
eigenfunctions, we must choose a fixed value forq. ~Though
it could seem conceptually more appealing, choosing
each eigenfunction the corresponding critical valueqi for q
would not give mutually orthogonal left and right eigenfun
tions, as they will belong in this case to different different
equations.! We select, as usual,q5qc , and define Ri
5Ri(qc). The first four valuesRi are shown in Table I, as
well asa1(qc ,Ri) anda2(qc ,Ri). Accordingly, we take as
our velocity and temperature right eigenfunctions
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Uzi~z!5 ũz~qc ,z;Ri !5ci18 H cos
sinJ @a1~qc ,Ri !z#

1Fci28 H cos
sinJ @a2~qc ,Ri !z#1c.c.G , ~A14a!

Q i~z!5 ũ ~qc ,z;Ri !5ci1H cos
sinJ @a1~qc ,Ri !z#

1Fci2H cos
sinJ @a2~qc ,Ri !z#1c.c.G . ~A14b!

The corresponding coefficientsci j and ci j8 are the solu-
tions of the equation systems

M~qc ,Ri !S ci1

ci2

ci2*
D 50, M8~qc ,Ri !S ci18

ci28

ci28*
D 50 ,

~A15!

respectively, whereM stands for eitherMe or Mo according
to the parity ofi , and similarly forM8. The coefficientsci j

and ci j8 can be selected to give mutually normalized eige
functions. Their values fori 50, 1, 2, and 3 are shown in
Table I. With no generality loss we have furthermore
c1 j8 5c1 j .

The first four normalized eigenfunctionsUzi(z) and
Q i(z) are plotted in Fig. 5. They can be shown to form
mutually orthonormal set, that is

E
21/2

1/2

Uzi~z!Q j~z!dz5d i j . ~A16!

Note thatUzi(z) and Q i(z) have the parity of their index
and showi nodes betweenz52 1

2 and 1
2, as expected.

APPENDIX B: EXPANSIONS IN VERTICAL
EIGENFUNCTIONS

In this appendix we derive the projections over the r
evant vertical eigenfunctions of the instantaneous conduc
profile and of the noise amplitudes.

FIG. 4. CurvesRi(q), i 50, . . . ,4. Theminimum of R0(q)
defines the point (qc ,Rc).
-

t

-
ve

1. Conductive profile

The instantaneous conductive profile is the solution of
heat conduction equation~6! with the instantaneous, inhomo
geneous BC’s~7!. It is convenient to separate it as a line
profile plus a deviation from linearityS(z,t), i.e.,

Tc~z,t !5Tu1~1/22z!R~ t !1S~z,t !, ~B1!

whereR(t) is the instantaneous Rayleigh number~8!. The
equation forS is then

] tS5]z
2S2~1/22z!] tR~ t !, ~B2!

with homogeneous BC’s atz56 1
2 . Substituting the trun-

cated expansion

S~z,t !5Q0~z!S0~ t !1Q1~z!S1~ t !, ~B3!

multiplying by Uz1(z), and integrating overz, we obtain

Ṡ1~ t !52$Uz18 Q18%S1~ t !2$Uz1~1/22z!%Dv sin~vt !,
~B4!

where we used the orthonormality relation$UziQ j%5d i j .
We also set$Uz1Q09%50 because of the eigenfunction’s pa
ity, and $Uz1Q19%52$Uz18 Q18% by partial integration. The
positivity of $Uz18 Q18% ensures the existence of a period
long-time asymptotic solution, which is

S1~ t !5Dv$zUz1%
$Uz18 Q18%sin~vt !2v cos~vt !

$Uz18 Q18%
21v2

. ~B5!

Here we used the parity ofUz1 to set$Uz1%50. The numeri-
cal values of$zUz1% and$Uz18 Q18% are given in Table II. An
expression forS0(t) can be found in the same way, but w
do not show it here sinceS0 does not enter Eqs.~26!.

FIG. 5. Vertical eigenfunctionsUzn(z) ~a! and Qn(z) ~b!, n
50, . . . ,3. Thenth eigenfunction hasn nodes in2

1
2 <z< 1

2 .
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2. Noise terms

The noise term in Eq.~19b! is

Q~r ,t !52
]

]r i
qi~r ,t !, ~B6!

where qi(r ,t) are zero-mean Gaussian white noise fie
with self-correlations given by Eq.~2b!, andr i stands for the
i th component ofr . Then

^Q~r ,t !Q~r 8,t8!&5cqd~ t2t8!
]

]r i

]

]r i8
d~r2r 8!. ~B7!

For any set of test functions in2`<x,y<`, 2 1
2 <z< 1

2

satisfying the temperature vertical BC’s~11!, we have
]x8d(x2x8)52]xd(x2x8), so we immediately obtain

^Q~r ,t !Q~r 8,t8!&52cqd~ t2t8!¹2d~r2r 8! ~B8!

for any set of test functions in2`<x,y<`, 2 1
2 <z< 1

2

satisfying the velocity vertical BC’s~11!. Fourier transform-
ing from x to k gives

^Q̃* ~k,z,t !Q̃~k8,z8,t8!&5~2p!2cqd~k2k8!d~ t2t8!

3~k22]z
2!d~z2z8!. ~B9!

The noise term in Eq.~19a! is

Sz~r ,t !5S dz j

]

]r i

]

]r i
2

]

]r z

]

]r j
D ]

]r k
sjk~r ,t !, ~B10!

TABLE II. Inner products of the vertical eigenfunctions.

$Uz0Uz0% 0.781 901 $Uz08 Uz08 % 9.340 89
$Q0Q0% 1.297 86 $Q08Q08% 12.8977

$Q09Q09% 135.587 $Uz08 Q08% 10.2284

$Uz0
iv Q0% 551.073 $Uz18 Q18% 40.8770

$Uz0Uz0Q18% 4.966 78 $Uz0Q0Uz18 % 4.803 06
$zUz1% 0.173 930
s

where si j (r ,t) are zero-mean Gaussian white noise fie
with self-correlations given by Eq.~2a!. A thoroughly simi-
lar procedure leads to

^Sz~r ,t !Sz~r 8,t8!&52csd~ t2t8!¹4~¹22]z
2!d~r2r !.

~B11!

Fourier transforming fromx to k gives

^S̃z* ~k,z,t !S̃z~k8,z8,t8!&5~2p!2csd~k2k8!d~ t2t8!k2

3~k22]z
2!2d~z2z8!. ~B12!

The noise term in Eq.~26b! is defined as

ADu~k! j̃ u~k,t !5Q̃0~k,t !5E
21/2

1/2

Uz0~z!Q̃~k,z,t !dz,

~B13!

which shows that it too is a zero-mean Gaussian white no
field. Its self-correlation is then

^Q̃0* ~k,t !Q̃0~k8,t8!&5~2p!2cqd~k2k8!d~ t2t8!

3E
21/2

1/2

dzUz0~z!E
21/2

1/2

dz8Uz0~z8!

3~k22]z
2!d~z2z8!

5~2p!2cqd~k2k8!d~ t2t8!

3@$Uz0Uz0%k
22$Uz0Uz09 %#. ~B14!

Integrating by parts the term$Uz0Uz09 % to symmetrize the
inner product, we obtain the result in Eqs.~27!–~28b!.

The noise term in Eq.~26a! is defined as

ADu~k! j̃ u~k,t !5S̃z0~k,t !5
1

k21$Uz08 Q08%

3E
21/2

1/2

Q0~z!S̃z~k,z,t !dz, ~B15!

then
^S̃z0* ~k,t !S̃z0~k8,t8!&5~2p!2csd~k2k8!d~ t2t8!
k2

@k21$Uz08 Q08%#2 E
21/2

1/2

dz Q0~z!E
21/2

1/2

dz8Q0~z8!~k22]z
2!2d~z2z8!

5~2p!2csd~k2k8!d~ t2t8!k2
$Q0Q0%k

422$Q0Q09%k
21$Q0Q0

iv%

@k21$Uz08 Q08%#2
. ~B16!

Integrating by parts to symmetrize the inner products, we obtain the result in Eqs.~27!–~28a!.
e
APPENDIX C: ALTERNATIVE MODELS

1. Reduction to a Swift-Hohenberg-like equation

It is well known that for a larges and the small amplitude
d of the forcing, the Lorenz model of Refs.@10,13# reduces
to a first-order amplitude equation@29#. Thus it is of interest
to study the same limit for Eqs.~26!.
Closely following the procedure for the Lorenz model, w
first set

ũ 0~k,t !5
1

guu~k!
@2] t ũz0~k,t !2guu~k! ũz0~k,t !

1ADu~k! j̃ u~k,t !#, ~C1!
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which follows from Eq.~26b!. Using this and Eq.~37!, we
can integrate out̂ ū 1& in Eqs.~26! to obtain

^ ū 1&5^ ū z0
2 &1^M @ ũz0#&, ~C2!

whereM is a memory term exactly like the one in Ref.@10#,
which is negligible for small modulation and near the~static!
convective threshold~i.e., for e0!1). Substituting in Eq.
~26a! and takings@1, we obtain

2
guu~k!1guu~k!

guu~k!
] t ũz0~k,t !

52F2
guu~k!guu~k!

guu~k!
2$Uz0Uz0%R~ t !1$Uz0Uz0Q18%

3@S1~ t !1^ ū z0
2 &#G ũz0~k,t !1ADu~k! j̃ u~k,t !

2
guu~k!

guu~k!
ADu~k! j̃ u~k,t !. ~C3!

In writing this equation, we neglected terms which beco
small for s@1, in particular a second-order time derivativ
of ũz0 on the left hand side, and the memory term^M &.
Defining

t052
guu~qc!1guu~qc!

guu~qc!$Uz0Uz0%Rc
, ~C4!

we rewrite Eq.~C3! as

t0] t ũz0~k,t !

5F2t0

guu~k!guu~k!1guu~k!$Uz0Uz0%Rc

guu~k!1guu~k!

2t0

guu~k!$Uz0Uz0%Rc

guu~k!1guu~k!
S e01d cos~vt !

2
$Uz0Uz0Q18%

$Uz0Uz0%Rc
@S1~ t !1^ ū z0

2 &# D G ũz0~k,t !

1t0

guu~k!ADu~k! j̃ u~k,t !2guu~k!ADu~k! j̃ u~k,t !

guu~k!1guu~k!
.

~C5!

Now we expand thek-dependent coefficients of Eq.~C5!
in powers ofk22qc

2 , in the same way as is done in th
derivation of the SH equation in Ref.@9~a!#. In particular, we
can see that

2t0

guu~k!guu~k!1guu~k!$Uz0Uz0%Rc

guu~k!1guu~k!

.a~k22qc
2!1b~k22qc

2!25e12x4~k22q
*
2 !2, ~C6!
e

where we definede152a2/(4b), x452b, and q
*
2 5qc

2

2a/(2b). The remaining coefficients are evaluated atk

5qc . Introducingc̃(k,t)5t0ũz0(k,t), we obtain

t0] tc̃~k,t !5@~e01e1!1d cos~vt !1e2S1~ t !

2x4~k22q
*
2 !22g^ c̄2&#c̃~k,t !

1AD j̃ ~xk,t !, ~C7!

wherec̄ is the Fourier antitransform ofc̃ , and we defined

D5t0
4
guu

2 ~qc!Du~qc!1guu
2 ~qc!Du~qc!

@guu~qc!1guu~qc!#
2

. ~C8!

Here j̃ (k,t) is a zero mean Gaussian white noise field w

^ j̃ (k,t) j̃ (k8,t8)&5d(k2k8)d(t2t8). Fourier antitrans-
forming leads to Eq.~50! of the main text.

For s56, the numerical values of the coefficients are

t055.40931022,

e152.02231023,

x453.83931023,

q
*
2 510.44,

e2523.72031023,

g51.271,

AD51.93831025.

The corresponding values for the SH equation are@19#

t055.52331022,

e150,

x453.81031023,

q
*
2 5qc

2,

e250,

g50.2330,

AD50.342331025.

2. Amplitude equation for time-periodic driving

For modulated Rayleigh-Be´nard convection without noise
a modified amplitude equation was derived by Schmitt a
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Lücke @11#. They performed a systematic nonlinear pert
bation of the hydrodynamic field equations using a Poinca
Lindstedt technique combined with a multiple-scale analy
amounting to an expansion in powers of (e2ec)

1/2, whereec
is the reduced critical Rayleigh number for the convect
onset in the presence of modulation. The expansion is in
duced by assuming a parallel roll convective structure, de
ing the slow length and time scalesXn5hnx andTn5hnt in
addition to the fast variations inx and t, and setting

e2ec5he11h2e21•••, ~C9a!

u~r ,t !5hu0~r ,X,t,T!1h2u1~r ,X,t,T!1•••, ~C9b!

u~r ,t !5hu0~r ,X,t,T!1h2u1~r ,X,t,T!1•••, ~C9c!

whereX5$X1 ,X2 , . . . % andT5$T1 ,T2 , . . . % denote all the
slow length and time scales. The hydrodynamic fields
assumed to have the form

v~r ,X,t,T!5A~X,T! f ~r ,t !, ~C10!

where v stands for any of the fieldsui or u, f (r ,t) is an
eigenfunction taking into account the vertical BC’s~includ-
ing the time-periodic modulation! and the assumed conve
tive structure, and

A~x,t !5hA0~X,T!1h2A1~X,T!1•••. ~C11!

Inserting these expansions into the Oberbeck-Boussin
equations, the nonlinear problem is decomposed in a
quence of linear equations, each with inhomogeneities
pending in general nonlinearly on previous ‘‘coefficients
~for details, see Ref.@11#!.

Noise can be included in the above scheme by clos
following the same steps as for the static-forcing amplitu
equations, i.e., one must assume the appropriate scalin
lationships for the noise correlations@8#. This leads to the
noise being included in the solvability condition of the pe
turbative expansion at orderh3, which gives the first nonlin-
ear amplitude combination in the form

t]T2
A05@j2¹X1

2 1e22guA0u2#A01jA0
~X1 ,T2!.

~C12!

HerejA0
(X1 ,T2) is a zero-mean Gaussian white noise fie

with self-correlation

^jA0
* ~X1 ,T2!jA0

~X18 ,T28!&5DA0
d~X12X18!d~T22T28!.

~C13!

Eliminating the slow auxiliary variables in favor of the orig
nal ones gives, forA(x,t), the amplitude equation

t] tA5@j2]x
21e2ec2guAu2#A1jA~x,t !, ~C14!

where the Gaussian white noise fieldjA(x,t) has intensity
DA5DA0

,

-
-

s,

n
o-
-

e

sq
e-
e-

ly
e
re-

t~D̃,v!5t~0!@11D̃2t~2!~v!1O~D̃4!#, ~C15a!

j2~D̃,v!5j2~0!@11D̃2j2~2!~v!1O~D̃4!#, ~C15b!

g~D̃,v!5g~0!@11D̃2g~2!~v!1O~D̃4!#, ~C15c!

ec~D̃,v!5D̃2ec
~2!~v!1O~D̃4!, ~C15d!

kc~D̃,v!5kc
~0!@11D̃2kc

~2!~v!1O~D̃4!#, ~C15e!

and D̃5D/(11e0) in terms of the main text parameters.
For free-slip BC’s, the zero modulation amplitude para

eters are

t~0!5
2

3p2

s11

s
, j2~0!5

8

3p2
,

~C16!

g~0!5
2

3p2
, kc

~0!5p/A2,

and the leading-order corrections are

t~2!5
s3

~s11!4
GF11

1

s2 S 11
7

6

v2

qc
~0!4D G , ~C17a!

j2~2!5
1

2

s

~s11!2
GS 11

8v2

3~s11!2qc
~0!4

1
3v4

~s11!4qc
~0!8D ,

~C17b!

ec
~2!5

1

2

s

~s11!2
G, ~C17c!

g~2!.
1

2

1

~vt~0!!2
, ~C17d!

kc
~2!52

1

4

v2

qc
~0!4

s

~s11!2
G, ~C17e!

whereG is given by

G5F S 11
v2

~s11!2qc
~0!4D S 11

v2

~2p!4D G21

, ~C18!

andqc
(0)25kc

(0)21p2. The noise intensity is

DA5
cskc

2~kc
21p2!2

~qc
~0!6E!2

. ~C19!
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The coefficientE can be taken to be unity in all cases@11#,
since its correction to orderD̃2 is very small. The coefficien
cs is the same as introduced in Eq.~2a!.

Since the derivation of Schmitt and Lu¨cke @11# relied on
an expansion in vertical modes similar to the one used in
generalized Lorenz model of Ref.@10#, the conversion to
rigid boundary conditions may be performed in the sa
way as for this model. So the rigid BC coefficients are o
tained by setting

t~0!5
s10.5117

19.65s
, ~C20a!

j2~0!50.148, ~C20b!
,

tt
e

e
-

g~0!50.699520.0047s2110.0083s22, ~C20c!

kc
~0!5qc53.1163, ~C20d!

and replacing

qc
~0!4→qc

41$Uz08 Q08%qc
21$Q0Uz0

iv % ~C21!

in Eqs.~C17! and ~C18!. The noise intensityDA becomes

DA5
cskc

2~$Q0Q0%kc
41$Q08Q08%kc

21$Q09Q09%!

@~qc
21$Uz08 Q08%!~qc

41$Uz08 Q08%qc
21$Q0Uz0

iv %!#2
.

~C22!
P.
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