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We compute the Lyapunov spectrum and the Kolmogorov-Sinai entropy for a moving particle placed in a
dilute, random array of hard-disk or hard-sphere scatterers, i.e., the dilute Lorentz gas model. This is carried
out in two ways. First we use simple kinetic theory arguments to compute the Lyapunov spectrum for both
two- and three-dimensional systems. In order to provide a method that can easily be generalized to nonuniform
systems we then use a method based upon extensions of the Lorentz-BoltdrBanequation to include
variables that characterize the chaotic behavior of the system. The extended LB equations depend upon the
number of dimensions and on whether one is computing positive or negative Lyapunov exponents. In the latter
case the extended LB equation is closely related to an “anti-Lorentz-Boltzmann equation” where the collision
operator has the opposite sign to the ordinary LB equation. Finally, we compare our results with computer
simulations of Dellago and Pos¢Rhys. Rev. E52, 2401(1995; Phys. Rev. Lett78, 211(1997] and find
very good agreemenfS1063-651X%98)05204-(

PACS numbd(s): 05.45+b

I. INTRODUCTION diusa in volumeV andv is the constant speed of the mov-
ing particle[7]. This conjecture has been verified by Cher-
The Lorentz model of a gas of noninteracting particlesnov, who argued that for low enough densities the periodic
that collide with fixed scatterers has been a basic model foand the random Lorentz gas should have the same value of
acquiring an understanding of fundamental issues in both thée Kolmogorov-Sinai entropy and then calculated this quan-
kinetic theory of gases and the general theory of nonequilibtity for a periodic system at low density. Chernov obtained
rium phenomena in fluids and solii,2). In this paper we the result{8]
use the Lorentz gas to study important features of the chaotic
behavior of systems that show typical equilibrium and non- hs=\"=—2navinna® for d=2, @)
equilibrium behavior such as the existence of a spatially ho-
mogeneous equilibrium state and normal diffusion of moving

particles among the scatterers. Since the particles do not CCi'—iereA* denotes a positive Lyapunov exponent. Simple con-

iide with each other th.e Lorentz gas can regdily .be analyzeigiderations of the number of degrees of freedom and the
n terms of the properties of one moving particle in the set Olcqnservation of energy show that for a two-dimensional Lor-
fixed scatte_rers. Here We'conS|der the scattergr_s to be pIac% tz gas there can be no more than one positive Lyapunov
at random in space, subject only to the condition that they,,yonent and for a three-dimensional gas there can be at
are not aIIowec_i to overiap Wlth e_ach other. The chaotic propsnost two of them. The quantityys is the Kolmogorov-Sinai
erties of a particle moving in periodicarray of nonoverlap- (KS) entropy, which for a closed, isolated ergodic system,
ping hard disks have been studied extensively, especially fo§ych as the one considered by Chernov, is equal to the sum
the case where the density of scatterers is sufficiently hlgbf the positive Lyapunov exponents, according to Pesin’s
that the moving particle is unable to travel unimpededtheorem[9]. Chernov’s results are only the first terms in the
through the latticéthe case of finite horizori3]. Itis known  density expansion dfixs for a random Lorentz gas and up
that under appropriate mathematical conditions the randorantil the present work no further analytic results had been
Lorentz gas is & system[4] and that the periodic Lorentz known for either the density-dependent corrections to these
gas with finite horizon is a Bernoulli systef,6]. These results or, for three-dimensional systems, the individual
results are sufficient to prove that the gas has a well-definedyapunov exponents for the random gas. Recently, Dahlqvist
equilibrium state and that suitably defined initial ensemblehas been able to calculate the density corrections for periodic
distributions will approach equilibrium distributions for long Lorentz gas where small hard-disk scatterers are placed at
enough times. However, for the random case there are veitye vertices of a square latti¢&0].

few analytic results for quantities that characterize the cha- We have been able to use familiar methods from the ki-
otic behavior of the moving particle. There is a conjecture bynetic theory of gases to calculate the Lyapunov spectrum and
Krylov that the positive Lyapunov exponents for the movingthe KS entropy for random Lorentz gases at low densities
particle are proportional tma® *vin[na®] ™! if nad<1l, [11-14. We can do this for closed, isolated systems as well
wheren=N/V is the number density dl scatterers of ra- as for closed systems in a magnetic field, open systeuitis

hks=Nj +\; =—2mna’vinna® for d=3. (2
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escape of particlesand systems where the moving particle vT=0-2(7-A)A, 3
is charged and subjected to an electric field plus a thermostat
that maintains a constant kinetic energy even in the presenoghere v is the velocity after collision and is the unit
of the electric field. These two latter cases are of particularector in the direction from the center of the scatterer to the
interest because of their importance for methods that relat@oint of impact of the moving particle at collisidag]. This
dynamical quantities such as Lyapunov exponents and K_gqmpletely specifies the Qynamlcs of the particle given its
entropies to transport coefficients, in this case the diffusiodnitial phase and the locations of all of the scatterers.
coefficient for the moving particlgl5,16. This paper will be The Lyapunov exponents characterize the rate of expo-
devoted to obtaining the low-density results for Lyapunovnential separation or of exponential convergence of infini-
exponents and KS entropies under the various situation§Simally nearby trajectories on the {2 1)-dimensional
mentioned above. Extensions of these results to higher de§onstant energy surface [9]. Since the Lorentz gas is a
sities and to other quantities will be presented elsewhere. Symplectic, Hamiltonian system, if there are nonzero
In this paper we shall consider dilute, equilibrium Lorentz Lyapunov exponents they come in pairs of positive and
gases in two or three dimensions, consisting, respectively, dfegative valuest\; [19]. However, the Lyapunov exponent
randomly placed but nonoverlapping, fixed hard-disk orf(_)r displacements in the direction of the t_rajecto_ry is zero
hard-sphere scatterers and a point particle of nmasand ~ Since two phase points on the same physical trajectory will
speedv moving among them. The collisions with the scat- follow one another without exponential separation or con-
terers are taken to be elastic. In the future we plan to geneffaction. Therefore, there can be at mdst1 positive and
alize this model to nonequilibrium situations with thermo- d— 1 negative Lyapunov exponents for our system.
statted electric fields, and/or open systems with absorbing TO treat the Lyapunov exponents we consider a bundle of
boundaries. The plan of this paper is as follows. In Sec. Il wenfinitesimally nearby trajectories ahand follow the motion
present an elementary kinetic theory argument that correctl9f this bundle in time. If the phase point on one reference
provides the low-density values of the Lyapunov exponentdrajectory in this bundle is given by(t) we denote the de-
and KS entropy of the Lorentz gas in two and three dimenYviation of another trajectory in the bundle frox(t) by
sions for closed systems and without external fields. In SecdX(t)= (o1 (t), 6v(t)). Equations of motion fobx(t) follow
Il we consider a more formal approach to these quantitieémmediately from the equations of motion feft). Since the
due to Sina[3], which will form the basis of the extension of moving particle has only kinetic energy the requirement that
the kinetic theory approach to nonuniform systems. There wé0th trajectories lie on the same energy surface immediately
provide the fundamental geometric formulas of Sinai, whichleads to the property(t) - 6v(t) =0 for all t. Without loss of
relate the Lyapunov exponents and KS entropy of a Lorentgenerality, we may replacér(t) by the vector of closest
gas to the properties of a radius of curvature matrix. Then w@pproach between the two trajectories, i.e. we set
use the ergodic properties of the moving particle to expressr () -v(t)=0. [From here on we will use the notati@(t)
the Lyapunov exponents and KS entropy in terms of averfor this vector of closest approach of the perturbed trajectory
ages over an equilibrium ensemble. In Sec. IV we show thalo F(t). Notice that if6r(t)-v(t)=0 att=0 it remains so at
the pertinent distribution functions can be obtained from theall later times, by virtue of Eqg3)—(6).] In between colli-
solution of an appropriate extended Lorentz-Boltzmanrsions the spatial and velocity deviations change with time
equation and in Sec. V we calculate the KS entropy of theaccording to
two- and three-dimensional Lorentz gases at low densities. In

Sec. VI we consider the negative Lyapunov exponents and 5= 60 , 4
show how they can be obtained from a solution of an “anti- _
Lorentz-Boltzmann™ equation. This will be important for the S0 =0. (5)

extension of the theory to treat thermostated systems. We

conclude in Sec. VII with a comparison of these results with  The change obx(t) at collisions requires some analysis,
the results of computer simulations by Posch and Dellagavhich has been provided by Gaspard and Dorfii26] and
[17] and with a discussion of the applications of the method®Dellago, Posch, and HoovE21]. These authors have shown
developed here to more general systems. that the change idx at the instant of a collision is given by

ST =[1—2AR]. o, (6)

II. VELOCITY DEVIATION METHOD FOR LYAPUNOV )
EXPONENTS AND KS ENTROPIES S5+ —[1-2AA]- 55+5 PN v
We consider a system dfl d-dimensional hard-sphere

scatterers placed randomly in space id-dimensional vol- @
umeV at low density. Herel=2,3, the spheres have a radius here 7, 57, 55 are the velocity of the moving particle, the
a, and the number density of the spheresN/V satisfies = gpatial deviation, and the velocity deviation of the nearby
na’<1. The moving particle travels freely between elastiCajectory, immediately before the collision with the scat-
collisions with the scatterers. The phase poirdf the par-  erer, while the “+” variables denote the values immedi-
ticle, i.e., its position and velocityx=(r,v) satisfies the ately after collision. It is important to note here that the ve-
equations of motiom=v ando =0 between collisions. At a locity deviation §v does not change between collisions but
collision of the moving particle with a scatterer, the velocity does undergo an instantaneous change at each collision with
of the moving particle changes according to a scatterer.
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Suppose that we prepare a trajectory bundle with initial N
values oféx(0) and we follow the motiodx(t) in time. We detA(t)= H def; . (13
can relate the largest positive Lyapunov exponent to the !
asymptotic growth of the ratipsi (t)|/[5(0)| by Of course the number of collision§’in time t will depend

upont and the initial value of the phase poix{0). Expres-
_ ®) sions for the largest Lyapunov exponent and for the sum of
positive Lyapunov exponents can be obtained from E)s-
(13) as
This follows from the observation that if there are positive N -
Lyapunov exponents, then two infinitesimally close trajecto- N ”mﬁ/£2 n | 607" | (14)
ries will eventually separate in time unless they are so pre- e Lt N |86,
cisely arranged that they approach each other exponentially
in time. However, the latter situation occurs only on sets of N1 X
zero measuréhe stable manifoldin tangent space. Further- E Ni=lim— — E In|dety]. (15
more, this exponential separation occurs both in configura- Ai=0 -

tion space and |n_\_/eIOC|ty space with the same expone ntial To proceed further we need to use the fact that the density
factor since velocities and positions are related by a simple

; L ; <1.
time derivative that does not affect the exponential separa?f the scatterers is small, that isa"<1. This will allow us

tion rate and we may consider the separation in velocity~ determine the mean of the quantities appearing in the
y , P . y§ums in Egs(14) and(15). Referring to Eq(7), we note that
space alone. In Sec. lll we consider another calculation o

the Lvanunov exponents. which treats the separation in co of appearing on the right-hand side is the spatial deviation of
he Lyap P ' X P The moving particle just before a collision with a scatterer.
figuration space, and we obtain the same results.

. o Let us suppose that we consider the collision with scatterer
Similarly, the sum of all of the positive Lyapunov expo- . . . o
nents can be obtained by following the growth of a volume® - Tien |mmed|at+ely before this coI'I|S|or$ri N 5ri.,1
element in velocity space as + Ti-ﬁvi,%, wheredx;_; den_o.tes th_e spatial anq velocity de-
viations just after the collision with the previous scatterer
1 s;_1 and 7; is the time between the collision with scatterer
AZO A= I|m?ln|de1A(t)|, (9 s_, and scatteres;. At low scatterer densities the time
' e between collisions will typically be inversely proportional to
the density of scatterers, so that the ratio of the order of
magnitudes of the first to the second term in the above ex-
pression forsr; will approach zero as the scatterer density
So(t)=A(t)- 85(0). (10) decreases. Therefore, to leading order in the density,
=7,60;_,. We then obtain a low-density value fa¥j;"
This result follows because the time evolution of the vectorgiven by
6u, which hasd—1 independent components, is dominated
by thed— 1 largest eigenvalues and corresponding eigenvec-
tors of the matrixA(t), which are precisely the positive ei-
genvalues. Suppose now that the moving particle undergoes

o1
Nmax— Ilm?ln

|8u (1)
|65(0)

t—oo

with A(t) describing the linear relationship betweéii(t)
and 6uv(0), i.e.,

St A Aot S+ 4
vi—aN—hoi_ ;= (vi= - 1)1

St An 2'7-i
ov; =|(1—2nn)+ a

a series of\/ collisions in the time interval0,t] with scat- 02

terers, which we labed; ,s,, . .. ,sy. Since the width of the + Tﬁﬁ) &v;

trajectory bundle is infinitesimal, each trajectory within it has (Uizq-h)

the same number of collisions with each scatterer in the same —a. 557 (16)

time. Sinceduv, as noted before, changes only at collisions, -1

one has Now we have expressions for the change in the velocity de-

viation at collision and for the matrig, both of which are

[65()]  |oox] |6ox_q| |607] needed for the calculations outlined above. To evaluate the
166(0)| - L |66 1) sums appearing in Eq$14) and (15), we note that at low

densities none of the collisions are correlated with any pre-

where 85, is the velocity deviation immediately after the Vious collision, that is, the leading contribution to the
collision with scatterers,. For the same reasoA(t) can Lyapunov exponents come from collision sequences where
change with time only at the instants of the collisions of theth® moving particle does not encounter the same scatterer
moving particle with the scatterer, so that more than once in the sequen@e two dimensions the par-
ticle will hit the same scatterer an infinite number of times.

85 (1) =80 \=ay- 80 -1 =ay-ay_1---&- 60(0). However, the effects of such processes are of higher density
(120  and can be neglected here since the times between successive
collisions with the same scatterer become typically very
Hereq is a matrix, to be defined below for the case wherelarge as the density of scatterers approaches Zenerefore,
the density of scatterers is low, that expresses the change vme can treat each term in the sums in Edsl) and (15) as
the velocity deviation when the moving particle collides with being independent of the other terms in the sum. We have
scatterers; . Consequently, expressed ., and the sum of the positive Lyapunov expo-
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nents as arithmetic averages, but for long times and witltase we take the velocity vector before collisionto be
independently distributed terms in the average, we can redirected along the axis and také-v=—v cos¢. The ve-
place the arithmetic averages by ensemble averages overagity deviation before collisionss ~ is perpendicular to the
suitable equilibrium ensemble. That is z axis. Then it is a simple matter to compu s *|/| v~ |

and|det|. For two-dimensional systen# and the matriva

- V< . :jv:+| > a7 are given in this representation by
. s 1) 5o (1+A)cos2p  sin2¢p
and “ “lo 6571, a= (1+A)sin2p — cos 2p)’
(20)
> \i=w(In|det]), (18
A>0 where we introducedA =2v 7/a cos¢, where —7/2< ¢

. . - < /2. To leading order i 7/a we find that
wherev is the (low-density value of the collision frequency m g T

NIt ast becomes large and the angular brackets denote an y
equilibrium average. o0
We now consider a typical collision of the moving par- |60
ticle with one of the scatterers. The free time between one
collision and the next is sampled from the normalized equifor three-dimensional systems the unit vedaran be rep-
librium distribution of free timeg18] P(7) given at low  resented as fi= — (cos¢)z+sin H(cosa)x+sin (sine)y.
densities by Now the ranges of the angles and « are 0<¢=<=/2 and
P(r)=ve '" (19) O<a<2. There is an additional anglgin the (x,y) plane
' such that the velocity deviation before collisiofy™
The construction of the matrix requires some geometry and =| 517*|[>A< cosy+y sin . It is somewhat more convenient
depends on the number of dimensions of the system. In anlp use a symmetric matri@= (1— 2hn) - a given by

—A, |det|=A. (22)

1+A(coS¢p+ sir¢ coda) A sirf¢ cosa sin a 0

A= A sirf¢ cosa sin a 1+A(cog¢p+ sirte sifa) 0. (22)
0 0 1
|
One easily finds ®
v (F>=%JO drf dnh(cos ¢)P(7)F, (25)

1/2

+ sinf(a—y)cos ¢ where P(7) is the free time distribution given by E¢19)
23) andJ is a normalization factor obtained by settiRg=1 in
the numerator. The integration over the unit vediori.e.,
over the appropriate solid angle, ranges overr/2< ¢
and < /2 in two dimensions and over<9¢<m/2 and O<a«
<2 in three dimensions. After carrying out the required
2 integrations we find that
) (24)

|6ﬁ+|_2m[co§(a—¢//)
1667 a| code

2vT
deﬁ=deta=(—
a N =Ama=2nav[—In(2na?) +1-Cl+---  (26)

to leading order irv 7/a. for two dimensions. Her€ is Euler’s constant and the terms
To complete the calculation we must evaluate the averDOt given explicitly in Eq.(26) are higher order in the den-

ages appearing in Eqél7) and (18). That is, we average Sity. Similarly, for the three-dimensional Lorentz gas we ob-

over the distribution of free times and over the rate at whichain

scattering events are taking place with the various scattering

angles. Additionally, in three dimensions an average over a Nmax=na%0 @[ —IN(A/2)+In2—3-C]+---, (27
stationary distribution of angleg has to be performed in . . ) _
general. Due to the isotropy of the scattering geometoan M axt Npin=2na%v [ = In(A/2) = C]+---, (28

here be absorbed in a redefinitiadl = a— ¢ of the azi-

muthal anglex. This will not be true anymore if the isotropy from which it follows that

of velocity space is brokefe.g., by an external fieJd The . ) _ L

appropriate average of a quantfytakes the simple form Amin=na%va[ —In(M/2)=In2+3—=C]+---, (29
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where i=naw. We have therefore determined the neously. The changes in the componentsitf and 65, at
Lyapunov spectrum for the equilibrium Lorentz gas at lowthe instant of collision are given in Eg&6) and(7) above.
densities in both two and three dimensi¢t4,13. We note In order to determine the Lyapunov exponents for this
that the two positive Lyapunov exponents for three dimensystem we need to examine the rate of separation or of ap-
sions differ slightly and that we were able to get individual proach of infinitesimally close trajectories. This can now be
values because we could calculate the largest exponent addne with the aid of the radius of curvature operajgrsind

the sum of the two exponents. We could not determine all opg, acting on a §— 1)-dimensional space of velocity devia-
the Lyapunov exponents for al$3)-dimensional Lorentz tion vectors orthogonal t@. Here the subscripts and s

gas this way. Moreover, for a spatially inhomogeneous syseenote operators describing unstable, or expanding, and
tem, such as those considered in the application of escapstable, or contracting, trajectory bundles, respectively. The
rate methods, the simple kinetic arguments used here are noperatorp, is defined by the relation that

sufficient and Boltzmann-type methods are essential for the

determination of the Lyapunov exponents and KS entropies. 1

We will comment further on these results in Sec. VII after (D)= —pu(t)- 60, (1), (33

we have obtained them again by a more formal method

h i f i h f Sinaj . " .. . _
F?zsed upon the radius of curvature matrix method o Slnafogether with the conditiong,-v=v- p,=0. This definition
' is motivated by the observation that if the velocity deviation
lIl. THE RADIUS OF CURVATURE MATRIX 6v describes separating trajectories, then we can apply ray

optics to describe the separation of the trajectdi®gsin the

Our analysis in this section is based upon the geometritransverse plane this separation will be given by an arclength
arguments given by Sin&B] for the relationships between equal to a radius of curvature multiplied by an infinitesimal
the Lyapunov exponents, the KS entropy, and the radius dhitial angular separation. We have chosen the units in Eq.
curvature matrix, which describes the time evolution of the(33) so that the radius of curvature operator has the dimen-
separation of nearby phase-space trajectories of the movirgion of a length. The radius of curvature operator can be
particle. Unlike the method presented in the preceding seaepresented as al¢ 1) X (d—1) matrix since bothsf; and
tion, this method treats the time evolution of Smatialsepa- 67, are defined in a plane perpendicularitoNow suppose
ration of a bundle of trajectories rather than the evolution ofthat we consider some initial velocity deviatiéd, (0) cor-
the velocity separation of the bundle. Here we summarizeesponding to a diverging pencil of rays and we want to
these considerations, referring the reader to the literature fasbtain an equation of motion for the radius of curvature ma-
further detailq3,20]. trix p,. We use the fact that the motion of the particle con-

As before, the trajectory of the moving particle is speci-sists of periods of free flight punctuated by instantaneous
fied by the phasex(t)=((t),v(t)) and we take a collisions with the fixed scatterers. We first consider the free
(2d—2)-dimensional planeX, (6r (t),6u,(t)), through flight motion. From the fact that in free flightF, (t)
x(t), where bothsr, (t) and év, (t) are perpendicular to the =57, (0)+tésv, (0) and 60, (t)=6v,(0), we infer that
velocity v (t). The nearby trajectories will interseEtand we  during free flight over a time intervalfrom some initial time
measure the separation of the trajectories by vectors of die=0, with initial value p(0), theradius of curvature matrix

mension 2¢—1) in %, &x, (t), given as changes with time according to
o (t
%(t):( f( )). (30 pu(t)=py(0)+otl, , (39
ov, (1)

wherel, =1—00 with o a unit vector in the direction af.
Next we use Eqs(6) and(7) to obtain the relation between
the radius of curvature operator immediately before a colli-
8, (H)=M(t,to)- 8%, (to). (31)  sionp{) and its value immediately after a collisigs};"” .
) . ) This calculation, while straightforward, requires a careful
The matrix M (t,ty) follows the motion of the particle. It analysis in order to obtain a correct expression foas a
changes continuously with timein the intervals between (d—1)x (d— 1) matrix. This analysis is presented in Appen-

collisions and undergoes a discontinuous change at the iR, A "There we find that at a collisiop changes according
stants of collisions of the particle with the scatterers. Bey,

tween collisions the monodromy matrix has the form

The time development ofx, is given in terms of a mono-
dromy matrixM (t,ty) satisfying

1 (t—tyl _ T4 I S
M (1,t0)free fiight™ (32 [p, " 1=U [py 71+ | 6A+A — —nn
0 1 a 0-N
At the instant of a collision there is a discontinuous
rotation of the velocity of the moving particle from its —(0-M)1|; U, (35
value before collisions to its value after collisiong™

=y —2A(v-N) as before. Since the velocity of the particle

changes discontinuously at collision, the pl@halso rotates WhereU is the reflection operatdr—2ni. The inverse radii
and the components of the displacement veétor change  of curvature tensorfp, *(7)] and[p, *(*)] are defined on
instanta- the subspaces orthogonald@oandv’, respectively, and are
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extended to tensors on full space by requiring that their lefHere 7 denotes a time-ordering operator. Using the method

and right inner products with ando ', respectively, are zero of differential forms or equivalent methofi22] we see that

again. the growth of a volume elementV,(t) in configuration
The sum of the positive Lyapunov exponents is connectedpace is given by

to the radius of curvature operat@,8]. Consider the spatial

separation of a bundle of trajectories after a sequenae of oV(t) F{ ft _1)
Py . ———=expv | drTrip,(7)] *|. (41
collisions labeled 1,2,.,n that take place at times 6V,(0) 0
t1,t, .. ot
This result leads immediately to E¢37) for the sum of
St =[1 +vrnn 1o, X (th_1)]-U(N—1) Lyapunov exponents. Vattay has shown how to construct the
inverse of the radius of curvature matrix for a general poten-
X[1 +0 710205 X (th_2)]-U(N=2)- - - tial [23]. It is straightforward generalizing the results ob-
1 - tained here to other short-range interaction potentials and it
X[ +vr e, "(0)]-67,(0), (36) may well be possible to treat some cases with long-range

interactions between the scatterers and the light particle. For
where the initial time has been settte 0, with initial values  the case of hard disks or spheres considered here, we can use
indicated for the spatial deviation vectér, (0) and for the the fact that the radius of curvature matrices at different
radius of curvature operatgr,(0). Also U(j)=1-20;0; is  times commute with each other if the times involved are all
the reflection operator at thigh collision. It is important to  within the same time interval between one collision of the

note that dew(j) = — 1. From Eq(36) the sum of the postive moving particle and a scatterer and the next collision to write
Lyapunov exponents can be derived[8s$]

n
¢ 5&(0:[__ ' R(t-+1,t-)}-5ﬂ(0), (42)
D xi=|im3f dr Troz 3(n). 37) L Rt
XS0 twotJo
where
Equation(37) is Sinai’'s formula for the KS entropy for a i1
moving particle in a system of fixed hard-sphere scatterers R(tHl,tJ—):ex;{vJ dr{py(7)] "t (43
[3,8]. By combining Eqgs.(34) and (35 one may obtain a i

continued-fraction representation fop, *(t)] [3], which,

and the prime on the product denotes that the times are to be
for a fixed final phase point(t) and initial p,(0), converges pr procu !

. o ; ordered so that the times decrease from left to right in the
rapidly with increasing. So far we have not used any prop- .04 ct. By using Eq(34) and carrying out the required

erties of the arrangement of the scatterers, so this formula Ftegrals, one can easily see that this expression is equivalent

r
ues \ uia i

s_tlll quite general. In the case that the system is ergodic thg, Eq. (36). Moreover, one can express the sum of the posi-

time average can be replaced by an ensemble average, takt‘?% Lyapunov exponents as

with an appropriate ensemble distribution function, so we
can express the sum of the positive Lyapunov exponents as 2 . Mt 1 E tis1 L
N =lim—— —— vf dr Tr| 7] .
| oo t .A/(t) j tj [pu( )]

xZo Ni=ov(Trp, b, (39) (44)

We will use these expressions in Sec. VI and in the Appen-

where the angular brackets denote an average over an appiixes.
priate stationary ensemble reached in the course of time from In Sec. IV we discuss the distribution function appearing
smooth initial distributions. In the case of interest here, thign the above ensemble average for the case that the scatterers
distribution will be an equilibrium distribution, but in the are distributed at random with very low density, i.e., the
future we will need to consider more general steady-staténean free path of the moving particle is very large compared
distribution functions. to the radius of the scatterers. In order to obtain the indi-

Before completing this section we wish to give a simplevidual Lyapunov exponents we have to find the eigenvalues
derivation of Eq.(37) that applies to a Lorentz gas with any of the operator that appears on the right-hand side of Eq.
reasonable interaction between the moving particle and the36). This operator can be expressed as a productdof (
scatterers. We use the fact that having defined the radius of 1) X (d—1) matrices, which describe the collisions of the

curvature matrixp,, we may write moving particle with the scatterers and the free motion in
between collisions. Again, if the system is at low density the

dér, (t) R . R product of matrices can be considered to be a product of

g % (=vlp, (D] 7, (1), (39  randomly distributed matrices since the time between colli-

sions and the collision parameters will be sampled from a
random distribution, corresponding to the random placement
of scatterers. In Appendix B we show how methods from the
theory for eigenvalues of products of random matric$

t .
SF. (1) =Tex f d ~1. 57 (0). 40 can be use_d. to obtain the largest Lyapunov exponent. At
1 R 0 (7] 1(0) 40 higher densities of scatterers correlations between collisions

with the solution
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will arise and one will have to take into account these cor- Our purpose here is to extend the LB equation by includ-
relations when computing the eigenvalues of the product oing the radius of curvature matrix among the variables de-
matrices. scribed by the distribution function for the moving particle.
We will consider only the low-density version of the kinetic
theory for this distribution function and leave the discussion
IV. THE EXTENDED LORENTZ-BOLTZMANN of higher-order density corrections, including the effects of
EQUATION correlated collision sequences on the Lyapunov exponents,

In order to evaluate the ensemble average appearing df the futur_e_. Thus we wish to determine_ an quation, valjd at
the right-hand side of Eq38) we need to construct an equi- low Qdensmes, for an extended dlst_rlbutlon function
librium or, more generally, a steady-state distribution func-F(F.v.p.t), where we dropped the subscripon p, and we
tion for the radius of curvature matrix. The physics of thefelate the distribution functions andf by
problem suggests that a method based upon the Lorentz-

Boltzmann equation is appropriate here. That is, we have a

particle moving in a random array of scatterers making only f(F,ﬁyt)If dpF(,0,p,t). (46)

binary collisions with the scatterers. The particle moves

freely between collisions and at a collision both the velocity , ) )

and the radius of curvature matrix change instantaneoush>!Ven the stationary solution of the extended LB equation

Methods are now well knowft,2,18,26,2 for obtaining a for F, we can determine the sum of the Lyapunov exponents

generalized Lorentz-Boltzmann equation for the time-2S

dependent space and velocity distribution functf@n,v,t)

for the moving particle as a function of the density of the o e -

scatterers, at least in the case that the scatterers are nonover- XZO )\izvf drdudp[ Trp™"]F(F,v,p), (47)

lapping. (The case of overlapping scatterers is complicated '

by the fact that regions may exist where the particle would

be trapped for all time. In a transport problem these region@ssuming thak is properly normalized.

need to be treated carefully since particles trapped in them An extended LB equation fdF that reduces to the usual

will not diffuse beyond the borders of the tyapn this case LB equation forf upon integration over the radius of curva-

it is possible to obtain an equation for the moving particleture matrix elements can be obtained by following the heu-

that includes the effects of uncorrelated binary collisions offistic derivation of the LB equation and simply modifying it

the particle with the scatterers, excluded-volume effects, antp include the additional variables. That is, we consider a

the effects of correlated collision sequences of the movindarge collection of moving particles in the random array of

particle with the scatterers. To lowest order in the density ofcatterers and ask for an equation for the probability that a

the scatterers, the distribution functié(¥,,t) satisfies the moving particle has its values fof,v,p in the range

Lorentz-BoltzmannLB) equation[1,2,18,27 df,dv,dp about fr,u,p, al at time t, e,
F(F,v,p,t)dF du dp. This probability changes in time due
to free motion of the particles and due to collisions. The

19_f+6. &—f+i?- of change inF due to the free motion of the particles in tirde
at oF 9 is
=nad‘1f dig-Al[O(F-A)E(F,5—2(5-h)A,t) [F(F+v dt,o,p+v dt 1, ,t+dt)—F(f,v,p,t)]dfdodp
d-1
[ JF oF JF
—0(—v-Mf(ro,h]. (45 =|—+i-—+v >, —|dFdudpdt. (48)
at gF  i=1 dpij

Heref is a unit vector in the direction from the center of a

scatterer to the point of impact at a collision a®qx) de- We used Eq(34) to treat the change in the radius of curva-
notes the unit step function. The right-hand side of the LBture matrix during free particle motion and we have assumed
equation describes the changefirdue to collisions as the that there are no external forces acting on the system. Oth-
difference between the gain and the loss of particles witterwise we would need to include terms accounting for the
velocity 7 from “restituting” and “direct” collisions, re- changes in velocity and in the radius of curvature matrix
spectively. Higher-order density corrections to the right-handver a time intervatit due to the external force. If there were
side of Eq.(45), comprising the generalized LB equation, no collisions taking place in the system, then the right-hand
can be obtained using the appropriate set of Bogoliubovside of Eq.(48) would be zero. However, the collisions ac-
Born-Green-Kirkwood-YvonBBGKY) hierarchy equations count for the fact that the number of particles &t
and cluster-expansion method6,27,29. These density +0 dt,u,p+v dt 1, attimet+dtis not equal to the num-
corrections have been studied in some detail and it is welber of particles af,v,p at timet. To account for the change
known that the so-called ring collision sequences are resporir F due to collisions we consider the restituting and direct
sible for both logarithmic terms in the density expansion ofcollisions separately. The direct collisions result in a loss of
the diffusion coefficient of the moving partic|@7] and the the particles with”,v,p over the intervatt due to collisions
long-time tails in the velocity autocorrelation function of the with scatterers. Elementary kinetic theory considerations
moving particle[28]. [18,26] show that this loss is
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nad—lJ dn|g-n|O(—v-N)F(F,0,p,t)dFdudpdt.
(49)

a/
)= f dp' S(p—p(p IF(p'), (56

ap

The restituting or gain term is found by considering thoseWhere thed function in the integrand selects the right resti-

collisions taking place in the time intervie,t + dt] that pro- tu'ting value of thg radius of curvature matrix in accordance
duce particles Witl,7,p. Again, elementary kinetic theory with Eq. (52). Putting everything together, we can obtain the

considerations show that this gain is given by extended LB equation as

RSN 1) B . gF _oF L oF
nadflf dn|v-A|O(v-h) L F(v',F,p't)didodpdt, — 4 —+v Y, —
ap ot or  i=1 9pii
(50)
whereg - h=0, =nad‘1f dn|v - Al (ﬁ‘ﬁ)f dp’ 5(p—p(p'))
vimomon, &y ><F(F,a',p',n—@(—ﬁ-ﬁ)F(r*,u*,p,t)}. (57)
and the radius of curvature matrjX is a restituting value
such that the radius of curvature matrix becomester col- | the next section we will use Ed57) to compute the KS
lision. From Eq.(35) and the identityU-0=0" one obtains  entropy for two- and three-dimensional Lorentz gases in
the relationship equilibrium. Before turning to this calculation, we make an
observation about the restituting radius of curvature matrix.
2 1 We note that the diagonal elements of the radius of curvature
p t=Uip - a —of—No+ —Nh+(0-N)1| U, matrix will grow with time between collisions. Thus the av-
v-n erage value of the diagonal elements of the radius of curva-

(52 ture matrixbefore collisionwill be on the order of the mean
with - A=0. For two-dimensional systems the radius of cur-f'é€ path between collisioris For low density of scatterers,

vature matrix can be represented by a scéimmely, its the mean free pathwill be much larger than the radius of
nonvanishing eigenvallieand the restituting valug’ is  the individual scatterera such thata/l~na®<1. This ob-

given by servation will allow us to greatly simplify thé function in
the restituting collision term in Eq57) and thereby simplify

the calculations to follow.
1 1 2

=t (53
p' P acosé V. EQUILIBRIUM SOLUTIONS OF THE EXTENDED LB

. . EQUATION
where ¢ is the angle betweem and v with —7/2<¢ QUATIO

< /2. For three-dimensional systems the radius of curvature In this section we construct the equilibrium solutions of
matrix can be represented by &2 matrix by choosing the the extended LB equatiofb7) in two and three dimensions
principal axes of the coordinate frame orthogonabtde- and from these computbys. We begin with the two-
fining angles¢ through cosp=n-v, with O<¢<m/2 anda  dimensional case. Here the radius of curvature is a simple
as the angle between the second coordinate axis and tisealar and Eq(57) becomes

plane throughh ando, and multiplying Eq(52) from the left

and the right byU one can rewrite this equation as
JF _ OF JF

—tuv-—+tv—
0 0 0 Jt or  Ip
B . 2cos¢| 0
Up' " *U=p - — b | (54) ~ fw/zd fmd 5 a cos ¢
. =nav s ¢ Ccos ¢ . p p_—acosdz
with
XF(F,o',p" t)=F(F,u,p,t) |. (58

1+tarf¢ coSa  tarf¢ sin @ cosa

P tarf¢ sina cosa  1+tarf¢ sirfa ©9

Here cosp=n-0 with 0=¢=x/2 and a is an azimuthal To find an equilibrium solution, we look for solutions that do
angle forf in the plane perpendicular ® with 0<a<27. not depend upon time, velocity direction, or position and that
We can now simplify the restituting term in the extended LB become the known equilibrium solution for the LB equation
equation by noting that we can combine the Jacobian witlhwhen the integration oves is carried out. That is, we look
the distribution functiorF to write for solutionsF of the form
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F(7,p)=@o(v)¢(p), (59 [Comparing Eqs(62) and(65) one sees that(p) apparently
has a discontinuity gi=a/2. This, however, is an artifact of
where go(v) =(2mvV) " 18(v —vy) is the normalized, equi- the low-density approximations we have made. Note that the
librium spatial and velocity distribution function for the jump in ¢ is of relative ordema? indeed] Combining this
moving particle with constant speed, which we here denotexpression fory with Egs.(47) and (59) we obtain
asvg, and confined to a volum¥. Then we require that
¥(p) be normalized as

AP =hs=2nav(1—In2—C—Infi) for fi<l, (67)

fo dp ¥(p)=1. (60)
in agreement with the result given by Eg6).
It is an easy matter to obtain an equation §dip) that reads Now we turn to the three-dimensional case. This is some-
what more complicated than the two-dimensional case since
Iy 2 = p is a 2X2 matrix and not a scalar. However, we can still
Vg, T 2navytna J L J . ar simplify the & function in the restituting collision integral by

noticing that the diagonal elements of the curvature matrix
grow with time during the free steaming intervals between
7 collisions. Consequently, the diagonal elementspbtfap-
X8| p— acoso | y(p'). (61)  pearing on the left-hand side of EG4) are of the order of
24— — the mean free path length immediately before a collision
P with a scatterer. An elementary consideration of the proper-
An inspection of thes function shows that it vanishes unless ties of the inverses of 22 matrices with large diagonal
p<al2. Therefore, fop=a/2, we have the simple result elements shows that the dominant contribution to the radius
of curvature matrixp comes from setting the left-hand side
Y(p)=Ae P’ for p=al2, (62)  of Eq.(54) equal to zero. This greatly simplifies ti&efunc-
, q . tion appearing in the collision integral on the right-hand side
where /=(2nav) " is the mean free path length for the ot £q (57). The effect of this simplification is that we have

moving particle at low density of scatterers afds a con- neglected terms of relative ordat/’, which are density cor-
stant to be determined. To treat the distribution fU”Ct'O”rections to the terms we keep.

¢(p) for smaller va_lues op we note that_w_e can require that e equilibrium distribution functior(v,p) can be fac-
#(p)—0 asp— 0 since the dynamics will increase the value yrized as

of p during free particle motion and will decrease it to some

value, still greater than 0, at the instant of a collision. Further

we can require thap be continuous ap=a/2 since the - N

extended LB equation does not have an expliditinction of F@.p)=e)¥(p), (68)
the form é6(p—a/2) on the right-hand side. Finally, we note

that the dominant contribution to the integral on the right-  Whereo(v) = (4m?v5V) ~*8(v —vo) is the normalized equi-
hand side of Eq(61) comes fromp’ ~ /. Therefore, thes librium distribution function for the moving particle. The
function on the right-hand side of E¢61) can be approxi- €xtended LB equation reduces to

mated by

a cos ¢

a cos ¢ (_+i)
5| p—,, acosh | =d(p—(acos$)2). (63 N aon T 7pm VP

!

p

/2 27
=—na? +nazf dfdfd’fd’
(A more detailed examination of this integral keeping the full o 4(p) Y 0 ¢ 0 @] FPu) TP

S function shows that the terms neglected here are of order
TiInTi compared to the terms retained, wh@re na?.) After X f dpélf dp3, Sin ¢ cos ¢
inserting this expression in E€61) we find that forp<a/2,

I 20 - XIT 8(oi;—pij(d, ) (p"). (69)
v—=2nav a(l——(rz)l/zfo i ] i

p —(p)+

dp’y(p")

(64)

The matrix elements gb(¢,«) can be obtained by solving
wheres=ap/2. Sincey is normalized to one, we find that Eq. (54) under the approximatiofyp’] =0, which can be
) justified again as a low-density approximation by the same
- (%
a

211/2 ) g ¢
) for p<al2 (65) arguments as in the two-dimensional case. The results are
and, using the normalization condition gn we find

lﬂ(p):(l//)( 1-

pud,a)= a C(Z)Sd)(1+tanz¢ sirfa), (70

W(p)=(1/ e P” for p=al2. (66)
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B _asirfe sin2a A4y (72 coS¢
p1A b, a)=poy(p,a)=— T dcosh (77) ==, dé ¢ d(p,—(a cos ¢)/2)
_ -1
P )= 2 Cgs¢(1+tanz¢ cofa). (72 * Slpya(2 cosé) ). 7

We can now express the sum of the positive Lyapunov ex-

The restituting term in Eq(69) contains an integration of ponents in terms o as

Y(p') over its arguments and we can set 1 1
Ar;axJF)\r;in:f dle' dpzf dpg —+ —
pP1 P2
| douen-1 73
» [p1—p2l )
21/
We use s to compute the average value of py(?! [(p2—p1)°—4p7,]"?

=[Trp][deip] !, which determines the sum of the positive
Lyapunov exponents. Thg;(¢,a) occurring in thes func- X @( 1—
tion on the right-hand side of E¢69) can be identified at

low density with the values qf;; right after a collision with
collision parameterg) and «. From Eq.(72) it follows that

2|P12|
|P1_P2|

)h(PLPZ)- (78)

The p4, integration can be carried out easily, yielding

these values are always equal fgr and p,,. Furthermore, - 1 1
these quantities do not change in between collisions, S0 Wek ..+ )\’;"‘ZEJ dplf dps| —+ —||p2—pilh(p1.p2).
may sety(p) = f( 2) 8(p1o— p21). Next we change P P2

y P P11,P22:P12) 0\P12~ P2 g (79

variables frompi1,p22,p12 10 p1,p2,p12, Wherep,,p, are
the eigenvalues of the>22 matrix p. The Jacobian for the we define a new function p(p1,p,)=(7/2)|p,

transformation of variables, given by —palh(p1,p2), which satisfies
J J
J( P1.P2 ): lp1—pal 74 o\ %pe t 9ps P(p1.p2) +vP(p1.p2)
P11:P22 [(Pl_P2)2—4Piz]l/2, w2 cof
:2vf do— ( —cos¢)
will be included in the integrand in Eq78). After some 0 sin ¢\ cos¢
straightforward algebra we obtain the following equation for X 8(pp—(a cos ¢)/2)8(p;—a(2 cos¢p) ~1).

9(p1,p2:p12=F(p11,p22:012)"
(80)

a9 Introducing  p1(p)=/dp2p(p,p2) and  p,(p)
v _+ﬁ_pz 9(p1,p2,p12) T v9(p1,p2,P12) =[5dp1p(p1,p) enables us to express the sum of the

o1 Lyapunov exponents very simply as
v w2 27 ) —
_Ejo dqsfo da(sing)(cos ¢)|cos 2| )\r;aﬁ)\r;in:.Elz fo dp;pi(p), 81)
=1,
8| py— 5050 5(pp—(a cos $)/2) where thep;(p) satisfy
ap1(p) /2 .
X 8(p1p+ (a cos dtart sin 2u)/4),  (75) "o T Vpl(p)zzvfo dé(sin $)(cos ¢)

wherev=nmav is the average collision frequency for the X 8(p—(a cos ¢)/12), (82

moving particle. Ther integration can be carried out and we

see thag can be written in the form vapZ(p)

dp

/2
T vpy(p)=2v fo des(sin ¢)(cos b)

2|p1 X 8(p—a(2 cos¢p) 1. (83

9(911P27P12)2®(1_—>h(P1,02), (76)
|P1 2|

Solving Egs.(82) and(83) for p;,p, and inserting the solu-
o tion into Eq.(81), one obtains an expression for the sum of
whereh satisfies the positive Lyapunov exponents that agrees with(g§). It
is worth mentioning that we can solve E5) to provide
d(p1,p2,p12) as an explicit function of the variables
v(i+ i) h(pq,p2)+ vh(py,p2) P1:P2:P12 using the m_ethod of characteristics. As thi; solu-
dp1  dpz tion will prove useful in subsequent papers, we outline the



57 CHAOTIC PROPERTIES OF DILUTE TWO- AND ... 4087

method in Appendix B. There we also briefly indicate how
the individual Lyapunov exponents can be calculated using
d(p1,p2,p12) and simple results from the theory for eigen-
values of products of random matridesl]. While the results
obtained with the extended LB equation properly agree with
those obtained by more direct kinetic theory arguments, we
will need to use the extended LB equation in order to obtain
the Lyapunov exponents and KS entropies for the spatially
inhomogeneous systems that occur when one considers . )
escape-rate methods for connecting chaotic quantities with expanding trajectory
transport coefficients. This will be treated elsewhere. bundle

contracting trajectory
bundle

FIG. 1. Trajectory from scatterer 1 to scatterer 2 with bundles of

VI. THE NEGATIVE LYAPUNOV EXPONENTS AND THE expanding and contracting trajectories indicated.

ANTI-LORENTZ BOLTZMANN EQUATION . . . .
Q two-dimensional2D) and 3D dilute Lorentz gases, using a

We now turn our attention to the Lyapunov exponentssimple kinetic theory argument similar to that used in Sec. II.
that characterize the exponential convergence of trajectories

on a stable manifold in the @-1)-dimensional constant A A simple kinetic theory method for the sum of the negative
energy surface in the phase space of the moving particle. We Lyapunov exponents

recall that two arbitrary but infinitesimally nearby trajecto- . . . .
y y y el We first consider the 2D case. We wish to follow an in-

ries will certainly separate eventually with time. We have,_ '™~ ) ) : :
used this fact to derive formulas and explicit expressions fopnltesm_al trajectory bun_dle that is contracting ‘?md remains
contracting for all future times. Such a bundle is illustrated in

the positive Lyapunov exponents. However, Liouville's -

theorem showing that the measure of a small region of phas'é'g' 1. We follow the motion of this bundle from scatterer 1

space is constant in time as one follows the motion of pointd® Scatterer 2. In order that the bundle remain contracting
initially in that region implies that there must be a Compen_after the coII|S|on_ with scatterer 2 we require that _the radius
sating set of negative Lyapunov exponents that act in conceftf curvature of this bundle be very clogeith corrections of
with the positive ones to keep phase-space measures const2fier &) to the valuea cos¢/2 just before the collision
in time. Moreover, the fact that the Lorentz gas is a symplecWith scatterer 2. We denote the direction of the velocity of
tic Hamiltonian system has as a consequence the existence G Moving particle just after the collision with scatterer 1 by
a conjugate pairing rulgl9]. That is, for such a system, the the angled Wlth_ respect to some space fixed axis a_nd com-
Lyapunov exponents come in positive and negative pair@Ute the negative Lyapunov exponent in the following way.
such that the sum of each corresponding pair is zero. Thus, INce We know that the radius of curvature just before the
this case at least, the calculation of the negative Lyapunogollision with 2 is a cos¢/2, the radius of curvature just
exponents is trivial: They are just the opposites of the posiéfter the collision with 1 must ba cos¢/2+vt, wheret is
tive ones. However, in future work where we plan to treatth_e time interval between the collision with 1 and 2. From
thermostated systems, this form of the conjugate pairing ruléhis it follows that
no longer hold$29-31 and we will need to find methods to .
compute both positive and negative exponents individually. Uj ddp(7)] t=In
The most obvious way to obtain the negative Lyapunov 0
exponents is to compute the positive Lyapunov exponents
for the time-reversed motiotpon time reversal trajectories Where p(7) is the radius of curvature of the contracting
that approach each other in the forward motion will separatebundle at times & r<t before the collision with 2 andt
In fact, almost all trajectories will separate fioth the for- ~ >a. The time average of this expression corresponds to the
ward and the time reversed direction, but in genéral, for ~ result obtained by combining Eqél7) and (21), in agree-
nonsymplectic systemsvith different exponents. In the for- ment with the conjugate pairing rule for symplectic systems.
ward motion they will separate with rates given by the posi-In the case of a thermostated system however, &4$.and
tive Lyapunov exponents and in the time-reversed motior{84) are replaced by expressions that depend on the velocity
with rates equal to the magnitudes of the negative Lyapuno@ngled in different ways. As a consequence, the positive and
exponents. Thus, to calculate the negative exponents we conRegative Lyapunov exponents are no longer each other’s op-
sider the binary collision dynamics already discussed beforeQosite.
but look at the time-reversed motion. If, in the forward-time ~ The three-dimensional case proceeds in exactly the same
direction, the moving particle is uncorrelated with a scatterefvay. We follow an infinitesimal contracting trajectory
before collision, in the time-reversed motion it will be un- bundle from a collision with scatterer 1 to a collision with
correlated with the same scatterer after the collision. Wescatterer 2 such that before the collision with scatterer 2, the
therefore should consider a kind of backward kinetic theoryradius of curvature matrix is given bi(2 cos¢P)/a] *,
where the particles are uncorrelated with the scatterers aftavhereP is defined in Eq(55). We then find easily that if is
their collisions instead of before them. This will differ in the time interval between the collisions of the moving par-
important respects from the ordinary Lorentz-Boltzmannticle with scatterers 1 and 2, then the radius of curvature
equation. In order to illustrate this we consider first a calcu-matrix at some time- between zero ant after the collision
lation of the sum of the negative Lyapunov exponents for thewith scatterer 1 is

2ut
a cos ¢

: (84)
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. wherel'* represents the rate at which particles are produced
2 cos¢ P~ (85 atF with velocity 5 andT'~ represents the rate at which such
particles are lost. Noting the fact that we should apply the
For calculating the sum of the positive Lyapunov exponentsStosszahlansatp the exiting collision cylinders, we see that
one needs the average again of&rr)] %, but now under the rate at which particles with velocity are produced is
the Stosszahlansatfor the postcollisionallunder the time
reversed dynamics, so in reality the precollisionadordi- ¥ ooran _ PP Lo oo
nates. Hovelever, due to the tirr?e-reveprsal symmetry of the -9 85 ot=na’ lf dh(n-o)f_(r.0,1)ordoét,
dynamics the distribution of the postcollisional coordinates (87)
¢' anda’ is the same as that @ and « and of course the
distribution of intercollisional times also is the same for for- Where n-y=0. That is, particles with velocityy’ =v
ward and backward motion. Therefore, the averaging proce=2(N-v)f collide with scatterers and produce particles with
dure yields the same results as for £88) and the sum of Velocity v, but the distribution function we need to calculate
the negative Lyapunov exponents is given by the opposite dhe rate of these collisions for is nat_(7,v’,t), but
Eq. (29). f_(F,v,t). Similarly,
The individual Lyapunov exponents can be obtained us-
ing results from the theory for eigenvalues of products of
random matrices, as described in Appendix B. The results FZ=nad‘1f di(h-o")f_(F,5',1), (88)
are, as expected, that each negative exponent is paired with a
positive one such that their sum is zero. Now we turn to the

method of distribution functions for calculating the negativeWhereh-v’=0 since particles with velocity” are produced
Lyapunov exponents. when a particle of velocity collides with a scatterer with

collision vectorfi. Putting these terms together, we obtain

p(r)=v(t—7)1+

B. The extended anti-Lorentz-Boltzmann equation

In order to use distribution functions to compute the nega-  df _(r,o,t) _ df_
tive Lyapunov exponents or their sum, we need to construct TJ”" }
a Boltzmann-like equation for the time-reversed motion. If
one reviews the derivation of the Boltzmann equation, one —f_(F,0",1)], (89
sees that the colliding particles are taken to be uncorrelated
before the direct or the restituting collisions. If we were towhere we have used the fact that i|=|7’-A| and the in-
look at the time-reversed motion, the terms “before” andtegration in Eq.(89) is over a semicirclgfor d=2) or a
“after” are interchanged and for the time-reversed motionhemispherefor d=3). This equation looks exactly like the
the colliding particles are uncorrelated after the collisions|_orentz-Boltzmann equatioL BE) (45), except for the fact
rather than before. That is, referring to Fig. 1 again, the timethat the collision integral has the opposite signs in E§S)
reversed motion has a collision of the moving particle withand (45) [32]. The ALBE (89) has the usual equilibrium
scatterer 2, followed by a collision of the particle with scat- distribution function as a stationary solution; although it is a
terer 1. Before the collision with 2, the moving particle is highly unstable solution, any deviation will tend to grow
correlated with 2, but not so after the collision. After the exponentially in time. In fact, for this reason it is an ill-posed
collision, the radius of curvature or the radius of curvatureequation, as arbitrarily small initial deviations can grow at
matrix is given by the valuea cos¢/2 in two dimensions, arbitrarily large rates and therefore its solution is not well
or [2 cos¢P/a] ™! in three dimensions. The radius of curva- defined. This ambiguity can be removed by requiring that the
ture (in two dimensiony or the diagonal elements of the actual solution describing a physical system after a long
matrix (in three dimensionsgrow over the time interval ~ enough time that all these rapidly decaying solutigob-
until the collision with 1. Since the moving particle is cor- served in the forward time directiprhave died out is the
related with the scatterers before the collisions and not afteime reverse of the solution of the ordinary LBig a closed
them, when deriving a Boltzmann-like equation for the dis-isolated system or system coupled to a single heat bath this
tribution function, we must apply th8tosszahlansato the  will become the equilibrium solution for long timesSo
exiting collision cylinders after the collisions and not to the there is little use in employing the ALBE as such since to
entering cylinders before collision, as is the usual case.  obtain its physically relevant solution one has to solve the

In order to clarify this procedure we first consider a deri- ordinary LBE anyway. The extension of the ALBE discussed
vation of the anti-Lorentz-Boltzmann equati¢ALBE) for  in the following paragraphs, on the other hand, does provide
the distribution functionf _(r,v,t) for the position and ve- a useful tool for calculating negative Lyapunov exponents.
locity of the moving particle at timé¢. We will then gener- To this end we need to include again the radius of curva-
alize this derivation by adding the radius of curvature vari-ture matrix as variables in the distribution function
ables. Since there is no particular problem with the timeF _(F,v,p,t). The equation foF _ is constructed as before,
reversal of the free streaming of the particle, we can write thé.e., we write
ALBE in the form

=nad‘1f dn|g-A|[f_(F,v,t)

d-1

gt _(F,5 t Jf_ JF_  oF_ aF _ )

AR (86) 5 TS =T (p)-T (p). (90)
at af at IF i=1 9dp;
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To computel’ *(p) we multiply the rate at which particles Similarly, to computel’~(p) we multiply the rate at which
with velocity v are produced no matter what their radius of particles with velocityv’ are produced due to collisions of

curvature matrix might be, with the fraction of particles with particles of velocityy with scatterers by the fraction of par-
velocity v’ that produce particles with radius of curvatyre ticles of velocityy that have the radius of curvature matpix

after collision. That is, That is,
Ff(p)=nad’lf dﬁ|5-ﬁ|fdp'F_(r,5,p',t) Fi(p)=na“‘1J dﬁlﬁ-l?IJdp’Ff(riz?’,p’,t)F(riz?,p,t)
-1
X fdp”F(F,J',p”,t)c?(p—p(p”))} X fdp’F—(ﬁﬁ,p’.t)} : (92
x| | dp"E_(F.5".p".1) -t 91) We can now assemble all of these results into an extended
P07, ' anti-Lorentz-Boltzmann equatioftALBE), which reads

I | o o
—+0- +v 2, — =na Jdn|v-n|Jdp’F,(r,v,p’,t) Jdp”F,(r,v',p”,t)é(p—p(p"))
ot or =1 Ipii
-1
X fdp”F(r*,J’,p”,t)} —nad‘lf dﬁ|ﬁ'6|fdp’F,(r*,v”,p’,t)F(F,ﬁ,p,t)
-1
X fdp’F_(F,J,p’,t)} : (93
|
Here toof is integrated over a semicircle or a hemisphere. hks=Av[ —Ini+B+0(1)], (95)

This complicated and nonlinear looking equatipn fact,

one should first solve the ALBE, substitute its solution forwherev andf are the collision frequency and reduced den-
Jdp'F_(r,3",p’,t) in Eq.(93), and then solve the EALBE; sity, given byr=2nav andfi=na? in two dimensions and
both equations to be solved then are lifeaill form the v=mna%y andfi=nad in three dimensions, and,B are
basis of the calculation of negative Lyapunov exponents andonstants that we have determined. In Table | we compare
their sums in the more complicated cases to be studied in th@e theoretical results fokh andB with values for the same
future. We should note here that without further conditionscoefficients, as obtained by Dellago and Po$tH] from

this equation, like the ALBE discussed above, constitutes agBomputer simulations of two- and three-dimensional hard-
ill-posed problem. The additional condition that regularizessphere Lorentz gases. The results are in excellent agreement
its solution is that the integral oves of the distribution for the coefficientA and there are minor discrepancies in the
function yields the time reverse of the solution of the ordi-B values, probably due to the fact that the simulation analy-
nary LBE. In the equilibrium case considered here the equasjs is difficult at the low densities where the theoretical
tion simplifies enormously. In fact, if we use the condition analysis given here applies.

that the system is in a spatially homogeneous equilibrium |t is remarkable that the Lyapunov exponents for the
state, that the integral of the distribution functien over all three-dimensional Comp|ete|y isotropic random Lorentz gas
elements of the radius of curvature matrix is the equilibriumare different at all. In fact, on the basis of the results obtained
distribution functione, which is independent of the velocity in leading order in the density, it has been conjectUi@d
direction, we immediately obtain E469) for the spatially that all positive as well as all negative Lyapunov exponents
homogeneous case. Therefore, for this equilibrium situationare equal. The methods used in our approach allow a very
F_ produces the same Lyapunov exponents as in the forwarglansparent explanation for the differences, now also con-
motion, with the exception of the appropriate change of sigrirmed numerically, between the Lyapunov exponents. In
due to the time-reversed nature of the motion considereg@articular it becomes clear why all Lyapunov exponents co-

here. incide in leading order but differ in next to leading order.
The reason for this is related to the different nature of the
VIl. COMPARISON WITH SIMULATIONS AND terms contributing to the different ordef44]. The terms
DISCUSSION proportional tonin(n/2)+ C in Egs.(27) and(29) result from

eraging over functions, which only depend on the time of
e flight. Due to the isotropy of the free flight, this has to
ead to equal Lyapunov exponents. Tdiéferencesarise on

averaging over functions, which depend on the collision pa-
rametersp anda. To understand how the scattering process,
Ni=Ay[—Inf+B+0(1)], (94  which is isotropic for a single trajectory, can cause the

We have found that the quantities calculated in this papelav
the Lyapunov exponents and the KS entropies, expressed
functions of the dimensionless densilly have the general
form
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Lyapunov exponents to be different, it is worthwhile consid- TABLE I. Comparison of theoretical and simulation results.
ering scattering events in more detail. : _ _

For calculating the Lyapunov exponents we have to ana- Quantity Theory Simulation
lyze the scattering of two close by trajectories. Therefore, it

. +
becomes possible for a given scattering angléo distin- 2D: A
guish whethe®r', is in the planeP spanned by the normal A 1 0.995+ 0.009
on the sphere and the impact velocityor perpendicular to B 0.423 0.463* 0.083
P. In this way the isotropy of the scattering process becomes N
effectively broken. This is reflected in the eigenvalue struc- 3D: Amax
ture of the radius of curvature matrpx = (2 cos¢P/a) ~* A 1 0.990+ 0.089
[see Eq(55)]. There are two eigenvalugg=a cos¢/2 and B 0.309 0.387+ 0.746
po=al(2 cos¢). Here the eigenvalug; corresponds to the
eigendirectione;, which is in the planeP, and the eigen- 3D: A
value p, corresponds to the eigendirection that is perpen- A 1 0.992+ 0.084
dicular to the planéP, with both eigendirections perpendicu- B —0.077 —0.015+ 0.715

lar to v. Note that for¢p=0 the eigenvalues are the same.
This can be understood by realizing that #6=0 the par- 3D: hgs
ticle hlts the sphere head on, i.e.js parallel ton. For th|s A 5 1982+ 0173
special case the two eigendirections are clearly equivalent,

. . . B 0.166 0.372+ 1.461
but for other values ofp this symmetry is lost and the ei-
genvalues differ. Therefore, we may conclude that the lack

of degeneracy of the positive Lyapunov exponents is due tQystems. It is well known that the Boltzmann transport equa-
the lack of rotational symmetry when the nearby trajectoriesion can be applied to gases that interact with other than

hit the sphere. _ hard-core potentialf18]. In fact, a wide variety of interac-

_ We conclude with a number of remark) The results {5y notentials may be used in the Boltzmann equation to
given here can be extended to higher densities in a number gbermine the transport properties of the corresponding
ways. In particular, BBGKY hierarchy methods are beinggases Certainly Lyapunov exponents can be calculated for

developed to provide a systematic density expansion of thgqrent; gases where the moving particle has other than hard-
Lyapunov exponents and the KS entropies beyond the 10Wz e interactions with the scatterers as well.

density results obtained here. This will be especially impor- (v) Finally, we mention that the method given here can be

tant when nonequilibrium situations are considered Sinc%dapted to cases where all the particles in the system are
there one may see the effects of long-time tail phenomena %oving, namely, a dilute gas. Expressions for the KS en-
the chaotic properties of the system. _ tropy [36] and the largest Lyapunov exponent of two- and
(ii) As remarked earlier, we relied upon the low d'men'three-dimensional gases with short-range forf@d have
sionality of our systems to obtain all of the relevant already been obtained this way.
Lyapunov exponents. For a four-dimensional Lorentz gas wWe | the future we plan to extend the results here to open
would need to use more sophis.ticated techniques to obtain aég/stems with escape and compute the escape rates, Lyapunov
of the Lyapunov exponents since the methods given hergy,,nents, and KS entropies characterizing the fractal repel-
could only provide values for the largest exponent and th§gr that underlies diffusion in open systems with absorbing
sum of all of three of the positive exponents. We could notyqnqaries. This work will make heavy use of the extended
then resolve the two smaller positive exponents, but only g equation and we regard the present paper as an introduc-

could get their sum. _ _ _tion future work.
(i) We have not analyzed here a particularly interesting

guantity that gives a more general characterization of the
chaotic properties of the system, namely, the Ruelle, or to-
pological, pressurd33,34. This quantity has the formal The authors would like to thank E. G. D. Cohen, Ch.
structure of an equilibrium free energy and it depends upon ®ellago, M. H. Ernst, H. A. Posch, C. Appert, and R. van
temperaturelike paramet@r. The results obtained here char- Zon for many helpful conversations as this work progressed.
acterize the chaotic properties in the neighborhoogefl.  Ch. Dellago and H. A. Posch kindly supplied the results of
Elsewhere it has been shown that for the Lorentz gas, whereir simulations, which were used in Table |. We thank
the disorder is static, in the thermodynamic limit the topo-them as well as C. Ferguson, who carried out the analysis of
logical pressure exhibits a localization transition as a functheir data. J.R.D wishes to thank D. Panja for useful conver-
tion of B; it is dominated by contributions from particles that sations as well as the National Science Foundation for sup-
are localized within the largest dense cluster@er1l and in  port under Grants Nos. PHY-93-21312 and PHY-96-00428.
the largest region without scatterers f®r-1 [35]. It would  A.L. thanks the DFG for financial support, through Grant
be very valuable to obtain these results using kinetic theorfNo. SFB 262, during the time this paper was written. H.v.B
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APPENDIX A: BINARY COLLISION DYNAMICS AND

v
THE RADIUS OF CURVATURE MATRIX v

)

2

+

Here we give a brief review of the derivation of the for-
mulas for the change in the spatial and velocity deviations at
a binary collision used in Eq¥6) and (7) based on the
method of Dellago, Posch, and Hoovyed]. We relate these
formulas to the expression used for the change in the radius
of curvature matrix, given by Eq35), which in turn was
discussed by Gaspard and Dorfr@®]. Consider a trajec-
tory of the particle moving among the scatterers. We denote
the initial position and velocity of this trajectory x(0) and
the position and velocity at time later by x(t). Consider
also a trajectory that is obtained by an infinitesimal displace-
ment of the initial position and velocity to(0)+ 6x(0) and
denote the pos|t|on and Veloc|ty Of the Second trajectory at FIG. 2. Arrangement of the pOSItIOI’l and Ve|0C|ty vectors for one
time t by x(t) + 8x(t). We require the two trajectories to be trajectory at the instapt of a collision of .th.e moving partiple WiFh the
infinitesimally close. Our goal is deriving equations for scatterer and at the msta_nt.o_f tht_e coII|S|9n of the pa_lrtlcle with the
Sx(t) = (67 (1), 55(t)). We take all trajectories with the same same scatterer along an infinitesimally displaced trajectory.

f:hnerg3|/, V%h'%h I(.aat(.:iS to thle condition tf?f(tl)-vt(t)go, SIO i Sr" is the spatial separation at the instant that the displaced
€ velocily deviation IS always perpendicuiar o the veloc ytrajectory has a collision(lt is easy to visualize this in the

o(b). \m.a can allso set thetaoi'?ﬁn de\{|t§1t|6r(11(t):vt(t)=_0 case thatyr>0, as illustrated in Fig. 2.
since this simply requires that the position deviation 1S per o\, we introduce the radius of curvature matrix as given

pendicular to the velocity at the initial time. by Eq.(33). We note thap is a matrix of rankd—1. If we

Now in between collisionssr(t),du(t) satisfy Eqgs.(4) - — . )
and(5). However, the change in these quantities at collisioq?vibzgttztiﬁ the definition of this matrpeq. (33)] into Eq. (6),

is more complicated. To analyze this change we suppose that
the trajectory withx(t) has a collision with some scatterer at
time 7. Then immediately after the collision the velocity has
changed tof " =5 —2(3 - A) A, wheref is a unit vector in the where U=U"'=1-2Af is a reflection matrix and is dis-
direction from the center of the scatterer to the point of concussed in Ref[20]. Here the superscripts, — denote after
tact andg is the velocity immediately before collision. The and before collision, respectively. The operatorfiave de-
displaced trajectory will have a collision at a slightly dis- terminant—1 and they ensure the proper orientations, at
placed timer+ 87 and at a slightly different point on the collision, of the planes in which the radius of curvature ma-

)

R ., ¥
¥ <L

2

or 57 = 87 —2h (A +o7)

p+.517+:U.p7.5177, (A4)

same scatterer located by unit vecfor 6, with - sHi=0.

trices are defined. We now substitute E@) for 5o into

By examining the scattering equations for the displaced traEq. (A4) and use relatior§33) and some elementary matrix

jectory one easily finds

86 =(1—20R) - 86— 2[(3-P) S+ (5 - SA)A], (A1)

manipulations to obtain Eq35). As mentioned in the main
text, the inverse matricdgp, **)] and[ p, *(")] are defined

in the subspaces orthogonaldcandv’, respectively.
We can obtain a considerable simplification of the analy-

or(r)=—or+adn, (A2 gis of the spatial deviation vectasf{ ) in Eq. (36) by using
SFT = — 815" +ash. (A3) the p'ro_pertles'of the matricés That is, we can easny showl
that it is possible to express the spa_tlal deviation vector in
We use the condition i-6=0 to obtain 67  terms of radius of curvature matricgs all of which are

=—[h-67(7)]/v-h. Simple algebra leads to Ed$) and(7)  defined in a plane perpendicular to the initial veloaity0).
in the text. It is important to note thalf(r) is the spatial To see this, consider the right-hand side of E2§) for the
deviation when the “main” trajectory has a collision, while case thah=2. We have

S 7 (t2) =1, (1) +v a0, " (t1)]-U(L)-[1,(0) +o 7 oo H(0)]- 61 (0). (A5)
|
Herel, (i) is a unit operator in the plane perpendicular to the 2
velocity vector after théth collision. Note that Eq(35) al-  p, **)(t;)=p, (0)+ =| 5(0)A;+ A,5(0) — ————A, A,
lows us to write a 9(0)-fy
- 1(+) - Lo () .

where



4092 H. van BEIJEREN, ARNULF LATZ, AND J. R. DORFMAN 57

It is important to note that the operator defined by the termsvhere K=n/27. To use the method of characteristics we
in large square brackets appearing on the right-hand side efrite
Eq. (A7) is orthogonal from the right and left ®(0), as is

p.- Therefore, the operatgs|") is to be evaluated in the (LJF i)G— iG (B2)
plane perpendicular t6(0). Furthermore the unit operator

1, (1) appearing in the same set of large square brackets Withh
p. X9)(t,) can be written ab)(1)- 1, (0)-U(1). From this it "o ¢

follows that d

ST (t2)=U(1)-[1,(0)+v7ps

Xpy ()] [1.(0)+p,(0)]- 67, (0). 9 o1 emod 3

(A8) ds
If this procedure is followed through each successive colli- 1012: 0, op=0.
sion, Eq.(36) can easily be written as ds
=) =) This substitution converts the partial differential equation
or (th)=U(n=1)-U(n—2)---U(1)-6r} (tn)'(Ag) into a simple differential equation that can be solved by el-

ementary means as a function §fonce we have specified
the appropriate boundary conditions. Further, in the,¢5)
plane, thes integration corresponds to an integration along a
T\ — 104) set of lines given by Eq¥B3), called the characteristic lines.
ory (tn)=[1.(0)+p, = (th-1)]- - The inhomogeneous term on the right-hand side of(Bd)
-1 > is zero everywhere except on the ling=1/01, o0;<1. We
X[1.(0)+py (0)]-07.(0).  (AL0) look for solutions that vanish at;=0 and ato,=0 and we

The product of theJ matrices appearing on the right-hand note that the solutiois of the homogeneous equation, ex-
side of Eq.(A9) have determinant- 1, of course, and have Pressed in terms of, has the form

no bearing on the exponential growth of the spatial deviation N _Tie2

vector. As a result one can carry out all calculations of the G=Goe . (B4)
Lyapunpv ex.ponents and the KS gntropy n a c'op'rdmate SY3All of the conditions can be satisfied @ vanishes in the
tem defined in the plane perpendicular to the initial velocity . ; ,

v(0). As aresult, all of theU operators can be dispensed (01;02) plantla, exdcept>|1n/ the regli)nsdeﬁrllc_ed gyéue curves
with in the calculation of the Lyapunov exponents provided”2~ 71" 01>0 an o2 Tn Ii= >€€ Tig. 5. Lhoosing
one useg, operators as well as unit operatdrg(0). This 71~ 2=1, 02= o7, andoy,=07: =sin(2a)|o;— 012, the
procedure “unwinds” the trajectory of the moving particle charagteristic lines are given by

and allows all collisions with the scatterers to be treated in

one coordinate system. This is useful when one wants to

where

oi=z+s, z=1

avoid neglecting the left-hand side of E&4), to treat sys- 1

tems at higher densities, and/or to use the methods of random o= +s, (B5)
matrix theory in a convenient way, as we do in the following

appendix. 2

0'12275"'(22().
APPENDIX B: THE SOLUTION OF THE EXTENDED LB

EQUATION USING THE METHOD We then arrive at the equation
OF CHARACTERISTICS AND RANDOM
MATRIX METHODS d T R . 2
. ) —G+-G=K0O(1-2)027—a)0O(a)
Here we indicate how Eq69) can be solved as a differ- ds 2 ( - 2)

ential equation in three variables using the method of char-
acteristicd 38]. We begin with Eq(75) and change variables z
to 01=2pq/a, 0,=2p,/a, ando,=2p,,/a. We also set X 472 o(s). (B6)

9(p1.p2.p12) =8/a@3G(oy,0,,015) and introduce the scaled
densityf=nma®. Then the equation fo® is

d 17
_ + RS
doy Jdoy

The probability density for the random variableg, a is
2o given byf(s,z,&)=J(s,z,&)G(§,z,&), where] is the Jaco-
(l— ) bian J=|d(01,0,019)/3(s,z,a)|=(1—22)(1+2%)/I23.
obeys the equation

i
G+5G=4KO(1-0,)0

|oo— a4

% _ 91 5(0. _i) (B1) d. 1. . .
(1_05) 2 gy d—sf+Ef=K®(1—z)®(277—a)@(a)z&(s). (B7)
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Notice that the characteristic lines are identical to the free
flight solutions for the eigenvalues of @jp and its off-
diagonal elementr;, [compare Eq(B3)]. They are chosen
such that the initial conditions of the characteristic lines (
=0) are the values of;,01, immediately after a scattering
event with scattering angles, «, Therefore, Eq(B8) can be
interpreted as the distribution function for the random vari-
ablesz= cos¢ (cosine of the polar scattering angle (azi-
muthal scattering anglgand the time of free flighs.

The calculation of the maximum eigenvalue is now a
straightforward application of the theory of products of ran-
dom matriced24]. It follows from Eq. (42) that the maxi-
mum Lyapunov exponent is given by

1
im = In[TIR&7(0)|/] 57(0)], (B10)

I
t*)

with HR=H]-"’:0R(j ,j +1). Using an analogous decomposi-
tion of the product as in Eq(11l) and the identityt
=3N s, valid right after theNth collision, withs; the time
of free flight between collisions—1 andi, Eq. (B10) is
equivalent to

04

FIG. 3. Solution regions for EB1) using the method of char-
acteristics. A characteristic line is indicated parallel to the tine

=03 )\max=%(ln|R(z,a,s)-é¢|>‘”. (B1Y)

This equation can now be solved along the characteristic

lines in the region indicated in Fig. 3. It has the simple SO'Hereé¢ is a unit vectors, = (cossin ) and{ )" indicates

lution an average over the distribution o, &,s) plus an additional
average over a stationary distributibr{i;) of directionsé,, .
7 . R il This distribution is a solution of a Frobenius-Perron equation
f= 56(1—2)®(s)®(a)®(27— a)zex;{ - ES) .

(B8)
' — cos !

&, R(z,a,s)~é.,,)

2m
D(lﬂ):fo dy'D(¢")9

When the solution is inserted in the expression g

=v(Trl/p), (B12)
As we will show shortly, this additional average is not nec-
1 1 : e : .
hKS:Uf dp1dp,dp19(p1.p2.p10)| — + — essary in the equilibrium case singecan be absorbed in a
pP1 P2 redefinition of the azimuthal scattering angleThe equation
for R can be derived from Eq43),
2 f ds dz b 1(5,2,8)| e+
T dsdzdisza)l ot )
daR

the results obtained agree with those given by @8§).

The calculation of the maximum Lyapunov exponent
starts from the observation that the deviatiofis (t) are
given by a product of random matrices acting on the initial 2 cos¢
deviation 67, (0) [see Eg. (42)]. The random matrix R(z,a,8)=1+p" s~
R(tj+1.t;) [Eq. (43)] depends on the time of free flight be-
tween two collisions and the initial matrig* given by
[a(2 cos¢)|P~ L. P [see Eq.(55)] is parametrized by two The last approximation is valid in the low-density limit since
collision anglesp, «. Another way of parametrizing this ini- the most important contributions to the average ®s/eome
tial matrix is by using its random eigenvalues: from large time of free flighs. P is defined in Eq(55). With

=09= cos¢ andoy=1/z and the random angle variable  this we obtain

In equilibrium, this is easily solved using(s)=p* +v1s,

——Ps. (B14)



4094 H. van BEIJEREN, ARNULF LATZ, AND J. R. DORFMAN 57
- 1+2%2\2 [1-72°\? 1+ (1-2)
IR(z,a,5)-€y= - + . +2 5 cog2(a—)]s. (B15)
z

From Eq.(B15) it is obvious thaf R(z,a,s)-é¢| is statistically independent af, i.e., the dependence ahcan be absorbed
in a redefinition ofa. To obtain\ ,,,x We have to calculate the average of Hg15) using the distribution functio(B8). The

result agrees with Eq27).
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