
2

PHYSICAL REVIEW E APRIL 1998VOLUME 57, NUMBER 4
Chaotic properties of dilute two- and three-dimensional random Lorentz gases:
Equilibrium systems
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~Received 17 October 1997!

We compute the Lyapunov spectrum and the Kolmogorov-Sinai entropy for a moving particle placed in a
dilute, random array of hard-disk or hard-sphere scatterers, i.e., the dilute Lorentz gas model. This is carried
out in two ways. First we use simple kinetic theory arguments to compute the Lyapunov spectrum for both
two- and three-dimensional systems. In order to provide a method that can easily be generalized to nonuniform
systems we then use a method based upon extensions of the Lorentz-Boltzmann~LB! equation to include
variables that characterize the chaotic behavior of the system. The extended LB equations depend upon the
number of dimensions and on whether one is computing positive or negative Lyapunov exponents. In the latter
case the extended LB equation is closely related to an ‘‘anti-Lorentz-Boltzmann equation’’ where the collision
operator has the opposite sign to the ordinary LB equation. Finally, we compare our results with computer
simulations of Dellago and Posch@Phys. Rev. E52, 2401 ~1995!; Phys. Rev. Lett.78, 211 ~1997!# and find
very good agreement.@S1063-651X~98!05204-0#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

The Lorentz model of a gas of noninteracting partic
that collide with fixed scatterers has been a basic mode
acquiring an understanding of fundamental issues in both
kinetic theory of gases and the general theory of nonequ
rium phenomena in fluids and solids@1,2#. In this paper we
use the Lorentz gas to study important features of the cha
behavior of systems that show typical equilibrium and no
equilibrium behavior such as the existence of a spatially
mogeneous equilibrium state and normal diffusion of mov
particles among the scatterers. Since the particles do not
lide with each other the Lorentz gas can readily be analy
in terms of the properties of one moving particle in the se
fixed scatterers. Here we consider the scatterers to be pl
at random in space, subject only to the condition that th
are not allowed to overlap with each other. The chaotic pr
erties of a particle moving in aperiodicarray of nonoverlap-
ping hard disks have been studied extensively, especially
the case where the density of scatterers is sufficiently h
that the moving particle is unable to travel unimped
through the lattice~the case of finite horizon! @3#. It is known
that under appropriate mathematical conditions the rand
Lorentz gas is aK system@4# and that the periodic Lorent
gas with finite horizon is a Bernoulli system@5,6#. These
results are sufficient to prove that the gas has a well-defi
equilibrium state and that suitably defined initial ensem
distributions will approach equilibrium distributions for lon
enough times. However, for the random case there are
few analytic results for quantities that characterize the c
otic behavior of the moving particle. There is a conjecture
Krylov that the positive Lyapunov exponents for the movi
particle are proportional tonad21v ln@nad#21 if nad!1,
wheren5N/V is the number density ofN scatterers of ra-
571063-651X/98/57~4!/4077~18!/$15.00
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dius a in volumeV andv is the constant speed of the mo
ing particle@7#. This conjecture has been verified by Che
nov, who argued that for low enough densities the perio
and the random Lorentz gas should have the same valu
the Kolmogorov-Sinai entropy and then calculated this qu
tity for a periodic system at low density. Chernov obtain
the results@8#

hKS5l1.22nav lnna2 for d52, ~1!

hKS5l1
11l2

1.22pna2v lnna3 for d53. ~2!

Herel1 denotes a positive Lyapunov exponent. Simple co
siderations of the number of degrees of freedom and
conservation of energy show that for a two-dimensional L
entz gas there can be no more than one positive Lyapu
exponent and for a three-dimensional gas there can b
most two of them. The quantityhKS is the Kolmogorov-Sinai
~KS! entropy, which for a closed, isolated ergodic syste
such as the one considered by Chernov, is equal to the
of the positive Lyapunov exponents, according to Pesi
theorem@9#. Chernov’s results are only the first terms in th
density expansion ofhKS for a random Lorentz gas and u
until the present work no further analytic results had be
known for either the density-dependent corrections to th
results or, for three-dimensional systems, the individ
Lyapunov exponents for the random gas. Recently, Dahlq
has been able to calculate the density corrections for peri
Lorentz gas where small hard-disk scatterers are place
the vertices of a square lattice@10#.

We have been able to use familiar methods from the
netic theory of gases to calculate the Lyapunov spectrum
the KS entropy for random Lorentz gases at low densi
@11–14#. We can do this for closed, isolated systems as w
as for closed systems in a magnetic field, open systems~with
4077 © 1998 The American Physical Society
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escape of particles!, and systems where the moving partic
is charged and subjected to an electric field plus a thermo
that maintains a constant kinetic energy even in the prese
of the electric field. These two latter cases are of particu
interest because of their importance for methods that re
dynamical quantities such as Lyapunov exponents and
entropies to transport coefficients, in this case the diffus
coefficient for the moving particle@15,16#. This paper will be
devoted to obtaining the low-density results for Lyapun
exponents and KS entropies under the various situat
mentioned above. Extensions of these results to higher
sities and to other quantities will be presented elsewhere

In this paper we shall consider dilute, equilibrium Loren
gases in two or three dimensions, consisting, respectively
randomly placed but nonoverlapping, fixed hard-disk
hard-sphere scatterers and a point particle of massm and
speedv moving among them. The collisions with the sca
terers are taken to be elastic. In the future we plan to ge
alize this model to nonequilibrium situations with therm
statted electric fields, and/or open systems with absorb
boundaries. The plan of this paper is as follows. In Sec. II
present an elementary kinetic theory argument that corre
provides the low-density values of the Lyapunov expone
and KS entropy of the Lorentz gas in two and three dim
sions for closed systems and without external fields. In S
III we consider a more formal approach to these quanti
due to Sinai@3#, which will form the basis of the extension o
the kinetic theory approach to nonuniform systems. There
provide the fundamental geometric formulas of Sinai, wh
relate the Lyapunov exponents and KS entropy of a Lore
gas to the properties of a radius of curvature matrix. Then
use the ergodic properties of the moving particle to expr
the Lyapunov exponents and KS entropy in terms of av
ages over an equilibrium ensemble. In Sec. IV we show
the pertinent distribution functions can be obtained from
solution of an appropriate extended Lorentz-Boltzma
equation and in Sec. V we calculate the KS entropy of
two- and three-dimensional Lorentz gases at low densities
Sec. VI we consider the negative Lyapunov exponents
show how they can be obtained from a solution of an ‘‘an
Lorentz-Boltzmann’’ equation. This will be important for th
extension of the theory to treat thermostated systems.
conclude in Sec. VII with a comparison of these results w
the results of computer simulations by Posch and Dell
@17# and with a discussion of the applications of the metho
developed here to more general systems.

II. VELOCITY DEVIATION METHOD FOR LYAPUNOV
EXPONENTS AND KS ENTROPIES

We consider a system ofN d-dimensional hard-spher
scatterers placed randomly in space in ad-dimensional vol-
umeV at low density. Hered52,3, the spheres have a radi
a, and the number density of the spheresn5N/V satisfies
nad!1. The moving particle travels freely between elas
collisions with the scatterers. The phase pointx of the par-
ticle, i.e., its position and velocity,x5(rW,vW ) satisfies the

equations of motionrẆ5vW andvẆ 50 between collisions. At a
collision of the moving particle with a scatterer, the veloc
of the moving particle changes according to
tat
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vW 15vW 22~vW •n̂!n̂, ~3!

where vW 1 is the velocity after collision andn̂ is the unit
vector in the direction from the center of the scatterer to
point of impact of the moving particle at collision@18#. This
completely specifies the dynamics of the particle given
initial phase and the locations of all of the scatterers.

The Lyapunov exponents characterize the rate of ex
nential separation or of exponential convergence of infi
tesimally nearby trajectories on the (2d21)-dimensional
constant energy surfaceE @9#. Since the Lorentz gas is
symplectic, Hamiltonian system, if there are nonze
Lyapunov exponents they come in pairs of positive a
negative values6l i @19#. However, the Lyapunov exponen
for displacements in the direction of the trajectory is ze
since two phase points on the same physical trajectory
follow one another without exponential separation or co
traction. Therefore, there can be at mostd21 positive and
d21 negative Lyapunov exponents for our system.

To treat the Lyapunov exponents we consider a bundle
infinitesimally nearby trajectories onE and follow the motion
of this bundle in time. If the phase point on one referen
trajectory in this bundle is given byx(t) we denote the de-
viation of another trajectory in the bundle fromx(t) by
dx(t)5„drW(t),dvW (t)…. Equations of motion fordx(t) follow
immediately from the equations of motion forx(t). Since the
moving particle has only kinetic energy the requirement t
both trajectories lie on the same energy surface immedia
leads to the propertyvW (t)•dvW (t)50 for all t. Without loss of
generality, we may replacedrW(t) by the vector of closes
approach between the two trajectories, i.e. we
drW(t)•vW (t)50. @From here on we will use the notationdrW(t)
for this vector of closest approach of the perturbed traject
to rW(t). Notice that ifdrW(t)•vW (t)50 at t50 it remains so at
all later times, by virtue of Eqs.~3!–~6!.# In between colli-
sions the spatial and velocity deviations change with ti
according to

drẆ5dvW , ~4!

dvẆ 50. ~5!

The change ofdx(t) at collisions requires some analysi
which has been provided by Gaspard and Dorfman@20# and
Dellago, Posch, and Hoover@21#. These authors have show
that the change indx at the instant of a collision is given b

drW15@122n̂n̂#•drW, ~6!

dvW 15@122n̂n̂#•dvW 1
2

aFvW n̂2n̂vW 1
v2

~vW •n̂!
n̂n̂2~vW •n̂!1G•drW,

~7!

wherevW ,drW,dvW are the velocity of the moving particle, th
spatial deviation, and the velocity deviation of the near
trajectory, immediately before the collision with the sca
terer, while the ‘‘1 ’’ variables denote the values immed
ately after collision. It is important to note here that the v
locity deviationdvW does not change between collisions b
does undergo an instantaneous change at each collision
a scatterer.
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Suppose that we prepare a trajectory bundle with ini
values ofdx(0) and we follow the motiondx(t) in time. We
can relate the largest positive Lyapunov exponent to
asymptotic growth of the ratioudvW (t)u/udvW (0)u by

lmax5 lim
t→`

1

t
lnF udvW ~ t !u

udvW ~0!u
G . ~8!

This follows from the observation that if there are positi
Lyapunov exponents, then two infinitesimally close trajec
ries will eventually separate in time unless they are so p
cisely arranged that they approach each other exponent
in time. However, the latter situation occurs only on sets
zero measure~the stable manifold! in tangent space. Further
more, this exponential separation occurs both in configu
tion space and in velocity space with the same exponen
factor since velocities and positions are related by a sim
time derivative that does not affect the exponential sep
tion rate and we may consider the separation in velo
space alone. In Sec. III we consider another calculation
the Lyapunov exponents, which treats the separation in c
figuration space, and we obtain the same results.

Similarly, the sum of all of the positive Lyapunov expo
nents can be obtained by following the growth of a volum
element in velocity space as

(
l i.0

l i5 lim
t→`

1

t
lnudetA~ t !u, ~9!

with A(t) describing the linear relationship betweendvW (t)
anddvW (0), i.e.,

dvW ~ t !5A~ t !•dvW ~0!. ~10!

This result follows because the time evolution of the vec
dvW , which hasd21 independent components, is dominat
by thed21 largest eigenvalues and corresponding eigenv
tors of the matrixA(t), which are precisely the positive e
genvalues. Suppose now that the moving particle underg
a series ofN collisions in the time interval@0,t# with scat-
terers, which we labels1 ,s2 , . . . ,sN . Since the width of the
trajectory bundle is infinitesimal, each trajectory within it h
the same number of collisions with each scatterer in the s
time. SincedvW , as noted before, changes only at collision
one has

udvW ~ t !u

udvW ~0!u
5

udvWN
1u

udvWN21
1 u

udvWN21
1 u

udvWN22
1 u

•••

udvW 1
1u

udvW 0u
, ~11!

where dvW i
1 is the velocity deviation immediately after th

collision with scatterersi . For the same reasonA(t) can
change with time only at the instants of the collisions of t
moving particle with the scatterer, so that

dvW ~ t !5dvWN
15aN•dvWN21

1 5aN•aN21•••a1•dvW ~0!.
~12!

Hereaj is a matrix, to be defined below for the case whe
the density of scatterers is low, that expresses the chang
the velocity deviation when the moving particle collides w
scatterersj . Consequently,
l
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detA~ t !5)
i

N

detai . ~13!

Of course the number of collisionsN in time t will depend
upon t and the initial value of the phase pointx(0). Expres-
sions for the largest Lyapunov exponent and for the sum
positive Lyapunov exponents can be obtained from Eqs.~8!–
~13! as

lmax5 lim
t→`

N
t

1

N_(


N

ln
udvW i

1u

udvW i 21
1 u

, ~14!

(
l i.0

l i5 lim
t→`

N
t

1

N (
1

N

lnudetai u. ~15!

To proceed further we need to use the fact that the den
of the scatterers is small, that is,nad!1. This will allow us
to determine the mean of the quantities appearing in
sums in Eqs.~14! and~15!. Referring to Eq.~7!, we note that
drW appearing on the right-hand side is the spatial deviation
the moving particle just before a collision with a scatter
Let us suppose that we consider the collision with scatte
si . Then immediately before this collisiondrW i

25drW i 21
1

1t idvW i 21
1 , wheredxi 21

1 denotes the spatial and velocity d
viations just after the collision with the previous scatte
si 21 and t i is the time between the collision with scatter
si 21 and scatterersi . At low scatterer densities the tim
between collisions will typically be inversely proportional
the density of scatterers, so that the ratio of the order
magnitudes of the first to the second term in the above
pression fordrW i

2 will approach zero as the scatterer dens
decreases. Therefore, to leading order in the density,drW i

2

5t idvW i 21
1 . We then obtain a low-density value fordvW i

1

given by

dvW i
15F ~122n̂n̂!1

2t i

a S vW i 21
1 n̂2n̂vW i 21

1 2~vW i 21
1

•n̂!1

1
v2

~vW i 21
1

•n̂!
n̂n̂D G•dvW i 21

1

[ai•dvW i 21
1 . ~16!

Now we have expressions for the change in the velocity
viation at collision and for the matrixa, both of which are
needed for the calculations outlined above. To evaluate
sums appearing in Eqs.~14! and ~15!, we note that at low
densities none of the collisions are correlated with any p
vious collision, that is, the leading contribution to th
Lyapunov exponents come from collision sequences wh
the moving particle does not encounter the same scatt
more than once in the sequence.~In two dimensions the par
ticle will hit the same scatterer an infinite number of time
However, the effects of such processes are of higher den
and can be neglected here since the times between succe
collisions with the same scatterer become typically ve
large as the density of scatterers approaches zero!. Therefore,
we can treat each term in the sums in Eqs.~14! and ~15! as
being independent of the other terms in the sum. We h
expressedlmax and the sum of the positive Lyapunov exp
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nents as arithmetic averages, but for long times and w
independently distributed terms in the average, we can
place the arithmetic averages by ensemble averages o
suitable equilibrium ensemble. That is

lmax5nK lnF udvW 1u

udvW 2u
G L ~17!

and

(
l i.0

l i5n^ lnudetau&, ~18!

wheren is the~low-density! value of the collision frequency
N/t as t becomes large and the angular brackets denote
equilibrium average.

We now consider a typical collision of the moving pa
ticle with one of the scatterers. The free time between
collision and the next is sampled from the normalized eq
librium distribution of free times@18# P(t) given at low
densities by

P~t!5ne2nt. ~19!

The construction of the matrixa requires some geometry an
depends on the number of dimensions of the system. In
e

ic
rin
r

y

th
e-
r a

an

e
i-

ny

case we take the velocity vector before collisionvW to be
directed along thez axis and taken̂•vW 52v cosf. The ve-
locity deviation before collisiondvW 2 is perpendicular to the
z axis. Then it is a simple matter to computeudvW 1u/udvW 2u
andudetau. For two-dimensional systemsdvW and the matrixa
are given in this representation by

dvW 25S 1

0D udvW 2u, a5S ~11L!cos 2f sin 2f

~11L!sin 2f 2 cos 2f D ,

~20!

where we introducedL52vt/a cosf, where 2p/2<f
<p/2. To leading order invt/a we find that

udvW 1u

udvW 2u
5L, udetau5L. ~21!

For three-dimensional systems the unit vectorn̂ can be rep-
resented as n̂52(cosf)ẑ1sinf(cosa)x̂1sinf(sina)ŷ.
Now the ranges of the anglesf anda are 0<f<p/2 and
0<a<2p. There is an additional anglec in the (x,y) plane
such that the velocity deviation before collisiondvW 2

5udvW 2u@ x̂ cosc1ŷ sinc#. It is somewhat more convenien
to use a symmetric matrixã5(122n̂n̂)•a given by
ã5S 11L~cos2f1 sin2f cos2a! L sin2f cosa sin a 0

L sin2f cosa sin a 11L~cos2f1 sin2f sin2a! 0

0 0 1
D . ~22!
d

s
-
b-
One easily finds

udvW 1u

udvW 2u
5

2tv
a Fcos2~a2c!

cos2f
1 sin2~a2c!cos2fG 1/2

~23!

and

detã5deta5S 2vt

a D 2

~24!

to leading order invt/a.
To complete the calculation we must evaluate the av

ages appearing in Eqs.~17! and ~18!. That is, we average
over the distribution of free times and over the rate at wh
scattering events are taking place with the various scatte
angles. Additionally, in three dimensions an average ove
stationary distribution of anglesc has to be performed in
general. Due to the isotropy of the scattering geometryc can
here be absorbed in a redefinitiona85a2c of the azi-
muthal anglea. This will not be true anymore if the isotrop
of velocity space is broken~e.g., by an external field!. The
appropriate average of a quantityF takes the simple form
r-

h
g
a

^F&5
1

JE0

`

dtE dn̂~cosf!P~t!F, ~25!

where P(t) is the free time distribution given by Eq.~19!
andJ is a normalization factor obtained by settingF51 in
the numerator. The integration over the unit vectorn̂, i.e.,
over the appropriate solid angle, ranges over2p/2<f
<p/2 in two dimensions and over 0<f<p/2 and 0<a
<2p in three dimensions. After carrying out the require
integrations we find that

l15lmax52nav@2 ln~2na2!112C#1••• ~26!

for two dimensions. HereC is Euler’s constant and the term
not given explicitly in Eq.~26! are higher order in the den
sity. Similarly, for the three-dimensional Lorentz gas we o
tain

lmax
1 5na2vp@2 ln~ ñ /2!1 ln22 1

2 2C#1•••, ~27!

lmax
1 1lmin

1 52na2vp@2 ln~ ñ /2!2C#1•••, ~28!

from which it follows that

lmin
1 5na2vp@2 ln~ ñ /2!2 ln21 1

2 2C#1•••, ~29!
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where ñ5na3p. We have therefore determined th
Lyapunov spectrum for the equilibrium Lorentz gas at lo
densities in both two and three dimensions@11,13#. We note
that the two positive Lyapunov exponents for three dim
sions differ slightly and that we were able to get individu
values because we could calculate the largest exponent
the sum of the two exponents. We could not determine al
the Lyapunov exponents for a (d.3)-dimensional Lorentz
gas this way. Moreover, for a spatially inhomogeneous s
tem, such as those considered in the application of esc
rate methods, the simple kinetic arguments used here are
sufficient and Boltzmann-type methods are essential for
determination of the Lyapunov exponents and KS entrop
We will comment further on these results in Sec. VII aft
we have obtained them again by a more formal meth
based upon the radius of curvature matrix method of S
@3#.

III. THE RADIUS OF CURVATURE MATRIX

Our analysis in this section is based upon the geome
arguments given by Sinai@3# for the relationships betwee
the Lyapunov exponents, the KS entropy, and the radiu
curvature matrix, which describes the time evolution of t
separation of nearby phase-space trajectories of the mo
particle. Unlike the method presented in the preceding s
tion, this method treats the time evolution of thespatialsepa-
ration of a bundle of trajectories rather than the evolution
the velocity separation of the bundle. Here we summa
these considerations, referring the reader to the literature
further details@3,20#.

As before, the trajectory of the moving particle is spe
fied by the phasex(t)5„rW(t),vW (t)… and we take a
(2d22)-dimensional planeS, „drW'(t),dvW'(t)…, through
x(t), where bothdrW'(t) anddvW'(t) are perpendicular to the
velocity vW (t). The nearby trajectories will intersectS and we
measure the separation of the trajectories by vectors o
mension 2(d21) in S, dx'(t), given as

dx'~ t !5S drW'~ t !

dvW'~ t !
D . ~30!

The time development ofdx' is given in terms of a mono
dromy matrixM (t,t0) satisfying

dx'~ t !5M ~ t,t0!•dx'~ t0!. ~31!

The matrix M (t,t0) follows the motion of the particle. It
changes continuously with timet in the intervals between
collisions and undergoes a discontinuous change at the
stants of collisions of the particle with the scatterers. B
tween collisions the monodromy matrix has the form

M ~ t,t0! free flight5S 1 ~ t2t0!1

0 1 D . ~32!

At the instant of a collision there is a discontinuo
rotation of the velocity of the moving particle from it
value before collisionvW to its value after collisionvW 1

5vW 22n̂(vW •n̂) as before. Since the velocity of the partic
changes discontinuously at collision, the planeS also rotates
and the components of the displacement vectordx' change
instanta-
-
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neously. The changes in the components ofdrW' anddvW' at
the instant of collision are given in Eqs.~6! and ~7! above.

In order to determine the Lyapunov exponents for t
system we need to examine the rate of separation or of
proach of infinitesimally close trajectories. This can now
done with the aid of the radius of curvature operatorsru and
rs , acting on a (d21)-dimensional space of velocity devia
tion vectors orthogonal tovW . Here the subscriptsu and s
denote operators describing unstable, or expanding,
stable, or contracting, trajectory bundles, respectively. T
operatorru is defined by the relation that

drW'~ t !5
1

v
ru~ t !•dvW'~ t !, ~33!

together with the conditionsru•vW 5vW •ru50. This definition
is motivated by the observation that if the velocity deviati
dvW describes separating trajectories, then we can apply
optics to describe the separation of the trajectories@3#. In the
transverse plane this separation will be given by an arclen
equal to a radius of curvature multiplied by an infinitesim
initial angular separation. We have chosen the units in
~33! so that the radius of curvature operator has the dim
sion of a length. The radius of curvature operator can
represented as a (d21)3(d21) matrix since bothdrW' and
dvW' are defined in a plane perpendicular tovW . Now suppose
that we consider some initial velocity deviationdvW'(0) cor-
responding to a diverging pencil of rays and we want
obtain an equation of motion for the radius of curvature m
trix ru . We use the fact that the motion of the particle co
sists of periods of free flight punctuated by instantane
collisions with the fixed scatterers. We first consider the f
flight motion. From the fact that in free flightdrW'(t)
5drW'(0)1tdvW'(0) and dvW'(t)5dvW'(0), we infer that
during free flight over a time intervalt from some initial time
t50, with initial valuer(0), theradius of curvature matrix
changes with time according to

ru~ t !5ru~0!1vt1' , ~34!

where1'512 v̂ v̂ with v̂ a unit vector in the direction ofvW .
Next we use Eqs.~6! and ~7! to obtain the relation betwee
the radius of curvature operator immediately before a co
sion ru

(2) and its value immediately after a collisionru
(1) .

This calculation, while straightforward, requires a care
analysis in order to obtain a correct expression forr as a
(d21)3(d21) matrix. This analysis is presented in Appe
dix A. There we find that at a collisionr changes according
to

@ru
21~1 !#5UH @ru

21~2 !#1
2

aF v̂n̂1n̂v̂2
1

v̂•n̂
n̂n̂

2~ v̂•n̂!1G J U, ~35!

whereU is the reflection operator122n̂n̂. The inverse radii
of curvature tensors@ru

21(2)# and @ru
21(1)# are defined on

the subspaces orthogonal tov̂ and v̂8, respectively, and are
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extended to tensors on full space by requiring that their
and right inner products withv̂ andv̂8, respectively, are zero
again.

The sum of the positive Lyapunov exponents is connec
to the radius of curvature operator@3,8#. Consider the spatia
separation of a bundle of trajectories after a sequencen
collisions labeled 1,2,. . . ,n that take place at time
t1 ,t2 , . . . ,tn ,

drW'
~2 !~ tn!5@1'1vtn,n21ru

21~1 !~ tn21!#•U~n21!

3@1'1vtn21,n22ru
21~1 !~ tn22!#•U~n22!•••

3@1'1vt1,0ru
21~0!#•drW'~0!, ~36!

where the initial time has been set tot50, with initial values
indicated for the spatial deviation vectordrW'(0) and for the
radius of curvature operatorru(0). Also U( j )5122n̂ j n̂ j is
the reflection operator at thej th collision. It is important to
note that detU( j )521. From Eq.~36! the sum of the postive
Lyapunov exponents can be derived as@3,8#

(
l i.0

l i5 lim
t→`

v
t E0

t

dt Trru
21~t!. ~37!

Equation~37! is Sinai’s formula for the KS entropy for a
moving particle in a system of fixed hard-sphere scatte
@3,8#. By combining Eqs.~34! and ~35! one may obtain a
continued-fraction representation for@ru

21(t)# @3#, which,
for a fixed final phase pointx(t) and initialru(0), converges
rapidly with increasingt. So far we have not used any pro
erties of the arrangement of the scatterers, so this formu
still quite general. In the case that the system is ergodic
time average can be replaced by an ensemble average,
with an appropriate ensemble distribution function, so
can express the sum of the positive Lyapunov exponent

(
l i.0

l i5v^Trru
21&, ~38!

where the angular brackets denote an average over an a
priate stationary ensemble reached in the course of time f
smooth initial distributions. In the case of interest here, t
distribution will be an equilibrium distribution, but in th
future we will need to consider more general steady-s
distribution functions.

Before completing this section we wish to give a simp
derivation of Eq.~37! that applies to a Lorentz gas with an
reasonable interaction between the moving particle and
scatterers. We use the fact that having defined the radiu
curvature matrixru , we may write

ddrW'~ t !

dt
5dvW'~ t !5v@ru

21~ t !#•drW'~ t !, ~39!

with the solution

drW'~ t !5TexpvE
0

t

dt@ru~t!#21
•drW'~0!. ~40!
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HereT denotes a time-ordering operator. Using the meth
of differential forms or equivalent methods@22# we see that
the growth of a volume elementdVr(t) in configuration
space is given by

dVr~ t !

dVr~0!
5expS vE

0

t

dtTr@ru~t!#21D . ~41!

This result leads immediately to Eq.~37! for the sum of
Lyapunov exponents. Vattay has shown how to construct
inverse of the radius of curvature matrix for a general pot
tial @23#. It is straightforward generalizing the results o
tained here to other short-range interaction potentials an
may well be possible to treat some cases with long-ra
interactions between the scatterers and the light particle.
the case of hard disks or spheres considered here, we ca
the fact that the radius of curvature matrices at differ
times commute with each other if the times involved are
within the same time interval between one collision of t
moving particle and a scatterer and the next collision to w

drW'~ t !5F) 8
j 50

n

R~ t j 11 ,t j !G•drW'~0!, ~42!

where

R~ t j 11 ,t j !5expFvE
t j

t j 11
dt@ru~t!#21G ~43!

and the prime on the product denotes that the times are t
ordered so that the times decrease from left to right in
product. By using Eq.~34! and carrying out the required
integrals, one can easily see that this expression is equiva
to Eq. ~36!. Moreover, one can express the sum of the po
tive Lyapunov exponents as

( l i
15 lim

t→`

N~ t !

t

1

N~ t !(j
vE

t j

t j 11
dt Tr@ru~t!#21.

~44!

We will use these expressions in Sec. VI and in the App
dixes.

In Sec. IV we discuss the distribution function appeari
in the above ensemble average for the case that the scatt
are distributed at random with very low density, i.e., t
mean free path of the moving particle is very large compa
to the radius of the scatterers. In order to obtain the in
vidual Lyapunov exponents we have to find the eigenval
of the operator that appears on the right-hand side of
~36!. This operator can be expressed as a product ofd
21)3(d21) matrices, which describe the collisions of th
moving particle with the scatterers and the free motion
between collisions. Again, if the system is at low density t
product of matrices can be considered to be a produc
randomly distributed matrices since the time between co
sions and the collision parameters will be sampled from
random distribution, corresponding to the random placem
of scatterers. In Appendix B we show how methods from
theory for eigenvalues of products of random matrices@24#
can be used to obtain the largest Lyapunov exponent.
higher densities of scatterers correlations between collis
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will arise and one will have to take into account these c
relations when computing the eigenvalues of the produc
matrices.

IV. THE EXTENDED LORENTZ-BOLTZMANN
EQUATION

In order to evaluate the ensemble average appearin
the right-hand side of Eq.~38! we need to construct an equ
librium or, more generally, a steady-state distribution fun
tion for the radius of curvature matrix. The physics of t
problem suggests that a method based upon the Lore
Boltzmann equation is appropriate here. That is, we hav
particle moving in a random array of scatterers making o
binary collisions with the scatterers. The particle mov
freely between collisions and at a collision both the veloc
and the radius of curvature matrix change instantaneou
Methods are now well known@1,2,18,26,27# for obtaining a
generalized Lorentz-Boltzmann equation for the tim
dependent space and velocity distribution functionf (rW,vW ,t)
for the moving particle as a function of the density of t
scatterers, at least in the case that the scatterers are non
lapping. ~The case of overlapping scatterers is complica
by the fact that regions may exist where the particle wo
be trapped for all time. In a transport problem these regi
need to be treated carefully since particles trapped in th
will not diffuse beyond the borders of the trap!. In this case
it is possible to obtain an equation for the moving parti
that includes the effects of uncorrelated binary collisions
the particle with the scatterers, excluded-volume effects,
the effects of correlated collision sequences of the mov
particle with the scatterers. To lowest order in the density
the scatterers, the distribution functionf (rW,vW ,t) satisfies the
Lorentz-Boltzmann~LB! equation@1,2,18,27#

] f

]t
1vW •

] f

]rW
1vẆ •

] f

]vW

5nad21E dn̂uvW •n̂u@Q~vW •n̂! f „rW,vW 22~vW •n̂!n̂,t…

2Q~2vW •n̂! f ~rW,vW ,t !#. ~45!

Here n̂ is a unit vector in the direction from the center of
scatterer to the point of impact at a collision andQ(x) de-
notes the unit step function. The right-hand side of the
equation describes the change inf due to collisions as the
difference between the gain and the loss of particles w
velocity vW from ‘‘restituting’’ and ‘‘direct’’ collisions, re-
spectively. Higher-order density corrections to the right-ha
side of Eq.~45!, comprising the generalized LB equatio
can be obtained using the appropriate set of Bogoliub
Born-Green-Kirkwood-Yvon~BBGKY! hierarchy equations
and cluster-expansion methods@26,27,25#. These density
corrections have been studied in some detail and it is w
known that the so-called ring collision sequences are resp
sible for both logarithmic terms in the density expansion
the diffusion coefficient of the moving particle@27# and the
long-time tails in the velocity autocorrelation function of th
moving particle@28#.
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Our purpose here is to extend the LB equation by inclu
ing the radius of curvature matrix among the variables
scribed by the distribution function for the moving particl
We will consider only the low-density version of the kinet
theory for this distribution function and leave the discuss
of higher-order density corrections, including the effects
correlated collision sequences on the Lyapunov expone
to the future. Thus we wish to determine an equation, valid
low densities, for an extended distribution functio
F(rW,vW ,r,t), where we dropped the subscriptu on r, and we
relate the distribution functionsF and f by

f ~rW,vW ,t !5E drF~rW,vW ,r,t !. ~46!

Given the stationary solution of the extended LB equat
for F, we can determine the sum of the Lyapunov expone
as

(
l i.0

l i5vE drWdvW dr@Trr21#F~rW,vW ,r!, ~47!

assuming thatF is properly normalized.
An extended LB equation forF that reduces to the usua

LB equation forf upon integration over the radius of curva
ture matrix elements can be obtained by following the h
ristic derivation of the LB equation and simply modifying
to include the additional variables. That is, we conside
large collection of moving particles in the random array
scatterers and ask for an equation for the probability tha
moving particle has its values forrW,vW ,r in the range
drW,dvW ,dr about rW,vW ,r, all at time t, i.e.,
F(rW,vW ,r,t)drW dvW dr. This probability changes in time du
to free motion of the particles and due to collisions. T
change inF due to the free motion of the particles in timedt
is

@F~rW1vW dt,vW ,r1v dt 1' ,t1dt!2F~rW,vW ,r,t !#drWdvW dr

5F ]F

]t
1vW •

]F

]rW
1v (

i 51

d21
]F

]r i i
GdrWdvW drdt. ~48!

We used Eq.~34! to treat the change in the radius of curv
ture matrix during free particle motion and we have assum
that there are no external forces acting on the system. O
erwise we would need to include terms accounting for
changes in velocity and in the radius of curvature mat
over a time intervaldt due to the external force. If there wer
no collisions taking place in the system, then the right-ha
side of Eq.~48! would be zero. However, the collisions a
count for the fact that the number of particles atrW
1vW dt,vW ,r1v dt 1' at time t1dt is not equal to the num-
ber of particles atrW,vW ,r at timet. To account for the change
in F due to collisions we consider the restituting and dire
collisions separately. The direct collisions result in a loss
the particles withrW,vW ,r over the intervaldt due to collisions
with scatterers. Elementary kinetic theory consideratio
@18,26# show that this loss is
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nad21E dn̂uvW •n̂uQ~2vW •n̂!F~rW,vW ,r,t !drWdvW drdt.

~49!

The restituting or gain term is found by considering tho
collisions taking place in the time interval@ t,t1dt# that pro-
duce particles withrW,vW ,r. Again, elementary kinetic theor
considerations show that this gain is given by

nad21E dn̂uvW •n̂uQ~vW •n̂!U]r8

]r
UF~vW 8,rW,r8,t !drWdvW drdt,

~50!

wherevW •n̂>0,

vW 85vW 22~vW •n̂!n̂, ~51!

and the radius of curvature matrixr8 is a restituting value
such that the radius of curvature matrix becomesr after col-
lision. From Eq.~35! and the identityU• v̂5 v̂8 one obtains
the relationship

r8215UH r212
2

aF2 v̂n̂2n̂v̂1
1

v̂•n̂
n̂n̂1~ v̂•n̂!1G J U,

~52!

with v̂•n̂>0. For two-dimensional systems the radius of c
vature matrix can be represented by a scalar~namely, its
nonvanishing eigenvalue! and the restituting valuer8 is
given by

1

r8
5

1

r
2

2

a cosf
, ~53!

where f is the angle betweenn̂ and v̂ with 2p/2<f
<p/2. For three-dimensional systems the radius of curva
matrix can be represented by a 232 matrix by choosing the
principal axes of the coordinate frame orthogonal tov̂. De-
fining anglesf through cosf5n̂•v̂, with 0<f<p/2 anda
as the angle between the second coordinate axis and
plane throughn̂ andv̂, and multiplying Eq.~52! from the left
and the right byU one can rewrite this equation as

Ur821U5r212
2 cosf

a S 0 0 0

0

P

0

D , ~54!

with

P5S 11tan2f cos2a tan2f sin a cosa

tan2f sin a cosa 11tan2f sin2a D . ~55!

Here cosf5n̂•v̂ with 0<f<p/2 and a is an azimuthal
angle forn̂ in the plane perpendicular tovW with 0<a<2p.
We can now simplify the restituting term in the extended L
equation by noting that we can combine the Jacobian w
the distribution functionF to write
e

-

re

the

th

U]r8

]r
UF~r8!5E dr8d„r2r~r8!…F~r8!, ~56!

where thed function in the integrand selects the right res
tuting value of the radius of curvature matrix in accordan
with Eq. ~52!. Putting everything together, we can obtain t
extended LB equation as

]F

]t
1vW •

]F

]rW
1v (

i 51

d21
]F

]r i i

5nad21E dn̂uvW •n̂uFQ~vW •n̂!E dr8d„r2r~r8!…

3F~rW,vW 8,r8,t !2Q~2vW •n̂!F~rW,vW ,r,t !G . ~57!

In the next section we will use Eq.~57! to compute the KS
entropy for two- and three-dimensional Lorentz gases
equilibrium. Before turning to this calculation, we make
observation about the restituting radius of curvature mat
We note that the diagonal elements of the radius of curva
matrix will grow with time between collisions. Thus the av
erage value of the diagonal elements of the radius of cu
ture matrixbefore collisionwill be on the order of the mean
free path between collisionsl . For low density of scatterers
the mean free pathl will be much larger than the radius o
the individual scatterersa such thata/ l;nad!1. This ob-
servation will allow us to greatly simplify thed function in
the restituting collision term in Eq.~57! and thereby simplify
the calculations to follow.

V. EQUILIBRIUM SOLUTIONS OF THE EXTENDED LB
EQUATION

In this section we construct the equilibrium solutions
the extended LB equation~57! in two and three dimension
and from these computehKS. We begin with the two-
dimensional case. Here the radius of curvature is a sim
scalar and Eq.~57! becomes

]F

]t
1vW •

]F

]rW
1v

]F

]r

5navE
2p/2

p/2

df cosfF E0

`

dr8dS r2
a cosf

21
a cosf

r8
D

3F~rW,vW 8,r8,t !2F~rW,vW ,r,t !G . ~58!

To find an equilibrium solution, we look for solutions that d
not depend upon time, velocity direction, or position and t
become the known equilibrium solution for the LB equati
when the integration overr is carried out. That is, we look
for solutionsF of the form
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F~vW ,r!5w0~v !c~r!, ~59!

wherew0(v)5(2pvV)21d(v2v0) is the normalized, equi-
librium spatial and velocity distribution function for th
moving particle with constant speed, which we here den
as v0, and confined to a volumeV. Then we require tha
c(r) be normalized as

E
0

`

dr c~r!51. ~60!

It is an easy matter to obtain an equation forc(r) that reads

v
]c

]r
522navc1navE

2p/2

p/2

dfE
0

`

dr8

3dS r2

a cosf

21
a cosf

r8
D c~r8!. ~61!

An inspection of thed function shows that it vanishes unle
r,a/2. Therefore, forr>a/2, we have the simple result

c~r!5Ae2r/l for r>a/2, ~62!

where l 5(2nav)21 is the mean free path length for th
moving particle at low density of scatterers andA is a con-
stant to be determined. To treat the distribution funct
c(r) for smaller values ofr we note that we can require tha
c(r)→0 asr→0 since the dynamics will increase the val
of r during free particle motion and will decrease it to som
value, still greater than 0, at the instant of a collision. Furt
we can require thatr be continuous atr5a/2 since the
extended LB equation does not have an explicitd function of
the formd(r2a/2) on the right-hand side. Finally, we no
that the dominant contribution to ther8 integral on the right-
hand side of Eq.~61! comes fromr8;l . Therefore, thed
function on the right-hand side of Eq.~61! can be approxi-
mated by

dS r2

a cosf

21
a cosf

r8
D .d„r2~a cosf!/2…. ~63!

~A more detailed examination of this integral keeping the f
d function shows that the terms neglected here are of o
ñ lnñ compared to the terms retained, whereñ5na2.! After
inserting this expression in Eq.~61! we find that forr,a/2,

v
]c

]r
52navF2c~r!1

2s

a~12s2!1/2E0

`

dr8c~r8!G ,

~64!

wheres5ar/2. Sincec is normalized to one, we find tha

c~r!5~1/l !H 12F12S 2r

a D 2G1/2J for r,a/2 ~65!

and, using the normalization condition onc, we find

c~r!5~1/l !e2r/l for r>a/2. ~66!
te

n

r

l
er

@Comparing Eqs.~62! and~65! one sees thatc(r) apparently
has a discontinuity atr5a/2. This, however, is an artifact o
the low-density approximations we have made. Note that
jump in c is of relative orderna2 indeed.# Combining this
expression forc with Eqs.~47! and ~59! we obtain

l~1 !5hKS52nav~12 ln22C2 lnñ ! for ñ!1, ~67!

in agreement with the result given by Eq.~26!.
Now we turn to the three-dimensional case. This is som

what more complicated than the two-dimensional case s
r is a 232 matrix and not a scalar. However, we can s
simplify thed function in the restituting collision integral by
noticing that the diagonal elements of the curvature ma
grow with time during the free steaming intervals betwe
collisions. Consequently, the diagonal elements ofr8 ap-
pearing on the left-hand side of Eq.~54! are of the order of
the mean free path length immediately before a collis
with a scatterer. An elementary consideration of the prop
ties of the inverses of 232 matrices with large diagona
elements shows that the dominant contribution to the rad
of curvature matrixr comes from setting the left-hand sid
of Eq. ~54! equal to zero. This greatly simplifies thed func-
tion appearing in the collision integral on the right-hand s
of Eq. ~57!. The effect of this simplification is that we hav
neglected terms of relative ordera/l , which are density cor-
rections to the terms we keep.

The equilibrium distribution functionF(vW ,r) can be fac-
torized as

F~vW ,r!5w~v !c~r!, ~68!

wherew(v)5(4p2v0
2V)21d(v2v0) is the normalized equi-

librium distribution function for the moving particle. Th
extended LB equation reduces to

vS ]

]r11
1

]

]r22
Dc~r!

52na2pvc~r!1na2vE
0

p/2

dfE
0

2p

daE dr118 E dr128

3E dr218 E dr228 sin f cosf

3)
i , j

d„r i j 2r i j ~f,a!…c~r8!. ~69!

The matrix elements ofr(f,a) can be obtained by solving
Eq. ~54! under the approximation@r8#2150, which can be
justified again as a low-density approximation by the sa
arguments as in the two-dimensional case. The results a

r11~f,a!5
a cosf

2
~11tan2f sin2a!, ~70!
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r12~f,a!5r21~f,a!52
a sin2f sin2a

4 cosf
~71!

r22~f,a!5
a cosf

2
~11tan2f cos2a!. ~72!

The restituting term in Eq.~69! contains an integration o
c(r8) over its arguments and we can set

E dr8c~r8!51. ~73!

We use c to compute the average value of Tr(r)21

5@Trr#@detr#21, which determines the sum of the positiv
Lyapunov exponents. Ther i j (f,a) occurring in thed func-
tion on the right-hand side of Eq.~69! can be identified at
low density with the values ofr i j right after a collision with
collision parametersf anda. From Eq.~71! it follows that
these values are always equal forr12 andr21. Furthermore,
these quantities do not change in between collisions, so
may setc(r)5 f (r11,r22,r12)d(r122r21). Next we change
variables fromr11,r22,r12 to r1 ,r2 ,r12, wherer1 ,r2 are
the eigenvalues of the 232 matrix r. The Jacobian for the
transformation of variables, given by

JS r1 ,r2

r11,r22
D5

ur12r2u

@~r12r2!224r12
2 #1/2

, ~74!

will be included in the integrand in Eq.~78!. After some
straightforward algebra we obtain the following equation
g(r1 ,r2 ,r12)[ f (r11,r22,r12):

vS ]

]r1
1

]

]r2
Dg~r1 ,r2 ,r12!1ng~r1 ,r2 ,r12!

5
n

2E0

p/2

dfE
0

2p

da~sinf!~cosf!ucos 2au

3dS r12
a

2 cosf D d„r22~a cosf!/2…

3d„r121~a cosftan2f sin 2a!/4…, ~75!

wheren5npa2v is the average collision frequency for th
moving particle. Thea integration can be carried out and w
see thatg can be written in the form

g~r1 ,r2 ,r12!5QS 12
2ur12u

ur12r2u Dh~r1 ,r2!, ~76!

whereh satisfies

vS ]

]r1
1

]

]r2
Dh~r1 ,r2!1nh~r1 ,r2!
e

r

5
4n

p E
0

p/2

df
cos2f

sin f
d„r22~a cosf!/2…

3d„r12a~2 cosf!21
…. ~77!

We can now express the sum of the positive Lyapunov
ponents in terms ofh as

lmax
1 1lmin

1 5E dr1E dr2E dr12S 1

r1
1

1

r2
D

3S ur12r2u

@~r22r1!224r12
2 #1/2D

3QS 12
2ur12u

ur12r2u Dh~r1 ,r2!. ~78!

The r12 integration can be carried out easily, yielding

lmax
1 1lmin

1 5
p

2E dr1E dr2S 1

r1
1

1

r2
D ur22r1uh~r1 ,r2!.

~79!

We define a new function p(r1 ,r2)5(p/2)ur2
2r1uh(r1 ,r2), which satisfies

vS ]

]r1
1

]

]r2
D p~r1 ,r2!1np~r1 ,r2!

52nE
0

p/2

df
cos2f

sin f S 1

cosf
2cosf D

3d„r22~a cosf!/2…d„r12a~2 cosf!21
….

~80!

Introducing p1(r)5*0
`dr2p(r,r2) and p2(r)

5*0
`dr1p(r1 ,r) enables us to express the sum of t

Lyapunov exponents very simply as

lmax
1 1lmin

1 5 (
i 51,2

E
0

`

dr
1

r
pi~r!, ~81!

where thepi(r) satisfy

v
]p1~r!

]r
1np1~r!52nE

0

p/2

df~sin f!~cosf!

3d„r2~a cosf!/2…, ~82!

v
]p2~r!

]r
1np2~r!52nE

0

p/2

df~sin f!~cosf!

3d„r2a~2 cosf!21
…. ~83!

Solving Eqs.~82! and~83! for p1 ,p2 and inserting the solu-
tion into Eq.~81!, one obtains an expression for the sum
the positive Lyapunov exponents that agrees with Eq.~28!. It
is worth mentioning that we can solve Eq.~75! to provide
g(r1 ,r2 ,r12) as an explicit function of the variable
r1 ,r2 ,r12 using the method of characteristics. As this so
tion will prove useful in subsequent papers, we outline
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method in Appendix B. There we also briefly indicate ho
the individual Lyapunov exponents can be calculated us
g(r1 ,r2 ,r12) and simple results from the theory for eige
values of products of random matrices@24#. While the results
obtained with the extended LB equation properly agree w
those obtained by more direct kinetic theory arguments,
will need to use the extended LB equation in order to obt
the Lyapunov exponents and KS entropies for the spati
inhomogeneous systems that occur when one consi
escape-rate methods for connecting chaotic quantities
transport coefficients. This will be treated elsewhere.

VI. THE NEGATIVE LYAPUNOV EXPONENTS AND THE
ANTI-LORENTZ BOLTZMANN EQUATION

We now turn our attention to the Lyapunov expone
that characterize the exponential convergence of trajecto
on a stable manifold in the (2d21)-dimensional constan
energy surface in the phase space of the moving particle.
recall that two arbitrary but infinitesimally nearby traject
ries will certainly separate eventually with time. We ha
used this fact to derive formulas and explicit expressions
the positive Lyapunov exponents. However, Liouville
theorem showing that the measure of a small region of ph
space is constant in time as one follows the motion of po
initially in that region implies that there must be a compe
sating set of negative Lyapunov exponents that act in con
with the positive ones to keep phase-space measures con
in time. Moreover, the fact that the Lorentz gas is a sympl
tic Hamiltonian system has as a consequence the existen
a conjugate pairing rule@19#. That is, for such a system, th
Lyapunov exponents come in positive and negative p
such that the sum of each corresponding pair is zero. Thu
this case at least, the calculation of the negative Lyapu
exponents is trivial: They are just the opposites of the po
tive ones. However, in future work where we plan to tre
thermostated systems, this form of the conjugate pairing
no longer holds@29–31# and we will need to find methods t
compute both positive and negative exponents individua

The most obvious way to obtain the negative Lyapun
exponents is to compute the positive Lyapunov expone
for the time-reversed motion. Upon time reversal trajectorie
that approach each other in the forward motion will separ
In fact, almost all trajectories will separate inboth the for-
ward and the time reversed direction, but in general~i.e., for
nonsymplectic systems! with different exponents. In the for
ward motion they will separate with rates given by the po
tive Lyapunov exponents and in the time-reversed mot
with rates equal to the magnitudes of the negative Lyapu
exponents. Thus, to calculate the negative exponents we
sider the binary collision dynamics already discussed bef
but look at the time-reversed motion. If, in the forward-tim
direction, the moving particle is uncorrelated with a scatte
before collision, in the time-reversed motion it will be u
correlated with the same scatterer after the collision.
therefore should consider a kind of backward kinetic theo
where the particles are uncorrelated with the scatterers
their collisions instead of before them. This will differ i
important respects from the ordinary Lorentz-Boltzma
equation. In order to illustrate this we consider first a cal
lation of the sum of the negative Lyapunov exponents for
g
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two-dimensional~2D! and 3D dilute Lorentz gases, using
simple kinetic theory argument similar to that used in Sec.

A. A simple kinetic theory method for the sum of the negative
Lyapunov exponents

We first consider the 2D case. We wish to follow an i
finitesimal trajectory bundle that is contracting and rema
contracting for all future times. Such a bundle is illustrated
Fig. 1. We follow the motion of this bundle from scatterer
to scatterer 2. In order that the bundle remain contract
after the collision with scatterer 2 we require that the rad
of curvature of this bundle be very close~with corrections of
order na2) to the valuea cosf/2 just before the collision
with scatterer 2. We denote the direction of the velocity
the moving particle just after the collision with scatterer 1
the angleu with respect to some space fixed axis and co
pute the negative Lyapunov exponent in the following wa
Since we know that the radius of curvature just before
collision with 2 is a cosf/2, the radius of curvature jus
after the collision with 1 must bea cosf/21vt, wheret is
the time interval between the collision with 1 and 2. Fro
this it follows that

vE
0

t

dt@r~t!#215 lnF 2vt

a cosf G , ~84!

where r(t) is the radius of curvature of the contractin
bundle at times 0<t<t before the collision with 2 andvt
@a. The time average of this expression corresponds to
result obtained by combining Eqs.~17! and ~21!, in agree-
ment with the conjugate pairing rule for symplectic system
In the case of a thermostated system however, Eqs.~21! and
~84! are replaced by expressions that depend on the velo
angleu in different ways. As a consequence, the positive a
negative Lyapunov exponents are no longer each other’s
posite.

The three-dimensional case proceeds in exactly the s
way. We follow an infinitesimal contracting trajector
bundle from a collision with scatterer 1 to a collision wi
scatterer 2 such that before the collision with scatterer 2,
radius of curvature matrix is given by@(2 cosfP)/a#21,
whereP is defined in Eq.~55!. We then find easily that ift is
the time interval between the collisions of the moving p
ticle with scatterers 1 and 2, then the radius of curvat
matrix at some timet between zero andt after the collision
with scatterer 1 is

FIG. 1. Trajectory from scatterer 1 to scatterer 2 with bundles
expanding and contracting trajectories indicated.
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r~t!5v~ t2t!11
a

2 cosf
P21. ~85!

For calculating the sum of the positive Lyapunov expone
one needs the average again of Tr@r(t)#21, but now under
the Stosszahlansatzfor the postcollisional~under the time
reversed dynamics, so in reality the precollisional! coordi-
nates. However, due to the time-reversal symmetry of
dynamics the distribution of the postcollisional coordina
f8 anda8 is the same as that off anda and of course the
distribution of intercollisional times also is the same for fo
ward and backward motion. Therefore, the averaging pro
dure yields the same results as for Eq.~38! and the sum of
the negative Lyapunov exponents is given by the opposit
Eq. ~28!.

The individual Lyapunov exponents can be obtained
ing results from the theory for eigenvalues of products
random matrices, as described in Appendix B. The res
are, as expected, that each negative exponent is paired w
positive one such that their sum is zero. Now we turn to
method of distribution functions for calculating the negati
Lyapunov exponents.

B. The extended anti-Lorentz-Boltzmann equation

In order to use distribution functions to compute the ne
tive Lyapunov exponents or their sum, we need to const
a Boltzmann-like equation for the time-reversed motion.
one reviews the derivation of the Boltzmann equation, o
sees that the colliding particles are taken to be uncorrel
before the direct or the restituting collisions. If we were
look at the time-reversed motion, the terms ‘‘before’’ a
‘‘after’’ are interchanged and for the time-reversed moti
the colliding particles are uncorrelated after the collisio
rather than before. That is, referring to Fig. 1 again, the tim
reversed motion has a collision of the moving particle w
scatterer 2, followed by a collision of the particle with sca
terer 1. Before the collision with 2, the moving particle
correlated with 2, but not so after the collision. After th
collision, the radius of curvature or the radius of curvatu
matrix is given by the valuesa cosf/2 in two dimensions,
or @2 cosfP/a#21 in three dimensions. The radius of curv
ture ~in two dimensions! or the diagonal elements of th
matrix ~in three dimensions! grow over the time intervalt
until the collision with 1. Since the moving particle is co
related with the scatterers before the collisions and not a
them, when deriving a Boltzmann-like equation for the d
tribution function, we must apply theStosszahlansatzto the
exiting collision cylinders after the collisions and not to t
entering cylinders before collision, as is the usual case.

In order to clarify this procedure we first consider a de
vation of the anti-Lorentz-Boltzmann equation~ALBE! for
the distribution functionf 2(rW,vW ,t) for the position and ve-
locity of the moving particle at timet. We will then gener-
alize this derivation by adding the radius of curvature va
ables. Since there is no particular problem with the ti
reversal of the free streaming of the particle, we can write
ALBE in the form

] f 2~rW,vW ,t !

]t
1vW •

] f 2

]rW
5G2

12G2
2 , ~86!
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whereG2
1 represents the rate at which particles are produ

at rW with velocity vW andG2
2 represents the rate at which suc

particles are lost. Noting the fact that we should apply
Stosszahlansatzto the exiting collision cylinders, we see tha
the rate at which particles with velocityvW are produced is

G2
1drWdvW dt5nad21E dn̂~ n̂•vW ! f 2~rW,vW ,t !drWdvW dt,

~87!

where n̂•vW >0. That is, particles with velocityvW 85vW
22(n̂•vW )n̂ collide with scatterers and produce particles w
velocity vW , but the distribution function we need to calcula
the rate of these collisions for is notf 2(rW,vW 8,t), but
f 2(rW,vW ,t). Similarly,

G2
25nad21E dn̂~ n̂•vW 8! f 2~rW,vW 8,t !, ~88!

wheren̂•vW 8>0 since particles with velocityvW 8 are produced
when a particle of velocityvW collides with a scatterer with
collision vectorn̂. Putting these terms together, we obtain

] f 2~rW,vW ,t !

]t
1vW •

] f 2

]rW
5nad21E dn̂uvW •n̂u@ f 2~rW,vW ,t !

2 f 2~rW,vW 8,t !#, ~89!

where we have used the fact thatuvW •n̂u5uvW 8•n̂u and the in-
tegration in Eq.~89! is over a semicircle~for d52) or a
hemisphere~for d53). This equation looks exactly like th
Lorentz-Boltzmann equation~LBE! ~45!, except for the fact
that the collision integral has the opposite signs in Eqs.~89!
and ~45! @32#. The ALBE ~89! has the usual equilibrium
distribution function as a stationary solution; although it is
highly unstable solution, any deviation will tend to gro
exponentially in time. In fact, for this reason it is an ill-pose
equation, as arbitrarily small initial deviations can grow
arbitrarily large rates and therefore its solution is not w
defined. This ambiguity can be removed by requiring that
actual solution describing a physical system after a lo
enough time that all these rapidly decaying solutions~ob-
served in the forward time direction! have died out is the
time reverse of the solution of the ordinary LBE~in a closed
isolated system or system coupled to a single heat bath
will become the equilibrium solution for long times!. So
there is little use in employing the ALBE as such since
obtain its physically relevant solution one has to solve
ordinary LBE anyway. The extension of the ALBE discuss
in the following paragraphs, on the other hand, does prov
a useful tool for calculating negative Lyapunov exponent

To this end we need to include again the radius of cur
ture matrix as variables in the distribution functio
F2(rW,vW ,r,t). The equation forF2 is constructed as before
i.e., we write

]F2

]t
1vW •

]F2

]rW
1v (

i 51

d21
]F2

]r i i
5G2

1~r!2G2
2~r!. ~90!
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To computeG2
1(r) we multiply the rate at which particle

with velocity vW are produced no matter what their radius
curvature matrix might be, with the fraction of particles wi
velocity vW 8 that produce particles with radius of curvaturer
after collision. That is,

G2
1~r!5nad21E dn̂uvW •n̂u E dr8F2~rW,vW ,r8,t !

3F E dr9F2~rW,vW 8,r9,t !d„r2r~r9!…G
3F E dr9F2~rW,vW 8,r9,t !G21

. ~91!
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Similarly, to computeG2

2(r) we multiply the rate at which
particles with velocityvW 8 are produced due to collisions o
particles of velocityvW with scatterers by the fraction of par
ticles of velocityvW that have the radius of curvature matrixr.
That is,

G2
2~r!5nad21E dn̂un̂•vW u E dr8F2~rW,vW 8,r8,t !F~rW,vW ,r,t !

3F E dr8F2~rW,vW ,r8,t !G21

. ~92!

We can now assemble all of these results into an exten
anti-Lorentz-Boltzmann equation~EALBE!, which reads
]F2

]t
1vW •

]F2

]rW
1v (

i 51

d21
]F2

]r i i
5nad21E dn̂uvW •n̂u E dr8F2~rW,vW ,r8,t !F E dr9F2~rW,vW 8,r9,t !d„r2r~r9!…G

3F E dr9F2~rW,vW 8,r9,t !G21

2nad21E dn̂un̂•vW u E dr8F2~rW,vW 8,r8,t !F~rW,vW ,r,t !

3F E dr8F2~rW,vW ,r8,t !G21

. ~93!
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Here toon̂ is integrated over a semicircle or a hemisphe
This complicated and nonlinear looking equation@in fact,
one should first solve the ALBE, substitute its solution f
*dr8F2(rW,vW 8,r8,t) in Eq. ~93!, and then solve the EALBE
both equations to be solved then are linear# will form the
basis of the calculation of negative Lyapunov exponents
their sums in the more complicated cases to be studied in
future. We should note here that without further conditio
this equation, like the ALBE discussed above, constitutes
ill-posed problem. The additional condition that regulariz
its solution is that the integral overr of the distribution
function yields the time reverse of the solution of the or
nary LBE. In the equilibrium case considered here the eq
tion simplifies enormously. In fact, if we use the conditio
that the system is in a spatially homogeneous equilibri
state, that the integral of the distribution functionF2 over all
elements of the radius of curvature matrix is the equilibriu
distribution functionw, which is independent of the velocit
direction, we immediately obtain Eq.~69! for the spatially
homogeneous case. Therefore, for this equilibrium situat
F2 produces the same Lyapunov exponents as in the forw
motion, with the exception of the appropriate change of s
due to the time-reversed nature of the motion conside
here.

VII. COMPARISON WITH SIMULATIONS AND
DISCUSSION

We have found that the quantities calculated in this pap
the Lyapunov exponents and the KS entropies, expresse
functions of the dimensionless densityñ , have the genera
form

l i5An@2 lnñ1B1o~1!#, ~94!
.

r

d
he
s
n

s

-
a-

n,
rd
n
d

r,
as

hKS5An@2 lnñ1B1o~1!#, ~95!

wheren and ñ are the collision frequency and reduced de
sity, given byn52nav and ñ5na2 in two dimensions and
n5pna2v and ñ5pna3 in three dimensions, andA,B are
constants that we have determined. In Table I we comp
the theoretical results forA andB with values for the same
coefficients, as obtained by Dellago and Posch@17# from
computer simulations of two- and three-dimensional ha
sphere Lorentz gases. The results are in excellent agree
for the coefficientA and there are minor discrepancies in t
B values, probably due to the fact that the simulation ana
sis is difficult at the low densities where the theoretic
analysis given here applies.

It is remarkable that the Lyapunov exponents for t
three-dimensional completely isotropic random Lorentz g
are different at all. In fact, on the basis of the results obtain
in leading order in the density, it has been conjectured@8#
that all positive as well as all negative Lyapunov expone
are equal. The methods used in our approach allow a v
transparent explanation for the differences, now also c
firmed numerically, between the Lyapunov exponents.
particular it becomes clear why all Lyapunov exponents
incide in leading order but differ in next to leading orde
The reason for this is related to the different nature of
terms contributing to the different orders@14#. The terms
proportional tonln(n/2)1C in Eqs.~27! and~29! result from
averaging over functions, which only depend on the time
free flight. Due to the isotropy of the free flight, this has
lead to equal Lyapunov exponents. Thedifferencesarise on
averaging over functions, which depend on the collision
rametersf anda. To understand how the scattering proce
which is isotropic for a single trajectory, can cause t
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Lyapunov exponents to be different, it is worthwhile cons
ering scattering events in more detail.

For calculating the Lyapunov exponents we have to a
lyze the scattering of two close by trajectories. Therefore
becomes possible for a given scattering anglef to distin-
guish whetherdrW' is in the planeP spanned by the normaln̂
on the sphere and the impact velocityvW or perpendicular to
P. In this way the isotropy of the scattering process becom
effectively broken. This is reflected in the eigenvalue str
ture of the radius of curvature matrixr15(2 cosfP/a)21

@see Eq.~55!#. There are two eigenvaluesr15a cosf/2 and
r25a/(2 cosf). Here the eigenvaluer1 corresponds to the
eigendirectioneW1, which is in the planeP, and the eigen-
value r2 corresponds to the eigendirection that is perp
dicular to the planeP, with both eigendirections perpendicu
lar to vW . Note that forf50 the eigenvalues are the sam
This can be understood by realizing that forf50 the par-
ticle hits the sphere head on, i.e.,vW is parallel ton̂. For this
special case the two eigendirections are clearly equival
but for other values off this symmetry is lost and the e
genvalues differ. Therefore, we may conclude that the l
of degeneracy of the positive Lyapunov exponents is du
the lack of rotational symmetry when the nearby trajector
hit the sphere.

We conclude with a number of remarks.~i! The results
given here can be extended to higher densities in a numb
ways. In particular, BBGKY hierarchy methods are bei
developed to provide a systematic density expansion of
Lyapunov exponents and the KS entropies beyond the l
density results obtained here. This will be especially imp
tant when nonequilibrium situations are considered si
there one may see the effects of long-time tail phenomen
the chaotic properties of the system.

~ii ! As remarked earlier, we relied upon the low dime
sionality of our systems to obtain all of the releva
Lyapunov exponents. For a four-dimensional Lorentz gas
would need to use more sophisticated techniques to obtai
of the Lyapunov exponents since the methods given h
could only provide values for the largest exponent and
sum of all of three of the positive exponents. We could n
then resolve the two smaller positive exponents, but o
could get their sum.

~iii ! We have not analyzed here a particularly interest
quantity that gives a more general characterization of
chaotic properties of the system, namely, the Ruelle, or
pological, pressure@33,34#. This quantity has the forma
structure of an equilibrium free energy and it depends upo
temperaturelike parameterb. The results obtained here cha
acterize the chaotic properties in the neighborhood ofb51.
Elsewhere it has been shown that for the Lorentz gas, wh
the disorder is static, in the thermodynamic limit the top
logical pressure exhibits a localization transition as a fu
tion of b; it is dominated by contributions from particles th
are localized within the largest dense cluster forb,1 and in
the largest region without scatterers forb.1 @35#. It would
be very valuable to obtain these results using kinetic the
methods in addition to the more rigorous analysis given
Ref. @35#.

~iv! It should be straightforward to extend the results o
tained here to other potentials of interaction between
moving particle and the fixed scatterers, at least for dil
-
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systems. It is well known that the Boltzmann transport eq
tion can be applied to gases that interact with other th
hard-core potentials@18#. In fact, a wide variety of interac-
tion potentials may be used in the Boltzmann equation
determine the transport properties of the correspond
gases. Certainly Lyapunov exponents can be calculated
Lorentz gases where the moving particle has other than h
core interactions with the scatterers as well.

~v! Finally, we mention that the method given here can
adapted to cases where all the particles in the system
moving, namely, a dilute gas. Expressions for the KS
tropy @36# and the largest Lyapunov exponent of two- a
three-dimensional gases with short-range forces@37# have
already been obtained this way.

In the future we plan to extend the results here to op
systems with escape and compute the escape rates, Lyap
exponents, and KS entropies characterizing the fractal re
ler that underlies diffusion in open systems with absorb
boundaries. This work will make heavy use of the extend
LB equation and we regard the present paper as an intro
tion future work.

ACKNOWLEDGMENTS

The authors would like to thank E. G. D. Cohen, C
Dellago, M. H. Ernst, H. A. Posch, C. Appert, and R. v
Zon for many helpful conversations as this work progress
Ch. Dellago and H. A. Posch kindly supplied the results
their simulations, which were used in Table I. We tha
them as well as C. Ferguson, who carried out the analysi
their data. J.R.D wishes to thank D. Panja for useful conv
sations as well as the National Science Foundation for s
port under Grants Nos. PHY-93-21312 and PHY-96-004
A.L. thanks the DFG for financial support, through Gra
No. SFB 262, during the time this paper was written. H.v
was supported by FOM, SMC, and the NWO Priority Pr
gram Non-Linear Systems, which are financially suppor
by the Nederlandse Organisatie voor Wetenschappe
Onderzoek. He thanks the ENS, Lyon for its hospitality d
ing part of this project.

TABLE I. Comparison of theoretical and simulation results.

Quantity Theory Simulation

2D: l1

A 1 0.9956 0.009
B 0.423 0.4636 0.083

3D: lmax
1

A 1 0.9906 0.089
B 0.309 0.3876 0.746

3D: lmin
1

A 1 0.9926 0.084
B 20.077 20.0156 0.715

3D: hKS

A 2 1.9826 0.173
B 0.166 0.3726 1.461
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APPENDIX A: BINARY COLLISION DYNAMICS AND
THE RADIUS OF CURVATURE MATRIX

Here we give a brief review of the derivation of the fo
mulas for the change in the spatial and velocity deviation
a binary collision used in Eqs.~6! and ~7! based on the
method of Dellago, Posch, and Hoover@21#. We relate these
formulas to the expression used for the change in the ra
of curvature matrix, given by Eq.~35!, which in turn was
discussed by Gaspard and Dorfman@20#. Consider a trajec-
tory of the particle moving among the scatterers. We den
the initial position and velocity of this trajectory byx(0) and
the position and velocity at timet later by x(t). Consider
also a trajectory that is obtained by an infinitesimal displa
ment of the initial position and velocity tox(0)1dx(0) and
denote the position and velocity of the second trajectory
time t by x(t)1dx(t). We require the two trajectories to b
infinitesimally close. Our goal is deriving equations f
dx(t)5„drW(t),dvW (t)…. We take all trajectories with the sam
energy, which leads to the condition thatdvW (t)•vW (t)50, so
the velocity deviation is always perpendicular to the veloc
vW (t). We can also set the position deviationdrW(t)•vW (t)50
since this simply requires that the position deviation is p
pendicular to the velocity at the initial time.

Now in between collisionsdrW(t),dvW (t) satisfy Eqs.~4!
and~5!. However, the change in these quantities at collis
is more complicated. To analyze this change we suppose
the trajectory withx(t) has a collision with some scatterer
time t. Then immediately after the collision the velocity h
changed tovW 15vW 22(vW •n̂)n̂, wheren̂ is a unit vector in the
direction from the center of the scatterer to the point of c
tact andvW is the velocity immediately before collision. Th
displaced trajectory will have a collision at a slightly di
placed timet1dt and at a slightly different point on th
same scatterer located by unit vectorn̂1dn̂, with n̂•dn̂50.
By examining the scattering equations for the displaced
jectory one easily finds

dvW 15~122n̂n̂!•dvW 22@~vW •n̂!dn̂1~vW •dn̂!n̂#, ~A1!

drW~t!52dtvW 1adn̂, ~A2!

drW152dtvW 11adn̂. ~A3!

We use the condition n̂•dn̂50 to obtain dt
52@ n̂•drW(t)#/vW •n̂. Simple algebra leads to Eqs.~6! and~7!
in the text. It is important to note thatdrW(t) is the spatial
deviation when the ‘‘main’’ trajectory has a collision, whil
h
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drW1 is the spatial separation at the instant that the displa
trajectory has a collision.~It is easy to visualize this in the
case thatdt.0, as illustrated in Fig. 2.!

Now we introduce the radius of curvature matrix as giv
by Eq. ~33!. We note thatr is a matrix of rankd21. If we
substitute the definition of this matrix@Eq. ~33!# into Eq.~6!,
we obtain

r1
•dvW 15U•r2

•dvW 2, ~A4!

where U5U215122n̂n̂ is a reflection matrix and is dis
cussed in Ref.@20#. Here the superscripts1,2 denote after
and before collision, respectively. The operatorsU have de-
terminant 21 and they ensure the proper orientations,
collision, of the planes in which the radius of curvature m
trices are defined. We now substitute Eq.~7! for dvW 1 into
Eq. ~A4! and use relation~33! and some elementary matri
manipulations to obtain Eq.~35!. As mentioned in the main
text, the inverse matrices@ru

21(1)# and@ru
21(2)# are defined

in the subspaces orthogonal tovW andvW 8, respectively.
We can obtain a considerable simplification of the ana

sis of the spatial deviation vector,drW'
(2) in Eq. ~36! by using

the properties of the matricesU. That is, we can easily show
that it is possible to express the spatial deviation vecto
terms of radius of curvature matricesr̄, all of which are
defined in a plane perpendicular to the initial velocityvW (0).
To see this, consider the right-hand side of Eq.~36! for the
case thatn52. We have

FIG. 2. Arrangement of the position and velocity vectors for o
trajectory at the instant of a collision of the moving particle with t
scatterer and at the instant of the collision of the particle with
same scatterer along an infinitesimally displaced trajectory.
drW'
~2 !~ t2!5@1'~1!1vt2,1ru

21~1 !~ t1!#•U~1!•@1'~0!1vt1,0ru
21~0!#•drW'~0!. ~A5!
Here1'( i ) is a unit operator in the plane perpendicular to t
velocity vector after thei th collision. Note that Eq.~35! al-
lows us to write

r̄u
21~1 !~ t1!5U~1!•r̄u

21~1 !~ t1!•U~1!, ~A6!

where
e
r̄u

21~1 !~ t1!5ru
21~0!1

2

aF v̂~0!n̂11n̂1v̂~0!2
1

v̂~0!•n̂1

n̂1n̂1

2@ v̂~0!•n̂1#1G . ~A7!
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It is important to note that the operator defined by the ter
in large square brackets appearing on the right-hand sid
Eq. ~A7! is orthogonal from the right and left tovW (0), as is
ru . Therefore, the operatorr̄u

(1) is to be evaluated in the
plane perpendicular tovW (0). Furthermore the unit operato
1'(1) appearing in the same set of large square brackets
ru

21(1)(t1) can be written asU(1)•1'(0)•U(1). From this it
follows that

drW'
~2 !~ t2!5U~1!•@1'~0!1vt2,1

3r̄u
21~1 !~ t1!#•@1'~0!1ru

21~0!#•drW'~0!.

~A8!

If this procedure is followed through each successive co
sion, Eq.~36! can easily be written as

drW'
~2 !~ tn!5U~n21!•U~n22!•••U~1!•drW̄'

~2 !~ tn!,
~A9!

where

drW̄'
~2 !~ tn!5@1'~0!1r̄u

21~1 !~ tn21!#•••

3@1'~0!1ru
21~0!#•drW'~0!. ~A10!

The product of theU matrices appearing on the right-han
side of Eq.~A9! have determinant61, of course, and have
no bearing on the exponential growth of the spatial deviat
vector. As a result one can carry out all calculations of
Lyapunov exponents and the KS entropy in a coordinate
tem defined in the plane perpendicular to the initial veloc
vW (0). As a result, all of theU operators can be dispense
with in the calculation of the Lyapunov exponents provid
one usesr̄u operators as well as unit operators1'(0). This
procedure ‘‘unwinds’’ the trajectory of the moving partic
and allows all collisions with the scatterers to be treated
one coordinate system. This is useful when one wants
avoid neglecting the left-hand side of Eq.~54!, to treat sys-
tems at higher densities, and/or to use the methods of ran
matrix theory in a convenient way, as we do in the followi
appendix.

APPENDIX B: THE SOLUTION OF THE EXTENDED LB
EQUATION USING THE METHOD

OF CHARACTERISTICS AND RANDOM
MATRIX METHODS

Here we indicate how Eq.~69! can be solved as a differ
ential equation in three variables using the method of ch
acteristics@38#. We begin with Eq.~75! and change variable
to s152r1 /a, s252r2 /a, ands1252r12/a. We also set
g(r1 ,r2 ,r12)58/a3G(s1 ,s2 ,s12) and introduce the scale
density ñ5npa3. Then the equation forG is

S ]

]s1
1

]

]s2
DG1

ñ

2
G54KQ~12s1!QS 12

2us12u
us22s1u D

3S s1
2

~12s1
2!
D dS s22

1

s1
D , ~B1!
s
of

ith

i-

n
e
s-

n
to

m

r-

where K5 ñ /2p. To use the method of characteristics w
write

S ]

]s1
1

]

]s2
DG5

d

ds
G, ~B2!

where

d

ds
s151, s15s1

01s

d

ds
s251, s25s2

01s ~B3!

d

ds
s1250, s125s12

0 .

This substitution converts the partial differential equati
into a simple differential equation that can be solved by
ementary means as a function ofs, once we have specified
the appropriate boundary conditions. Further, in the (s1 ,s2)
plane, thes integration corresponds to an integration along
set of lines given by Eqs.~B3!, called the characteristic lines
The inhomogeneous term on the right-hand side of Eq.~B1!
is zero everywhere except on the lines251/s1 , s1<1. We
look for solutions that vanish ats150 and ats250 and we
note that the solutionĜ of the homogeneous equation, e
pressed in terms ofs, has the form

Ĝ5G0e2 ñs/2. ~B4!

All of the conditions can be satisfied ifG vanishes in the
(s1,s2) plane, except in the region defined by the curv
s2>s1, s1.1 ands2>1/s1 , s1<1. See Fig. 3. Choosing
s1

05z<1, s2
051/s1

0, ands125s12
0 :5sin(2â)us22s1u/2, the

characteristic lines are given by

s15z1s, z<1

s25
1

z
1s, ~B5!

s125
12z2

2z
sin~2â !.

We then arrive at the equation

d

ds
G1

ñ

2
G5KQ~12z!Q~2p2â !Q~â!S z2

12z2D
3S z2

11z2D d~s!. ~B6!

The probability density for the random variabless,z,â is
given by f̂ (s,z,â)5J(s,z,â)G(s,z,â), whereJ is the Jaco-
bian J5u](s1 ,s2 ,s12)/](s,z,â)u5(12z2)(11z2)/z3. f̂
obeys the equation

d

ds
f̂ 1

ñ

2
f̂ 5KQ~12z!Q~2p2â !Q~â!zd~s!. ~B7!
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This equation can now be solved along the character
lines in the region indicated in Fig. 3. It has the simple s
lution

f̂ 5
ñ

2p
Q~12z!Q~s!Q~â!Q~2p2â !zexpS 2

ñ

2
sD .

~B8!

When the solution is inserted in the expression forhKS
5v^TrI /r&,

hKS5vE dr1dr2dr12g~r1 ,r2 ,r12!S 1

r1
1

1

r2
D

5
2v
a E ds dz dâ f̂ ~s,z,â !S 1

z1s
1

1

1/z1sD ,

~B9!

the results obtained agree with those given by Eq.~28!.
The calculation of the maximum Lyapunov expone

starts from the observation that the deviationsdrW'(t) are
given by a product of random matrices acting on the ini
deviation drW'(0) @see Eq. ~42!#. The random matrix
R(t j 11 ,t j ) @Eq. ~43!# depends on the time of free flight be
tween two collisions and the initial matrixr1 given by
@a(2 cosf)#P21. P @see Eq.~55!# is parametrized by two
collision anglesf,a. Another way of parametrizing this ini
tial matrix is by using its random eigenvaluesz:
5s1

05 cosf ands2
051/z and the random angle variablea.

FIG. 3. Solution regions for Eq.~B1! using the method of char
acteristics. A characteristic line is indicated parallel to the lines1

5s2.
ic
-

t

l

Notice that the characteristic lines are identical to the f
flight solutions for the eigenvalues of (2/a)r and its off-
diagonal elements12 @compare Eq.~B3!#. They are chosen
such that the initial conditions of the characteristic liness
50) are the values ofs i ,s12 immediately after a scattering
event with scattering anglesf,a, Therefore, Eq.~B8! can be
interpreted as the distribution function for the random va
ablesz5 cosf ~cosine of the polar scattering angle!, a ~azi-
muthal scattering angle!, and the time of free flights.

The calculation of the maximum eigenvalue is now
straightforward application of the theory of products of ra
dom matrices@24#. It follows from Eq. ~42! that the maxi-
mum Lyapunov exponent is given by

lim
t→`

1

t
lnuPRdrW~0!u/udrW~0!u, ~B10!

with PR5) j 50
` R( j , j 11). Using an analogous decompos

tion of the product as in Eq.~11! and the identity t
5( i 51

N si , valid right after theNth collision, withsi the time
of free flight between collisionsi 21 and i , Eq. ~B10! is
equivalent to

lmax5
1

^s&
^ lnuR~z,a,s!•eWcu&c. ~B11!

HereeWc is a unit vectoreWc5(cosc,sinc) and^ &c indicates
an average over the distribution of (z,a,s) plus an additional
average over a stationary distributionD(c) of directionseWc .
This distribution is a solution of a Frobenius-Perron equat

D~c!5E
0

2p

dc8D~c8!dFc82 cos21S eW x•R~z,a,s!•eWc

uR~z,a,s!•e¢cu
D G .

~B12!

As we will show shortly, this additional average is not ne
essary in the equilibrium case sincec can be absorbed in a
redefinition of the azimuthal scattering anglea. The equation
for R can be derived from Eq.~43!,

dR

ds
5vr21R. ~B13!

In equilibrium, this is easily solved usingr(s)5r11v1s,

R~z,a,s!511r121s'
2 cosf

a
Ps. ~B14!

The last approximation is valid in the low-density limit sinc
the most important contributions to the average overs come
from large time of free flights. P is defined in Eq.~55!. With
this we obtain
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uR~z,a,s!•eWcu5AS 11z2

z D 2

1S 12z2

z D 2

12
~11z2!~12z2!

z2
cos@2~a2c!#s. ~B15!

From Eq.~B15! it is obvious thatuR(z,a,s)•eWcu is statistically independent ofc, i.e., the dependence onc can be absorbed
in a redefinition ofa. To obtainlmax we have to calculate the average of Eq.~B15! using the distribution function~B8!. The
result agrees with Eq.~27!.
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