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Toward semiclassical theory of quantum level correlations of generic chaotic systems
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In the present work we study the two-point correlation funci{s) of the quantum mechanical spectrum
of a classically chaotic system. Recently this quantity has been computed for chaotic and for disordered
systems using periodic orbit theory and field theory. In this work we present an independent derivation, which
is based on periodic orbit theory. The main ingredient in our approach is the use of the splaicion and
its autocorrelation functiorC(e). The relation betweemR(e) and C(g) is constructed by making use of
probabilistic reasoning similar to that which has been used for the derivation of the Hardy-Littlewood conjec-
ture. We then convert the symmetry properties of the func@dr) into relations between the so-called
diagonal and the off-diagonal partsR{s). Our results are valid for generic systems with broken time reversal
symmetry, and with noncommensurable periods of the periodic of&8i1€63-651X98)04204-4

PACS numbes): 05.45+b, 03.65.Sq

I. INTRODUCTION The most difficult problem addressed by Bogomolny and
Keating was the computation of the off-diagonal part of the
Quantum chaokl] has attracted the attention of the phys-two-point correlation functiorR.x(¢). Argamanet al. [8]
ics community since the discovef] that the spectral cor- pointed out that it is possible to compuReg(z) if the two-
relations of classically chaotic systems are universal. Theyoint statistics of the classical actions is known. Let us call
exhibit a strong level repulsion, which induces a nontrivialihe set of actions of all primitive periodic orbi(PPO3 the
two-point correlation functiorR(e) of the density of states. |ength spectruniThe density of states is related to the length
The spectral rigidity of a generic chaotic system was Comypectrym by the Gutzwiller trace formufld]. Therefore cor-
puted for the first time by Berr}8]. He expanded the density | |a1ions of eigenenergies should be related to correlations of
of states over periodic orbits by making use of Gutzwiller's actions.
trace formuld 4]. He estimated a number of orbits of a given Our approach to the semiclassical evaluationRgé(z)

length from the Hannay—Ozorio De Almeida sum r{ifg f .
. urther develops the approach of Arganetral.[8] and their
and computed the so-called diagonal part of the form faCtOfoIIowers [9.10] but makes use of a different starting point.

Kiag( 7). The form factork (7) is a function of time, and IS 0 it new element is the study of the spectral zeta func-
the Fourier transform of the two-point correlation function

R(e).

The semiclassical theory of the form factor distinguishes 15 ‘ , L5
between three main time scales, see diagram Ka). The (@ )
contribution of the short periodic orbits is shown schemati- « ! — T I
cally as a sequence dfpeaks, and the relevant time scale is * <
the period of the shortest periodic orbif. This nonuniver- 0.5 1 05r
sal behavior of the form factor prevails between 0 and
the ergodic timer,q [6]. Berry found thatk g, 7)o 7 and % e 03 (=75 15 O07es 05 I=14 15
this may explain the level repulsion K(7) =K 7) for T 7
T=STH. 15 : : 15 ,

In the present work we are primarily interested in the (©) @
semiclassicalperiodic-orbi} theory of the form factor for 1 1 1
T=7y, Wherery is the Heisenberg time. This is the third > =
time scale. It is of quantum mechanical nature, because the™0s 1 =os
Heisenberg time is proportional to the mean density of states.

In Fig. 1 we have chosen units of time such thgt=1. Due % 7y 05 I=14 15 O07ws 05 =714 15
to the discrete nature of the density of states, the form factor T T

becomes Con.Stant Tor times much larger than see Fig. FIG. 1. Form factors derived from correlation functions of den-

1(a). The semiclassical theory for the form factor foe 7y sity of states and spectral determinant. Diagraaysand (c) corre-

has been analyzed recently by Bogomolny and Kedfijg  sond to a small chaotic system, where one can observe fingerprints

They found the fingerprints of the short periodic orbits in theo short periodic orbits in the form factors, shown &unctional

vicinity of the Heisenberg time as shown in Figallby &  peaks. Diagramé) and(d) correspond to diffusive systems, which

peaks near= . can be considered as huge complex chaotic systems. One can ob-
serve smoothing of the form factors nea=0 and 7=r7,. The
particular shape of this smoothing contains system specific informa-

*Electronic address: fndaniil@wicc.weizmann.ac.il tion like dimensionality and characteristics of disorder.
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tion Z(E), its autocorrelation functio€(e), and its Fourier
transformK¢( 7).
The spectral zeta functiaf( E) is an important tool for an
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neric and independent of the dimensionality of the system,
however, it might be dependent on the symmetry of the sys-
tem. We perform calculations only for systems that do not

analytic or numeric computation of the energy levels of anyhave spatial symmetries, because we assume that the com-
guantum mechanical system. The zeros of this function argosite length spectrum is nondegenerate.

the eigenenergies of the Hamiltonian. A unique definition of The statistical relation between correlations of CPOs and
{(E) is to be given later. Vorogl1l] has proposed to com- correlations of PPOs can be converted by the inverse Fourier
pute this function by making use of a product over the peritransform and a special regularization procedure to a relation

odic orbits. Berry and Keatingl2] have expanded this prod-
uct over the composite periodic orbi(€PO9, see precise
formula below. The spectrdl function is a smooth function

between the off-diagonal parts Bf(7) andK*(7). Calcula-
tions show that the behavior df(7) near 7y, which is
shown schematically in Fig.(@), reproduces the behavior of

that has na’ peaks like the density of states does. Thereforek ¢(7) nearr,; see Fig. 1c).
it is a good idea to characterize level statistics of chaotic The ideas of this paper are best understood by the follow-

systems by thé&(E) autocorrelation function. This was done

ing logical flow:

by Kettemann, Klakow, and Smilansky, who also computed (1) The off-diagonal part oK(7) is the Fourier transform

this autocorrelation functionC(e) for two- and three-
dimensional Sinai billiard$13].
The diagram Fig. () schematically show¥¢(7). For

with respect to ¥ of the two-point statistics of actions of
PPOs.
(2) The two-point statistics of actions of PPOs can be

systems with broken time reversal symmetry, as in Fig. 1computed from the two-point statistics of actions of CPOs.
one can see the separation of the time scales very clearly. (3) The two-point statistics of actions of CPOs is deter-

The short time behavior df¢(7) is determined by the short
CPOs, and it is represented Bypeaks. They become dense,
giving a constant behavior df¢(r) for > Terg: S€€ Ref.

[13]. It is known that the spectrdl function has to satisfy a

functional equatiori14]. This equation can be derived from
the definition of {(E) and implies an exact mirror sym-
metry of K%(7) around the half Heisenberg time:
K¢(ry/2+ 1) =K¢(74/2— 7). For this reason one has to ob-

mined by the off-diagonal part d€*(7).

(4) The diagonal and off-diagonal parts f(r) are con-
nected, becausg E) satisfies the functional equation.

(5) For the systems with broken time reversal symmetry
there is a clear separation between the classical &oale of
mixing) and the quantum mechanical scéiene of quantum
recurrencg In this case we can compute the off-diagonal
part of K¢(7) explicitly, if the diagonal part is known.

serve the fingerprints of the short composite periodic orbits (6) The diagonal parts of eithét(7) andK¢(7) or R(¢g)

near ry ; they are shown a$ peaks nearry in Fig. 1(c).
Therefore, if the short time behavior K£(7) is known, then
the behavior oK¢(7) nearry is also known.

Similar to the case oR(¢), the periodic orbit expansion
of Z(E) allows one to separate(e) andK*(7) into diagonal
and off-diagonal parts. Following Berfi3], we can assume
that the off-diagonal part oK¢(7) vanishes forr< /2.
This assumption together with the mirror symmetryké{ 7)

andC(e) have well known periodic orbit expansions, which
can be evaluated both numerically and by making use of sum
rules[3,13].

The integral relation connecting the correlations of the
PPOs and the CPOs can be applied directly to derive the well
known correlations between prime numbers. As we show in
Appendix B, the Hardy-Littlewood expressidid6] can be
reproduced in this framework. We emphasize this applica-

implies an explicit connection between the diagonal and thé¢ion as a very stringent test for our probabilistic method.

off-diagonal parts oK¢(7). Physically, this relation has to
be interpreted as quantum-classical time scale separation

Large chaotic systems, for example, billiards with a large
number of scatterers or disordered systems, usually have

Since{(E) is expressed in terms of CPOs by the Berry- 7> 7, SiNCe 7¢q is the time of a diffusion through the

Keating formula[12], the autocorrelation functio€(e) is
related to correlations in theomposite length spectrym

system. The system specific featuredf) andK*(7) are
smooth; see Figs.() and Xd). The conditionre,> 7, al-

which is the set of all CPOs. In this way we introduce anlows us to express the diagonal parGyfs) as the Fredholm
analog of length correlations, which were used by Argamardeterminant of the diffusion propagator. In this way our ex-
et al.[8] to discuss the two-point spectral functions. One ofpressions foR(e) reproduce precisely the field theory result
the central ideas of the present work is to compute the coref Andreev and Altshulef17].

relations in the composite length spectrum by making use of At this point it is appropriate to review the important

the mirror symmetry ofk¢(7). Moreover, the time scale
separation provides an explicit dependenc& &fr) on 7.

work on the level statistics of disordered systems that had a
very important impact on the development of the semiclas-

The two-point correlation function of composite actions issical theories presented here and elsewH&&0]. Field

just the Fourier transform df¢(7) with respect to ¥ hid-

theory was used by Efetov to compute the level statistics of

deninry . This idea is similar to one that has been suggestedmall metallic samples, see the review pajfi8]. He con-

by Balian and BlocH15].

sidered the electron moving in a random potential of impu-

The length or the action of the given composite periodicrities and confined by sample boundaries. He assumed that
orhit is simply the algebraic sum of the lengths or the actionghe fluctuations of the fields are uniform across the sample
of the PPOs forming this composite orbit. For this reasonand obtained universal results for the level statistics.
action correlations of CPOs have to be related to action cor- Altshuler and Shklovski{19] made use of perturbation
relations of PPOs. In the present work we construct an intetheory and expressed the so-called perturbative par(ej
gral relation between these correlation functions by makingn terms of the density-density correlation function, which is
use of simple probabilistic arguments. This relation is ge-the propagator of the diffusion equation. Arganeral.[20]
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showed that the perturbative partR(e) is nothing but the  orbit makesu, windings around the Aharonov-Bohm flux.
diagonal part oR(e) mentioned before. We distinguish the orbits with positive and negative winding
The diagonalor perturbative part of R(e) is singular at numbers, i.e., the paths going clockwise and counterclock-
small energies; the only way to remove this singularity is towise around the flux tube. Therefore, the length spectrum
compute the off-diagonabr nonperturbativepart of R(¢). ~ {l,} is degenerate, the lengths of the orbits with nonzero
Andreev and Altshulef17] computed this term by making winding numbers appear twice.
use of nonperturbative field theory and obtained the answer The second set associated with the billiard is the quantum
in terms of the same density-density correlation functionmechanical spectrum. It is formed by the wave vector mag-
These authors repeated Efetov’s calculations, but allowed theitudes{k,}. Each of them corresponds to the eigenvalue of
spatial fluctuations of the superfields. the HamiltonianE,=E(k,) and E(k)=7%2k?/(2m), where
The free energy functional in Efetov's theory describesm is the mass of a particle.
the diffusion modes. These modes have to satisfy the diffu- The density of states is a sequencesgpeaks, and it is
sion equation. This theory was remarkably generalized byisually computed by making use of the Green function of the
Muzykantskii and Khmelnitskif21]. They obtained the free system:
energy functional describing the eigenmodes of the kinetic
equation[22]. o 1
Muzykantskii and Khmelnitskii also suggested that the d(k)=Y 8(k—k,)=——Im Tr G'(K)E'(k). (18
modes of the kinetic equation should be replaced by the n=1 ™
modes of the Liouvillian operator if one goes from diffusive

to chaotic systems. Agaset al.[23] and Andreeet al.[24] NV .
: . . HereG'(k) is the retarded Green function of the system, and
constructed field theory for chaotic systems by averagmqhe pringe)means derivative with respectktoThe t);ace of

over the energy and obtained the Liouvillian operator in theAr R )

kinetic part of the free energy functional. Both types of field G'(K) can be represented as a sum over the periodic orbits.

theory show that the spectral statistics of a chaotic system igUch an expansion is called a trace formida The deriva-

described by the determinant of the Liouvillian operator. ~ tion of this expansion for a billiard can be found in the re-
The connection between the diagonal part of the correla¥iew Ref.[28]. The result is

tion function and the determinant of the Liouvillian operator

is almost trivial in the framework of periodic orbit theory. R 2 il ekl p=ivpmi2tidu, o
This connection is different from the field theory prediction TrG"(k)E'(k)= —2 px RS —id(k),
due to the terms containing repetitions of the PPOs. The =1 ehlipt—e el

periodic orbit theory expression for the off-diagonal part of (1b)

the correlation function obtained by Bogomolny and Keating
[7] is also different from the field theory resiR4]. There-  where the indexp runs over the PPOs, the length of each
fore, the derivation of the Andreev-Altshuler result in termsorbitisl,, the Lyapunov exponent of each orbitsl ,, and
of the action correlations is interesting, and it also gives adthe Maslov index isv,. We also broke the time reversal
ditional information about the autocorrelation function of the symmetry by adding the phase due to Aharonov-Bohm flux
spectral determinant. The latter has been obtained by using multiplied by the winding number of the trajectogy,.
random matrix theory25,2¢ and random polynomial theory The Lyapunov exponents in Eqlb) are defined per unit
[27], as opposed to field theory. length of a trajectory and not per number of scatterings as in
All correlation functions employed in the present work Ref.[28].
are defined in Secs. Il and Ill. In Sec. IV very simple proba- By definition the trace of the Green function in the left
bilistic arguments will help us to build the integral equation hand side of Eqg(1b) is the sum over all states, and this sum
connecting the correlations of CPOs with the correlations otliverges logarithmically in two dimensions. Therefore Eq.
PPOs. The behavior of form factors near the Heisenberg timeLb) implicitly contains the ultraviolet cutoff. This cutoff is
is considered in Sec. V. In the same section our results angot specified explicitly in the right hand side of Hqb) and
compared with the universal random matrix theory predic-therefore it is hidden in the convergence properties of the
tions and the results of Refgl7,7]. We discuss the physics sum over periodic orbits. There are different ways to com-
of the action correlations in Sec. VI. We also summarize oupute this sum; all of them depend explicitly &nand there-
results in Sec. VI. fore on the ultraviolet cutoff. We will ignore this cutoff,
because we are dealing with various statistics of energy lev-
els and periodic orbits that are independent of this cutoff.
The formula Eq(1b) also contains the smooth part of the

density of stated(k), which is proportional to the volume of

We start to build our theory for the specific example ofthe system. Equationda and(1b) show that the density of
the chaotic billiard. Let us also put the Aharonov-Bohm flux states contains an oscillating part. It is defined as
through the billiard in order to break the time reversal sym-
metry. Let us also assume that the system has no spatial
symmetries. The classical motion of a charged particle in the
billiard is finite and therefore one can associate two sets with
this system. The first sefl .}, is formed by the lengths of all and is proportional to the imaginary part of the first term on
the PPO$28], and each orbit is labeled by the indexEach the right hand side of Eq1b).

Il. DEFINITIONS OF OBJECTS RELATED
TO THE SPECTRAL CORRELATIONS

dosd k) =d(k) —d(k), (10
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FIG. 2. Schematic diagram demonstrating how to compute the FIG. 3. Schematic diagram demonstrating how to compute the
correlation function of energy levels. Each point represents a pair oforrelation function of the length spectrum. Each point represents
the energy levelsky,ky/). The correlation functiorR(e,k) picks  the pair of the primitive periodic orbits lengthk,(l /). The corre-
up the points inside one of the ellipses shown in the diagram. Thregign functionR(x,y) picks up the points inside one of the ellipses

ellipses near the diagonal are drawn foequal tok®, k®, k@, shown in the diagram. The three ellipses near the diagonal were

ande<Ak. We draw the fourth ellipse for the case-Ak and the  grawn forx equal tox®, x®, x(©) andy<Al. The fourth ellipse

choice of relevank becomes ambiguous. was drawn for the casg~ Al and the choice of relevantbecomes
ambiguous.

The correlation function of the quantum mechanical spec-

trum and its Fourier transform have to be defined in a specigheans derivative with respect ko Therefore, the choice of
way, because of thé-functional form of the density of states the averaging interval length is limited by the inequality
and the discrete form of the expansion Efp). We define s?(k)Ak<1

the correlation function by making use of the averaging over -~

K with Gaussian weight The fourth ellipse in the diagram Fig. 2 is drawn in the

area wheres ~ AKk. It is difficult to decide whether the value
of k in this case i%®, or k(®, or maybek(®. In order to

R(e k)ze*A'ZEZ/ZJOO dq o= (a—k)22aK? make the correlation function well defined for allwe mul-
’ —=2AK tiplied it by a Gaussian prefacter 21°*”2: see Eq(2) where
AlAk=1.
xd + £ d _t 2 The domain ofe, where the correlation function is mean-
osd d osd d @ S . N
2 2 ingful, is limited now by two competing conditionsAl=<1

andssll(AkE). The latter inequality has to be implied by

and this definition of the correlation function is valid for the former one, and therefore we obtain the important con-
e<k. We emphasize that in our definition is the difference dition
of the wave numbers and not of the energies as accepted.
The definition of the correlation function E) contains
the product of twod functions from two densities of states A_ks _L 3)
and only one averaging. Practically, théunction remaining Al " d' (k)
after the integration in Eq(2) has to be replaced by a
smoothed function of the width smaller than the mean level,o averaging has to be performed over a large number of
spacing. Then, the definition E(R) can be understood geo- ihe energy levels. This number is
metrically. The two-point correlation function is proportional
to the difference between the number of the level pairs _
(k,,k,/) inside the region, which we showed schematically AN~Akd(k)>1. 4
as an ellipse in Fig. 2, and the square of the mean density of
states multiplied by the area of this region. The “length” of The inequalities Eqg3) and(4) are not very restrictive and
the ellipse is of the order akk and the “width” has to be most of the published experimental and numerical work,

smaller than the mean level spacing. where the correlation function was computed, employed the
We show three ellipses demonstrating the correlatioraveraging intervals of the width satisfying them.
function computed fok equal tok®, k®, k(©, ande<Ak. Similar statistics can be defined for the length of the PPOs

It is important to note tha\k has to be smaller than the entering the right hand side of E(.b). The length spectrum
characteristic scale of variation 8{¢,k) as a function ok. of the system has the densiB,5(x—1,), and the weighted

We will see later that this scale %Ssa(k), where the prime  mean densitydppd X) is the sum oven, v, u of
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. e~ (x=1p)%/2A1% orbits. The mean density in E¢p) picks up the orbitg with
- Al s - . .
dppdx,n,v,,u)—Ep: e 'r p&nnpﬁwpéwp \/ﬁAI the defined value of the number of the wall reflections

We keep this number in Ed5), because the action correla-
Ed—Pde) X=(x,n, v, 1), 5) ':i?ons were found between the orbits with the same see
ef.[10].
where we have set the averaging interval to be precisély The correlation function of the length spectrum is defined
because we are going to build analytical relations betweeif a slightly different way from the correlation function of
the statistics of energy levels and the statistics of periodi¢he density of states:

Al
~ PP
. _ ) -
RZ(X,n,V,,LL,X’,n,V,,,LL,)—Ep: e pp 6nnpéwpﬁwp[2 e "2 5nnp6V,Vp,5M,Mp,
p!

e—(x—|p)2/2A|2 e—(x’—lp,)2/2A|2 -
— ’ ’ I
X - 2 e to'lp 5nrnp,5,}rvp,6ﬂr“p,5(x_x —lp+1y)

V27Al V2mAl o/ 7p

—(12A1D)[(x+x")/2— (1, +1,1)/2]2
Xe P e—AkZ(x—x’)zlz
V2mAl
=Ry (X;X), (6a)

where the first term in the brackets is the product of the measity on the right hand side of Eq$7). The first term is a
densities of PPOs and the second term is the probability gbroduct of the mean densities and cancels another term of the
finding two PPOs having the length differengeBoth terms  type =, in Eq. (63).
are weighted by stability factors that compensate the expo- The correlation functions defined by Eq®) have the
nential proliferation of the PPOs. graphical representation in Fig. 3 quite similar to that in Fig.
The key assumption of the present theory is that the orbit&. In the case of Fig. 3 we are interested in the number of
with different Maslov indexes or different winding numbers PPO pairs whose mean length is neaand difference of
or different number of scatterings do not contribute to thelengths is neay. The correlation function counts the number
correlation function of the length spectrum, which we shouldof PPO pairs inside one of the ellipses shown in Fig. 3. The
define as “length” of the ellipses is determined by the width of the
Gaussians in Eq6a) and is~Al. The “width” of the el-
- — y y lipses does not appear explicitly in E@a), meaning that
R(x,y)zng# Ro| X+ 5.0, v,uix= 5., | (6D) 8(y—1,+1,) has to be smoothed to the order ofigpx).
o The length of the averaging interval], has to be as large
as possible, but smaller than the characteristic scale of the

variation of R(x,y) as a function of for constanty. This
scale can be estimated from the results of R&f.and it is

_ ‘ d’(k)/y taken fork=k,, wherek, is the inverse density of
in Eq. (6a), since  giates:

Therefore we assume th&,(X;X') decay very fast with
[n—n’|, |v—7'|, and |u—pu'|. The correlation function
R,(X;X') is meaningful for|x—x’|<Al and this is taken
into account by the factog™ 4K (x~x")%/2
1/Ak=Al as we will show later.

The correlation function defined by E@b) has a normal- x=2d( K,), ®)
ization condition that is an extremely useful tool for verify-
ing results. We have from Eq¢5) which is a classical quantity. The choice of the averaging

interval is, therefore, limited by the inequalityi s?(k)/y.
This inequality has to be fulfilled in the interval gf where

n,; , dX"Ry(X:X") =dppd X), (7a the correlation function Eq(6) is meaningful, i.e., for
a 0<y=1/Ak. Therefore, the choice of the averaging window
width is limited by the condition analogous to Ed)
f dyR(x,y) = dppdX), (7b) Al
Hsd’(kx). 9

which are valid under the conditiakl <x. In order to derive
this relation we have replaced|,> ., in Eq. (68 by two  This inequality holds regardless of E@) because one can
termsX,, — 2,6, . The second term gives the mean den-study the statistics of energy levels independently from the
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statistics of periodic orbits. From this point of view the in- AleM/x>1, Akd(k)>1. (13)
equality Eq.(9) is not very restrictive either. ’

The statistical properties of the PPOs length spectrum argye want to define the form factor in such a way that it will
ultimately connected with the statistical properties of thecarry information about the correlations of energy levels and
quantum mechanical spectr8]. We obtain from Egs(1)  about the correlations of periodic orbits. Therefore, we re-
the periodic orbit expansion of the spectral correlations formyyire Ak and Al to satisfy Eqs(4) and(9), i.e.,
factor

— Al
* ; d (k)=—=d’'(k,). 14
K(X,k)EJ s_ie_lsxR(S!k):Kdiag(X)+Koﬁ(x,k), ( ) Ak ( ) ( )

(108 Near the Heisenberg length-27d(k), we havek,=k and

2 AR (|12 two inequalities in Eq(14) give usAl/Ak~d’ (k).
p

1 s o e
Kdiad X)=— )
diag( X) 4o | Moo Moflel V2 mAl Ill. DEFINITIONS OF OBJECTS RELATED
e2 te 2 (10D TO THE SPECTRAL ¢ FUNCTION
One can construct an infinitely large number of complex
|p|p,e—<>\plp+xpflpr>/2 analytic functions ofk having zeros only ak=k,. Each
Kor(X,K)=2 > 5 such function can be considered as a spectral determinant.
Pop'#p 4m We are going to define the spectral determinant in terms of
e—(1/2A|2)[|x|—<|p+|p,>/2]2 the retarded Green functichr(k)
X
v2mAl £(K) =/ TS (@E (@) +imd(a)} (15)
><eikup—|p,)7Ak2(|p—|p,)2/2
This definition implies the functional equation for the spec-
@ (Vp= vp ) T2+ pp—ppr) (109 tral { function

1 o . Kk :e277if(l§dqd(q) *(K), 16
where the asterisk stands for the complex conjugation. The
which is valid forks>Ak. Under this condition we have ne- €XPression in brackets in E(LS) can be written as the series
glected the Fourier transform of the first term in the bracket£XPansion over the periodic orbits H4b). The exponential

on the right-hand side of Eq6a), because it contains the function of this series was computed by Voidd] and the
factor 6~ K2/(2AKD) result is

Equation(109 is justified forx such that

k)= 1— i (Klp= o2+ dup) g (r+ 12X plpy
AX|> 1, 11) co=1111 )

(17)
where \ is the mean Lyapunov exponent defined per unit
length of the trajectory. This condition allows us to expandThis expression is taken from E(.21) of Ref.[28], and\
the denominators in Eq1b) and to neglect the summation here is the Lyapunov exponent per unit length. Here we
over the repetition index. We also assumed that the mag- added the phase due to the Aharonov-Bohm flux.
netic flux ¢ is so large thatpAu>1, whereAu is the The autocorrelation function of the spectials defined
characteristic scale gi — »' dependence d'ﬁz(x;xr)_ similarly to the correlation function of the density of states:

The key question of the theory is how to perform the
summation over the periodic orbits if the length spectrum is Cle k)se*A'ZSZ’ZIw dq o (a-k)22AK2
unknown. This question was resolvig] with the help of the ' —»\[2AK
sum rule[5], valid for ergodic systems. One can deduce the

density of PPOs from this sum rule: € €
/ xdla+ 3 5*(q—§)- (18)
dppdX)~ X (12 Equation(16) is also valid for the correlation function
This expression is valid asymptotically farlarger than the C(g’k)zezwm_(k)sc(—g,k)' (19

ergodic length {4 times velocity and it givesK giag(X) *X.

The definition of the form factor, Eq$10), is not com- where we expanded the integral in the exponent in (E6)
plete, because we did not specify yet how to choose the sizagider the conditiore <k, and also used the inequality Eg.
of the averaging windowAk andAl. Common wisdom was  (4).
that Eqgs.(10) would survive if they do not break the condi-  As usual, we put the prefactor in E(L8), which will be
tions translated into the averaging over the lengths of the CPOs.
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The CPOs appear from the evaluation of the product in Eq.
(17) and we define them as all possible sets of the PPOs

taken without repetitions:

c={p} and .= I,. (20)
pec
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o

f ~_dyC(xy)=depdx), (24b)

and it is valid under the conditioAl <x. The derivation is
similar to the derivation of Eq(7).

The statistical properties of the CPOs length spectrum are
connected with the statistical properties of the spectral zeta

The CPOs have the composite Lyapunov exponentqqiion we can see that by expanding the Fourier trans-

Ne=(U)Zpcchplp, the composite Maslov indexes
ve=3,.cVp, the composite number of wall reflections
Ne=X,.cNp, the number of the primitive components
m=3,..1, and the composite winding numbers
mc=Z,ccMp- This definition of the CPOs leads to the high
degeneracy of the composite length spectfligh.

The composite length spectrum has

>.6(x—1;) and the weighted mean densﬂepo(x) is the

sum ovem, v, u of
— ef(xflc)zlelz
Aepolxn )= 20 & ebnn, B By~ i
=dcpd X). (22)

The correlation function of the composite length spectrum is

defined similarly to Eq(6)
Coxn,wuix v’ )

_ =Nl o2
—}C) e 25 8, B

x| > e helels, 5

c

Sy

’
viva Cpl per

212712 e—(x’—|c,)2/zA|2
V2mAl

S,

v

e—(x—lc)

J2mAl
~S e

c'#c

X

—N¢'ler 12 ’
c'c 6nrnc, /Vdaﬂr#c,a(x_x _IC+IC’)

—(L2A12)[ (x+x")2= (I +1¢1)/2]2
Xe s e—Akz(x—x’)2/2
V2mAl
=Cy(X;X"), (22)
é(x,y):nz C, X+;,n,v,,u,;x—%,n,v,,u). (23
Ny

We will assume in what follows th{tZ(X;X’) falls off
rapidly with |[n—n’|, |[v—’|, and|u—u'|. The correlation
function C(x,y) is meaningful only fory<Al, and this is

form of the correlation function Eq18) over the CPOs,

the density

4 = de —ieX ¢ ¢
Ke(x, k)= ) Ze C(S’k):Kdiagx)"‘Koﬁ(X,k),
(259
e’”p'p’p
Kgiag(x)zz 2 >
C TIp.pec pec N
H (1—e el
=1
X - e~ (x~Zpeclprp)?/(2412) (25b)
V2mAl?
~depd ), (250
*(1/2A|2)[ —(|C+|C,)/2]2
Kgf‘f(ka)%Z 2 e_()‘clc"')\c"cf)/Ze IX

NPTINE

x @ikl =A% =1¢1)212gi m(me—m()

C c¢'+#c

X ei<Vc_ Vc’)'n'/zei ¢(Mc_ﬂvc’)

(250

=—Jjo dye“C(x,y), (250

where the repetition indexes in Eq. (25b) run from 1 to.
Equations(250), (25d), and(25e are valid under the condi-
tion Eqg.(11). This condition allows us to keep only the fac-
tors withr=0 in Eq.(17), and therefore our definition of the
CPOs Eq/(20) does not contain the repetitions of the PPOs.
We also assumed that the magnetic fllixis so large that
dApu>1, whereA n is the characteristic scale of the— u’

dependence o€,(X;X'). Equation(25a defines the form
factor of the autocorrelation function of the spectral zeta. It is
zero for negativex, whereask (x) depends onx|.

The averaged density of the CPOs length spectrum was
computed 29] for a family of strongly chaotic systems and
its asymptotic form in the general case is

depdX)~ 7, (26)

taken into account by the Gaussian prefactor. The normaliza-

tion of the correlation function can be deduced from Eqgs
(21) and (22),

>

rI,V/,LL,

wdx’EZ(X;X’)zd_cde), (243
0

where y is the normalization constant, ang ! is of the
order of the billiard size. This density is sufficient for the
computation of the diagonal part of the form factor E2b¢)

but the nondiagonal part can be computed only if the corre-
lations in the CPOs are known.
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IV. PROBABILISTIC THEORY OF THE LENGTH
SPECTRUM CORRELATIONS

where the composite orbits’ are such thai. =I% and

Vpec'l,<Ig. We assume here th&(c’ ec)=1I,_.P(p
H * x

The length spectrum of PPOs is a part of the length spec€ ©) unlesslc, is larger thanlg . One can choosé; by

trum of the CPOs. Therefore we can ask what is the probMinimizing the absolute value of the second term on the
ability of finding a PPO in some interval of the composite "ght hand side of Eq(31).

length spectrum. Le® be the set of all PPOs and Iétbe the
set of all CPOs. TheCC. It may happen that € C con-
sists of only one PPO and therefoce= P. We define the
probability of this event:

d_PPC(Xc)
depd Xo) |

It is a function of X, whereX.=(l.,n.,v¢,uc). The prob-

P(c)=(ceP) = 27)

The main purpose of this section is to construct an equa-
tion analogous to Eq31) for the joint probabilityP(c,c’).
Equation(30) for a pair of CPOs reads

cePNc’'ePe N
’:)EP,|p<|::<

pecNpec. (32

This statement can be converted to a Boolean expression and
averaged overl(+1./)/2. That is,

ability P(c) counts CPOs, which are actually PPOs, havingP(c,c’)

defined values ofi;, v., p. and lengths that lie in the small

interval neai .. In Eq.(27) we regard the statemeat P as
a Boolean function, which is equal to oneci& P and equal
to zero ifce P.

We can also count the number of pairs of the CPOs,

c,c’ e C with the fixed length differencé.— 1./, such that
both of them are actually PPOs,c’ € P. The probability of
finding such a pair is defined as

P(c,c’)=(cePNc’ eP) +i_)2=P(c)P(c)

— e Odetherlen2_ RZ(Xc_;Xc') _
depd Xo)depd Xer)

This equation defines the averaging ovég+Hl./)/2. The

(28

fluctuations of the Lyapunov exponent are ignored here for

two reasons: First, it was found numericall40] that the

fluctuations of the stability amplitudes do not affect the cor-
relation function; second, our result Eg2) is independent
of these fluctuations, becaug¥c) is a smooth function of

Xe-
The probability that CP@ contains another CP© can
be defined by averaging over the lengthcof

d—CPd Xc_ Xc’ )
depd Xe)

This probability is related to the probabili(c) in Eq. (27)
since

P(c’ec)=(c'ec) =e ' (29

cePe N
pe P,|p<|:

pec, (30

wherel? is an arbitrary length such thay2=1% <I.. Av-
eraging ovet . gives

P(c)= Il [1-P(pec)]
plp<Iy
+>, (-1)™| P(c'ec)

(31)

- 11 P(pEC)},

pec’

|

*
p.lp<lc

[1—pec—pec’+pecﬂpec’]>
(I+1 )12
(33

Let CPOC” consist only of the PPOs that are shorter than
I% . We can introduce the sum over such orbits into B8):

P(c,C’)=<E I1

c” p¢c”,lp<I:

[l1-pec—pec’]

X H [pecnNpec’]

peC”
+ H [1—pec—pec’]> (34)
|p<|’g
~> Il [1-P(pec)—P(pec’)]
c” p¢c”,|p<|:
XP(c"ecnc’ec’)
+ Il [1-P(pec)—P(pec)], (35)

*
Ip<I?

where the probability of having a “common divisor” is
given by

P(c"ecnc’ec’)=(c"ecNc’e c’)(,cﬂc,),z. (39
We assumed that fqu#p’
(pecnp’ec’)q 41 p~(Pec)(p ec’), (37

and also we made the same assumptions as in the derivation
of Eq. (31). Particularly we neglected correction terms in Eq.
(35), which are sums over”,l.»=1% . Such correction terms
were important in Eq(31), but they can be neglected in Eq.
(35 because the greatest contribution to the correlation of
PPOs is given by the short CP@5.

It is convenient to rewrite Eq.35) as a relation between
the correlation function of PPOs and CPOs having a “com-
mon divisor”



57 TOWARD SEMICLASSICAL THEORY OF QUANTUM ... 4071

P(c)P(c’)—P(c,c") P(c"ecnc’ec’)
— P(C// c C) P(C// c C/)_ e—()\C|C+}\Cr|cr)/2—)\cﬂ|cw
> l[P(c"ec)P(c”ec’)—P(c"ecNc’ec’)]
Co(Xe— Xen Xer — X
g oy
x Il [1-P(pec)-P(pec)]}. (38) crd Xe)depd X
pec’lp<ls into Eq. (40) and arrive at

It is es_ser:tial for the derivr_;\tion of _E_(BB) that the compos- Ry(X, . Xo)~P(c)P(c’)
ite orbit c” does not contain repetitions of the primitive or-
bits. This agrees with our definition of composite orbits Eq. Nl
(20). In general one can allow repetition of the primitive XE e e 2(Xe=Xer, Xer = Xer).
orbits in the definition of the composite orbit. In this case Eq.
(38) is also correct, but the sum must be taken over the (42)
composite orbits, which does not contain repetitions of the
primitive orbits. In the more complicated cases, when the approximation Eq.

The derivation of Eq(38) contains a number of approxi- (39 fails, we should substitute E¢41) into Eq. (38):
mations. Therefore, one would like to verify that this equa-
tion preserves the normalization of the correlation functions. RZ(XC,X )~P(c)P(c’)

This verification appears in Appendix A. ,

In certain cases, any given composite orbit contains a ! TI 1-P(pec)—P(pec’)
small number of PPOs and therefore we can make a further oi < [1=P(pec)][1-P(pec’)]
approximation in Eq(38) Pe

p | o
¢ C X X " X ! X "
: X3 = e e X 7X) (4

H [=Plpec)=P(p<c] “ 11 [1-P(pec)-P(pec’)]
pec”,p<Ig pec”

, where the product in the brackets is assumed to be conver-
~ H* [1-P(pec)][1-P(pec’)]. (39 gent to some smooth function of boky and X., but inde-
1,<I *
pie pendent of thd .

Th bstituti f Eq(27) into Eq. (42) qi
The condition of a small number of “divisors” e substitution of Eq(27) into Eq. (42) gives

P(pec)xe Mlp<1 ﬁz(X,X'):iPPdX)ﬁ’PdX/)
depd X)depd X') J0

is not enough to justify making this approximation. It might

happen that the error becomes larger when the sumdver X 2 depd X Co( X=X, X' = X",
in Eq. (38) is computed. One can check that this error is of n "
the same order as the contribution of the repetitions of PPOs, (44)

which has been neglected.

From Egs.(38) and (39) by making use of Eq(31) we  \yhere the summation in E42) is replaced by the integra-
obtain tion.
Assuming that the product of the mean densities in Eq.
" " / " " (44) varies slowly on the scale of thé— X' dependence of
POP(ch)—Ple.c)~P(c)P(c )Z; [P(c"ec)P(c"ec’) the correlation functions we can apply the normalization
conditions Eqgs(7) and(24) to get

—P(c"ecnc’ec’)]. (40
. . : depd X) |
The right hand side of Eq(38) or Eq. (40) contains the dppc( )=
nontrivial probability of finding a “common divisorP(c” depd X)

ecnc”ec’). Itis difficult to find a “common divisor” if
the lengths ofc and ¢’ are close to each other. We can

compute this probability by noting that in order to find a X E f dx’ dCPdX )dCPdX X"), (45
“common divisor” of lengthl ., one has to find two CPOs nvw

c" andc" of lengthl zi=1.— I andlv=1.—1¢. The same
is true for other components of; characterizing each CPO.
The probability of finding a pair of composite orbits of spe- 1 e K2l g v2bix
cific lengths is given by the two-point correlation function of dpde) ,
the composite length spectrum. Therefore, we substitute X V2mxla \2mx/b

which is satisfied by

(46)
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. e~ Kalx o= vbi2x The derivative with respect to of both sides of Eq(50) can
d X)oc g . 4 be written as
crd XY o ia V2 mxib “0

The dependence on is assumed to be the same for both Kiag %)+ Ki(x) = _deg(z”d_x)_Kg&(ZWd_X)'Sl
dppo(X) and deO(X) The parameters and b here are (52)
lengths of the order of the billiard size. The mean density of

PPOs Eq.(46) was introduced by Berry and Keatifgo]. where the argumerlms omitted atl and atK #(x). Near the
The numeric tests of Dittrickt al. [31] support the distribu- Heisenberg length o (x) is almost constant and its deriva-
tion Eq.(46). Then the mean density EG7) is the solution  tive can be neglected. The same thing is truekgg(x) for

of Eq. (45). smallx. We, therefore, remain with
Assuming thatlppd X)/depdX) = (yx) "1 for largex, we
have the main result of this section: Kgﬁ(x,k)= dlag(27rd(k) X). (52

This equation together with E¢49) expresseKqu(X,k) in
terms of Kgia(X), Kd,ag(x), and d(k). Equations(49) and

(52) solve the problem of the periodic orbit computation of
which was obtained by the summation on both sides of EqK(x K) nearx~277d_(k).

(44) overn,v,u atn’'=n, v'=v, andu’ = u.

_ 1 (= ~
R(x,y)=xz—yzfo dx"dcpd X" )C(Xx—X")y), (48

o : One can understand the important role of the short com-
Itis instructive to check how Eq¢38) and(40) work for  ,qqjte orhits by looking at another form of E@9), which

logarithms of integer and prime numbers. It turns out tha be obtained f Ed42) b ki f Eqs2
Eq. (39) is precisely equivalent to the Hardy-Littlewood con- gfgd) Zﬁd(g?:): fom Eqa2) by making use of Eqs27),

jecture. This can be shown by simple algebra and we put thi

calculation in Appendix B. At the same time EI0) is

equivalent to the smoothed form of the Hardy-Littlewood Koir(X,K) = 22 e )\cchgﬁ(x—|C,k) (53
expression, see Appendix C.

V. BEHAVIOR OF THE FORM FACTOR valid for x>0. Substitution of the integrated EC52) giveS
NEAR HEISENBERG TIME
)\CIC
For the case of billiards it is convenient to introduce the Off(z'ﬂ'd X)= 2 [Kdlag(x+lc)_ vl. (59

Heisenberg length 2d(k). From Eqgs.(10b) and (250 one

can see that the diagonal parts of the form factors are inde-

pendent of the Heisenberg length, because they are indepefihe functionK (277d—x) has spikes for the small values
dent ofk. They are purely classical quantities. of x equal to the length differences of the short CPOs.

The information about the behavior of the form factors The inverse Fourier transform of EGI9) would give us
near the Heisenberg length is hidden in their off-diagonathe expression foR(e,k). However, it does not converge,
parts. The off-diagonal parts of the form factors are not in-becauseks4(x,k) remains constant whex goes to infinity.
dependent; the Fourier transform of E48) with respectto  The regularization of the inverse Fourier transforms obtained

y gives us by taking derivatives of Eq(49) with respect tox and 2md
gives

KonxK) - f (K X KX K _
cog2md(k)e]

_ , 2.7
Kéiad X K(—x—x" K)1dx',  (49) Rott(e,K) = 2777 |Caiag &)|*+d(k)8(e). (55

where we substituted the mean density of CPOs from EqThis equation, which reproduces the results of RET], was
(250 and also used Eqg10d) and(256. In the derivation of  adopted for the ballistic systems in REZ3] and rederived in
Eq. (49), we have assumed that the Heisenberg length is sRef.[7], see Sec. VI of the present work for a more detailed
large that Eqs(10d), (250, (256, and (48) are valid. We  discussion.
also put Eq(49) in the form that is symmetric with respect |t is also instructive to check all of our equations for the
to x. Equation(49) shows thaK (X, k) is an analytic func-  case when the system exhibits universal behavior. The ran-
tion near the Heisenberg length~27d(k) in agreement dom matrix theory predicted the correlation functions of the
with results of Ref.[17]. A more detailed comparison of density of state§32] and the spectral determing6] to be
results is possible if we expressiq(x,k) in terms of

d.ag(X) co§2md(k)e]—1

The functional equation for the spectral zeta function Eq. R(e, k)= 57252 +d(k)é(e), (56)
(16) results in symmetry properties of the correlation func-
tion Eq.(19). The Fourier transform of this equation gives us

B _ iﬁa(k)ssir{wd_(k)s]
K(x,k) =K &2 md(K) —x,K). (50) Cle.k)=2ve P (57)
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where the latter satisfies the symmetry relation @§). The 332
commonly accepted form of Eq56) can be obtained for Al?> 7 (62
R(e,k)/[d(K)]? and it is sif@)/Z, wherez=msd(k). The Ak

universal form factors are This inequality, together with Eq§13) and(14), restricts the

choice of Ak and Al strongly.

x| +2d(k) — [|x| - 27d(K)| The inequalities Eq14) taken near the Heisenberg length

K(x.k) 8772 ' (58) become the approximate equation relatixigto Ak. We can
substituteAl (Ak) into Eq. (62) and obtain
K{(x,k) = y0(x) 8(27d(k) — ). (59 P
AKS> — | (63
d/4

One can note the symmetry of the universal form factor Eq.

(58) with respect to the exchange-2md(k). Let A(k) be a function counting energy levels wikh<k.

In order to see some kind of the universal length Spectiuny e can a At (1)~ 2
: . ; : pply the approximation’ (k)= d4(k)/MK),
correlations, let us use the inverse density of stafesvhich —\nich, is valid for generic system. The counting function can

is a purely classical function dEf"?ed in E@). The Fourier o o hstituted into Eq63), and it gives the widths of the
transforms ‘?f Eq§(58) and (59) with respect tok and the averaging window measured in the number of energy levels
change of sign give

AN N5, (64)
- ~ 1x,  sin(key)
R(va):dPPdX);LdX ay (60 This inequality has to be satisfied together witbV'<\.
Therefore the numeric check of relations like E(#}) and
) (55) is difficult. One has to take at leasf~ 10 and average
~ o~ sin(k,y) over AN~ 10 levels in order to see nonuniversal features
C(x,y)=dcpdX) - (61) - [y :
7y predicted by Eqs(54) and (55). The two-point correlation

function has to be evaluated ferin the range from zero to

Both correlation functions satisfy the normalization condi-d/Al~A/AN~10 level spacings. This estimate also shows
tions Eqgs.(7) and (24). Equation(61) is the “universal” that

correlation function of the composite actions. Equati66)

is the essence of the relation E@8) and it is the most A
general “universal” correlation function of the actions. AKAI~ N

2

>1 (65)

and the definitions of the correlation functions E{®. and
(18) are justified.

The principal results of the present work are the statistical The basic object characterizing a chaotic dynamical sys-
relations Eq(49) or Eqg.(53) and the approximate functional tem is the set of mixing rates. They show how fast the
equation Eq(52). The correlation functions and their form density-density correlations decay. These rates are zeros of
factors depend parametrically on the widths of the averaginghe so-called classical zeta function; see, e.g., &8,
windows Ak andAl. At the same time these parameters dowhich is approximatelyCg.{is); see Ref.[7]. The func-
not appear in the statistical relations E49) and Eq.(54).  tional equation in the form Eq52) implies
Therefore, these relations are valid for some valuea lof _
andAl, which should be specified. eCoi(e,k) =€ 240 e Cyfe)]*, (66)

The probabilistic derivation of Eq(49) means that
Kott(X,K) and R(e,k) possess fluctuations. Therefore, onewhereeCiaq/ftis defined as the inverse Fourier transform of
has to choosék and Al in such a way that these fluctua- Kgi’ag,off. ThereforeC,(e,k) is the classical zeta function
tions will be smaller than the correlation functions them-modulated by quantum oscillations. This function contains
selves[33]. the information not only on the mixing properties of the

Let us assume that the four-point correlation function ofbilliard, but also on quantum recurrence.
levels has the universal random matrix theory form that is The association o€ ia(is) with the classical or Ruelle
justified for some chaotic systeni84,35. Then one can zeta function is valid in the same approximation as 6&&)
show, by making use of the geometric representation Fig. yas derived. Therefore, E¢55) reproduces exactly the re-
that the mean square fluctuationsRyfe,k) are of the order sults of Ref[23], for the case of the system with broken time
of d¥2A k=12 reversal symmetry. The result of Ré¢f] goes beyond the

Let us assume that the two-point correlation functionrange of lengths given by Ed11). One has to make the

given by Eq.(55) behaves like ¥?2 for ed(k)>1. Then it replacement in Eq(55),

becomes of the order ofl? near s~ 1/Al, which is the

maximal value ofe where the definition Eq2) is meaning- |Caiad )| 2—[2md(K) ]2 {(k+e/2)f* (k—el2)
ful. Therefore the condition that the fluctuations Rfs k) " (ktel2)f(k=el2)[ 40
are smaller thamR(e,k) itself is (67)

VI. DISCUSSION AND SUMMARY
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and use the product E@l7) truncated near the Heisenberg = .,[P(c)P(c’)—P(c,c’)]=P(c) and =.[P(c"ec)P(c”

lengthl,<2md(k) in order to obtain the more accurate re- €¢’) —P(c"ecnc”ec’)]=P(c"ec). The sum ovec’ in

sults of Ref[7]. We performed the more accurate computa-EQ. (38) leads to

tion for the prime numbers, see Appendix B, and obtained

the precise form of the Hardy-Littlewood conjecture, which Pic)~> P(c"ec 1-2pP c Al

is equivalent to the replacement E§7) in Eq. (55). (©) CE (c"ec) H [ (pec)l- (AD)
All calculations in this work were done for chaotic bil-

liards, where the action of orbfi has the very slimple form  \we can represer(c” e c) as a product, and then
S,=%kl,. The present theory can be generalized for other

petc”,lp<|;c

types of dynamical chaotic systems. The only problem is that P(pec)
the correlation function of actiongs(x—S,)d(x' —S,/)) Pie)~ [I [1-2P(pec)]> 1-2P(pco)
has to be defined by averaging over the constant mean period lo<lg ¢ pecly<Iy P

dS,/dE+3S, 1JE. The justification of such a procedure

was discussed in RefE3,9]. P(pec)
The result of the present work cannot be applied to the = H* [1-2P(pec)]| 1+ 1-2P(pec)

systems that possess time reversal symmetry. In this case we Ip=le

should comput&,(X;X’) or Ry(X;X') for u#u', i.e., the

action correlations of orbits with different winding numbers. =[] [1-P(pec)]

However, the results presented here can be generalized for a 1p<I*

system having discrete symmetrigkd], see also a discus-
sion of this problem by Leyvraz and Seligm&87] and jn agreement with Eq31).
Agamet al.[38]. In the case of the discrete symmetry of the
system, one should compute the multiplicities of the periodic
orbits and correlations of these multiplicities in order to ob-
tain the spectral statistics. Probabilistic number theory meth-
ods can be used again for this purpose as in the case of the We can demonstrate the relation between the correlation
modular groud 39]. functions of composite and primitive actions using the ex-

We should emphasize that our derivation is correct only ifample of integer and prime numbers. Let us consider the
there are no two CPOs of the same length and the samg&ime numbemp as a PPO of length logf and the integer
winding number; see Eq$27), (28), (29), and (41). This  numbern as a CPO of length log]. This “CPO” may
assumption is eventually equivalent to the assumption abowontain repetitions of “PPO,” but this is not important for
the noncommensurabilitpf the lengths of PPOs. However, large numbers.
it is not clear what would happen if there are PPOs with Saying that the “CPO”m “is a part of” “CPO” n
commensurable lengths. In the case of the modular groumeans tham is a divisor ofn, and we will writem|n. This
[39] the degeneracy of the length spectrum is so strong thaiotation allows us to rewrite E438) as
one would obtainK(7) very different from the result pre-
dicted here. , , ,

In summary we have shown that the functional equation P(n)P(n")—P(n,n ):g {{P(m|n)P(m|n")
for the spectral determinant implies the action correlations.

APPENDIX B: CORRELATIONS OF PRIMES OBTAINED
FROM CORRELATIONS OF INTEGERS

Our derivation is valid only if the lengths of PPOs are non- —P(mnNm|n’)]
commensurable. Quantum-classical time scale separation for

systems with broken time reversal symmetry allows us to xT] [1-P(p|n)—P(p/n") ]},
compute all spectral and action correlation functions beyond pfm

their universal random-matrix theory shapes. One of the cen- (B1)
tral technical points in the present work is the derivation of

the Hardy-Littlewood conjecture of prime-number correla-\,hare m runs over integers that do not contain powers of

tions in such a way that it can be used for actions of g;jmes. HereP(n) is the probability to find a prime number,

dynamical system. and P(n,n’) is the probability to find pair of primes, see
Refs.[40,4] for precise definitions.
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Our derivation is based on the probability of finding a com-
APPENDIX A: NORMALIZATION mon divisor

OF THE CORRELATION FUNCTIONS

The normalization conditions Eq$7) and (24) are ge- P(m|nﬂm|n’)=£2 S (B3)
neric for the correlation function and we expect that mzo M



57 TOWARD SEMICLASSICAL THEORY OF QUANTUM ... 4075

where the Kroneckef symbol in the right hand side is equal  The product Eq(B7) diverges to zero for large. For this
to one forn=n’—ml and equal to zero otherwise. It carries reason the probability P(n,n’) is divided by
information about correlations of integers, because if weP(n)=II,(1—1/p); see Ref[43], chapter entitled Postscript
found with probability It thatn is multiple of m, then all  on prime-pairs.

integersn’=n+ml are also multiples ofn with the prob-

ability 1.
Substituting the probability Eq(B3) into Eq. (B1) we P(n,n") o1 1-2/p Il N 1/p
obtain P(NP(n") ~ “p=3 (1-10)% 000, 1-2/p|
(B9)
P(n)P(n")—P(n,n") This correlation function contains only the convergent prod-
ucts and it allows one to compute statistics of the zeros of the
1 2 Riemann zeta function with great accurd@y.
=2 —> o -mi| L1 {1——} . (B4
m - mig pIm P APPENDIX C: SMOOTHED CORRELATION FUNCTION
OF PRIMES

and the right hand side of this equation is zeranifis odd. The smoothed form of the correlation function of prime

Indeed, ifm is odd thenp=2 is not a divisor ofm and  numbers is valid fofn—n’|>1, and it can be obtained di-

1-2/p gives zero. The density of prime numbers, rectly from Eq.(40)

P(n)=1II,(1— 1/p), must follow the prime number theorem

and this is the criterion for choice of the upper limit in the

products over primes. P(n,n ) ~2
The next step, which is not necessary, is to separate the ~ P(n)P m

smooth part from the part containing correlations

—P(mnnm|n’)|. (CY

In this equation we used the probabilities of finding the
prime numbelP(n) and the probability of finding the pair of
L } prime numbersP(n,n’), see Refs[40,41], and we substi-

P(nn)= > —H

mj(n—n") Mplm

(B5  tuted 1m? instead ofP(m|n)P(m|n’).

The smoothing of the probability to have a common divi-
sor can be done in a number of different ways. We suggest
that the simplest one is

and this expression is nonzero onlynf-n’ is even. Only
terms with evenm contribute and the term witim=2 is

always present. We can, therefore, extract the factor 2 from m/2 1 m
all terms, and we obtain for even—n’ —f P(m|nﬂm|n’)dn’=70(|n—n’|——).
mJ —m2 m 2
(C2
P(nn)= 1 -2 1 2 The summation ovem in Eq. (C1) can be replaced by the
’ 2 p=3 p m|(nfn’) 2m pmp=3 pl’ integration and we obtain
(B6)
P(n,n") * 1-6(|n—n’|—m/2)
wherem is odd and does not contain powers of primes. We p(n)p(n')% N d m2
can rewrite the sum as a product:
1
~l— . (C3
1 2 -1 7
P(nn=5 I1 [1——} M 2= @ 2In=n’
2 p=3 Pl plin-n'yp=3 P72

The choice of the lower limit in the integral is not important,
because the integration is performed frofn2n’|. This
result is the leading order expansion of the correlation func-
tion in [n—n’|~! and it coincides with Keating’s resyi].
The probability of finding a prime number can be com-
puted from Eq(C3) by application of the normalization con-

This product contains the correct enhancenidi2 of the
probability to find a pair of primes,n’ by the factor
(p—1)/(p—2) per each prime, which is divisor of—n’

A similar computation shows that

dition Eq.(7)
S I (1——)=H (1——)2=P(n)P<n’>. SR B WA FU
m M" pjm p P(n) n P(n)P(n") In—n’|<n 2|n—n’|
(B8) (C4)

Therefore we have shown that H&5) follows Eq. (B4). according to the prime number theoré¢aa,43.
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