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We have observed a “multiple devil's staircase” in a one-dimensiéhB) map including two discontinu-
ous regions. Both end points of each phase-locked plateau in the staircase are confined by the conditions of
collision between the periodic orbit and one of the discontinuous region edges. There are more modes of the
collision than in a 1D map including only one discontinuous region. This complexity makes the whole staircase
lose monotonicity, self-similarity, and the “Farey tree rule” for a description of the plateau length distribution.
However, the staircase consists of many conventional complete devil's staircases, many of them having their
own threshold of transfer to chaos via a type-V intermittency. Therefore the parameter space can be divided
into three parts. In the first part only periodic attractors appear. In the second part periodic and chaotic
attractors appear alternatively, and the system displays type-V intermittency frequently. In the last part only
chaotic attractors exisfS1063-651%98)10601-3

PACS numbds): 05.45+b

[. INTRODUCTION odic substrat¢27], the three-dimensional Ising model with
competing interaction$28], the current-driven Josephson
Recently, there has been considerable interest in piecgdnction [29], the driven electrical conductivity of barium
wise smooth maps. These maps may describe some practicdium niobate crystal$30], driven charge-density-wave
systems, such as relaxatiph-15] or impact[16—27 oscil- ~ systems[31], and driven electronic relaxation oscillators
lators, and display some dynamic phenomena different frorp32]. This kind of dynamics can be described by one-
what can be observed in a everywhere-differentiable maglimensional discrete maps of the circle onto itself, the so-
[1-22]. One of these phenomena is a new type of intermitcalled “circle maps.” In such a map a winding number
tency, named type-V intermitten¢g0—15, that happens via can be defined as the mean number of rotations per iteration.
a collision of a periodic point with a discontinuous or non- When the control parameteris varied, the functior(e) is
differentiable point of the map. This type of intermittency locked onto every single rational value to form a devil's
shows a logarithmic dependence of the average laminastaircase in the-w plane[25,33. The staircases often be-
length on the control parameter[10,11], a hyperbolic se- come complete on an one-dimensional set in the parameter
cant invariant distribution of the laminar lengtfk3], and a  space separating different kinds of dynamics. The comple-
1/Ine dependence of the Lyapunov expongt,16. In dif- mentary set to a complete staircase is a Cantor set of fractal
ferent practical fields, three research groups have publishedimensionD<1 [33].
experimental proofs of type-V intermitten¢$2,23,24. To our knowledge, all the observed complete devil’s stair-
When studying the scaling behavior of the Lyapunov ex-cases have three common characteristics. We shall use the
ponent in type-V intermittency, Lamba and Budd6] term CCDS to denote them. First, the winding numberis
showed that in a discontinuous one-dimensional map a sexways locked to a rational in a nonzero interiad. Second,
guence of periodic attractors should appear before the systetne rule of the distribution ofA e lengths can be fully de-
transfers to a chaotic motion via a type-V intermittency. Forscribed by a Farey tree. That means if there are two winding
this conclusion, Wu, Ding, and Hel5] presented evidence numbers,w=M/s andw’'=M'/s" (M ands are integers
in a piecewise linear model. They also found that in thewhich are phase locked ihe and Ae’, then the winding
model the periodic attractors emerging before type-V internumber of the largest phase-locking intervai say phase-
mittency form a ‘“conventional complete devil's staircase locked plateapbetweenAe andAe’ is (M+M')/(s+5s').
(CCDS.” This concept will be discussed here. In the following we shall call this rule the “Farey tree rule.”
The devil's staircase is a structure describing phase lockkast, the whole staircase(e) shows monotonicity and exact
ing behavior in quite different contexf&5], such as a one- self-similarity. This is exactly what Wu, Ding, and He re-
dimensional Ising model with long-range interactid@?$],  ported in Ref[15].
the Frenkel-Kontorowa model of atoms adsorbed on a peri- The mapping function studied in Refl5] actually has
two gaps(two discontinuous regionsAs shown in Fig. 1,
there is a gap between poin® and E, and another gap
* Author for correspondence. Address correspondence to Deparbetween point& andF. GapDE plays a very important role
ment of Physics, Teachers College, Yangzhou University, Yangin the creation of the CCDS. Each phase-locked plateau in
zhou 225002, China. the CCDS vanishes whanreaches a threshold at which the
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0.5 __B — f12(X) =kiXx+by;, Xe[—0.5xg]
L : f(X)= flz(x):klx+b12, XE(XB,E) [modl] (1)
‘ fo(X)=k,x+bo, xe[e,0.5],

- . wherek, should be little bit smaller than unity so as to form
0.0 a specific channel in type-V intermitteng¥1,15. k; should
‘ be quite larger than unity, so that the system’s behavior can
b be chaotic. Our study shows that the dynamics of the system
7 is qualitatively the same whédg or k; changes in this range.
Here we choosek;=1.5, by;=(2k;+1—k3e)/2(k,+1),
; b= —(1+k2€)/2(k,+ 1), k,=0.8, andb,= —kye. The pa-
05 1 1 ‘ rametere denotes the horizontal coordinate of pokatthe
-0.5 ¢ 0.0 0.5 width of the exit of the channel, and is chosen as the control
X parameter. It is useful to note thgt=0, xg can be ex-
_ _ _ _ pressed agg=0.5ke+by,, andypa=xg=¢€, andyp=Kk; €
FIG. 1. A schematic drawing of mapping functiqd). The  +p, ,. We defineb,;, by,, andb, as functions ofk;, k»,
wider solid lines show the mapping function. As shown by the jn( ¢ instead of being constants in order to keq,q the
dashed lines, the second backward images-@ndx, fall together second backward image of bo#y andxq, always in the
at the center of the exit of the channel that is indicatedxpy ; i o
—£-2(x.) = -?(x,). The thin solid lines starting from poirEQ middle of the exit of the channel, i.ex;=¢/2, and let the
P AT _ _ _ Trelnjectlon behaviors become qualitatively different when an
shows the iteration trajectory escaping from the right end point Oiteration out of the channel pas One will see that it is
the exit of the channel. It is reinjected into the channetat The verv important for the a earzﬁe of the specific devil's
thin solid lines starting from point0,0) shows the trajectory from i Yy Impo thi t PP P
the left end point of the exit. It is reinjected into the channet,at Staircase in '_S system. .
Actually, pointxy may have to be defined by the left and
s ) ) o right limits of the coordinate, respectively, to express the
periodic or_blt collides with either of th_e gap ed_ges. _At thediscontinuity here explicitly, that means<'g=f*1(xB)
Iefthenq pcgnt or:‘_lthe plr?tegLﬁ,_, trzje p(_arlodflchorbllt collides =f"2(xp) andxngfl(xc)szz(xA). As shown in Fig. 1,
with pointD, while at the right end point of the plateagk, — pointx  divides the exit into two equal parts. If an iteration
it collides with E. After the collision the winding number is 4t of the channel falls in the left half of the exthe clean
locked in another rational. In the system studied in [RES], part in Fig. 1, it visits segmenCD only once, and will then

the role of gapAF is unimportant, because the mapping pe reinjected into the farthest end of the channel, between
function was constructed so that the iteration always V'S't%oint x_ andF. While if it falls in the right half(the region
segmentCD twice andAB once. The reinjection behavior j, rig ™1 covered by thin oblique solid lingsit visits CD

do_es not change significantly v_vher_1 _the_ iterat_ion out Of_ thetwice, and will then be reinjected into the nearest end of the

exit of the channel passes the “implicit discontinuous point” .12 nnel between poiflE andxx . After a collision between
—f—2 —f-2 iaet ’ .

Xg=1" ()ﬁA)._fI ,,().(F)'hwe say thaht. the re|FJ¢ct|<_)n mecha- 5 periodic orbit andk,, the orbit will be replaced by a new

nism is “simple” in this case. This simplicity induces & aractor[17,18. That means such a collision is one of the

simple CCDS. ) ) L boundary conditions of the phase-locked plateaus in the dev-
What will happen if the mapping function is changed soj;.5 giaircase. Of course, the collision of a periodic orbit with

that the re.injec.tion behavior becomes significant.ly differentthe gap between poin® andE also determines the bound-
Wh?‘” the |terat|oq passeg? '!1 that case glaaF will play ry conditions, as discussed in Sec. V. Therefore, with

an important role in the creation of the staircase as well, and 2 5ing 5o that a periodic orbit moves, there can be at least
the complexity of the reinjection mechanism will show its y,q fo)10wing four modes of collision between the orbit and

|nfl.ue.nce on the structure of the staircase. The new charagae giscontinuous points which confine a phase-locked pla-
teristics of the staircase should be an interesting feature Offéau

“multigap” map. This is what we want to discuss in this (1) |, 4 jterated trajectory, if the iteration out of the

paper. In Sec. Il of this paper we shall describe the modifieq:hannel always falls on the ieft part of the exit, the orbit

system. In Sec. Il we shall derive the mathematical eXpresz ides with DOINtE at e, and collides with point('g ate, .

sion of the_new stalrcage. In _Sec. I\./ we shall report the (2) If the iteration out of the channel always falls in the

characteristics of type-V intermittency in this system. In Sec. . . . . . ;

. . . . right part of the exit, the orbit collides with poil? at ¢, ,

V a discussion of some further questions will be presented. . . —r

and collides with poink, at eg.

(3) If the iteration out of the channel can fall in either the

left or right parts of the exit, there can be two modes of the
collision: (a) the orbit collides with poinlx'g at ¢, and col-

The mapping function, which can be viewed as a simpli-lides with pointx ateg, and(b) the orbit collides with point
fied model of an electronic relaxation oscillatptl] and D ate_ and collides with poinE at eg.
which was discussed in Reff15], is modified so that the As will be discussed in Sec. lll, modés) and(2) induce
reinjection mechanism becomes “complicated,” as shown inthe two most important sequences of the phase-locked pla-
Fig. 1. The map reads: teaus, while mod¢3) induces the other sequences.

f(x)

II. THE SYSTEM
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Before our discussion on the staircase of the phase-locke 1.0 : :
plateaus, we have to define the winding number of an iter-
ated trajectory. For a circle map, the traditional definition of
the winding number is

0.9 ki

(18,1.0,0)
- — _\_ U7L0.0) (16,1.00)  (15.1,0.0)

-
[\
Q0
g
0.8 - LI ; — 4
- MN(xg)—xo p+q % C- i : ; L
R= lim = ) 2 = ©0s1) . Pl L
Nes oo N n+m+ 2p+ Sq 9 gL (0,0,8.1) . !/ 1
E (0,0,7,1) | H
= (0,0.6.1) 1
wherep is the number of reinjection via the left part of the 0.6 ¢ E
exit in an iterated trajectory, arglis that via the right part of N T P N
the exit.n=3;_,°n;, m==;_,%m;, wheren; is the iteration 0.000 0001 0.002 0003  0.004  0.005
number inside the channel after tith reinjection via the left €
part of the exit, anan; is that after thgth reinjection via the FIG. 2. The MCDS of the functiom(€) obtained numerically

right part of the exit. By this definitionR is the ratio that by definition(3). Everyw(e) value is obtained by taking an average
each iteration crosses on the average when the number 8yer 5000 reinjections. The first 2000 iterations were dropped to
iteration N—o. However, we prefer another definition avoid transience. Ten different initial value betweef.5 and 0.5
which is more convenient for the expression of type-V inter—ha"e been chosen for the computation. Exactly the same results

mittency appearing inside the staircase, and for the calculdvere obtained, suggesting that the coexistence of periodic attractors
tion of the Lyapunov exponents. The new definition is heed not be considered here.

n+m lll. THE MULTIPLE COMPLETE DEVIL'S STAIRCASE

T hFm+ 2p+3q° 3 Figure 2 shows our numerical results of the dependence
of the winding numberw by definition (3), on the control
. — - . . parametek in the complete phase-locking region. Our com-
By t'hIS d§f|n|t|on, the' W!ndlng number is the proportion Qf putation shows that the coexistence of periodic attractors
the iteration number inside the channel to the total |terat|or]:,r0bab|y does not happen in this region, thus we shall not
number in the trajectory. In Sec. V, we will show that defi- hay attention to this question. The diagram consists of many

nitions (2) and (3) give similar staircase structures. ~ towerlike structures. After a careful study, we found that
Now the expression of the Lyapunov exponent of an iteryoth the ascerdeft) and the descertight) branches of each
ated trajectory can be easily derived as tower are CCDS'’s. In the whole staircase, which is com-
posed of many CCDS’s and therefore is addressed as a mul-
N1 tiple complete devil's staircasg¢MCDS), the dependence of
Ne)=lim = In|f’'(x)|=[1— w(e)]Ink; + w(€)lnk,. @ ON € has lost monotonicity.
Noo Ni=0 According to definition(3), one can denote each plateau

(4 by four characters,n, p, m, andq). Between themp andq
are most important, and signify a significant feature of the

K 34 d Wtically that the d . f periodic orbit. The feature is the number of the iteration go-
. eener[ ] proved analyticaly that the dynamics of a ing through the left or right parts of the exit of the channel in
discontinuous circle map is dominated by periodic attractors

) X ) . . one period. One will see that the rafipg determines the
while chaotic attractors may appear in a mapping with any,ain sequences in the MCDS.

overlapping part. Here, mappiri@) has both the discontinui- |t 5.q=1:0, theiteration escapes from the channel only
ties and an overlapping part, and therefore we may expecfia the left part of the exit. The number of iterations inside
both a complete phase-locking region and a chaotic region ithe channel via the right part of the exi, naturally equals
the parameter spa¢d,5,8. Whene is smaller than a thresh- ;oo The winding number of the plateaus belonging this
old value €cyr the iteration in a trajectory should visit seg- sequence can be written @s=n/(n+2). In this situation the
mentEF (with a slope smaller than a upitnuch more often  collision between the periodic orbit and the discontinuous
than segment®AB and CD (with the slope larger than a points thus can only choose the first mode mentioned in Sec.
unit). The Lyapunov exponent should be negative in the patl. In this, the orbit collides with poinE at e, andx ate; .
rameter region[O.e. ] [15], that is, the complete phase- The system is locked in am(1,0,0 plateau in[ e, ,eg]. In
locking region. In this region the winding numbercan be both cases, ife>eg or e<e , the escaping iteration will
calculated simply in one period. For simplicity, definitions enter the right part of the exit.

(3) and (2) will still be used. However, in definitio2), N If p:q=0:1, theiteration escapes from the channel only
will denote the number of iterations in one period; in defini- through the right part of the exit. Then numlreequals zero,
tions (3) and(2), p will be the number of reinjections via the andm becomes the only varying index. The winding number
left part of the exit in one period] will be that via the right  of the plateaus in this sequence can be writtemw asm/(m

part of the exit in one periody; will be the iteration number +3). The collision condition between the periodic orbit and
inside the channel aftéth reinjection via the left part of the the discontinuous points thus can only choose the second
exit in one period, andn; will be that afterjth reinjection ~mode mentioned in Sec. II. In this, the periodic orbit collides
via the right part of the exit in one period. These definitionswith pointD ate, , and it collides withxg ater. The system

will be used in all the following sections. is locked in a(0,0m,1) plateau in[ ¢, ,eg]. In both cases, if
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€>eg Or e<e, the escaping iteration will enter the left part (1100 P(n—1)

of the exit. €r(N,1,0,0= .
As can be seen in Fig. 1, the iteration escaping through 1+Q(=1)+6G(n-1)

the left part of the exit will be reinjected into the part of the

channel farthest from the exit, and the iteration escapingu

through the right part of the exit will be reinjected into the

part of the channel nearest to the exit. Therefore, the winding R-(x)=f4f ,,F2)(x)

number of a 1:0 plateau should be much larger than that of m 2 TR0

its neighboring 0:1 plateau. The sequence of the 1:0 plateatgs d

and that of the 0:1 plateaus are separated by a large vertical

distance in thew-e plane. Considering the fact that many o8 s(m=1 2

p:g (p>0 and ¢>0) plateaus should appear between Ra(0=F2" VTufiFf200, x>ef2 and XHE/Z'B

neighbor 1:0 and 0:1 plateaus; there should be tower struc- (13

tures in thew-€ plane. In this plane,n(,1,0,0 denotes the

sequence of the “top” plateaus in the towers, d0¢ddm,1)

denotes the sequence of the “bottom” plateaus in the towers ™, ™ . R ; : . .
as shown in Fig. 2. periodic point which is about to collide with the discontinu-

Now we shall derive mathematical expressions of the sta®ys pointD. Substituting Eq(1) into Egs.(12) and(13), one

bility borders of the phase-locked plateaus belonging to dif-2Ptains
ferentp:q sequences in the MCDS. The derivation and the

(11)

(b) p:g=0:1 sequence: Similarly, we can define collision
nctions as

x<e and x—e (12

whereR;. represents a periodic point which is about to col-
gde with the discontinuous poimg, while R, represents a

expressions are quite long and boring; therefore, only some R (X)=2xT(m)— eT(m)—eS(m)+O0(m) (14
main results are presented here. A reader who would like to
know additional can find more details in the Appendix. and
(@) p:q=1:0 sequence: For this sequence, the periodic N
condition requires Rn(X)=2(Xx—€)T(m)—eT(m—1)—eS(m—1)
f(zn)fllflz(x)zx- 5 +Oo(m=1), 19
where

When e— 0, we define collision functions as
K2k 1—-kY

_ _ 3 _
Ln (X)=f(2n)f11f12(x), x<el2 and x—el2 (6) T(m)_%klkg]! S(m)_ 2(1+ kl) + 1_k2 ka
and o) 1+k1—k§km
m)y=—-———Kkj.
L) =0 Vf,,ffa(x), x>e and x—e. (7) 2(1+ky) 2

Thus the two end points of a plate&d,0m,1) in this se-
qguence can be obtained by the collision conditi®q €, )
=¢_andR; (er/2)=€r/2, as

Herel, represents a periodic point which is about to collide
with the discontinuous poir)t' , While L, represents a peri-
odic point which is about to collide with the discontinuous
point E. Substituting Eq(1) into Egs.(6) and(7), one ob-

; O(m
tains @ (0.0m D)= e S(nf) _)T(m) : (16)
L, (X)=2xG(n)—€eG(n)—€eQ(n)+P(n) (8
(0.0m D)= i
€ y A) = .
and R m Ly s(m)
Li(x)=2(x—€)G(n)—eG(n—1)—eQ(n—1)+P(n—1),
(9 (c) p:q=1:1 sequence: According to definiti¢d), a pla-
teau in this sequence has a winding numéer (n+m)/(n
where +m+2+3). By the “Farey tree rule” stated in Sec. I,
which still works in either the ascent or the descent branch of
) 1-k) a tower, a 1:1 plateau should be the largest plateau between
G(n)=zkikj, Q(n)zl——kzkz’ P(n)=3kj3. the neighboring top and bottom plateaus. We also address

them by “middle plateaus.”

Unlike the two situations discussed above, in this case the
#'teration escapes from the channel one time via the right part
of the exit, and one time via the left part alternatively. There-
fore there can be two modes of the collision between the
P(n) periodic orbit and the discontinuous points, as mentioned in
€ (n,1,00= ——, (100  Sec. Il. We found that the ascent or the descent branch of a

2 +Q(n) tower shown in Fig. 2 has different choices of mode.

The collision conditions ard., (e, /2)=¢€./2, and L, (eR)
= eg. We can obtain the expression of the two end points o
a plateau 4,1,0,0 as
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(i) The ascent branch: In this branch the plateaus choose P(n)+2G(n)O(m)
mode(a) in the third case stated in Sec. II. That is, iteration er(n,Im1)= - :
in the periodic orbit via the left half of the exit collides with 2 +Q(N)+G(n)+2G(n)S(m)
x'g at e, while the iteration via the right half of the exit . ]
collides withx'. at ex. Therefore the collision function can  (ii) The descent branch: In this branch the plateaus choose
be defined as mode(b) in the third case stated in Sec. Il. That is, iteration

in the periodic orbit via the right half of the exit collides with
F.(X)=R,L,(x), x<e/2 and x—el2, (18 pointD at ¢, , while the iteration via the left half of the exit
collides with pointE at eg. Therefore we can have the simi-

and lar expressions

(21)

o
Fo(X)=L,R,(X), x>€/l2 andx—el2. (19 Fy(X)=L Ro(x), x<e and x—e, 22

Similarly we can obtain the expressions
Fi(X)=RiLi(x), x>e and x—e (23

e (nim.1)= O(m)+2T(m)P(n) (20
S L g(m)+ T(m)+ 2T(m)Q(n) and
|
e (nAm D)= P(n)+2G(n)O(m) (24
ST QM) + G () +26(n)[S(m) ~ T(m)]
en(n1ml) = O(m—=1)+2T(m)P(n—1) 25

1+S(m-1)+T(m—1)+2T(M[1+G(n-1)+Q(n—1)]°

(d p:g (p>1 and g>1) sequences of the phase-
locked plateausthe plateaus in both the ascent and the de-
scent branches of the towers are shown in Fig. 2, which form From Eqg. (4), one knows that the Lyapunov exponent
many sequences between 1:0, 1:1, and.0:1 function of the driving parametek,(e), should show a simi-

In this general case, there can be again two modes of tHar MCDS in the\-e plane. Figure 3 shows this MCDS. It
collision between the periodic orbit and the discontinuoudh@as similar tower structures, but the 1:0 sequence is in the
points, which is the same as in the situation whereg 04 .
=1:1. A reasonable conclusion is that the collision function E T T
can still be expressed by a combinationRyj,, R, L, , g '
andL., but the form will be much more complicated. We
shall present only the mathematical forms of the collision
functions and the collision conditions in the Appendix. Ex-

IV. TYPE-V INTERMITTENCY INSIDE A MCDS

02 F S —

plicit expressions ok, (n,p,m,q) and eg(n,p,m,q) are too 0000 & o008 f~ Y ]
long and too complicated to present. In practice, we would e ,4.;\'\ L W‘\ ]
prefer to use a numerical way to obtain the data of 0.1 [ A j,’!f x.‘/

H (; 3 Ly

PN
Obe ; s
e (n,p,m,q) andeg(n,p,m,q) by a substitution of mapping i ‘
(1) and the collision conditions to the collision functions. We ;
have compared all the analytical resultseptn,p,m,q) and
er(Nn,p,m,q) with the numerically obtained positions of pla-
teaus shown in Fig. 2, and seen very good agreement.

It is now clear that the MCDS has neither monotonicity ,_ - ;
nor exact self-similarity. This means that winding numbers 0.05 0.10
may increase or decrease in different parts of a MCDS, and ¢
magnification of a small part of a MCDS may not resemble
itself. Also, the d_istribution rule of the Iengths_ of the phase- FIG. 3. The Lyapunov exponent spectrum to show the transition
locked plateaus in a MCDS Canno_t be_ described by a Fareyf the p:q sequences to chaos. The inset is the enlargement of the
tree. For example, as can be seen in Fig. 2, the largest plateg yithin the parameter rang8.0040,0.0101 The two vertical
between two plateaudd, /s, andM,/s,, often is a platéau  gashed lines indicate the first and the last thresholds, where the 0:1
belonging to the “top” sequence instead d¥1g+M5)/(S1  or the 1:0 sequence turns to chaos. Evety) value is obtained
+s,) if plateausM, /s; andM,/s, are not in same branch with Eq. (4) by taking an average over 5000 reinjections and ten
of a tower. That does not obey the “Farey tree rule” in ainitial numbers. The first 2000 iterations were dropped to avoid
CCDsS. transience.

i
v
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lowest position there. Also, the range of the driving param- As shown in Fig. 3, in the parameter region where
eter in Fig. 3 is much wider than that in Fig. 2, to show how < €, periodic attractors dominate the system’s dynamics.

the differentp:q sequences turn to chaos via type-V inter-ye say that this is a “complete phase-locking” region. In
mittencies in differente values. It is |nterest|ng to Study the parameter region wheee> € ’there can be 0n|y chaotic

these critical values oé and the scaling properties of these attractors. While in the region wheig, <e<e, , periodic

type-V intermittency inside the MCDS. We shall present the ,
results in this section. and chaotic attractors appear alternately. Many sequences ad-

In this study, we prefer to estimate these critical values byf"€Ss€d by:d (p=>0 andg=>0) turn to chaos via a type-V
calculating thee values at which the aforementioned se- intermittency there. Therefore type-V intermittency appears

quences stop. Here “stop” means that all the plateaus of frequently in the MCDS in this region. This is another char-

sequence positioned over the criticality will lose stability, 2cteristic of the MCDS.

and the system shows a chaotic motion there. As examples, NOW We shall derive the main scaling properties of the
Fig. 3 showse, , where the 1:0 sequence stops, and, so-called “type-V intermittency inside a MCDS.” The prop-
% 0

] erties studied here are the scaling of the average laminar
where the 0:1 sequence stops. One can see that these tW‘?engths and the scaling of the Lyapunov exponent.
values are very near to the criticalities of the twog se-

" ‘ q | ¢ diff | For the 1:0 sequence, when-0 andn—o, Egs.(10)
quences. I comparing and values of diiterent plateaus 5,4 (11) show the same dependence of the winding number
belonging to the same tower, one knows from &g that the

. U ® ON € as

plateau with the smaller winding number has the larger

Lyapunov exponent. Hence the 0:1 sequence loses its stabil- Ink,

ity first, and the 1:0 sequence turns to chaos last, as shown w”—‘l—Zm- (3D
clearly in Fig. 3.

Now we estimate the value of; at which the 0:1 se-  gjmjlarly, for the 0:1 sequence, when-0 andn—, Egs.
guence stops. The stability condition of a periodic attractor16) and (17) show the same dependence of the winding
in this sequence is numberw on €,

kk<1. (26) Ink
e w=1-3—2 (32)
Thus, ate= €cy» the critical stability condition

s m For the 1:1 sequence, when-0 andn— o, Eqs.(20), (21),
kik,°=1 (27 (24), and (25) show the same dependence of the winding

number as the geometrical average of E§4) and (32),
should be satisfied, whera, denotes the critical value of.
Thus we have 2+3 Ink,
w=1— T m (33)
m.=—3Ink, /Ink,=5.451178 % ... . (289

. , Therefore we would expect a form of the dependence of the
For a rough estimate, we take the nearest integer value

which is smaller thaimm; . That ism. = 5. Substituting this winding number forp:q sequences, the general case, as

mc value into Eq(17), one can obtain the lower limit of; , 2p+3q Ink,
i.e., e;,>0.004 910 18. ©0=1=—20 e’ (34
The critical valuee._, where the 1:0 sequence turns to
chaos, can be estimated in a similar way. ét e, , the ~ Thus the Lyapunov exponent scales as
critical stability condition E(p,q)
2,0 A=lnkz— Ine ’ 39
kikoe=1 (29)
should be satisfied. Thus we have where
- _ 2p+3
n.=—2Ink;/Ink,=3.6341B9 ... . (30) E(p.q)= E+qq Ink,(Ink,— Ink, ).

For a rough estimate, we take the nearest integer value which

is smaller tham,. That isn, = 3. Substituting this\, value  In order to verify the analytical conclusion expressed by Eq.
into Eq. (11), one can obtain the lower limit oé. , i.e., (39, the results of the dependence of the Lyapunov exponent
€. >0.010 265 8 - on e obtained by both Eq(35) and the direct numerical

c . . ) .

2 . . - computation by Eq(4) have been compared, as shown in
Similarly we can obtain the estimates of other critical VaI'Fig. 4. For simplicity, only the numerical results of the
ues betweere., and e at which other sequences turm 10 | yo5,n0y exponent plateaus for three sequences, called 1:0,
chaos. These values are in a tolerable agreement with the1, and 0:1, are shown in the figure from bottom to top. The
numerical results. For example, the numerical critical Value%orresponding solid lines are drawn by Eas) The dashed
of €, and e, are 0.004919 70 and 0.027 5729, respechorizontal line, denoted by =Ink, in the figure, indicates
tively. They are near to our estimates. the limit value of the Lyapunov exponent for all the se-
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€
0.04 0.06 0.08 0.10
—1/lne FIG. 5. The MCDS of the functiom(e) obtained numerically

by definition(2). Every w(e€) values is obtained by taking an aver-
FIG. 4. The scaling properties of the Lyapunov exponents of29€ over 5000 reinjections. The first 2000 iterations were dropped
three sequences in the range 0.000 08G-4 0.005. From bottom to avoid transience. Ten different initial value,, between—0.5
to top, the computed plateaus belong to 1:0, 1:1, and 0:1 sequenc88d 0-5, have been chosen for the computation. The results are
in turn. Every\ value is obtained with Eq4) by taking an average Sa&Me: This figure shows that definitiof® and(3) induce similar
over 5000 reinjections and ten initial numbers. The first 2000 iteraMCDS’s.

tions were dropped to avoid transience. The three solid lines show . . )
the analytical results of E35). MCDS is a property of a “multigap” map. It exists no mat-

ter what kind of a reasonable definition for a winding num-

quences whe=0. One can see that the agreement is excelPer is suggested. .
lent. A similar comparison has also been made for some of In order to verify this conclusion, we computed the func-
the p:q sequences. The good agreement makes sure that EiPn @(€) by definition(2). The results are shown in Fig. 5.

(35) is correct. ne can see that the MCDS in Fig. 5 is upside down, but still
Finally, the dependence of the average laminar lengths ofias almost the same form as that in Fig. 2.
€ can be obtained easily as The next question is the following: Is it possible that the
MCDS can be observed in a everywhere-differentiable map-
n+m Ine 2p+3q ping? As is well known, in a one-dimensional méfx),
(= prq_ink, prq (36)  which is everywhere differentiable, the critical stability con-

dition of a periodp attractor can be expressed as

We may need to point out that the functidh)(e) is also a
MCDS as the functiomw(€) andA(€). Now our study in this
section shows that the scaling laws of type-V intermittency

inside a MCDS are still reasonably consistent with the gen- ) N ) )
eral conclusion reported in Ref&l0,11,15. We argue that this condition can be viewed as a kind of

“mode” for confining phase-locked plateaus. There can be
only this mode in this system. It is not strange, then, to see a
CCDS in such a map, just like what was reported in Ref.
In this section a discussion on some further questions wil[25-33.
be presented. The first question may be the following: Is The situation becomes different in a one-dimensional map
there still a MCDS in this system if a winding number is which has gaps. In addition to what is expressed by(&d,
defined in the traditional way as expressed by B)? In  the modes for determining both end points of a phase-locked
other words, is it possible that the MCDS reported in thisplateau can be also the condition of the collision between the
paper only comes from the special definition of the windingperiodic orbit and the discontinuous points as discussed
number as expressed by E§)? in this paper. These modes may induce a MCDS. In the
From the discussion in the above three sections, one cgpoint of view of symbolic dynamics, a mapping with gaps
already obtain the conclusion that the MCDS in this systenrmeeds more symbols to be described. A scientist studying
is induced by the complicated modes of a collision betweersymbolic dynamics may express this idea as follows: A dis-
a periodic orbit and discontinuous points. In the system studeontinuous map has higher dimensions than an everywhere-
ied in Ref.[15], there is only one of these modes: the colli- differentiable map does, which is why it can show more
sion conditions of a periodic orbit with only two discontinu- complicated behaviors.
ous points confine all the phase-locked plateaus. This simple Considering the discussion above, we argue that is a pos-
mechanism generates a CCDS. In the case when more thaibility to observe a kind of MCDS in a high-dimensional
two discontinuous points exist, and all of them can showeverywhere-differentiable map. To our knowledge, no such
influences on the periodic condition, the different modes ofphenomenon has been discovered yet. We expect to see such
the collision will induce different kinds of CCDS’s. These an observation.
CCDS's organize a complicated staircase due to the cross- The last question is the following: Can we compare the
correlation between the different modes. Therefore thep:q sequences in this investigation with the famous “period-

dfP(x)
dx

=1 (37

V. DISCUSSION
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adding sequenced'35]? As suggested by Kaneko, a period- between every pair of the neighboring 1:0 and 0:1 plateaus
adding sequence is composed of phase-locked plateaus witbrm a CCDS. Among thesp:q period-adding sequences
the winding number §n+s)/(vn+r) chosen among the the sequence 1:1 with the winding numbens+-(m)/(n+m
plateaus in a CCDS located between two plateaus with the-2+3) is composed of the largest plateaus. In this way, a
winding numbersi/v ands/r (u,v,s,r, andn are integers  MCDS may be described as a queue of period-adding se-
The reason for this choice is that it is feasible to observe thigluences on the-w plane. Last, we have proved that the
sequence since it has a large stable region, and that it revealsaling behaviors of the period-adding sequences in the
the global property of lockings through various scalipgfs]. MCDS are qualitatively different from those in a CCDS. The
In an experimental observation, when varying the driven pacalculation and the results about these scaling laws will be
rameter so thah develops, one often sees that the system ipresented elsewhere.

locked onto a sequence of periodic motion, and the differ-

ence between the neighboring locking periods is either ACKNOWLEDGMENTS

v. In the MCDS, in eachp:q sequencen and m increase , , , ,
alternatively whene decreases, so that the difference be-_ '1iS work was supported by the Chinese National Science

tween the periods of the neighboring plateaus is also a CorEoundation under Grant No. 19575037. All of the authors

stant; therefore we suggest calling them period-adding sdvant to express their gr_atitude to Profes_sor E. J. Ding for his
' ry important suggestions and calculations.

guences. Of course they have some special features Y
compared with those in a CCDS. First, in the situation stated
by Kaneko, each sequence occupies a different part of the APPENDIX

parameter axis. In the MCDS the phase-locked plateaus of pqr the generap:q (p>1 and g>1) sequences we
each sequence are distributed in the whole complete phasgaye the following expressions.

locking region, which is approximately the region between (i) The ascent branch: As defined in E8), one has
e=0 and 0.005 in this investigation. Second, the period-

adding sequences in the MCDS are located in different po- n=n;+n,+---+n,, n;=[in/p]—[(i—1)n/p]
sitions along the vertical, i.e., the, direction. The sequence

in highest position is the 1:0 sequence with the winding®"d

numbersn/(n+2), while the 0:1 sequence with the winding
numbersm/(m+ 3) has the lowest position. There are many
of p:q period-adding sequences located between the savherei=1,2,...p, j=1,2,... 0, and[ ] represents “the
quences 1:0 and 0:1. The plateaus belonging to them aiateger part.” If p<q, the collision functions can be written
distributed in a special way, so that the plateaus positioneds

m=my+my+---+my, m=[jm/q]—[(j—1)m/q]

[a/p] IDg,pl=1 Bj(a,p.0) H; j(0.p,0)
Fa (X):( |1:[1 le )( =0 i=o L”v(i,J,q.pVO) t:I_Io Rmv(i,j,q,p,o)ﬂp) L”p(x)'
(A1)
x<el2 and x—el2,
[a/p] [Dg,pl—1 Bj(q,p.1) H; j(a.p.1)
+ _ — - — — —
Fa (X)_( |1;[l Rm1+lp)< iljo 11;[0 L“u(i,j,q,p,l) t=1_[O Rmm,j,q,p,l)ﬂp) L0, Rm, (%)
(A2)
x>el2 and x—el2.
If p=q, the collision functions can be written as
IDpgl-1 Bf(p.al 0 1
Fa ()= izl_[() jﬂo (t_H?E[p D) L”v*(hJ',p,q,l)ﬂp) Rmv*(i,j,p,q,ﬂ (|_1[_[p,q] L”IQ) quL”p(X)'
HEE (A3)
x<el2 and Xx—e€l2,
IDpgl-1 B (P00 0 0
o _ _ _ _
P07 L4 j=0 (I—H-*-(pqO) L”V*u,J,p,q,omp) R 115,00 (|—1[_[mq] Ln“'q)le(X)'
W (A4)

x>el2 and x—e€/2.
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The collision conditions areF_ (e /2)=¢ /2 and F (er/2)= €r/2.
(ii) The descent branch: =g, the collision functions can be written as

|Dq,p‘_1 Bi*(q,p,l) 0 1
Faoo=| I ]_1;[0 ( II R, )L‘ (H R;lp)Ln‘pR,;q(x),

m % n [
=0 t=H* (q.p.1) v*(i,j,q,p,)+tp v*(i,j,p.q,) 1=[a/p]
b (AB)
x<e and X—e,
IDg,pl —1 B} (0.p.0) 0 0
Fa(x)= 11 II Ry, Lo, ( Il Ry )L*(x),
i=o j=0 t=Hi*j(q,p,0) m, (i,j,q,p,0)+tp ny (i,j,q,p,0) 1=[a/p] r“1+Ip n
' (AB)
x>e and X—e.
If p>q, the collision functions can be written as
[p/a] IDpgl—1 Bi(p.a.0 H; j(.q,0
Fq(X)= L, R, L, R, (X
a (X) |U1 Mg ( i=o j];[o Mo(i,p.a.0) t:Ho Mu(i,i,p,a.0)+tq mp( ),
(A7)
Xx<e and X—e,
[p/a] IDpgl—1 Bi(p.a.1) H; j(p.a.1)
+ _ + + + + 0+
Fq () I1;[1 Lnlﬂp)( I I Re e t=1_[0 an(i‘j‘p'q’lmq>leLnl(x),
(A8)

x>e and X—e.
The collision conditions areFj (e )=¢_ and Fj(eg)=e€g. The functionsD, B, », H, B*, »*, andH* are defined as

D A(r,rr Ao’,rg[T/z]
A, .—1 A, >[12],

whereA, ;=o— 1 al7];
v(i,j,o,7,0)=u(i,j,0,7,0)=]D, ;,
where

T—A,,+6, =0
pli,o,7,8)=1 7= A+ o+isgnD, ), 1#0, (1—1)—A, [(1-1)/A,]=0
T_AO',T+ 5+(|D0',T|_i) Sgr(Do','r)i i#0, (T_1)_AU,T[(T_1)/AO',T]7&O’

[um(i,o,7,6)+1—7+6]/D,,, D, ,.<0
Bi(o,7.8)= (u(i,o,7,8)~1-8]/D, ., D, ,=0;
5 E, v(ij,o10)<A,,
H; = o
e md= gy v(i,j, o, 7.8 >A, .,

whereE=[o/7]; and
v (i,j,o,7,8)=p*(i,j,0,7,8)+]D, ;,

where
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A,,+1-5, i=0
W (i,0,7,8)= 1 A, +1—8+i sgrD,.,), 1#0, (r—1)—A, [(—1)/A, ]=0
A(T,T+1_5+(|D(T,T|_i) Sgr(DU,T)1 |¢0, (T_l)_A(r,T[(T_ 1)/A(7',T]7&0’

[2—6—u*(i,0,7,6)]/ID,,, D, ,.<0

* —
Bi (0’,7’,5) ((7__ 5_:“’*“!0-!7!5)]“)0',7! Do-,rzov

E, v*(i,j,o,1,0)<A,,— 6

* =
Hiyj(O',T,é) [E—l, V*(i,j,UyT15)>AU',T_5.
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