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Multiple devil’s staircase and type-V intermittency
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We have observed a ‘‘multiple devil’s staircase’’ in a one-dimensional~1D! map including two discontinu-
ous regions. Both end points of each phase-locked plateau in the staircase are confined by the conditions of
collision between the periodic orbit and one of the discontinuous region edges. There are more modes of the
collision than in a 1D map including only one discontinuous region. This complexity makes the whole staircase
lose monotonicity, self-similarity, and the ‘‘Farey tree rule’’ for a description of the plateau length distribution.
However, the staircase consists of many conventional complete devil’s staircases, many of them having their
own threshold of transfer to chaos via a type-V intermittency. Therefore the parameter space can be divided
into three parts. In the first part only periodic attractors appear. In the second part periodic and chaotic
attractors appear alternatively, and the system displays type-V intermittency frequently. In the last part only
chaotic attractors exist.@S1063-651X~98!10601-3#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Recently, there has been considerable interest in pi
wise smooth maps. These maps may describe some pra
systems, such as relaxation@1–15# or impact@16–22# oscil-
lators, and display some dynamic phenomena different fr
what can be observed in a everywhere-differentiable m
@1–22#. One of these phenomena is a new type of interm
tency, named type-V intermittency@10–15#, that happens via
a collision of a periodic point with a discontinuous or no
differentiable point of the map. This type of intermittenc
shows a logarithmic dependence of the average lam
length on the control parametere @10,11#, a hyperbolic se-
cant invariant distribution of the laminar lengths@13#, and a
1/lne dependence of the Lyapunov exponent@15,16#. In dif-
ferent practical fields, three research groups have publis
experimental proofs of type-V intermittency@12,23,24#.

When studying the scaling behavior of the Lyapunov e
ponent in type-V intermittency, Lamba and Budd@16#
showed that in a discontinuous one-dimensional map a
quence of periodic attractors should appear before the sy
transfers to a chaotic motion via a type-V intermittency. F
this conclusion, Wu, Ding, and He@15# presented evidenc
in a piecewise linear model. They also found that in t
model the periodic attractors emerging before type-V int
mittency form a ‘‘conventional complete devil’s stairca
~CCDS!.’’ This concept will be discussed here.

The devil’s staircase is a structure describing phase lo
ing behavior in quite different contexts@25#, such as a one
dimensional Ising model with long-range interactions@26#,
the Frenkel-Kontorowa model of atoms adsorbed on a p
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odic substrate@27#, the three-dimensional Ising model wit
competing interactions@28#, the current-driven Josephso
junction @29#, the driven electrical conductivity of barium
sodium niobate crystals@30#, driven charge-density-wave
systems@31#, and driven electronic relaxation oscillato
@32#. This kind of dynamics can be described by on
dimensional discrete maps of the circle onto itself, the
called ‘‘circle maps.’’ In such a map a winding numberv
can be defined as the mean number of rotations per itera
When the control parametere is varied, the functionv(e) is
locked onto every single rational value to form a devi
staircase in thee-v plane @25,33#. The staircases often be
come complete on an one-dimensional set in the param
space separating different kinds of dynamics. The comp
mentary set to a complete staircase is a Cantor set of fra
dimensionD<1 @33#.

To our knowledge, all the observed complete devil’s sta
cases have three common characteristics. We shall use
term CCDS to denote them. First, the winding number,v, is
always locked to a rational in a nonzero intervalDe. Second,
the rule of the distribution ofDe lengths can be fully de-
scribed by a Farey tree. That means if there are two wind
numbers,v5M /s and v85M 8/s8 (M and s are integers!,
which are phase locked inDe and De8, then the winding
number of the largest phase-locking interval~or say phase-
locked plateau! betweenDe and De8 is (M1M 8)/(s1s8!.
In the following we shall call this rule the ‘‘Farey tree rule.
Last, the whole staircasev(e) shows monotonicity and exac
self-similarity. This is exactly what Wu, Ding, and He re
ported in Ref.@15#.

The mapping function studied in Ref.@15# actually has
two gaps~two discontinuous regions!. As shown in Fig. 1,
there is a gap between pointsD and E, and another gap
between pointsA andF. GapDE plays a very important role
in the creation of the CCDS. Each phase-locked plateau
the CCDS vanishes whene reaches a threshold at which th
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57 403MULTIPLE DEVIL’S STAIRCASE AND TYPE-V . . .
periodic orbit collides with either of the gap edges. At t
left end point of the plateau,eL , the periodic orbit collides
with point D, while at the right end point of the plateau,eR ,
it collides with E. After the collision the winding number is
locked in another rational. In the system studied in Ref.@15#,
the role of gapAF is unimportant, because the mappin
function was constructed so that the iteration always vi
segmentCD twice andAB once. The reinjection behavio
does not change significantly when the iteration out of
exit of the channel passes the ‘‘implicit discontinuous poin
xg5f 22(xA)5 f 22(xF). We say that the reinjection mecha
nism is ‘‘simple’’ in this case. This simplicity induces
simple CCDS.

What will happen if the mapping function is changed
that the reinjection behavior becomes significantly differ
when the iteration passesxg? In that case gapAF will play
an important role in the creation of the staircase as well,
the complexity of the reinjection mechanism will show
influence on the structure of the staircase. The new cha
teristics of the staircase should be an interesting feature
‘‘multigap’’ map. This is what we want to discuss in th
paper. In Sec. II of this paper we shall describe the modi
system. In Sec. III we shall derive the mathematical expr
sion of the new staircase. In Sec. IV we shall report
characteristics of type-V intermittency in this system. In S
V a discussion of some further questions will be present

II. THE SYSTEM

The mapping function, which can be viewed as a simp
fied model of an electronic relaxation oscillator@11# and
which was discussed in Ref.@15#, is modified so that the
reinjection mechanism becomes ‘‘complicated,’’ as shown
Fig. 1. The map reads:

FIG. 1. A schematic drawing of mapping function~1!. The
wider solid lines show the mapping function. As shown by t
dashed lines, the second backward images ofxF andxA fall together
at the center of the exit of the channel that is indicated byxg

5 f 22(xF)5 f 22(xA). The thin solid lines starting from pointE
shows the iteration trajectory escaping from the right end poin
the exit of the channel. It is reinjected into the channel atxR . The
thin solid lines starting from point~0,0! shows the trajectory from
the left end point of the exit. It is reinjected into the channel atxL .
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f ~x!5H f 11~x!5k1x1b11, xP@20.5,xB#

f 12~x!5k1x1b12, xP~xB ,e! @mod1#

f 2~x!5k2x1b2 , xP@e,0.5#,

~1!

wherek2 should be little bit smaller than unity so as to for
a specific channel in type-V intermittency@11,15#. k1 should
be quite larger than unity, so that the system’s behavior
be chaotic. Our study shows that the dynamics of the sys
is qualitatively the same whenk2 or k1 changes in this range
Here we choosek151.5, b115(2k1112k1

2e)/2(k111),
b1252(11k1

2e)/2(k111), k250.8, andb252k2e. The pa-
rametere denotes the horizontal coordinate of pointE, the
width of the exit of the channel, and is chosen as the con
parameter. It is useful to note thatyE[0, xB can be ex-
pressed asxB50.5k1e1b12, and yA5xE5e, and yD5k1e
1b12. We defineb11, b12, and b2 as functions ofk1, k2,
and e instead of being constants in order to keepxg , the
second backward image of bothxA and xF , always in the
middle of the exit of the channel, i.e.,xg5e/2, and let the
reinjection behaviors become qualitatively different when
iteration out of the channel passesxg . One will see that it is
very important for the appearance of the specific dev
staircase in this system.

Actually, pointxg may have to be defined by the left an
right limits of the coordinate, respectively, to express t
discontinuity here explicitly, that meansxg

l 5 f 21(xB)
5 f 22(xF) andxg

r 5 f 21(xC)5 f 22(xA). As shown in Fig. 1,
point xg divides the exit into two equal parts. If an iteratio
out of the channel falls in the left half of the exit~the clean
part in Fig. 1!, it visits segmentCD only once, and will then
be reinjected into the farthest end of the channel, betw
point xL andF. While if it falls in the right half~the region
in Fig. 1 covered by thin oblique solid lines!, it visits CD
twice, and will then be reinjected into the nearest end of
channel, between pointE andxR . After a collision between
a periodic orbit andxg , the orbit will be replaced by a new
attractor@17,18#. That means such a collision is one of th
boundary conditions of the phase-locked plateaus in the d
il’s staircase. Of course, the collision of a periodic orbit wi
the gap between pointsD andE also determines the bound
ary conditions, as discussed in Sec. V. Therefore, withe
changing so that a periodic orbit moves, there can be at l
the following four modes of collision between the orbit an
the discontinuous points which confine a phase-locked
teau.

~1! In an iterated trajectory, if the iteration out of th
channel always falls on the left part of the exit, the or
collides with pointE at eR , and collides with pointxg

l at eL .
~2! If the iteration out of the channel always falls in th

right part of the exit, the orbit collides with pointD at eL ,
and collides with pointxg

r at eR .
~3! If the iteration out of the channel can fall in either th

left or right parts of the exit, there can be two modes of t
collision: ~a! the orbit collides with pointxg

l at eL and col-
lides with pointxg

r at eR , and~b! the orbit collides with point
D at eL and collides with pointE at eR .

As will be discussed in Sec. III, modes~1! and~2! induce
the two most important sequences of the phase-locked
teaus, while mode~3! induces the other sequences.
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Before our discussion on the staircase of the phase-loc
plateaus, we have to define the winding number of an i
ated trajectory. For a circle map, the traditional definition
the winding number is

R5 lim
N→`

f ~N!~x0!2x0

N
5

p1q

n1m12p13q
, ~2!

wherep is the number of reinjection via the left part of th
exit in an iterated trajectory, andq is that via the right part of
the exit.n5( i 51

pni , m5( j 51
qmj , whereni is the iteration

number inside the channel after thei th reinjection via the left
part of the exit, andmj is that after thej th reinjection via the
right part of the exit. By this definition,R is the ratio that
each iteration crosses on the average when the numbe
iteration N→`. However, we prefer another definitio
which is more convenient for the expression of type-V int
mittency appearing inside the staircase, and for the calc
tion of the Lyapunov exponents. The new definition is

v5
n1m

n1m12p13q
. ~3!

By this definition, the winding number is the proportion
the iteration number inside the channel to the total iterat
number in the trajectory. In Sec. V, we will show that de
nitions ~2! and ~3! give similar staircase structures.

Now the expression of the Lyapunov exponent of an it
ated trajectory can be easily derived as

l~e!5 lim
N→`

1

N (
i 50

N21

lnu f 8~xi !u5@12v~e!# lnk11v~e!lnk2 .

~4!

Keener @34# proved analytically that the dynamics of
discontinuous circle map is dominated by periodic attracto
while chaotic attractors may appear in a mapping with
overlapping part. Here, mapping~1! has both the discontinui
ties and an overlapping part, and therefore we may exp
both a complete phase-locking region and a chaotic regio
the parameter space@4,5,8#. Whene is smaller than a thresh
old valueec0

, the iteration in a trajectory should visit seg

mentEF ~with a slope smaller than a unit! much more often
than segmentsAB and CD ~with the slope larger than a
unit!. The Lyapunov exponent should be negative in the
rameter region@0,ec0

# @15#, that is, the complete phase

locking region. In this region the winding numberv can be
calculated simply in one period. For simplicity, definition
~3! and ~2! will still be used. However, in definition~2!, N
will denote the number of iterations in one period; in defi
tions ~3! and~2!, p will be the number of reinjections via th
left part of the exit in one period,q will be that via the right
part of the exit in one period,ni will be the iteration number
inside the channel afteri th reinjection via the left part of the
exit in one period, andmj will be that after j th reinjection
via the right part of the exit in one period. These definitio
will be used in all the following sections.
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III. THE MULTIPLE COMPLETE DEVIL’S STAIRCASE

Figure 2 shows our numerical results of the depende
of the winding numberv by definition ~3!, on the control
parametere in the complete phase-locking region. Our com
putation shows that the coexistence of periodic attrac
probably does not happen in this region, thus we shall
pay attention to this question. The diagram consists of m
towerlike structures. After a careful study, we found th
both the ascent~left! and the descent~right! branches of each
tower are CCDS’s. In the whole staircase, which is co
posed of many CCDS’s and therefore is addressed as a
tiple complete devil’s staircase~MCDS!, the dependence o
v on e has lost monotonicity.

According to definition~3!, one can denote each platea
by four characters, (n, p, m, andq). Between them,p andq
are most important, and signify a significant feature of t
periodic orbit. The feature is the number of the iteration g
ing through the left or right parts of the exit of the channel
one period. One will see that the ratiop:q determines the
main sequences in the MCDS.

If p:q51:0, theiteration escapes from the channel on
via the left part of the exit. The number of iterations insi
the channel via the right part of the exit,m, naturally equals
zero. The winding number of the plateaus belonging t
sequence can be written asv5n/(n12). In this situation the
collision between the periodic orbit and the discontinuo
points thus can only choose the first mode mentioned in S
II. In this, the orbit collides with pointE at eR , andxg

l at eL .
The system is locked in an (n,1,0,0! plateau in@eL ,eR#. In
both cases, ife.eR or e,eL , the escaping iteration will
enter the right part of the exit.

If p:q50:1, theiteration escapes from the channel on
through the right part of the exit. Then numbern equals zero,
andm becomes the only varying index. The winding numb
of the plateaus in this sequence can be written asv5m/(m
13). The collision condition between the periodic orbit a
the discontinuous points thus can only choose the sec
mode mentioned in Sec. II. In this, the periodic orbit collid
with point D at eL , and it collides withxg

r at eR . The system
is locked in a~0,0,m,1! plateau in@eL ,eR#. In both cases, if

FIG. 2. The MCDS of the functionv(e) obtained numerically
by definition~3!. Everyv(e) value is obtained by taking an averag
over 5000 reinjections. The first 2000 iterations were dropped
avoid transience. Ten different initial value between20.5 and 0.5
have been chosen for the computation. Exactly the same re
were obtained, suggesting that the coexistence of periodic attra
need not be considered here.



rt

ug
e
in
e
in
t
a

rti
y

en
ru

e

sta
di
th
m

e

d

de
-
us

o

n

ol-

u-

,
of
een

ress

the
part
re-
the

in
of a

57 405MULTIPLE DEVIL’S STAIRCASE AND TYPE-V . . .
e.eR or e,eL , the escaping iteration will enter the left pa
of the exit.

As can be seen in Fig. 1, the iteration escaping thro
the left part of the exit will be reinjected into the part of th
channel farthest from the exit, and the iteration escap
through the right part of the exit will be reinjected into th
part of the channel nearest to the exit. Therefore, the wind
number of a 1:0 plateau should be much larger than tha
its neighboring 0:1 plateau. The sequence of the 1:0 plate
and that of the 0:1 plateaus are separated by a large ve
distance in thev-e plane. Considering the fact that man
p:q (p.0 and q.0) plateaus should appear betwe
neighbor 1:0 and 0:1 plateaus; there should be tower st
tures in thev-e plane. In this plane, (n,1,0,0! denotes the
sequence of the ‘‘top’’ plateaus in the towers, and~0,0,m,1!
denotes the sequence of the ‘‘bottom’’ plateaus in the tow
as shown in Fig. 2.

Now we shall derive mathematical expressions of the
bility borders of the phase-locked plateaus belonging to
ferent p:q sequences in the MCDS. The derivation and
expressions are quite long and boring; therefore, only so
main results are presented here. A reader who would lik
know additional can find more details in the Appendix.

~a! p:q51:0 sequence: For this sequence, the perio
condition requires

f 2
~n! f 11f 12~x!5x. ~5!

Whene→0, we define collision functions as

Ln
2~x!5 f 2

~n! f 11f 12~x!, x,e/2 and x→e/2 ~6!

and

Ln
1~x!5 f 2

~n21! f 11f 12f 2~x!, x.e and x→e. ~7!

HereLn
2 represents a periodic point which is about to colli

with the discontinuous pointxg
l , while Ln

1 represents a peri
odic point which is about to collide with the discontinuo
point E. Substituting Eq.~1! into Eqs.~6! and ~7!, one ob-
tains

Ln
2~x!52xG~n!2eG~n!2eQ~n!1P~n! ~8!

and

Ln
1~x!52~x2e!G~n!2eG~n21!2eQ~n21!1P~n21!,

~9!

where

G~n!5 1
2 k1

2k2
n , Q~n!5

12k2
n

12k2
k2 , P~n!5 1

2 k2
n .

The collision conditions areLn
2(eL/2)5eL/2, and Ln

1(eR)
5eR . We can obtain the expression of the two end points
a plateau (n,1,0,0! as

eL~n,1,0,0!5
P~n!

1
2 1Q~n!

, ~10!
h
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eR~n,1,0,0!5
P~n21!

11Q~n21!1G~n21!
. ~11!

~b! p:q50:1 sequence: Similarly, we can define collisio
functions as

Rm
2~x!5 f 2

~m! f 11f 12
~2!~x!, x,e and x→e ~12!

and

Rm
1~x!5 f 2

~m21! f 11f 12
~2! f 2~x!, x.e/2 and x→e/2,

~13!

whereRm
1 represents a periodic point which is about to c

lide with the discontinuous pointxg
r , while Rm

2 represents a
periodic point which is about to collide with the discontin
ous pointD. Substituting Eq.~1! into Eqs.~12! and~13!, one
obtains

Rm
2~x!52xT~m!2eT~m!2eS~m!1O~m! ~14!

and

Rm
1~x!52~x2e!T~m!2eT~m21!2eS~m21!

1O~m21!, ~15!

where

T~m!5 1
2 k1

3k2
m, S~m!5

k1
2k2

m

2~11k1!
1

12k2
m

12k2
k2 ,

O~m!5
11k12k1

2

2~11k1!
k2

m.

Thus the two end points of a plateau~0,0,m,1! in this se-
quence can be obtained by the collision conditionsRm

2(eL)
5eL andRm

1(eR/2)5eR/2, as

eL~0,0,m,1!5
O~m!

11S~m!2T~m!
, ~16!

eR~0,0,m,1!5
O~m!

1
2 1S~m!

. ~17!

~c! p:q51:1 sequence: According to definition~3!, a pla-
teau in this sequence has a winding numberv5(n1m)/(n
1m1213). By the ‘‘Farey tree rule’’ stated in Sec. I
which still works in either the ascent or the descent branch
a tower, a 1:1 plateau should be the largest plateau betw
the neighboring top and bottom plateaus. We also add
them by ‘‘middle plateaus.’’

Unlike the two situations discussed above, in this case
iteration escapes from the channel one time via the right
of the exit, and one time via the left part alternatively. The
fore there can be two modes of the collision between
periodic orbit and the discontinuous points, as mentioned
Sec. II. We found that the ascent or the descent branch
tower shown in Fig. 2 has different choices of mode.
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~i! The ascent branch: In this branch the plateaus cho
mode~a! in the third case stated in Sec. II. That is, iterati
in the periodic orbit via the left half of the exit collides wit
xg

l at eL , while the iteration via the right half of the ex
collides withxg

r at eR . Therefore the collision function ca
be defined as

Fa
2~x!5Rm

2Ln
2~x!, x,e/2 and x→e/2, ~18!

and

Fa
1~x!5Ln

2Rm
2~x!, x.e/2 and x→e/2. ~19!

Similarly we can obtain the expressions

eL~n,1,m,1!5
O~m!12T~m!P~n!

1
2 1S~m!1T~m!12T~m!Q~n!

, ~20!
e-
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eR~n,1,m,1!5

P~n!12G~n!O~m!
1
2 1Q~n!1G~n!12G~n!S~m!

. ~21!

~ii ! The descent branch: In this branch the plateaus cho
mode~b! in the third case stated in Sec. II. That is, iterati
in the periodic orbit via the right half of the exit collides wit
point D at eL , while the iteration via the left half of the exi
collides with pointE at eR . Therefore we can have the sim
lar expressions

Fd
2~x!5Ln

2Rm
2~x!, x,e and x→e, ~22!

Fd
1~x!5Rm

1Ln
1~x!, x.e and x→e ~23!

and
eL~n,1,m,1!5
P~n!12G~n!O~m!

1
2 1Q~n!1G~n!12G~n!@S~m!2T~m!#

, ~24!

eR~n,1,m,1!5
O~m21!12T~m!P~n21!

11S~m21!1T~m21!12T~m!@11G~n21!1Q~n21!#
. ~25!
nt
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~d! p:q (p.1 and q.1) sequences of the phas
locked plateaus~the plateaus in both the ascent and the
scent branches of the towers are shown in Fig. 2, which fo
many sequences between 1:0, 1:1, and 0:1!.

In this general case, there can be again two modes o
collision between the periodic orbit and the discontinuo
points, which is the same as in the situation wherep:q
51:1. A reasonable conclusion is that the collision functi
can still be expressed by a combination ofRm

2 , Rm
1 , Ln

2 ,
and Ln

1 , but the form will be much more complicated. W
shall present only the mathematical forms of the collis
functions and the collision conditions in the Appendix. E
plicit expressions ofeL(n,p,m,q) andeR(n,p,m,q) are too
long and too complicated to present. In practice, we wo
prefer to use a numerical way to obtain the data
eL(n,p,m,q) andeR(n,p,m,q) by a substitution of mapping
~1! and the collision conditions to the collision functions. W
have compared all the analytical results ofeL(n,p,m,q) and
eR(n,p,m,q) with the numerically obtained positions of pla
teaus shown in Fig. 2, and seen very good agreement.

It is now clear that the MCDS has neither monotonic
nor exact self-similarity. This means that winding numbe
may increase or decrease in different parts of a MCDS, a
magnification of a small part of a MCDS may not resem
itself. Also, the distribution rule of the lengths of the phas
locked plateaus in a MCDS cannot be described by a Fa
tree. For example, as can be seen in Fig. 2, the largest pla
between two plateaus,M1 /s1 andM2 /s2, often is a plateau
belonging to the ‘‘top’’ sequence instead of (M11M2)/(s1
1s2) if plateausM1 /s1 and M2 /s2 are not in same branc
of a tower. That does not obey the ‘‘Farey tree rule’’ in
CCDS.
-
m

he
s

d
f

s
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-
ey
au

IV. TYPE-V INTERMITTENCY INSIDE A MCDS

From Eq. ~4!, one knows that the Lyapunov expone
function of the driving parameter,l(e), should show a simi-
lar MCDS in thel-e plane. Figure 3 shows this MCDS.
has similar tower structures, but the 1:0 sequence is in

FIG. 3. The Lyapunov exponent spectrum to show the transi
of the p:q sequences to chaos. The inset is the enlargement o
part within the parameter range@0.0040,0.0101#. The two vertical
dashed lines indicate the first and the last thresholds, where the
or the 1:0 sequence turns to chaos. Everyl(e) value is obtained
with Eq. ~4! by taking an average over 5000 reinjections and
initial numbers. The first 2000 iterations were dropped to av
transience.
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lowest position there. Also, the range of the driving para
eter in Fig. 3 is much wider than that in Fig. 2, to show ho
the differentp:q sequences turn to chaos via type-V inte
mittencies in differente values. It is interesting to stud
these critical values ofe and the scaling properties of thes
type-V intermittency inside the MCDS. We shall present t
results in this section.

In this study, we prefer to estimate these critical values
calculating thee values at which the aforementioned s
quences stop. Here ‘‘stop’’ means that all the plateaus o
sequence positioned over the criticality will lose stabili
and the system shows a chaotic motion there. As examp
Fig. 3 showsec`

, where the 1:0 sequence stops, andec0
,

where the 0:1 sequence stops. One can see that thesee
values are very near to the criticalities of the twop:q se-
quences. If comparingv andl values of different plateau
belonging to the same tower, one knows from Eq.~4! that the
plateau with the smaller winding number has the lar
Lyapunov exponent. Hence the 0:1 sequence loses its st
ity first, and the 1:0 sequence turns to chaos last, as sh
clearly in Fig. 3.

Now we estimate the value ofec0
at which the 0:1 se-

quence stops. The stability condition of a periodic attrac
in this sequence is

k1
3k2

m<1. ~26!

Thus, ate5ec0
, the critical stability condition

k1
3k2

mc51 ~27!

should be satisfied, wheremc denotes the critical value ofm.
Thus we have

mc523lnk1 /lnk255.451 178 47 . . . . ~28!

For a rough estimate, we take the nearest integer va
which is smaller thanmc . That ismc 5 5. Substituting this
mc value into Eq.~17!, one can obtain the lower limit ofec0

,

i.e., ec0
.0.004 910 18.

The critical valueec`
, where the 1:0 sequence turns

chaos, can be estimated in a similar way. Ate5ec`
, the

critical stability condition

k1
2k2

nc51 ~29!

should be satisfied. Thus we have

nc522 lnk1 /lnk253.634 118 9 . . . . ~30!

For a rough estimate, we take the nearest integer value w
is smaller thannc . That isnc 5 3. Substituting thisnc value
into Eq. ~11!, one can obtain the lower limit ofec`

, i.e.,

ec`
.0.010 265 8.
Similarly we can obtain the estimates of other critical v

ues betweenec0
and ec`

at which other sequences turn
chaos. These values are in a tolerable agreement with
numerical results. For example, the numerical critical val
of ec0

and ec`
are 0.004 919 70 and 0.027 572 9, resp

tively. They are near to our estimates.
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As shown in Fig. 3, in the parameter region wheree
,ec0

, periodic attractors dominate the system’s dynam
We say that this is a ‘‘complete phase-locking’’ region.
the parameter region wheree.ec`

, there can be only chaotic

attractors. While in the region whereec0
,e,ec`

, periodic
and chaotic attractors appear alternately. Many sequence
dressed byp:q (p.0 andq.0) turn to chaos via a type-V
intermittency there. Therefore type-V intermittency appe
frequently in the MCDS in this region. This is another cha
acteristic of the MCDS.

Now we shall derive the main scaling properties of t
so-called ‘‘type-V intermittency inside a MCDS.’’ The prop
erties studied here are the scaling of the average lam
lengths and the scaling of the Lyapunov exponent.

For the 1:0 sequence, whene→0 andn→`, Eqs. ~10!
and ~11! show the same dependence of the winding num
v on e as

v.122
lnk2

lne
. ~31!

Similarly, for the 0:1 sequence, whene→0 andn→`, Eqs.
~16! and ~17! show the same dependence of the windi
numberv on e,

v.123
lnk2

lne
. ~32!

For the 1:1 sequence, whene→0 andn→`, Eqs.~20!, ~21!,
~24!, and ~25! show the same dependence of the windi
number as the geometrical average of Eqs.~31! and ~32!,

v.12
213

2

lnk2

lne
. ~33!

Therefore we would expect a form of the dependence of
winding number forp:q sequences, the general case, as

v.12
2p13q

p1q

lnk2

lne
. ~34!

Thus the Lyapunov exponent scales as

l. lnk22
E~p,q!

lne
, ~35!

where

E~p,q!5
2p13q

p1q
lnk2~ lnk22 lnk1!.

In order to verify the analytical conclusion expressed by E
~35!, the results of the dependence of the Lyapunov expon
on e obtained by both Eq.~35! and the direct numerica
computation by Eq.~4! have been compared, as shown
Fig. 4. For simplicity, only the numerical results of th
Lyapunov exponent plateaus for three sequences, called
1:1, and 0:1, are shown in the figure from bottom to top. T
corresponding solid lines are drawn by Eq.~35!. The dashed
horizontal line, denoted byl5 lnk2 in the figure, indicates
the limit value of the Lyapunov exponent for all the s
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quences whene50. One can see that the agreement is exc
lent. A similar comparison has also been made for some
the p:q sequences. The good agreement makes sure tha
~35! is correct.

Finally, the dependence of the average laminar lengths
e can be obtained easily as

^ l &5
n1m

p1q
.

lne

lnk2
2

2p13q

p1q
. ~36!

We may need to point out that the function^ l &(e) is also a
MCDS as the functionv(e) andl(e). Now our study in this
section shows that the scaling laws of type-V intermitten
inside a MCDS are still reasonably consistent with the g
eral conclusion reported in Refs.@10,11,15#.

V. DISCUSSION

In this section a discussion on some further questions
be presented. The first question may be the following:
there still a MCDS in this system if a winding number
defined in the traditional way as expressed by Eq.~2!? In
other words, is it possible that the MCDS reported in t
paper only comes from the special definition of the windi
number as expressed by Eq.~3!?

From the discussion in the above three sections, one
already obtain the conclusion that the MCDS in this syst
is induced by the complicated modes of a collision betwe
a periodic orbit and discontinuous points. In the system st
ied in Ref.@15#, there is only one of these modes: the co
sion conditions of a periodic orbit with only two discontinu
ous points confine all the phase-locked plateaus. This sim
mechanism generates a CCDS. In the case when more
two discontinuous points exist, and all of them can sh
influences on the periodic condition, the different modes
the collision will induce different kinds of CCDS’s. Thes
CCDS’s organize a complicated staircase due to the cr
correlation between the different modes. Therefore

FIG. 4. The scaling properties of the Lyapunov exponents
three sequences in the range 0.000 000 1,e,0.005. From bottom
to top, the computed plateaus belong to 1:0, 1:1, and 0:1 seque
in turn. Everyl value is obtained with Eq.~4! by taking an average
over 5000 reinjections and ten initial numbers. The first 2000 ite
tions were dropped to avoid transience. The three solid lines s
the analytical results of Eq.~35!.
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MCDS is a property of a ‘‘multigap’’ map. It exists no ma
ter what kind of a reasonable definition for a winding num
ber is suggested.

In order to verify this conclusion, we computed the fun
tion v(e) by definition ~2!. The results are shown in Fig. 5
One can see that the MCDS in Fig. 5 is upside down, but
has almost the same form as that in Fig. 2.

The next question is the following: Is it possible that t
MCDS can be observed in a everywhere-differentiable m
ping? As is well known, in a one-dimensional map,f (x),
which is everywhere differentiable, the critical stability co
dition of a period-p attractor can be expressed as

Ud fp~x!

dx U51. ~37!

We argue that this condition can be viewed as a kind
‘‘mode’’ for confining phase-locked plateaus. There can
only this mode in this system. It is not strange, then, to se
CCDS in such a map, just like what was reported in R
@25–33#.

The situation becomes different in a one-dimensional m
which has gaps. In addition to what is expressed by Eq.~37!,
the modes for determining both end points of a phase-loc
plateau can be also the condition of the collision between
periodic orbit and the discontinuous points as discus
in this paper. These modes may induce a MCDS. In
point of view of symbolic dynamics, a mapping with gap
needs more symbols to be described. A scientist study
symbolic dynamics may express this idea as follows: A d
continuous map has higher dimensions than an everywh
differentiable map does, which is why it can show mo
complicated behaviors.

Considering the discussion above, we argue that is a p
sibility to observe a kind of MCDS in a high-dimension
everywhere-differentiable map. To our knowledge, no su
phenomenon has been discovered yet. We expect to see
an observation.

The last question is the following: Can we compare t
p:q sequences in this investigation with the famous ‘‘perio

f

ces

-
w

FIG. 5. The MCDS of the functionv(e) obtained numerically
by definition~2!. Everyv(e) values is obtained by taking an ave
age over 5000 reinjections. The first 2000 iterations were drop
to avoid transience. Ten different initial value,x0, between20.5
and 0.5, have been chosen for the computation. The results
same. This figure shows that definitions~2! and ~3! induce similar
MCDS’s.
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adding sequences’’@35#? As suggested by Kaneko, a perio
adding sequence is composed of phase-locked plateaus
the winding number (un1s)/(vn1r ) chosen among the
plateaus in a CCDS located between two plateaus with
winding numbersu/v ands/r (u,v,s,r , andn are integers!.
The reason for this choice is that it is feasible to observe
sequence since it has a large stable region, and that it rev
the global property of lockings through various scalings@35#.
In an experimental observation, when varying the driven
rameter so thatn develops, one often sees that the system
locked onto a sequence of periodic motion, and the diff
ence between the neighboring locking periods is eitheru or
v. In the MCDS, in eachp:q sequence,n and m increase
alternatively whene decreases, so that the difference b
tween the periods of the neighboring plateaus is also a c
stant; therefore we suggest calling them period-adding
quences. Of course they have some special feature
compared with those in a CCDS. First, in the situation sta
by Kaneko, each sequence occupies a different part of
parameter axis. In the MCDS the phase-locked plateau
each sequence are distributed in the whole complete ph
locking region, which is approximately the region betwe
e50 and 0.005 in this investigation. Second, the perio
adding sequences in the MCDS are located in different
sitions along the vertical, i.e., thev, direction. The sequenc
in highest position is the 1:0 sequence with the wind
numbersn/(n12), while the 0:1 sequence with the windin
numbersm/(m13) has the lowest position. There are ma
of p:q period-adding sequences located between the
quences 1:0 and 0:1. The plateaus belonging to them
distributed in a special way, so that the plateaus positio
ith

e
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r-

-
n-
e-
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d
he
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e-
re
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between every pair of the neighboring 1:0 and 0:1 plate
form a CCDS. Among thesep:q period-adding sequence
the sequence 1:1 with the winding numbers (n1m)/(n1m
1213) is composed of the largest plateaus. In this way
MCDS may be described as a queue of period-adding
quences on thee-v plane. Last, we have proved that th
scaling behaviors of the period-adding sequences in
MCDS are qualitatively different from those in a CCDS. Th
calculation and the results about these scaling laws will
presented elsewhere.
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APPENDIX

For the generalp:q (p.1 and q.1) sequences we
have the following expressions.

~i! The ascent branch: As defined in Eq.~3!, one has

n5n11n21•••1np , ni5@ in/p#2@~ i 21!n/p#

and

m5m11m21•••1mq , mj5@ jm/q#2@~ j 21!m/q#

wherei 51,2, . . . ,p, j 51,2, . . . ,q, and@ # represents ‘‘the
integer part.’’ If p,q, the collision functions can be written
as
Fa
2~x!5S )

l 51

@q/p#

Rmlp

2 D S )
i 50

uDq,pu21

)
j 50

Bi ~q,p,0!

Lnn~ i , j ,q,p,0!

2 )
t50

Hi , j ~q,p,0!

Rmn~ i , j ,q,p,0!1tp

2 D Lnp

2 ~x!,

~A1!

x,e/2 and x→e/2,

Fa
1~x!5S )

l 51

@q/p#

Rm11 lp

2 D S )
i 50

uDq,pu21

)
j 50

Bi ~q,p,1!

Lnn~ i , j ,q,p,1!

2 )
t50

Hi , j ~q,p,1!

Rmn~ i , j ,q,p,1!1tp

2 D Ln1

2 Rm1

2 ~x!,

~A2!

x.e/2 and x→e/2.

If p>q, the collision functions can be written as

Fa
2~x!5F )

i 50

uDp,qu21

)
j 50

Bi* ~p,q,1! S )
t5Hi , j* ~p,q,1!

0

Lnn* ~ i , j ,p,q,1!1tp

2 D Rmn* ~ i , j ,p,q,1!

2 G S )
l 5@p/q#

1

Lnlq

2 D Rmq

2 Lnp

2 ~x!,

~A3!

x,e/2 and x→e/2,

Fa
1~x!5F )

i 50

uDp,qu21

)
j 50

Bi* ~p,q,0! S )
t5Hi , j* ~p,q,0!

0

Lnn* ~ i , j ,p,q,0!1tp

2 D Rmn* ~ i , j ,p,q,0!

2 G S )
l 5@p/q#

0

Ln11 lq

2 D Rm1

2 ~x!,

~A4!

x.e/2 and x→e/2.



410 57SHI-XIAN QU, SHUNGUANG WU, AND DA-REN HE
The collision conditions areFa
2(eL/2)5eL/2 and Fa

1(eR/2)5eR/2.
~ii ! The descent branch: Ifp<q, the collision functions can be written as

Fd
2~x!5F )

i 50

uDq,pu21

)
j 50

Bi* ~q,p,1! S )
t5Hi , j* ~q,p,1!

0

Rmn* ~ i , j ,q,p,1!1tp

2 D Lnn* ~ i , j ,p,q,1!

2 G S )
l 5@q/p#

1

Rmlp

2 D Lnp

2 Rmq

2 ~x!,

~A5!

x,e and x→e,

Fd
1~x!5F )

i 50

uDq,pu21

)
j 50

Bi* ~q,p,0! S )
t5Hi , j* ~q,p,0!

0

Rmn* ~ i , j ,q,p,0!1tp

1 D Lnn* ~ i , j ,q,p,0!

1 G S )
l 5@q/p#

0

Rm11 lp

1 D Ln1

1 ~x!,

~A6!

x.e and x→e.

If p.q, the collision functions can be written as

Fd
2~x!5S )

l 51

@p/q#

Lnlq

2 D S )
i 50

uDp,qu21

)
j 50

Bi ~p,q,0!

Rmn~ i , j ,p,q,0!

2 )
t50

Hi , j ~p,q,0!

Lnn~ i , j ,p,q,0!1tq

2 D Rmp

2 ~x!,

~A7!

x,e and x→e,

Fd
1~x!5S )

l 51

@p/q#

Ln11 lp

1 D S )
i 50

uDp,qu21

)
j 50

Bi ~p,q,1!

Rmn~ i , j ,p,q,1!

1 )
t50

Hi , j ~p,q,1!

Lnn~ i , j ,p,q,1!1tq

1 D Rm1

1 Ln1

1 ~x!,

~A8!

x.e and x→e.

The collision conditions areFd
2(eL)5eL and Fd

1(eR)5eR . The functionsD, B, n, H, B* , n* , andH* are defined as

Ds,t5H As,t , As,t<@t/2#

As,t2t, As,t.@t/2#,

whereAs,t5s2t@s/t#;

n~ i , j ,s,t,d!5m~ i , j ,s,t,d!2 jD s,t ,

where

m~ i ,s,t,d!5H t2As,t1d, i 50

t2As,t1d1 i sgn~Ds,t!, iÞ0, ~t21!2As,t@~t21!/As,t#50

t2As,t1d1~ uDs,tu2 i ! sgn~Ds,t!, iÞ0, ~t21!2As,t@~t21!/As,t#Þ0,

Bi~s,t,d!5H @m~ i ,s,t,d!112t1d#/Ds,t , Ds,t,0

~m~ i ,s,t,d!212d#/Ds,t , Ds,t>0;

Hi , j~s,t,d!5H E, n~ i , j ,s,t,d!<As,t

E21, n~ i , j ,s,t,d!.As,t ,

whereE5@s/t#; and

n* ~ i , j ,s,t,d!5m* ~ i , j ,s,t,d!1 jD s,t ,

where
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m* ~ i ,s,t,d!5H As,t112d, i 50

As,t112d1 i sgn~Ds,t!, iÞ0, ~t21!2As,t@~t21!/As,t#50

As,t112d1~ uDs,tu2 i ! sgn~Ds,t!, iÞ0, ~t21!2As,t@~t21!/As,t#Þ0,

Bi* ~s,t,d!5H @22d2m* ~ i ,s,t,d!#/Ds,t , Ds,t,0

~t2d2m* ~ i ,s,t,d!#/Ds,t , Ds,t>0,

Hi , j* ~s,t,d!5H E, n* ~ i , j ,s,t,d!<As,t2d

E21, n* ~ i , j ,s,t,d!.As,t2d.
er
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