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Collectivity embedded in complex spectra of finite interacting Fermi systems: Nuclear example
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The mechanism of collectivity coexisting with chaos in a finite system of strongly interacting fermions is
investigated. The complex spectra are represented in the basis of two-particle two-hole states describing the
nuclear double-charge exchange modeé%Ba. An example ofl"=0" excitations shows that the residual
interaction, which generically implies chaotic behavior, under certain specific and well identified conditions
may create strong transitions, even much stronger than those corresponding to a pure mean-field picture. Such
an effect results from correlations among the off-diagonal matrix elements, and is connected with locally
reduced density of states and a local minimum in the information entf§iy63-651X98)11503-9

PACS numbgs): 05.45:+b, 05.30.Fk, 21.60.Ev, 24.30.Cz

I. INTRODUCTION ternal perturbation. Consequently, even though the real col-
lectivity implies a highly ordered behavior it involves effects

The concept of the random matrix theofRMT) [1]  beyond the mean field — the most regular dd#] of the
proves very fruitful in approaching complex quantum sys-many-body Hamiltonian. At the same time the effects be-
tems and in addressing the question of how classical Chad@nd the mean field are responsible for the GOE fluctuation
manifests itself on the quantum level. Chaos is essentially &roperties. Therefore, in a sense, these two seemingly con-
generic property of complex systems such as atomic nucldradictory phenomena, chaos and collectivity, may have to
[2], many electron atomB], mo|ecu|es[4]’ or disordered 30 in paraIIeI. Also on the classical level Collectivity is a
mesoscopic systeni$] and this finds evidence in a broad nonlinear cooperative effect that results from the coupling
applicability of RMT to describe level fluctuatiofi§]. Even  between different degrees of freedom.
many aspects of quantum chromodynamics are consistent In general, the shell model type approaches are based on
with chiral RMT [7]. Similarly, however, as in most physi- diagonalization of the full many-body Hamiltonian in the
cally interesting cases where classical chaos is not just a hakfisis spanned by all possibleparticle-n-hole (np-nh)
billiard-type chaos, the pure RMT cannot account for the fullconfigurations generated by the mean field. For practical rea-
richness of quantum phenomena connected with complexitygons, especially when large energy intervals are involved, as,
As an example one can mention the sign correlat[@g$or  for instance, in the case of nuclear giant resonances, one
parity nonconserving effect®] in compound nuclei, even truncates this hierarchy of configurations up 2a [15].
though it was the physics of compound nuclei that ledInterestingly, due to a sufficiently large density of states rela-
Wigner[10] to postulate the Gaussian orthogonal ensembldive to the strength of the residual interactid®], local level
(GOB) of random matrices as an appropriate global framefluctuations characteristic of GOE app¢ar] to take place
Explicit microscopic approaches in terms of the full shellfor the nuclear Hamiltonian acting already in the space of
model diagonalization, either in nuclef2,11] or atomic  2p2h states and this is a crucial element for an appropriate
physics[3], show perfect agreement with GOE when looking description of the giant resonance decay propeffiés The
at the local level fluctations measured in terms of the nearest
neighbor spacing distribution and the; statistics, but sig-
nificant deviations take place on the level of wave functions. e
This originates from the two-body nature of interaction, o
which reduces the number of independent parameters and
preserves certain correlation among the matrix elements. In
order to account for this type of correlation a two-body ran- = + +
dom interaction model has been introdu¢éd] and its sta-
tistical properties investigated in detdil3]. Still, however,
such models may not properly account for correlations that
originate from the geometry of a problem and that, in some
cases, may turn out to be significant.

Another characteristic connected with complexity, which £ 1. Diagrammatic representation of the two-body matrix
is even more interesting and important from the practicaklements in the spacep2h states with explicit indication of the
point of view, is collectivity. It means a cooperation, and angular momentum coupling scheme. The consecutive terms repre-
thus the coupling between the different degrees of freedorsent hole-hole, particle-particle, and particle-hole interactions, re-
in order to generate a coherent signal in response to an expectively.
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giant resonaces are, however, excited by one-body operators . ; 1 1
that directly probe the g1h components of the nuclear wave H= 2 €a; a;+ Z_Zkl Uij k18 a;a,ay. 1)
function. The D2h states only form the background which ' "

determines a decay law. There exist, however, very interestey first term denotes the mean field while the second term

'nr? phyS|ctaI plrocess::‘s, reﬂeﬁ‘ijﬂ‘e"ﬂ by tvvlo-tbhoidfyo- dis the residual interaction with antisymmetrized matrix ele-
phonon external operators, whic Irectly coupie the groun mentsv;; i . Diagonalizing this Hamiltonian in the subspace
state to the space ofp2h states. In view of the above men- of 2p2h states

tioned local GOE fluctuations giving evidence for a signifi-
cant amount of chaotic dynamics already in thp28 space,
the question of a possible coherent response or collectivity

;Jonrdri;?;/cgr;ggﬁg!sog? éshss\igy intriguing one and of mteresg/ields the eigenenergids, and the corresponding eigenvec-

tors|n)=23.,c5|2). For realistic nuclear interactions the spec-
tral fluctuations of E,} typically coincide with those of the

+

2)=aj a} an,an [0), )

Il. MODEL GOE[15],
We start with the Hamiltonian that, in second quantized The general form of matrix elements for the two-body
form, reads as residual interactior) between 2p2h states is given by

J— ! ! ! ’
Vo1pohihy plpshins = Spip! Op,ptUn!nshin, T Shyn Snonilp p,p)py T @(P1:P2)alhy N2)a(py,p2)athy,ha) 8p p1 Ghn v p nin e

()
|
wherea(i,j) denotes the antisymmetrizer betwdeand j. .
The consecutive terms in this expression are responsible for Spa(n)zﬁz: |cal(2IF .0
hole-hole, particle-particle, and particle-hole interactions, re-
spectively, while the remaining pair of states in each case are N At o .
spectators represented by thg functions. These functions + 2 c3" C,(0[F;|2")(2|F .[0)
set a significant fraction of the matrix elements to zero, 272
which may lead to correlations. Figure 1 illustrates the cor- zsg (n)+Sﬁd(n). (8)

responding structure in diagrammatical representation. Fur-

ther correlations may originate from the fact that many NON-ri.o second equality defines the diago[”ﬂ (n)] and off-
zero matrix elements relate to each other only by the @

geometrical factors due to the angular momentum couplingiagonal[ S (n)] contributions to the transition strength at
algebra. energy E,,. The second component includes many more
In response to an external fiefd, a state terms and it is this component that is potentially able to
induce collectivity, i.e., a strong transition to energy.
N N Two elements are, however, requirgd) a state|n) must
|Fa>EFa|0>:; (n|F|0)[n) (4) involve sufficiently many expansion coefficierd$ over the
unperturbed state$2) that carry the strength(2|F,|0)
is excited. The two-phonon operatbr, can be represented #0) and this is equivalent to at least local mixing, but at the

as same time(ii) sign correlations among these expansion co-
efficients should take place so that the different terms do not
Fo=lfpef,la. (5) ~cancel out. y
Optimal circumstances for the second condition to be ful-
wherefﬁ andf7 denote the single-phonon operators whosef'"ed read:

guantum numberg and y are coupled to formwx. The state

|F,) determines the strength function c2~(0[F.|2). ©)
This may occur if the interaction matrix elements can be
Sk (E)= > Sk (N)S(E—-Ey), (6)  represented by a sum of separable te@¥®f the multipole-
" multipole type:
where M
: Vijki= i Qk 10
S, (M =KnlF Jo)P. @ = &, % 1o

In the unperturbed basis of staf@) the transition strength  with Q{j ~(i |£,]i). The success of the Brown-Bolsterli sche-
SFa(n) to the statgn) can be expressed as matic model19] in indicating the mechanism of collectivity
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on the IJplh level points to an approximate validity of such 1500 71—
a representation and its formal justification comes from the €1288 r ¢
(2]

multipole expansion of the residual interaction. The structure
of the Hamiltonian matrix in the A1h subspace is then usu-
ally dominated by few multipoles. Collectivity can then be @ 500 [
viewed as an edge effect connected with the appearance of a i
dominating component in the Hamiltonian matrix and the
rank M of this component is significantly lowéunity in the

case of the Brown-Bolsterli modethan the size of the ma-
trix. This rank specifies a number of the prevailing states G
whose expansion coefficients predominantly are functions of 0T
Q. In general, on the |22h level a multipole structure of the 0 20 40 60 80 100

interaction enters the corresponding matrix elements in a ENERGY [MeV]

more complicated way. However, due to the two-body nature

of the nuclear interaction, which reduces itp2h matrix FIG. 2. (8 The unperturb(_ed _tran_sition-_strength_distribution in
elements to combinations of the ones representing thé?Ca for theJ”=0’. DCX excitation involving the single-phonon
particle-particle, hole-hole and particle-hole interactionsdiPole and 2w spin-quadrupole modes¢b) The same aga) but
[15], the separability may become effective also on thel2 after .|r.1clud|ng the reS|du.aI interactioft) SEQ cpmponents of the
level although conditions are expected to be more restrictivelansition strength as defined by Eg) (notice different scale (d)
On the other hand thep2h space offers many more unper- The |nformat|pn gntrlopy of the state;) in the unperturbed basis.
turbed transitions to form a collective state and the net effect "€ dashed line indicates the GOE lirpiin(0.48N) ].

may still appear significant. . .
For the quantitative discussion presented below WeThe first of these operators corresponds to thiev Idipole

choose the*®Ca nucleus, specify the mean-field part of theand the second to/ds spin-quadrupole excitation. The re-

Hamiltonian(1) in terms of a local Woods-Saxon potential sulting two-phonon mode thus operates on a level i3

including the Coulomb interaction, and adopt the density_ex0|tat|0ns. Formulas needed to express the angular momen-

dependent zero-range interaction of R0] as a residual E;L;r;: ggl#p())ljg dfofrg; ﬁlfsigicaebc;\rﬁr?:i ar;(:](tj\;\)l(o(—)?cg&(}perators
interaction (after correcting for a misprint in the density ' ’ PP -

functional: Ry=1.16AY3). Since we want to inspect the
higher energy region at least three mean field shells on both lll. RESULTS AND DISCUSSION

sides of the Fermi surface have to be used to generate the The results of calculations are presented in Fig. 2. As one
unperturbed P2h states as a basis for diagonalization of theqgp, see, including the residual interactfpart (b)] induces a

full Hamiltonian (1). Typically, the number of such states is strong transition at 51.1 MeV. This transition is stronger by
very large and this kind of calculation can be kept under fullzjmost a factor of 2 than any of the unperturtjeart (a)]
numerical control only for selected excitations of the lowestyansitions even though it is shifted to a significantly higher
multipolarity. Among various nuclear excitation modes (— 10 MeV) energy. This is also a very collective transition.
which can be considered in this context the double-charg@pout 95% of the corresponding strength originates from

exchange(DCX) processes are of special interest. Thesesgd (n), as comparison between pafts and (c) of Fig. 2

modes, excited in4", ") reactions[21], involve at least indicates. This whole effect is due to particle-hole type ma-
two nucleons within the nucleus and give rise to a sharp peatrix elements[Fig. 1(c)]. Discarding diagramsa) and (b)

at around 50 MeV in the forward cross section. They are thu e . .
produces no significant difference. The degree of mixing can

located in the energy region of the high density qf2h - ) . - )
states. which pointsg)t/o thge importancegof cohergngje effectd® quantified, for instance, in terms of the information en-

among those states. Consequently, the present investigati PPy [25]
may also appear helpful in studying the mechanism of DCX l(N)=—3.pInp: —|cn2 13
reactions and in separating the sugge$d] dibaryon con- () Pl pi=le 13
tribution from the conventional_effec@:%]. For all thef,e of an eigenvectom) in the basigpart(d)]. Interestingly, the
reasons we perform a systematic study of the DICX0 system finds preferential conditions for creating the most
states. Our model space then develbips2286 2p2h states.  collective state in the energy region of local minimum in
There are still several possibilities of exciting such a double{(n). Our following discussion is supposed to shed more
phonon mode represented by the operé&tgrout of the two  light on this issue.
single phonong ; and?,, of opposite parity. For definiteness ~ AS shown in Fig. &) our Hamiltonian matrix displays a
we choose bandlike structure with spots of the significant matrix ele-
ments inside. This together with a nonuniform energy distri-
. bution p,(E) of the unperturbed @2h states[Fig. 3(b)],
fe=rYy7_ (11)  which is a trace of the shell structure of the single-particle
states, characteristic of many other mesoscopic syste@is
and sizab_ly suppresses the range of mixing and locally supports
conditions for the edge effect to occur in the energy region of
R the minimum inp(E). A comparison with Fig. @) shows
f,= rY,00]+7_ . (120  that the collective state is located at about this region. More-

N0
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FIG. 3. (@ Structure of the Hamiltonian matrix for th&™
=0~ DCX states. The states are here labeled by energies, ordered 200 - I
in ascending order and the matrix elemeHtg=0.1 are indicated r
by the dots(b) Density of the unperturbedd2h states(c) Density NS L L

o] 5 10 15

of states after the diagonalizati Energy range of interaction
9 o 4 9 ENERGY [MeV]

between the unperturbed states.

o ] ) o ] ) FIG. 4. (a) Distribution of off-diagonal matrix elements between
over, the minimum survives dlagonallza_tl{)pp(E)_ in Fig. the J”=0" DCX states(histogram. The solid lines indicate fit in
2(c)] and all the above features are consistent with the effeGerms of Eqg.(15) with the resulting parametera=676, b=
tive band rangé27] —1.21,c=0.69 (left) anda=692, b= —1.22,c=0.81 (right). (b)

Density of states corresponding to the residual interaction part of

(AEi)2=; (Hii_Hjj)zH'Zj/ ; Hizj (14) the Hamitonian(1).

energy, is governed by a component of the type as specified
Further quantification of the character of mixing betweenby Eq.(10) with a small number of termsM <N) including,

the unperturbed states is documented in Fig. 4. The distriblj2f course, the ones th?‘t Co'r_lc'de with an exterall field. In a
tion P(H) of off-diagonal matrix elementéa) is not Gauss- pure case a structure like this causes an energy gap between
ian but of the following type: the collective state and the remaining states. In the present

case, of its only local nature, one expects a local minimum in
P(H)=a|H|Pexp(— H|/c). (15) the density of states in the vicinity of_ the cqllective state.
Indeed, as can be seen by a careful inspection of Rig. 2

This indicates the presence of the dominating multipoleVersus Fig. &) any stronger transition is located in such a
multipole components in the interactif®,3]. An interesting ~Minimum whose range typically extends over an energy in-
fea‘[ure is the asymmetry between the positive and negativ@rval Of the.OI’der Of 05 MeV..E.VEH relat|ve|y Weak transi-
valued matrix elemen{See parameters in the caption to Fig. tions are asigned their own minima. Moreover, as we have
4(a)] The positive matrix elements are more abundantyerifiEd in certain selected cases, many other minima in the
which expresses further correlations among them and the fagensity of states that are not occupied by the above specified
that the interaction is predominantly repulsive for the modetransitions turn out to be filled in by the DCX"=0" tran-
considered. Significant reduction of dimensionality is alsosSitions connected with other combinations of two one-
indicated by the distribution of eigenvalues of the residualphonon operatorsfor instance,fﬁ=r2er, andf =r[Y;
interaction. As shown in pait) of Fig. 4 the majority of ®ao],-7_).
these eigenvalues is concentrated around zero and thus con-A reduction of the rank(real dimensionality of the
stitute approximate zero modes of that part of the Hamil-Hamiltonian matrix evidenced above is also consistent with
tonian. We also would like to note at this point, without the observed minimum in the information entroplig.
showing the results explicitly, that similar analysis on the2(d)]. Simply, in the relevant energy region there are fewer
1plh level using appropriately larger model spa¢ies bet-  free parameters and this sets additional constraints on the
ter statistics shows an even larger fraction of such zerodegree of mixing and thus on the amount of chaos. As a
modes. This is due to the fact that in thelh space the chaos related characteristics we take the spectral rigidity
multipole-multipole structure of the interaction manifests it-measured in terms of thi; statistics[1]. We find this mea-
self in a more transparent way. sure more appropriate for studying various local subtleties of
Appearance of a strong transition at certain eneliggy = mixing than the nearest neighbor spacihdNS) distribution
means that the structure of the Hamiltonian matrix of thebecause for a smaller number of states the latter sooner be-
residual interaction, at least locally at around that particulacomes contaminated by strong fluctuations. Indeed, the spec-

shown in Fig. 2d).
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2 ] MeV is another factor of 2 stronger than before and, again,

X 2] all significant transitions are situated in the local minima of
1.5 | . . p(E) and in the overall minimum of the information entropy.

i ’ ] A too severe decrease gfwill eventually bring all the tran-
7 ] sitions to their mean-field values. This transition is, however,

e ()] not just linear. Here we seem to be facing a competition of
y g the two elements. One is the residual interaction that must be
s T K sufficiently strong to correlate many states but the other one
i / o is a condition for the edge effect to occur. As a result, even
0 10 20 20 for g=0.35 we still obtain very strong transitions, apparently
due to the fact that the interaction strength is such that the
unperturbed transitions are moved just to the absolute mini-
FIG. 5. Spectral rigidityAz(L) for eigenvalues from the two mum inp(E).

a5(L)

05 F

400-state long interval$i=351-750(i1) andn="751-1150(i2). The range of values of a multiplication factor that pro-
The long-dashed line corresponds to Poisson level distribution anduces this kind of picture is rather narrow and this feature of
the short-dashed line to GOE. collectivity resembles a classical phenomenon of the stochas-

tic resonanc¢28]. It is relatively easy to completely destroy

tral rigidity (Fig. 5 detects differences in the level repulsion Such strong transitions. By multiplying the residual interac-
inside the string of eigenvaludil) covering the first maxi-  tion by a factor ofg=2.5 (which is equivalent to increasing
mum in pp(E) (35.2-44.5 MeV, 400 states starting from the densit)_/ of statgghe strength di_stributio_n displays aforrr_l
n=351 up ton=750) and the ongi2) covering the mini- as shown in the lowest panel of Fig. 6. This strength remains
mum and thus including the collective statd4.5-52.1 largely localized in energy but the distribution of the corre-
MeV, 400 states froom=751 ton=1150). The deviation SPondingSc(n) (Fig. 6) does not deviate much from the
from GOE is more significant in i2, which, similarly 4gn),  Porter-Thomag(PT) distribution [29] P(s)=(2ms) *?exp
signals a more regular dynamics in the vicinity of the collec-(—/2) characteristic of GOE, even though correlations
tive state 6=1089). among the matrix elements are the same as before. Interest-
Conditions corresponding to the actual Hamiltonian ardngly, even here the larger transitions are located in their own
not the most optimal ones from the point of view of the Small minima inp(E). Further increase of the multiplication
collectivity of our J7=0" DCX excitation. By multiplying factor may again produce some transitions that are more col-
the residual interaction by a factor gf=0.7 we obtain a lective than those allowed by PT. In particular, starting from

picture as shown in Fig. 6. Now the transition located at 48.¢/alues~4 some new strong collective transitions appear at
the upper edge of the whole spectrum.

‘ —— . To illustrate statistics of the transition strength versus PT
22000 | g=0.35 ] distribution we use a measure introduced in Ra€]. Con-
% 1000 ¢ 3 sequently, for all the cases considered above we calculate the
B ] total numberN of transitions of magnitude smaller than a
given threshold values,,, as a function ofS;,. Since the
number of large components relative to the small ones is of
primary interest in the present study and in order to set the
same scale when comparing different cases we, in addition,
in each case independently, divide all the transitis(s) by
the corresponding maximum value @&(n). After that
Sma{N)=1 in each case. Consistently, the RMT limit of this
measure is then drawn from the cummulative PT distribution
and this limit is indicated by the solid line in Fig. 7. In the
log-log scale this limit develops a long straight line segment
- with the slope of 0.5, which reflects the dominant role of the
200 Fg=3s5 " " T 1 preexponential factors( *?) in PT distribution at smaller

§ 100 [ 3 transitions. As can be seen from this figure, the2.5 case

is very close to this limit. But, interestingly, evey=0.35
) tends to the same slope when probing the region of small
Q

transitions, which means that such transitions are consistent
with GOE. Only the unperturbed case is distinct in this
E - . . 4 sense.
0 20 40 60 80 100 Finally, Fig. 8 shows the transition strength distribution of
the “constituent” single-phonon modes specified by Egs.
(11) and (12), respectively, in their own g1h sectors and

FIG. 6. Transition-strength distribution, density of states and thdhe€ same model space of single-particle states is used. There
information entropy for the same excitation as in Fig. 1 but theare 28 (single charge exchangd™=1" and 25J)7= 1*
residual interaction is now multiplied by a factor@#0.35(upper ~ 1plh states in this space. As before, théactors reflect the
pard, g=0.7 (middle par}, andg=2.5 (lower par}, respectively. strength of the residual interaction relative to the original

I(n)

ENERGY [MeV]
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0 20 40 60 80 100 0 20 40 60 80 100

(properly rescaled, see textielow a threshold valu§,,. The open
crosses refer to the unperturbed cagp=0), thick dots tog ENERGY [MeV] ENERGY [MeV]

=0.35, open squares @=0.7, filled squares tg=1, and open . o ) )
triangles tog=2.5. The solid line represents the same quantity de- FIG. 8. Transition-strength distribution corresponding to single-

termined from a Porter-Thomas distribution. phonon operators specified by Eg1) (left) and by Eq(12) (right),
calculated in the space ofplh states for various residual interac-

one. The results collected in this figure provide further evi-'o" muiltiplication factorsy.

dence that collectivity observed on the2h level is not  elements, nonuniformities in the distribution of states and a
accidental. It can always be traced back to collectivity of theproper matching of the interaction strength to an initia-
corresponding single-phonon modes in their own subspaceperturbed location of the transition strength relative to the
Consistently with our previous discussion, this corresponscale of nonuniformities in the distribution of states. If
dence cannot, however, be expressed simply in terms of prgresent, a collective state is then located in the region of
portionality. For instance, the single-phonon transitions formore regular dynamics characterized by lower information
g=0.35 are significantly weaker than fgr=1 while the  entropy, more sizable _devic_';ltions from_GOE of the Ievel fluc-
Opposite applies to the resulting two_phonon mode_ Receﬁ.ﬂauons and local m|n.|ma in the dQnSIty of .States. Th|S.|ater
study of Ref.[31], even though based on a much simpler€ffect can thus potentially be used in experimental studies as
model, also shows that characteristics of the two-phono@" extra criterion to detect collectivity. We also would like to

mode (double giant dipolpare much more sensitive to the POINt out that these aspects of collectivity parallel an analo-
detailed form of the Hamiltonian than those of the corre-99US Property hyp_ot_hes_lzed for living organlsrﬁﬁg] and
sponding single-phonon modes stating that collectivity is a phenomenon occurring at the

Taken together, a real collectivity, by which we mean aborder between chaos and regularity.
transition stronger than those generated by the mean field, is
a very subtle effect and is not a generic property of the com-
plex spectra. Its appearance, as it happens for one of the This work was supported in part by Polish KBN Grant
components of thd”=0" DCX excitations considered here, No. 2 P0O3B 140 10, and by the German-Polish scientific
involves several elements like correlations among the matriexchange program.
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