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Wigner-Kirkwood quantum corrections for the pair distribution function in a plasma

Marie-Madeleine Gombert and Daniel Le´ger*
Laboratoire de Physique des Gaz et des Plasmas, Baˆtiment 210, Universite´ de Paris-Sud, 91405 Orsay Cedex, France

~Received 3 June 1997; revised manuscript received 19 November 1997!

We study the quantum corrections for the pair distribution functiong2(r 12) in a one-component plasma. Our
analysis is based on the\2 expansion of the Wigner-KirkwoodN-particle distribution function in phase space.
A resulting expression forg2(r 12) is derived exactly, at order\4, valid at any interparticle distance. This
quantum pair distribution function is expressed in terms of the classical two-, three-, four-, and five-particle
distribution functions. Analytical properties of this expression are studied, both for small and larger 12.
Accurate approximate expressions, depending only on the classical pair distribution function, are proposed.
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I. INTRODUCTION

The knowledge of the static pair distribution functio
g2(r 12) plays a central role in the study of thermodynamic
and transport properties of a fluid@1#. In a partially degener-
ated fluid, quantum expressionsg2

q(r 12) are needed. A pow-
erful approach involves a semiclassical quantum distribu
function P(r1 ,...,rN ,p1 ,...,pN) proposed by Wigner in his
original paper@2# to calculate quantum corrections for th
classical thermodynamical properties. Using the so-ca
Wigner-Kirkwood ~WK! \2 expansion of the quantum dis
tribution function, the\2 correction forg2(r 12) was derived
by Jancovici@3# with a very simple result in the case of th
one-component plasma~OCP!.

The \4 term was already investigated by Alastuey a
Martin @4# and Cornu and Martin@5# in order to analyze the
absence of exponential clustering in a quantum plas
These authors predicted the asymptotic behavior (r 12→`) of
the charge-charge correlation function in the OCP. As a m
jor result, they have shown that, in contradistinction with t
classical case whereg2

c(r 12→`)21 ~c stands for classical!
decreases faster than any inverse power ofr 12 ~exponential
clustering! @6#, the \2 WK expansion ofg2

q(r 12)21 no
longer exhibits a decay bounded by an exponential, bu
algebraic one. They proved that the\4 term is decreasing a
r 12

210. As explained by these authors, this tail arises from
fluctuations of dipolar interactions which are not perfec
screened in the quantum case. The knowledge of the\4 term
is thus shown to have a great importance in plasma statis

In the present work, we apply the WK formalism d
scribed in Sec. II to derive the exact\4 correction for the
pair distribution function in the OCP~Sec. III!. At order\4,
g2

q(r 12) is expressed in terms of the classical distributi
functionsgn

c(r1 ,...,rn) ~up to n55!. This result@Eq. ~32!#
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has been previously presented in a Letter@7#. The analytical
properties of the\4 term are studied in both the limitsr 12
→` ~Sec. IV! andr 12→0 ~Sec. V!. Of course, as explained
at the end of Sec. V,r 12 cannot be too small. In the othe
case, this semiclassical formalism would not be appropr
and the WK expansion would not converge. For larger 12,
the expansion with respect tor 12

22 is derived exactly at all
orders @Eq. ~60!#. This analysis of the behavior of the\4

term allows us to propose, in Sec. VI, approximate expr
sions for the WK pair distribution functiong2

q(r 12) at order
\4. These very accurate approximations need only
knowledge of the classical pair distribution functiong2

c(r 12).
In the last section, a few numerical results are shown.

II. WIGNER-KIRKWOOD DISTRIBUTION
FUNCTION, \4 CORRECTION

If we consider a set ofN particles enclosed in volumeV
at temperatureT ~N andV are very large!, \2 expansion of
the unnormalizedN-particle WK distribution function in
phase space@2# reads

P~r1 ,...,rN ,p1 ,...,pN!5exp~2be!1\2f 21\4f 4

1¯1\2nf 2n1¯ , ~1!

wheree is the total energy,

e5 (
k51

N pk
2

2Mk
1U~r1 ,...,rN!, ~2!

andb51/kBT ~kB is Boltzmann’s constant!. r k andpk denote
the position and the momentum of thekth particle in three-
dimensional~3D! space,Mk denotes its mass, andU stands
for the potential energy. It can be seen thatf 2n satisfies a
partial differential equation@2#
3962 © 1998 The American Physical Society
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2 (
k51

N pk

Mk
•~“ rk

f 2n!1 (
k51

N

~“ rk
U !•~“pk

f 2n!5
1

223! (
k1 ,k2 ,k351

N

~“ rk1
“ rk2

“ rk3
U !•~“pk1

“pk2
“pk3

f 2n!1¯

2
~21!n

22n~2n11!! (
k1 , . . . ,k2n1151

N

~“ rk1
¯“ rk2n11

U !•~“pk1
¯“pk2n11

f 2n!,

~3!

written here with the help of contracted tensor products.“ rk
and“pk

denote the gradients atr k andpk . f 2 was evaluated by
Wigner in his original work@2#. In order to derive terms of higher orders, we conveniently make use of Wigner’s notati
point in the phase space is specified by (r 1 ,...,r 3N ,p1 ,...,p3N) where r 1 ,...,r 3N are the 3N spatial coordinates of theN
particles andp1 ,...,p3N , the corresponding momentum coordinates. Let

f 2n5e2beg2n . ~4!

Upon evaluating thep derivatives ofe2be and f 2 , the following equation is readily deduced:

2 (
k51

3N
pk

Mk

]g4

]r k
1 (

k51

3N
]U

]r k

]g4

]pk
5

g2

3!4 F2 (
k,l ,m51

3N
]3U

]r k]r l]r m

b3pkplpm

MkMlMm
13 (

k,l 51

3N
]3U

]r k
2]r l

b2pl

MkMl
G

1
1

3!16 (
k,l ,m,n51

3N
]3U

]r k]r l]r m

]2U

]r m]r n

b5pkplpn

MkMlMmMn

1
1

5!16 (
k,l ,m,n,o51

3N
]5U

]r k]r l]r m]r n]r o

b5pkplpmpnpo

MkMlMmMnMo

2
1

3!16 (
k,l ,m51

3N
]

]r k
S ]2U

]r k]r l

]2U

]r l]r m
D b4pm

MkMlMm

2
1

3!32 (
k,l ,m,n51

3N
]5U

]r k
2]r l]r m]r n

b4plpmpn

MkMlMmMn
1

1

128 (
k,l ,m51

3N
]5U

]r k
2]r l

2]r m

b3pm

MkMlMm
,

~5!

with @2#

g25 (
k51

3N
b2

8Mk

]2U

]r k
2 1 (

k51

3N
b3

24Mk
S ]U

]r k
D 2

1 (
k,l 51

3N
b3pkpl

24MkMl

]2U

]r k]r l
. ~6!

Noting thatg2 is a sum of terms of ordersb2 andb3, it can be checked that the right-hand member of Eq.~5! contains terms
of ordersb3, b4, b5, andb6. Thusg4 may be written in the form

g45b3G31b4G41b5G51b6G6 , ~7!

where G3 , G4 , G5 , and G6 are also solutions to four partial differential equations, easier to solve than the initial
Equation~5! can also be solved by rearranging its right-hand member according to powers ofU.

As a final result,P at order\4 reads

P5expF2be1\2S 2 (
k51

N b2¹k
2U

8Mk
1 (

k51

N
b3

24Mk
~“kU !21 (

k,l 51

N
b3pkpl

24MkMl
•“k“ lU D G1\4e2beF2

b3

2 S (
k51

N
¹k

2

8Mk
D 2

U

1
b4

16~3! ! (
k,l 51

N
~“kU !•“k

MkMl
~¹ l

2U !1
b4

32~3! ! (
k,l 51

N
~“k“ lU !2

MkMl
1

b4

32~3! ! (
k,l ,m51

N
¹k

2

MkMlMm
~plpm!•~“ l“mU !

2
b5

4~5! ! (
k,l 51

N
~“kU !•“k

MkMl
~“ lU !22

b5

4~5! ! (
k,l ,m51

N
~pkpl“mU !

MkMlMm
•~“k“ l“mU !2

b5

2~5! ! (
k51

N
1

Mk
S “k(

l 51

N pl

M l
•“ lU D 2

2
b5

16~5! ! S (
k51

N pk

Mk
•“kD 4

UG1O~\6!, ~8!
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with “k[“ rk
. In the last equation, the subscripts take values ranging from 1 toN, the number of particles. The spati

distribution functiong(r1 ,...,rN) is deduced performing the average ofP(r1 ,...,rN ,p1 ,...,pN) over the momenta:

g~r1 ,...,rN!5
*¯*d3p1¯d3pNP~r1 ,...,rN ,p1 ,...,pN!

*¯*d3p1¯d3pNexp~2b(k51
N pk

2/2Mk!
. ~9!

It can be written in the compact form

g~r1 ,...,rN!5expS (
k51

N
lk

2

24
¹k

2D e2bU1\2F21\4F41O~\6!, ~10!

wherelk is the de Broglie wavelength associated with thekth particle:

lk
25\2b/Mk . ~11!

\2F2 and\4F4 are calculated in Appendix A with the results

\2F252e2bU(
k51

N
lk

2

24
¹k

2bU ~12!

and

\4F452S (
l 51

N
l l

2

24
¹ l

2bU D (
k51

N
lk

2

24
¹k

2e2bU2
1

60 (
k,l 51

N
lk

2l l
2

24
~“k“ lbU !•~“k“ le

2bU!1e2bUF2
19

10 S (
k51

N
lk

2

24
¹k

2D 2

~bU !

1
1

2 S (
k51

N
lk

2

24
¹k

2bU D 2

1
1

120 (
k,l 51

N
lk

2l l
2

24
~“k“ lbU !21

7

60 (
k,l 51

N
lk

2l l
2

24
“k~bU !•“k~¹ l

2bU !G . ~13!

Equation~10! agrees with a result previously derived by Alastuey and Jancovici@8#, in the case of the magnetized OCP.
Terms of higher orders are investigated in Appendix B. It is proved, using a recurrence scheme, that the con

(1/n!)( (klk
2¹k

2/24)ne2bU arises at all the orders in the\2 expansion. This explains the choice made in writing Eq.~10! with
the emergence of an exponential operator.

III. PAIR DISTRIBUTION FUNCTION IN AN OCP

For the sake of simplicity, we restrict ourselves hereafter to the case of one single-particle species. ForN particles of mass
M , enclosed in a volumeV, the pair distribution function reads as

g2~r 12!5
N~N21!*¯*d3r 3¯d3r Ng~r1 ,...,rN!

r2*¯*d3r 1¯d3r Ng~r1 ,...,rN!
, ~14!

with r5N/V. It can be expanded with respect to\2 as Jancovici@3# did for the first order, replacingg(r1 ,...,rN) with its
expansion~10!. g2(r 12), hereafter denoted asg2

q(r 12), becomes

g2
q~r 12!5FexpS l2

12
¹2Dg2

c~r 12!1\2
N~N21!*¯*d3r 3¯d3r NF2

r2*¯*d3r 1¯d3r Nexp~2bU !
1\4

N~N21!*¯*d3r 3¯d3r NF4

r2*¯*d3r 1¯d3r Nexp~2bU !
1O~\6!G

3F12\2
*¯*d3NrF 2

*¯*d3Nr exp~2bU !
1\4S *¯*d3NrF 2

*¯*d3Nr exp~2bU ! D
2

2\4
*¯*d3NrF 4

*¯*d3Nr exp~2bU !
1O~\6!G , ~15!

where l2 (5\2b/M ) is the squared de Broglie wavelength.g2
c stands for the classical pair distribution function. In t

classical case,g(r1 ,...,rN) reduces to exp(2bU) so that

g2
c~r 12!5

N~N21!*¯*d3r 3¯d3r Nexp@2bU~r1 ,...,rN!#

r2*¯*d3r 1¯d3r Nexp@2bU~r1 ,...,rN!#
. ~16!

g2
q can be rewritten as
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g2
q~r 12!5expS l2

12
¹2Dg2

c~r 12!1\2

N~N21!

r2 E ¯E d3r 3¯d3r NF22g2
c~r 12!E ¯E d3NrF 2

E ¯E d3Nr exp~2bU !

3S 12\2
*¯*d3NrF 2

*¯*d3Nr exp~2bU ! D2\2S *¯*d3NrF 2

*¯*d3Nr exp~2bU ! D FexpS l2

12
¹2D21Gg2

c~r 12!

1\4

N~N21!

r2 E ¯E d3r 3¯d3r NF42g2
c~r 12!E ¯E d3NrF 4

E ¯E d3Nr exp~2bU !

1O~\6!. ~17!

Now we deal with a one-component plasma~OCP! made ofN particles of chargeZe embedded in a uniform charge
background of opposite sign. In such a system, the potential energy is

U5
1

2 (
kÞ l

u~r kl!2(
k

Z2e2rE d3r

ur k2r u
1

1

2
Z2e2r2E E d3r d3r 8

ur2r 8u
, ~18!

where

u~r kl!5
Z2e2

r kl
, ~19!

r kl5r l2r k , andr 5ur u. U satisfies Poisson’s law

¹k
2U524pZ2e2 (

l ~Þk!
d~r kl!14pZ2e2r ~20!

and

“k•“ lU54pZ2e2d~r kl! if kÞ l . ~21!

The last equations and the relationd(r kl)e
2bU50 ~i.e.,e2bU is null if two particles are at a same position! allow us to express

Eq. ~17! in the form

g2
q~r 12!5expS l2

12
¹2Dg2

c~r 12!2
2l4

5~24!2 (
k,l 51

2
N~N21!*¯*d3r 3¯d3r N~“k“ le

2bU!•~“k“ lbU !

r2*¯*d3Nre2bU

1
l4

5~24!2 (
k,l 51

N
N~N21!*¯*d3r 3¯d3r Ne2bU~“k“ lbU !2

r2*¯*d3Nre2bU 2
l4

5~24!2 g2
c~r 12! (

k,l 51

N
*¯*d3Nre2bU~“k“ lbU !2

*¯*d3Nr e2bU

1O~\6!. ~22!

It remains to evaluate the various tensors and contracted products which appear in the last equation. After some cal
the last summation in Eq.~22! can be written as

(
k,l 51

N

l4e2bU~“k“ lbU !25
N

3

l4

lD
4 e2bU1

4

3

l4

lD
4 e2bU (

kÞ l

1

xkl
6 1

2

3

l4

lD
4 e2bU (

k,l ,m
~kÞ lÞmÞk!

P2~ x̂kl• x̂km!

xkl
3 xkm

3 , ~23!

wherex5r /a @a5( 4
3 pr)21/3# andlD @5(4pZ2e2br)21/2# is the Debye screening length.x̂ is a unit vector: x̂5x/x and

P2 , the second-order Legendre polynomial. Therefore,

l4 (
k,l 51

N
*¯*d3Nr e2bU~“k“ lbU !2

*¯*d3Nr e2bU 5
N

3

l4

lD
4 112

l4

lD
4 E E d3x3d3x4

~4p!2x34
6 g2

c~x34!

118
l4

lD
4 E E E d3x3d3x4d3x5

~4p!3x34
3 x35

3 g3
c~x3 ,x4 ,x5!P2~ x̂34• x̂35!, ~24!

whereg3
c is the classical three particle distribution function@see Eq.~27!#.



3966 57MARIE-MADELEINE GOMBERT AND DANIEL LÉGER
Consider next the second summation in the right-hand member of Eq.~22!. Noting that

(
k,l 51

N
N~N21!*¯*d3r 3¯d3r Ne2bU~“k“ lbU !2

r2*¯*d3Nr e2bU 51
2N~N21!*¯*d3r 3¯d3r Ne2bU@~“1“2bU !21~“1“1bU !2#

r2*¯*d3Nr e2bU

1
4N~N21!~N22!*¯*d3r 3¯d3r Ne2bU~“1“3bU !2

r2*¯*d3Nr e2bU

1
N~N21!~N22!*¯*d3r 3¯d3r Ne2bU~“3“3bU !2

r2*¯*d3Nr e2bU

1
N~N21!~N22!~N23!*¯*d3r 3¯d3r Ne2bU~“3“4bU !2

r2*¯*d3Nr e2bU ,

~25!

it is possible to write

l4 (
k,l 51

N FN~N21!*¯*d3r 3¯d3r Ne2bU~“k“ lbU !2

r2*¯*d3Nr e2bU 2g2
c~x12!

*¯*d3Nr e2bU~“k“ lbU !2

*¯*d3Nr e2bU G
5

8

3

l4

lD
4

1

x12
6 g2

c~x12!14
l4

lD
4 E d3x3

4p
g3

c~x1 ,x2 ,x3!F 4

x13
6 1

2P2~ x̂12• x̂13!

x12
3 x13

3 1
P2~ x̂31• x̂32!

x13
3 x23

3 G
112

l4

lD
4 E E d3x3d3x4

~4p!2x34
6 @g4

c~x1 ,x2 ,x3 ,x4!2g2
c~x12!g2

c~x34!#112
l4

lD
4 E E d3x3d3x4

~4p!2 g4
c~x1 ,x2 ,x3 ,x4!

3F2P2~ x̂31• x̂34!

x13
3 x34

3 1
P2~ x̂13• x̂14!

x13
3 x14

3 G118
l4

lD
4 E E E d3x3d3x4d3x5

~4p!3x34
3 x35

3 P2~ x̂34• x̂35!@g5
c~x1 ,x2 ,x3 ,x4 ,x5!

2g2
c~x12!g3

c~x3 ,x4 ,x5!#. ~26!

In the last equation,gn
c is the classicaln particle distribution function:

gn
c~r1 ,r2 ,...,rn!5

N! *¯*d3r n11¯d3r Nexp~2bU !

~N2n!!rn*¯*d3Nr exp~2bU !
, ~27!

with n52, 3, 4, or 5.
The first summation in Eq.~22! ~the summation overk and l taking values 1 and 2! has finally to be examined:

l4 (
k,l 51

2
N~N21!*¯*d3r 3¯d3r N~“k“ le

2bU!•~“k“ lbU !

r2*¯*d3Nr e2bU 5bl4
“1“1g2

c~r 12!•“1“1F4u~r 12!22Z2e2rE d3r

ur12r uG
12bl4rE d3r 3“1“1g3

c~r1 ,r2 ,r3!•“1“1u~r 13!. ~28!

Upon performing tensorial calculations, the last equation becomes

l4 (
k,l 51

2
N~N21!*¯*d3r 3¯d3r N~“k“ le

2bU!•~“k“ lbU !

r2*¯*d3Nr e2bU 5
2

3

l4

a2lD
2 ¹2g2

c~x12!1
8

3

l4

a2lD
2

1

x12
3 S ¹22

3

x12

d

dx12
Dg2

c~x12!

1
2l4

a2lD
2 E d3x3

4px13
3 “1“1g3

c~x1 ,x2 ,x3!•TI31, ~29!

whereTI31 is a tensor of order 2. In the orthogonal normalized natural base associated with the vectorr31, TI31 reads

TI315S 22
0
0

0
1
0

0
0
1
D . ~30!

Then the contracted tensor product in the last integral of Eq.~29! can be expressed as
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“1“1g3
c~x1 ,x2 ,x3!•TI31522P0~ x̂12• x̂13!x13

]

]x13
S ]

x13]x13
Dg3

c~x12,x13,x23!24P1~ x̂12• x̂13!
]2

]x12]x13
g3

c~x12,x13,x23!

22P2~ x̂12• x̂13!x12

]

]x12
S ]

x12]x12
Dg3

c~x12,x13,x23!, ~31!

in which P0 , P1 , andP2 are Legendre polynomials of orders 0, 1, and 2.
Finally, making use of Eqs.~26! and~29! allows us to reexpress each term of the right-hand member of Eq.~22!, with the

result

g2
q~x12!5expS l2

12a2 ¹2Dg2
c~x12!2

l4

a4

G

180 F¹2

4
1

1

x12
S 1

x12

d

dx12
D 2Gg2

c~x12! ~32a!

1
l4

a4

G

240 E d3x3

4px13
3 “1“1g3

c~1,2,3!•TI31 ~32b!

1
l4

a4

G2

40 H 1

3x12
6 g2

c~x12!1E d3x3

4p
g3

c~1,2,3!
P2~ x̂12• x̂13!

x12
3 x13

3 J ~32c!

1
l4

a4

G2

80 E d3x3

4p
g3

c~1,2,3!
P2~ x̂31• x̂32!

x13
3 x23

3 ~32d!

1
l4

a4

G2

20 H E d3x3

4px13
6 g3

c~1,2,3!1
3

4 E E d3x3d3x4

~4p!2x34
6 @g4

c~1,2,3,4!2g2
c~x12!g2

c~x34!#J ~32e!

1
l4

a4

3G2

80 H E E d3x3d3x4

~4p!2 g4
c~1,2,3,4!F2P2~ x̂31• x̂34!

x13
3 x34

3 1
P2~ x̂13• x̂14!

x13
3 x14

3 G
1

3

2 E E E d3x3d3x4d3x5

~4p!3x34
3 x35

3 P2~ x̂34• x̂35! @g5
c~1,2,3,4,5!2g2

c~x12!g3
c~3,4,5!#J 1O~l6/a6!, ~32f!

whereG is the coupling constant:

G5Z2e2b/a. ~33!

gn
c(1,2, . . . ,n) stands forgn

c(x1 ,x2 ,...,xn).
Expression~32! provides an exact expansion~up to\4! of the quantum pair distribution function in the OCP. This resul

analogous with the one obtained previously by Alastuey and Martin@4# for the charge-charge correlation function in the OC
@see Eqs.~4.40! and~4.44! in their paper, hereafter denoted as I#, using very compact notations. We have checked that the t
~4.40b! in I corresponds exactly to the\4 terms of our Lines~32a! and ~32b!. It could also be verified that

\43Eq. ~4.44a-I!5r2e2
1

2 F l4G2

120a4

1

x12
6 g2

c~x12!1Line ~32e!G ,
\43Eq. ~4.44b-I!5\43Eq. ~4.44a-I!1r2e2@Line ~32d!1Line ~32f!1remaining term in Line~32c!#. ~34!

In accordance with Alastuey and Martin@4#, we conclude that the evaluation of the\4 term of the Wigner-Kirkwood
expansion needs the knowledge of the classical two-, three-, four-, and five-particle distribution functions.

The following sections are devoted to a study of the WKg2
q(r 12) expressed by Eq.~32!. In order to simplify the analysis

of this expression in the limitx12→` ~next section! and to develop further an approximate expression~Sec. VI!, it appears
useful to rewrite Line~32e! in the form

Line ~32e!51
l4

a4

G2

20 E d3x3

4px13
6 @g3

c~1,2,3!2g2
c~x12!g2

c~x13!#1
l4

a4

3G2

80 E E d3x3d3x4

~4p!2x34
6 @g4

c~1,2,3,4!1g2
c~x12!g2

c~x34!

2g2
c~x12!g3

c~1,3,4!2g2
c~x12!g3

c~2,3,4!#. ~35!

The constant*(d3x/4px6)g2
c(x) in the first integral cancels exactly the other constant3

2 **@d3x3d3x4 /(4p)2x34
6 #@g3

c(1,3,4)
2g2

c(x34)] in the second integral. This can be verified expandingg2
c andg3

c in Ursell functions@Eqs.~37! and~38!# and taking
into account OCP sum rules@Eqs.~41! and ~42!#. In a similar way, Line~32f! is rewritten as
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Line ~32f!51
l4

a4

3G2

80 E E d3x3d3x4

~4p!2 F2P2~ x̂31• x̂34!

x13
3 x34

3 1
P2~ x̂13• x̂14!

x13
3 x14

3 G @g4
c~1,2,3,4!2g2

c~x12!g3
c~1,3,4!#

1
l4

a4

9G2

160 E E E d3x3d3x4d3x5

~4p!3x34
3 x35

3 P2~ x̂34• x̂35!@g5
c~1,2,3,4,5!1g2

c~x12!g3
c~3,4,5!22g2

c~x12!g4
c~1,3,4,5!#.

~36!

As previously mentioned, the constant}**@d3x3d3x4 /(4p)2x13
3 x14

3 #P2( x̂13• x̂14)g3
c(1,3,4) ~in the first integral! compensates

the other one***@d3x3d3x4d3x5 /(4p)3x34
3 x35

3 #P2( x̂34• x̂35)@g4
c(1,3,4,5)2g3

c(3,4,5)# ~in the second integral!. This can be
checked with the help of the Ursell function expansions~38! and ~39! and of the sum rules~41!, ~42!, and~43!. When lines
~32e! and ~32f! are expressed in the forms~35! and ~36!, each integral does not tend to a constant asx12 approaches infinity
~see next section!.

IV. ASYMPTOTIC BEHAVIOR OF THE QUANTUM PAIR DISTRIBUTION FUNCTION

Each term of the right-hand member of Eq.~32! is considered in the limitx12→`. This study is based on properties obey
by the classical distribution functionsgn

c : the exponential clustering and a number of well-known OCP sum rules@9,10#.
As Alastuey and Martin@4# did, we first expandgn

c in the Ursell functions~or truncated functions! g2T
c , g3T

c , g4T
c , andg5T

c ,
defined by the relations

g2
c~1,2!511g2T

c ~1,2!, ~37!

g3
c~1,2,3!511g2T

c ~1,2!1g2T
c ~1,3!1g2T

c ~2,3!1g3T
c ~1,2,3!, ~38!

g4
c~1,2,3,4!511g2T

c ~1,2!1g2T
c ~1,3!1g2T

c ~1,4!1g2T
c ~2,3!1g2T

c ~2,4!1g2T
c ~3,4!1g2T

c ~1,2!g2T
c ~3,4!1g2T

c ~1,3!g2T
c ~2,4!

1g2T
c ~1,4!g2T

c ~2,3!1g3T
c ~1,2,3!1g3T

c ~1,2,4!1g3T
c ~1,3,4!1g3T

c ~2,3,4!1g4T
c ~1,2,3,4!, ~39!

g5
c~1,2,3,4,5!511@g2T

c ~1,2!1~permutations!#1@g2T
c ~1,2!g2T

c ~3,4!1~permutations!#1@g3T
c ~1,2,3!1~permutations!#

1@g2T
c ~1,2!g3T

c ~3,4,5!1~permutations!#1@g4T
c ~1,2,3,4!1~permutations!#1g5T

c ~1,2,3,4,5!. ~40!

According to the exponential clustering~valid for a plasma in the classical framework! @6#, gnT
c (1, . . . ,i , . . . ,j , . . . ,n)

decreases faster than any power of any distancexi j , asxi j approaches infinity~i.e., at least exponentially!.
The OCP sum rules used here are@9,10#

E d3x

4p
g2T

c ~x!52
1

3
, ~41!

E d3x3

4p
g3T

c ~1,2,3!52
2

3
g2T

c ~x12!, ~42!

E d3x4

4p
g4T

c ~1,2,3,4!52g3T
c ~1,2,3!, ~43!

E d3x

4p
x2g2T

c ~x!52
2

3G
, ~44!

E d3x3

4p
x13

l Pl~ x̂12• x̂13!g3T
c ~1,2,3!52

1

3
x12

l g2T
c ~x12! ~ if l>1!, ~45!

wherePl is the Legendre polynomial of orderl . Equation~44! ~the second moment ofg2T
c ! is the well-known Stillinger-Lovett

condition ~i.e., the perfect screening condition of an infinitesimal external charge!.
Hence it follows that the terms containing derivatives in the right-hand member of Eq.~32! @Line ~32a!# decrease faster tha

any power ofx12, asx12 tends to infinity, and

1

x12
6 g2

c~x12!5
1

x12
6 1~ terms decreasing faster than anyx12

2n! for large x12. ~46!
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Next, consider in Line~32b! the contracted product expressed in Eq.~31!. Making use of the expansion ofg3 in truncated
functions@Eq. ~38!# and then eliminating the terms with zero value lead to the result

E d3x3

4px13
3 “1“1g3

c~1,2,3!•TI315E d3x3

4px13
3 “1“1g3T

c ~1,2,3!•TI31, ~47!

which decreases faster than any power ofx12, for largex12 @asg3T
c (1,2,3) does#.

Let us consider now Line~32e! written under the form~35!. One can write

E d3x3

4px13
6 @g3

c~1,2,3!2g2
c~x12!g2

c~x13!#52g2T
c ~x12!E d3x

4px6 g2
c~x!1E d3x13

4px13
6 @g2T

c ~x12!1g2T
c ~x23!1g3T

c ~1,2,3!#.

~48!

And for largex12

E d3x3

4px13
6 @g3

c~1,2,3!2g2
c~x12!g2

c~x34!#5E d3x13

4p S g2T
c ~x23!

x13
6 D

large x12

1~ terms decreasing faster than anyx12
2n! for large x12. ~49!

In the same way, the second integral in Eq.~35! becomes

E E d3x3d3x4

~4p!2x34
6 @g4

c~1,2,3,4!1g2
c~x12!g2

c~x34!2g2
c~x12!g3

c~1,3,4!2g2
c~x12!g3

c~2,3,4!#5
4

3
g2T

c ~x12!E d3x

4px6 g2
c~x!

1E E d3x3d3x4

~4p!2x34
6 @2g2

c~x14!g2
c~x23!12g3T

c ~1,2,3!1g4T
c ~1,2,3,4!#52E E d3x3d3x4

~4p!2 S g2T
c ~x14!g2T

c ~x23!

x34
6 D

large x12

1~ terms decreasing quickly! for large x12. ~50!

Considerx34
26 andx13

26 in the right-hand members of Eqs.~50! and ~49!:

x34
265~x13

2 1x14
2 22m4x13x14!

23, x13
265~x12

2 1x23
2 22m3x12x23!

23, ~51!

with m45 x̂13• x̂14 andm35 x̂21• x̂23. Performing angular integrations followed by expansions in terms of inverse powers ox12
provides

1

2 E
21

11 dm3

x13
6 5

1

x12
6 (

l 50

`
~2l 14!!

4!~2l 11!!

x23
2l

x12
2l if x12.x23,

1

4 E
21

11

dm3E
21

11 dm4

x34
6 5

1

x12
6 (

m50

`

(
l 50

`
~2l 12m14!!

~2l 11!! ~2m11!!

x14
2l x23

2m

x12
2l 12m 5

1

x12
6 1

1

x12
6 (

l 51

`
~2l 14!!

4!~2l 11!!

x14
2l 1x23

2l

x12
2l

1
1

x12
6 (

m52

`

(
l 51

m21
~2m14!!

4!~2l 11!! ~2m22l 11!!

x14
2l x23

2m22l

x12
2m if x12.x23,x14. ~52!

Taking into account sum rules~41! and ~44!, term ~32e! becomes

Line ~32e!52
l4

a4

G2

120x12
6 1

l4

a4

G2

320 (
m50

`

(
l 50

m
~2m18!!S2l 12S2m22l 12

~2l 13!! ~2m22l 13!!x12
2m110 for large x12, ~53!

whereS2n is the 2n-order momentum ofg2T
c :

S2n5E d3x

4p
x2ng2T

c ~x!5E
0

`

dx x2n12g2T
c ~x!. ~54!

We remark that@cf. Eqs.~41! and ~44!#

S052
1

3
and S252

2

3G
. ~55!
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S4 is related to the compressibility@11–13#. In Eq. ~53! there is no contribution of orderx12
28. Thus gathering together Eqs

~46! and ~53! provides

l4

a4

G2

120x12
6 g2

c~x12!1Line ~32e!5
l4

a4

G2

320 (
m50

`

(
l 50

m
~2m18!!S2l 12S2m22l 12

~2l 13!! ~2m22l 13!!x12
2m110 for large x12. ~56!

There is no contribution of ordersx12
26 andx12

28.
As proved by Alastuey and Martin@4#, the quantity

1

2

l4

a4

G2

120x12
6 g2

c~x12!1
1

2
@Line ~32e!#

@which corresponds to Eq.~4.44a! in I# is the only contribution to the large-x12 behavior of\4 term. Thus the sum of all the
other terms@corresponding to Eq.~4.44b! in I# decreases at least exponentially. This is confirmed in Appendix C where a
integrals involving Legendre polynomials in Eq.~32! are examined. From the above analysis, it follows that the terms w
contribute to the large-x12 tail come solely from the integral

E E d3x3d3x4

~4p!2 S g2T
c ~x14!g2T

c ~x23!

x34
6 D

large x12

in Eq. ~50!, in agreement with paper I.
As shown in Appendix C, Line~32d! decreases at least exponentially asx12 approaches infinity. Concerning Line~32c!, we

prove that

E d3x3

4p
g3

c~1,2,3!
P2~ x̂12• x̂13!

x12
3 x13

3 52
1

3x12
6 1~ terms decreasing quickly! for large x12. ~57!

Thus we remark that21/3x12
6 cancels exactly thex12

26-order term ing2
c(x12)/x12

6 , in the large-x12 limit @Eq. ~46!#. So Line~32c!
has no algebraic contribution in this limit. It is no longer anx12

26-order term. It is worthwhile to note that

Line ~32f!1
l4

a4

G2

40 E d3x3

4p
g3

c~1,2,3!
P2~ x̂12• x̂13!

x12
3 x13

3 52
1

2 FLine ~32e!1
l4

a4

G2

120x12
6 g2

c~x12!G for large x ~58!

or

Line ~32f!2
l4

a4

G2

120x12
6 52

1

2 FLine ~32e!1
l4

a4

G2

120x12
6 G for large x. ~59!

Hence Eq.~56! givestwice the exact long-range expansion of the\4 term ofg2
q . In a previous Letter@14#, we claimed that

this remarkable relation~the factor of 2! is valid only for ordersx12
210 andx12

212. In fact, this relation holds at all the next order
As a main result, we can conclude that, for a large separation,

g2T
q ~x![g2

q~x!215Line ~32e!1Line ~32f!1O~l6/a6! for large x

5
l4

a4

G2

640 (
m50

`

(
l 50

m
~2m18!!S2l 12S2m22l 12

~2l 13!! ~2m22l 13!!x2m1101OS l6

a6D for large x

5
l4

a4 F 7

9x102
21G

2x12 S42
33G

x14 S61
2079G2

40x14 S4
21O~x216!G1O~l6/a6!, ~60!

in which x substitutes forx12.
The large-x expansion ofg2

q(x) ~at order\4! is then achieved through Eq.~60! at any order. As proved by Alastuey and
Martin @4# and Cornu and Martin@5#, there is no exponential clustering in a quantum plasma. The first term~in x210! is in
agreement with their results. In the case of plasmas with Fermi or Bose statistics, recent papers by Cornu@15# confirm the
presence of algebraic tails.

V. SMALL SEPARATION BEHAVIOR OF THE QUANTUM PAIR DISTRIBUTION FUNCTION

The right-hand member of Eq.~32! is hereafter examined in the small-x12 limit. The validity of the resulting expansion i
discussed at the end of this section. For our purpose, consider the total potential energy@Eq. ~18!# for theN charged particles:
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UN~1, . . . ,N!5
Z2e2

r 12
1 (

k53

N
Z2e2

r 1k
1 (

k53

N
Z2e2

r 2k
1

1

2 (
k,l 53
~kÞ l !

N
Z2e2

r kl
2Z2e2rE

N

d3r

ur2r1u
2Z2e2rE d3r

ur2r2u
2Z2e2r(

k53

N E d3r

ur2r ku

1
1

2
Z2e2r2E E d3r d3r 8

ur2r 8u
. ~61!

Let us choose the coordinate origin at the mass center of the two particles 1 and 2:r252r15r12/2. In order to deduce the
expansion ofUN , 1/r 1k11/r 2k and*d3r /ur2r1u1*d3r /ur2r2u are expanded in powers ofr 12 according to

bUN~1,2,3, . . . ,N!5
G

x12
1bU ~N21!8~0,3, . . . ,N!1

G

4
x12

2 1
G

4 (
k53

N F4pd~xk!x12
2 P1~mk!1

x12
2

xk
3 P2~mk!G

1O~Gx12
4 ! for small x, ~62!

with mk5 x̂12• x̂k . P1 and P2 are the Legendre polynomials of first and second orders.U (N21)8(0,3, . . . ,N) is the potential
energy ofN21 particles: one of charge 2Ze at the origin and the other ones of chargeZe at r3 ,... andrN . Then, the
classical pair distribution is also expanded as

g2
c~x12!5

N~N21!*¯*d3x3¯d3xNexp@2bUN~1,2, . . . ,N!#

r2a6*¯*d3x1¯d3xNe2bUN

5expS 2
G

x12
2

G

4
x12

2 D N~N21!

r2a6*d3Nxe2bUN E ...E d3x3¯d3xNexpS 2bU ~N21!8~0,3, . . . ,N!

2
G

4 (
k53

N

P2~mk!
x12

2

xk
3 1O~Gx12

4 !D for small x12. ~63!

It was noted by Jancovici@16# that:

N~N21!*¯*d3x3¯d3xNexp@2bU ~N21!8~0,3, . . . ,N!#

r2a6*¯*d3x1¯d3xNe2bUN
5exp@bF~0,N!2bF~1,N22!#5exp~2A!, ~64!

wherebF(M ,N) is the excess free energy of a mixture made ofM particles of charge 2Ze andN particles of chargeZe. Then
Eq. ~63! becomes

g2
c~x12!5expS 2

G

x12
2A2

G

4
x12

2 D S 12
3G

4 E d3x3

4p
g28

c
~x3!P2~m3!

x12
2

x3
3 1O~Gx12

4 ! D for small x12, ~65!

in which g28
c (x3) @5g28

c (0,3)# is the pair distribution function of a charge 2Ze and a chargeZe. Let g38
c (0,3,4) be the

three-particle distribution function of charge 2Ze at the origin and two chargesZe at r3 and r4 ~the other particles of the
plasma bear chargesZe!. The same definitions stand forg48

c (0,3,4,5) and the other distribution functions~the charge 2Ze is
located at the origin!. As the integration overm3 yields 0, the small-x12 expansion ofg2

c(x12) reads

g2
c~x12!5expF2

G

x12
2A2

G

4
x12

2 G@11O~x12
4 !# for small x12. ~66!

In a similar way, the other distribution functions are also expanded as

g3
c~1,2,3!5expS 2

G

x12
2AD @g28

c
~0,3!1O~x12

2 !# for small x12,

g4
c~1,2,3,4!5expS 2

G

x12
2AD @g38

c
~0,3,4!1O~x12

2 !# for small x12,

g5
c~1,2,3,4,5!5expS 2

G

x12
2AD @g48

c
~0,3,4,5!1O~x12

2 !# for small x12. ~67!

In the right-hand member of Eq.~32!, let us consider now the terms involvingg3
c . The first one@Line ~32b!# can be

expressed with the help of tensorial calculations as
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E d3x3

4px13
3 “1“1g3

c~1,2,3!•TI315E d3x3

4px13
3 F S 4]

x12
2 ]x12

x12
2 ]

]x12
Dg3

c~x12,x3 ,m3!@22P2~ x̂12• x̂13!#

1
4]

x12]x12
g3

c~x12,x3 ,m3!@6P2~ x̂12• x̂13!#G . ~68!

It should be noted thatx3 and m3 do not depend explicitly onx1 and that, moreover,x15 1
2 x21. Then performing the

expansions ofx13 @5( 1
4 x12

2 1x3
21m3x12x3)1/2# and P2( x̂12• x̂13) „5P2@(x1212m3x3)/2x13#… in powers ofx12 allows us to

rewrite Eq.~68! as

E d3x3

4px13
3 “1“1g3

c~1,2,3!•TI3154E d3x3

4px3
3 F123m3

21
3m3

2
~5m3

223!
x12

x3
1OS x12

2

x3
2 D GexpS 2

G

x12
2AD F S G2

x12
4 2

3G

x12
3 Dg28

c
~x3!

1O~x12
22!G for small x12

5expS 2
G

x12
2ADO~x12

22!. ~69!

In a similar way, the first term in Line~32e! is expanded as

E d3x3

4px13
6 g3

c~1,2,3!5expS 2
G

x12
2AD E d3x3

4px3
6 F123m3

x12

x3
1OS x12

2

x3
2 D G @g28

c
~x3!1O~x12

2 !# for small x12

5expS 2
G

x12
2AD F E

0

` dx3

x3
4 g28

c
~x3!1O~x12

2 !G . ~70!

The other integrals involvingg3
c @Lines ~32c! and ~32d!# become

E d3x3

4px12
3 x13

3 P2~ x̂12• x̂13!g3
c~1,2,3!5

1

x12
3 expS 2

G

x12
2AD E d3x3

4px3
3 S 123m3

21
3m3

2
~5m3

223!
x12

x3
1O~x12

2 /x3
2! D

3@g28
c

~x3!1O~x12
2 !# for small x12

5expS 2
G

x12
2ADO~x12

21! ~71!

and

E d3x3

4px13
3 x23

3 P2~ x̂31• x̂32!g3
c~1,2,3!5expS 2

G

x12
2AD E d3x3

4px3
6 @11O~x12

2 !#P2S ~2 1
2 x122x3!•~ 1

2 x122x3!

x13x23
D

3@g28
c

~x3!1O~x12
2 !# for small x12

5expS 2
G

x12
2AD S E

0

` dx3

x3
4 g28

c
~x3!1O~x12

2 ! D . ~72!

It is easy to check that the remaining integrals in the right-hand member of Eq.~32! pertaining to Lines~32e! and~32f! have
an expansion of the same form; the main term is an exponential term exp(2G/x122A) times a constant~which depends only
on G!:

E E d3x3d3x4

~4p!2x34
6 @g4

c~1,2,3,4!2g2
c~x12!g2

c~x34!#5expS 2
G

x12
2AD E d3x3d3x4

~4p!2x34
6

3@g38
c

~0,3,4!2g2
c~x34!1O~x12

2 !# for small x12, ~73!
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E E d3x3d3x4

~4p!2 g4
c~1,2,3,4!F2P2~ x̂31• x̂34!

x13
3 x34

3 1
P2~ x̂13• x̂14!

x13
3 x14

3 G
5expS 2

G

x12
2AD E E d3x3d3x4

~4p!2 @g38
c

~0,3,4!1O~x12
2 !#F2P2~ x̂3• x̂34!

x3
3x34

3 1
P2~ x̂3• x̂4!

x3
6 1O~x12!G for small x12

5expS 2
G

x12
2AD H E E d3x3d3x4

~4p!2 g38
c

~0,3,4!F2P2~ x̂3• x̂34!

x3
3x34

3 1
P2~ x̂3• x̂4!

x3
6 G1O~x12!J , ~74!

E E d3x3d3x4d3x5

~4p!3x34
3 x35

3 P2~ x̂34• x̂35!@g5
c~1,2,3,4,5!2g2

c~x12!g3
c~3,4,5!#5expS 2

G

x12
2AD E E d3x3d3x4d3x5

~4p!3x34
3 x35

3 P2~ x̂34• x̂35!

3@g48
c

~0,3,4,5!2g3
c~3,4,5!1O~x12

2 !# for small x12. ~75!

Let us examine now terms containing derivatives@Line ~32a!# which are calculated through the derivatives ofg2
c @Eq. ~66!#.

We can conclude that, for smallx, the main contribution at\4 order is 1
2 @(l2/12a2)¹2#2g2

c(x). Finally, the WK g2
q(x)

expressed by Eq.~32! is expanded as follows:

g2
q~x!5g2

c~x!H expF l2

12a2 S G2

x42
G2

x
1O~x0! D G1

l4

15a4 F2
G3

2x7 1
G2

x6 1O~x24!G J 1OS l6

a6D for small x. ~76!
t

-
m

a
u
n

K
nd

t
ic

e

sion

vi-

.

the

-
we

ns
rier
Only

expS l2

12a2 ¹2Dg2
c~x!,

1

x S 1

x

d

dxD
2

g2
c~x!, and

1

x6 g2
c~x!

are kept in Eq.~76!. The other terms are smaller ifx is
sufficiently small. The exponential term

expS l2

12a2

G2

x4 D
~which goes tò asx approaches 0! is an algebraic formu-
lation which generalizes a result due to Jancovici@3#. Nev-
ertheless, our study does not allow us to assert that a
orders the main term, in the small-x limit,comes from this
exponential term. In the present work, thex→0 limit is in-
vestigated only at order\2 and\4; so we do not know the
x→0 behavior of the fully resummed WK expansion.

Assuming the\2 expansion to be a convergent, one im
plies thatx cannot be too small. In the other case, this se
classical formalism would not be appropriate. But only
proper study of the convergence of the WK expansion co
provide the convergence criteria. Therefore, we propose o
a qualitative criteria for the validity of expansion~76!. It
seems reasonable to impose that

1

2 S l2

12a2 ¹2D 2

g2
c~x!,

l2

12a2 ¹2g2
c~x!,g2

c~x!, ~77!

i.e.,

l2

12a2

G2

x4,1. ~78!

It should be mentioned that the exact quantumg2
q(0) is

finite, strictly positive, and cannot be derived within the W
formalism. In particular, in the zero-density limit, Davies a
all

i-

ld
ly

Storer evaluatedg2
q(0) exactly @17#, and Minoo, Gombert,

and Deutsch@18# studiedg2
q(x) and expanded it with respec

to x for small x. Vieillefosse has also worked on this top
@19#.

VI. APPROXIMATE EXPRESSIONS FOR THE QUANTUM
PAIR DISTRIBUTION FUNCTION

The net evaluation of the WK pair distribution functiong2
q

as derived in Eq.~32! requires the whole knowledge of th
classical distribution functionsgn

c(1,2, . . . ,n) up to n55.
Therefore, it appears necessary to derive an expres
which approximatesg2

q accurately, but which is simpler to
evaluate numerically. A first approximation has been pre
ously presented in a Letter@14#.

This approximate expression has to behave likeg2
q for

small and largex12 ~same expansions!. Thus its derivation is
based on the large- and small-x12 behaviors detailed in Secs
IV and V. For convenience,g2

q(x12) is split into a short and
intermediate part, on the one hand, and a long part, on
other hand, according to

g2
q~x12!5gs

q~x12!1gl
q~x12!, ~79!

where the subscriptss and l stand for short and long sepa
rations, respectively. Following our previous analysis,
first write ~at order\4!:

gs
q5Line ~32a!1Line ~32b!1Line ~32c!1Line ~32d!,

gl
q5Line ~32e!1Line ~32f!. ~80!

A. Preliminaries

In the following, many terms will be computed by mea
of Fourier techniques. We adopt the dimensionless Fou
transforms
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f̃ ~q!53E
0

`

dx x2f ~x! j 0~qx!

⇔ f ~x!5
2

3p E
0

`

dq q2 f̃ ~q! j 0~qx!, ~81!

with j 0(u)5sinu/u. The Fourier transform ofg2T
c (x) will be

denotedh(q). Because of the presence of Legendre poly
mials in the expressions to evaluate, a number of Fou
transforms involve spherical Bessel functions of the fi

kind, j l(u), with l>0 @ j l(u)5A1
2 p/uJl 11/2(u)#. Among

them, the following one plays a key role:

x~q!53q2E
0

` dx

x
g2

c~x! j 2~qx![3qE
0

` dx

x

dg2
c~x!

dx
j 1~qx!

[3E
0

`

dx
d

dx S 1

x

dg2
c~x!

dx D j 0~qx!. ~82!

It is easy to check, writingg2
c(x)[11g2T

c (x), that

lim
q→0

x~q!

q2 51. ~83!

As the small-q behavior reflects the long-range behavior
the direct functions, it follows from Eq.~83! that neglecting
functions which decrease at least exponentially asx tends to
infinity @i.e., g2

c(x)511g2T
c (x)→1# is similar to simply re-

placingx(q) with q2 in Fourier space.

B. Short and intermediate separation termgs
q

In the following section, all terms contained ings
q @Eq.

~80!# are evaluated numerically, at least approximate
Therefore, Lines~32b!, ~32c!, and~32d! have to be expresse
in order to compute them at any distancex. For this purpose,
we make a wide use of the superposition approximation

g3
c~1,2,3!.g2

c~x12!g2
c~x13!g2

c~x23!. ~84!

First, consider Line~32b!:

Line ~32b!5
l4

a4

G

240
I ~x12!, ~85!

where

I ~x12!5E d3x3

4px13
3 “1“1g3

c~1,2,3!•TI31. ~86!

Wheng3
c(1,2,3) is estimated by means of the superposit

approximation, Eq.~31! is modified according to
-
er
t

f

.

n

“1“1g3
c~1,2,3!•TI31

.22P0~ x̂12• x̂13!@g2T
c ~x23!11#

3g2
c~x12!x13

d

dx13
S d

x13dx13
g2

c~x13! D
24P1~ x̂12• x̂13!@g2T

c ~x23!11#S d

dx12
g2

c~x12! D
3S d

dx13
g2

c~x13! D22P2~ x̂12• x̂13!@g2T
c ~x23!11#

3g2
c~x13!x12

d

dx12
S d

x12dx12
g2

c~x12! D . ~87!

The terms independent ofx23 in the last equation are directl
integrated onx3 to give a zero result. The other ones, whi
are factorized byg2T

c (x23), are rewritten with the help of Eq
~D2!, yielding, finally,

I ~x!.2
4

9p
g2

c~x!E
0

`

dq q2h~q!x~q! j 0~qx!

2
8

9p S d

dx
g2

c~x! D E
0

`

dq qh~q!x~q! j 1~qx!

2
4

9p Fx
d

dx S d

x dx
g2

c~x! D G E
0

`

dq h~q!x~q! j 2~qx!,

~88!

in which h(q) denotes the Fourier transform ofg2T
c (x) and

x(q) is defined by Eq.~82!. In thex→` limit, each term in
the right-hand member of Eq.~88! decreases at least expo
nentially. In thex→0 limit, one gets

g2
c~x!E

0

`

dq q2h~q!x~q! j 0~qx!

;
as x→0

g2
c~x!E

0

`

dq q2h~q!x~q!,

S d

dx
g2

c~x! D E
0

`

dq qh~q!x~q! j 1~qx!

;
as x→0

G

3x
g2

c~x!E
0

`

dq q2h~q!x~q!,

Fx
d

dx S d

x dx
g2

c~x! D G E
0

`

dq h~q!x~q! j 2~qx!

;
as x→0

G2

15x2 g2
c~x!E

0

`

dq q2h~q!x~q!. ~89!

Hence the third term appears to be the leading one in
limit. It behaves like (G2/x2)g2

c(x) as expected@see Eq.
~69!#. Moreover, it is smaller than the ones retained in t
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small-x approximation expressed by Eq.~76!. Thus we are
reinforced to use Eq.~88! in order to compute approximatel
I (x).

Let us examine now Line~32c! which can be written as

Line ~32c!5
l4

a4

G2

40
J~x12!, ~90!

where

J~x12!5
1

3x12
6 g2

c~x12!1E d3x3

4p
g3

c~1,2,3!
P2~ x̂12• x̂13!

x12
3 x13

3 .

~91!

Its numerical evaluation needs the knowledge ofg3
c . The

latter can also be estimated with superposition approxima
~84!:

E d3x3

4p
g3

c~1,2,3!
P2~ x̂12• x̂13!

x12
3 x13

3

.g2
c~x12!E d3x3

4p
g2

c~x13!g2T
c ~x23!

P2~ x̂12• x̂13!

x12
3 x13

3 .

~92!

The remaining integration involves a convolution produ
and a Legendre polynomial. It can be performed, for
stance, by means of Fourier-Bessel techniques@Eq. ~D2!#:

J~x12!.
1

3x12
6 g2

c~x12!1
2

9p

g2
c~x12!

x12
3

3E
0

`

dq h~q!x~q! j 2~qx12!. ~93!

The last equation can be rewritten in a different form mo
appropriate to an accurate numerical evaluation. The b
idea is to singularize in integral~92! the only part which
involves the asymptotic limitx12→` ~which is of order
x12

26!. In so doing,g2
c(x13) is first rewritten as 11g2T

c (x13).
Thus Eq.~93! becomes

J~x12!.
1

3x12
6 g2

c~x12!1
g2

c~x12!

x12
3 @A~x12!1B~x12!#,

~94!

with

A~x12!5E d3x3

4p

P2~ x̂12• x̂13!

x13
3 g2T

c ~x23!,

B~x12!5E d3x3

4p

P2~ x̂12• x̂13!

x13
3 g2T

c ~x13!g2T
c ~x23!. ~95!

Let us first considerB(x12). In the limit x12→`, it vanishes
at least exponentially as the productg2T

c (x13) g2T
c (x23) does.

It can be evaluated in Fourier space@with the help of Eq.
~D2!# as

B~x!5
2

9p E
0

`

dq@x~q!2q2#h~q! j 2~qx!. ~96!
n

t
-

e
ic

In the vicinity of x1250, g2
c(x)B(x)/x3 behaves like

g2
c(x)/x. From the above considerations, we are led to c

clude thatg2
c(x)B(x)/x3 plays a negligible role. This conclu

sion has to be achieved through numerical calculations
any distance as is done in the following section. ThusB can
be seen as a correction toA which is expressed as@Eqs.
~D12! and ~D14!#

A~x12!52
1

3
g2T

c ~x12!1
1

x12
3 E

0

x12
dx x2g2T

c ~x!. ~97!

Note that, ifA(x)1B(x) is approximated byA(x),

J~x!.
g2

c~x!

x3 F 1

3x3 1A~x!G , ~98!

J(x) is a function which decreases at least exponentially
the limit x→` and behaves asg2

c(x)/3x6 does in the case o
small x, as expected. Making use of sum rule~41!, A(x) in
Eq. ~97! can be reexpressed in an equivalent form more
propriate to numerical computations:

A~x12!5

1

3
x12

3 g2T
c ~x12!2E

0

x12
dx x2g2T

c ~x!

3x12
3 E

0

`

dx x2g2T
c ~x!

52

E
0

x12
dx x3~d/dx!g2T

c ~x!

3x12
3 E

0

`

dx x3~d/dx!g2T
c ~x!

. ~99!

Line ~32d! has also to be evaluated for anyx, at least
approximately. In the superposition approximation, it b
comes

Line ~32d!.
l4

a4

G2

80
K~x12!, ~100!

in which

K~x12!5g2
c~x12!E d3x3

4p
g2

c~x13!g2
c~x23!

P2~ x̂31• x̂32!

x13
3 x23

3 .

~101!

The result ~D10! or, more precisely, its inverted Fourie
transform

F~x23!Pn~ x̂31• x̂32!5
2i 2n

3p E d3q

4p
e2 iq•x32Pn~ x̂31•q̂!F̃n~q!,

~102!

with
n52 and F~x23!5g2

c~x23!/x23
3 , ~103!

allows us to evaluateK(x12). Equation~102! becomes

g2
c~x23!

x23
3 Pn~ x̂31• x̂32!

52
2

3p E d3q

4p
e2 iq•x32Pn~ x̂31•q̂!

x~q!

q2 , ~104!
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wherex(q) is the function defined by Eq.~82!. Writing x32
5x311x12 and expanding exp(2iq•x31) in terms of Leg-
endre polynomials@Eq. ~D9!#, the following equation is ob-
tained:

K~x!5g2
c~x!

2

9p E d3q

4p Fx~q!

q2 G2

j 0~qx!. ~105!

In the x→0 limit, K(x) behaves likeg2
c(x). We have to

check that it decreases at least exponentially, asx goes to
infinity. First, let us remark that Eq.~105! is the Fourier
transform of 1

3 @x(q)/q2#2. Recall thatx(q) is the Fourier
transform of the function

f ~x!5
1

x2

d

dx S 1

x

dg2
c~x!

dx D . ~106!

Thus x(q)/q2 is the Fourier transform of a functionF(x)
expressed as

F~x!5E
x

` dy

y3

d

dy
g2

c~y!, ~107!

which is decreasing at least exponentially in the largx
limit. In this limit, K(x) behaves like the convolution prod
uct F(x)+F(x), which decreases as expected.

Thus the superposition approximation does not introd
any drawback in the evaluation of Line~32d! ~i.e., there is no
uc

rs

it
q

ut
d

e

extra contribution which does not vanish at least expon
tially in the large-x limit !.

Therefore, all terms ings
q @Eq. ~80!# can be computed

approximately for anyx, making use of the superpositio
approximation~84!. For that purpose, only the knowledge
the classical pair distribution functiong2

c is required.

C. Large separation term gl
q

It remains to derive an approximate expression forgl
q

contribution@Eq. ~80!# which possesses the following prop
erties: it provides the correct asymptotic behavior@Eq. ~60!#
in thex12→` limit, and it is hidden by the dominant terms i
the smallx12 range@Lines~32a! and~32c!#. For that purpose,
we take advantage of the fact that Line~32e! givestwice the
exact WKg2T

q behavior plus an additional term}x12
26, in the

large-x12 limit. Hence Line~32c! is modified in order to re-
produce long-range expansion~60!. Consider term~32e! ex-
pressed by Eq.~35!. Making use of the superposition ap
proximation

g3
c~1,2,3!.g2

c~x12!g2
c~x13!g2

c~x23!,

g4
c~1,2,3,4!.g2

c~x12!g2
c~x13!g2

c~x14!g2
c~x23!g2

c~x24!g2
c~x34!,

~108!

one gets
g3
c~1,2,3!2g2

c~x12!g2
c~x13!.g2

c~x12!g2
c~x13!g2T

c ~x23! ~109!

and

g4
c~1,2,3,4!1g2

c~x12!g2
c~x34!2g2

c~x12!g3
c~1,3,4!2g2

c~x12!g3
c~2,3,4!

.g2
c~x12!g2

c~x34!@g2T
c ~x13!g2T

c ~x23!1g2T
c ~x13!g2T

c ~x24!1g2T
c ~x14!g2T

c ~x23!1g2T
c ~x14!g2T

c ~x24!

1g2T
c ~x13!g2T

c ~x14!g2T
c ~x23!1g2T

c ~x13!g2T
c ~x14!g2T

c ~x24!1g2T
c ~x13!g2T

c ~x23!g2T
c ~x24!1g2T

c ~x14!g2T
c ~x23!g2T

c ~x24!

1g2T
c ~x13!g2T

c ~x14!g2T
c ~x23!g2T

c ~x24!#. ~110!
n

In the square brackets of the last equation, the two prod
g2T

c (x13)g2T
c (x24) and g2T

c (x14)g2T
c (x23) are the only ones

which do not decrease at least exponentially asx12 goes to
infinity. Therefore, discarding the other terms yields a fi
approximation callede1 :

Line ~32e!.e15
l4

a4

G2

20
g2

c~x12!E d3x3

4p

g2
c~x13!

x13
6 g2T

c ~x23!

1
l4

a4

3G2

40
g2

c~x12!E E d3x3d3x4

~4p!2

g2
c~x34!

x34
6

3g2T
c ~x14!g2T

c ~x23! for largex12 . ~111!

The two integrals in this equation have to be compared w
the ones which appear in the right-hand members of E
~49! and ~50! whose asymptotic forms are very similar, b
Eq. ~111! can be evaluated at anyx12 because the square
ts

t

h
s.

dipole potentialsx13
26 andx34

26 are now weighted byg2
c(x13)

andg2
c(x34), respectively. In thex12→0 limit, approximation

e1 behaves likeg2
c(x12) times a constant, and so it is hidde

by the terms kept ings
q @Eq. ~80!#, as required.e1 is then

rewritten in Fourier space,

e15
l4

a4

G2

180p
g2

c~x!E
0

`

dq q2w~q!@„h~q!11…

221# j 0~qx!,

~112!

in which w(q) is the Fourier transform ofg2
c(x)/x6:

w~q!53E
0

` dx

x4 g2
c~x! j 0~qx!. ~113!

Expression~112! can be expanded in the large-x limit
~i.e., the small-q limit !. For that purpose,j 0(qx), which ap-
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pears in the definition ofh(q), is expanded, providing an
expansion ofh(q) in terms ofS2n @Eq. ~54!#:

e15
l4

a4

G2

20
g2

c~x!H 2
g2

c~x!

6x6

1
3

2 (
m50

`

(
l 50

m
S2l 12S2m22l 12

~2l 13!! ~2m22l 13!!

3
2

3p
~21!mE

0

`

dq q2m16w~q! j 0~qx!J
5

l4

a4

G2

20
g2

c~x!H 2
g2

c~x!

6x6

1
3

2 (
m50

`

(
l 50

m
S2l 12S2m22l 12

~2l 13!! ~2m22l 13!!

3~¹2!m12S g2
c~x!

x6 D J . ~114!

Noting that

~¹2!m12
1

x6 5F d2m12

dx2m12 1S 2m14

x D d2m11

dx2m11G 1

x6

5
~2m18!!

4!x2m110 , ~115!

it follows that expansion~53! is exactly recovered. Thus i
can be concluded that thetwo functions Line (32e) ande1 are
equivalent for large separation.

In Eq. ~112!, the term of orderx26, which is canceled by
another one coming from term~f! of Eq. ~32!, can be simply
erased in order to get an approximate expression forgl

q :
gl
g~x!5Line ~32e!1Line ~32f!. 1

2 e11
l4

a4

G2

240

@g2
c~x!#2

x6

5
l4

a4

G2

360p
g2

c~x!E
0

`

dq q2w~q!@h~q!11#2 j 0~qx!,

~116!

which is simple and very accurate.
Equation~116! is based on several approximations: t

superposition approximation and the deletion of a lot
terms in Line~32e!, as explained below Eq.~110!, and in
Line ~32f!. The major interest of the approximated formu
~116! relies on the fact that it reproducesexactly the long-
range expansion~60!. So we are able to study correctly th
large-x tail of g2

q . On the other hand, in the small separati
limit, approximation~116! behaves likeg2

c(x) @as Line~32e!
1Line ~32f! does# and it is hidden by the dominant term
which are expressed by Lines~32a! and~32d!. Thus the dis-
carded terms in Lines~32e! and~32f! can be taken as negli
gible.

In a previous Letter@14#, another approximation togl
q

was proposed. Its limiting behaviors~x→0 andx→`! were
also correctly reproduced. Nevertheless, in thex→` limit,
only the first order of the exact expansion was recover
Moreover, after numerical calculations, we have been led
conclude that it could be rough at intermediate separatio
which is not the case of Eq.~116!.

VII. NUMERICAL RESULTS

In order to put numbers on our previous calculations,
present in this section some numerical results for the\4 or-
der term of the WK pair distribution functiong2

q(x). Gath-
ering all contributions, the latter reads for smalll2/a2 as
g2
q~x12!.g2

c~x12!1
l2

12a2 ¹2g2
c~x12!1

1

2 S l2

12a2 ¹2D 2

g2
c~x12!2

l4

a4

G

180 F¹2

4
1

1

x12
S d

x12dx12
D 2Gg2

c~x12! ~117a!

2
l4

a4

G

540p H g2
c~x12!E

0

`

dq q2h~q!x~q! j 0~qx12!12S d

dx
g2

c~x12! D E
0

`

dq qh~q!x~q! j 1~qx12!

1Fx
d

dx S d

x dx
g2

c~x12! D G E
0

`

dq h~q!x~q! j 2~qx12! ~117b!

1
l4

a4

G2

120

g2
c~x12!

x12
6 F 12

E
0

x12
dx x3

d

dx
g2T

c ~x!

E
0

`

dx x3
d

dx
g2T

c ~x!
G1

l4

a4

G2

180p

g2
c~x12!

x12
3 E

0

`

dq h~q!@x~q!2q2# j 2~qx12! ~117c!

1
l4

a4

G2

360p
g2

c~x12!E
0

` dq

q2 @x~q!#2 j 0~qx12! ~117d!

1
l4

a4

G2

360p
g2

c~x12!E
0

`

dq q2w~q!@„h~q!11…

221# j 0~qx12!1
l4

a4

G2

240 S g2
c~x12!

x12
3 D 2

. ~117e!1~117f!
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Here~117a!, ~117b!, ~117c!, ~117d!, and~117e!1~117f! refer
to the various terms mentioned in Sec. VI. The form retain
in Eq. ~117! for line ~117e!1~117f! is taken intentionally in
order to get more accurate numerical results. Recall that
functionsh(q), w(q), andx(q) are the Fourier transform
of

g2T
c ~x!, g2

c~x!/x6, and
1

x2

d

dx S 1

x

dg2
c~x!

dx D
@see Eq.~82!#, respectively.

The parameters involved in these calculations areG, the
plasma parameter, and the quantum parameterl2/a2. At or-
der\4, various terms are scaled byl4/a4. Consequently, all
our numerical results will be given inl4/a4 units.

In order to evaluate properly Eq.~117!, we have to choose
a ‘‘good’’ classical pair distribution functiong2

c(x) for the
OCP. We retain the well-known hypernetted chain~HNC!
approximation, supplemented with the extracted bridge fu
tion b(x) calculated by Iyetomiet al. @20#. Two explanations
justify this choice. On the one hand, this function reprodu
accurately the ‘‘exact’’ classical pair distribution function
deduced from Monte Carlo simulations. On the other ha
according to the HNC numerical scheme~see Ng @21#!,
g2

c(x) is computed in its standard form@with an additive
term b(x)#

g2
c~x!5expF2

G

x
1h~x!2c~x!1b~x!G ~118!

simultaneously with the direct correlation functionc(x)
computed in Fourier space by means of the Ornstein-Zer
relation

h~q!5 c̃~q!1h~q!c̃~q!. ~119!

By imposing the well-known limits

lim
x→`

c~x!52bu~x!52
G

x
,

lim
q→0

c̃~q!52bũ~q!52
3G

q2 , ~120!

it follows that

lim
q→0

h~q!5 lim
q→0

c̃~q!

12 c̃~q!
521,

lim
q→0

S~q!5 lim
q→0

@11h~q!#5
q2

3G
. ~121!

This implies that sum rules~41! and ~44! for the truncated
function g2T

c are well fulfilled with this approximation. As a
consequence, the evaluation of Line~117e!1~117f! will re-
produce the exact asymptotic behavior7

9 (1/x10).
d

he

c-

s

,

e

Numerical results were performed while computingg2
c(x)

on a grid of n52048 points withdx50.01, in the range
0.1<G<10. The functionsh(q), x(q), andw(q) as well as
the other Fourier transformed functions which appear in
~117! were performed by means of fast Fourier transfo
~FFT! techniques. Special attention was paid to the eval
tion of Line ~117e!1~117f!, which is computed on an ex
tended grid of 8192 points in order to extract properly
asymptotic behavior.

Figures 1–3 display some numerical results compu

FIG. 1. The bold curve represents the WK corrections in
OCP at order\4 in l4/a4 units as a function of the dimensionles
separationx12 computed with formula~117!, in the case whereG
50.1. g2

c is evaluated with the HNC approximation. The maj
contributions arise from the term proportional to the squared
placian @curve ~1!#, the term ;(1/x12)@(1/x12)d/dx12#

2g2
c(x12)

@curve~2!#, and finally Line~117c! @curve~3!#. In this case, all the
other contributions play no significant role in numerical calculatio
@i.e., the bold curve reduces practically to the sum of curves~1!, ~2!,
and ~3!#.

FIG. 2. WK corrections at order\4 in l4/a4 units as a function
of the dimensionless separationx12 computed with expression
~117!. G is kept fixed at 1. Other factors the same as in Fig. 1.
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from Eq. ~117! as detailed above, for three values of t
plasma parameterG50.1, 1, and 10. It is seen that in th
weak-coupling range~i.e., G<1!, numerical contributions to
the \4 correction for the WK pair functiong2

q(x) come es-
sentially from three terms: the squared Laplacian term,
term

FIG. 3. Plot of various contributions to the overall\4 WK cor-
rections in the OCP~bold curve which is the sum of the four othe
curves! in l4/a4 units as a function of the separationx12 calculated
with formula ~117! for G510. g2

c is computed from the HNC
approximation supplemented with the extracted bridge functi
derived by Iyetomiet al. @20#. Contributions~1!, ~2!, and~3! origi-
nate from the same terms as detailed in Fig. 1. Curve~4! corre-
sponds to the net contribution of all the remaining terms which
no longer be neglected in the strong-coupling case. This resul
an oscillating behavior of the\4 order.

FIG. 4. Comparison between the asymptotic behaviors ca
lated from Line~117e!1~117f! @curve ~2!# and the remaining con
tributions in Eq.~117! @curve ~1!# for the WK corrections at orde
\4 in l4/a4 units as a function of the dimensionless separationx12,
with G51. This features the long-range behavior of Lin
~117e!1~117f! which vanishes like (7/9)x12

210, while all the other
terms vanish much more quickly according to the exponential c
tering.
e

;
1

x S 1

x

d

dxD
2

g2
c~x!,

and the first term in Line~117c! @neglectingB(x)#. This is a
consequence of the fact that at small coupling, the funct
g2

c(x) increases very rapidly withx, so that those derivative
terms get significantly enhanced.

s

n
in

u-

s-

FIG. 5. Comparison between the asymptotic behavior of L
~117e!1~117f! scaled by the asymptotic limit (7/9)x12

210, for three
values of G in the weak-coupling range (G<1). The limit is
reached at a very large distance, much larger than the dist
whereg2T can be considered to equal 0. These results are stro
dependent onG. The smallerG is, the farther the\4 term behaves
like (7/9)x12

210.

FIG. 6. Same as in Fig. 5, but it concerns two values ofG in the
strong-coupling range (G.1). As in Fig. 5, it is shown that the
asymptotic limit is correctly reproduced again at a separation s
stantially larger than the typical values at whichg2

c approaches its
asymptotic limit. In contradistinction to the weak-coupling case,
term (7/9)x12

210 is now approached much more readily asG is
smaller. Also, it should be noticed that Line~117e!1~117f! exhibits
a strong oscillating behavior at thex12→` limit.
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It should be appreciated that, at very smallG values~i.e.,
G<0.1!, the \4 correction in l4/a4 units is significantly
greater than 1, especially at smallx values. This reflects the
breakdown of the WK formalism in thex→0 limit.

Results displayed in Fig. 3 show that, at largeG values
~hereG510!, the contribution of the three dominant terms
described above is still important, but all the other ter
@retained in Eq.~117!# contribute equally well and add t
each other, resulting in an oscillating behavior.

Figures 4–6 serve to illustrate the behavior of Eq.~117! in
the x→` limit. It should be appreciated that the rigorou
asymptotic limit 7

9 (1/x10) is correctly approached by the ap
propriate term retained in Eq.~117! @i.e., Line ~117e!
1~117f!#, but only at a very large interparticle separati
~much larger than the distance at which the correlation fu
tion g2T approaches zero!, which depends on the valueG.
This is primarily a consequence of the fact that t
asymptotic behavior of Line~117e!1~117f! is directly re-
lated toS2(q)5@11h(q)#2, in theq→0 limit. If q2 is small
enough,S(q) is well approximated byq2/3G, and if x is
large enough, the oscillating functionj 0(qx) truncates the
integrant ;w(q)(q2/3G)2. Then the asymptotic limit
7
9 (1/x10) is correctly reproduced and it arises very rapidly
G increases, in the case of smallG values (G<1) according
to Fig. 5. More specifically, it should be noted that the alg
braic tail appears at distances larger than the classical c
lation length which controls the decay ofg2

c(x). At small G
values, this length reduces to the Debye onelD

(5a/A3G) and the algebraic tail appears at distances lar
and larger asG decreases. In the opposite case (G.1), Fig.
6 shows that the asymptotic behavior is reached much m
quickly asG is smaller, at least in the range ofG values in
which computations have been performed. This is a con
quence of the fact thatg2

c reaches its asymptotic limit 1 a
larger distances asG is larger. Moreover, in this case~G.1!,
Line ~117e!1~117f! exhibits an oscillating behavior in th
x12→` limit, which is also related to theg2

c behavior.

VIII. CONCLUSION

The \4 term in the Wigner-Kirkwood expansion of th
pair distribution function in the one-component plasm
g2

q(x), has been derived exactly@Eq. ~32!#. This term de-
pends on the classical distribution functions for two, thr
four, and five particles. Its behaviors both for large and sm
separations have been fully investigated with the resul
expansions~60! and ~76!. We have to mention that, for to
small separations, the semiclassical WK formalism is
appropriate. At large distances, the polynomial behavior fi
s

-

s

-
re-

er

re

e-

,

,
ll
g

t
t

proved by Alastuey and Martin @4# @term equals

(l4/a4) 7
9 (1/x10)# has been recovered and an expression

all the other terms of ordersx22p has been derived@Eq.
~60!#.

It seems unlikely to compute exactly this\4 correction as
it would need the full knowledge of the classical distributio
functions for several particles~up to 5!. Then, in order to get
an idea of the importance of those quantum corrections,
pecially of thex210 long-range part, an approximate but a
curate expression for the\4 term has been derived whic
reproduces correctly the behavior of all the various terms
Eq. ~32! in both the limitsx→0 andx→`. For that purpose,
we have made much use of the superposition approxima
and have suppressed some terms taken as negligible. De
with the long-range behavior, the approximate expans
~116! permits us to recover exactly the large distance exp
sion ~60! at all orders. We remark that expansion~60! de-
pends only ong2

c before any approximation. This can expla
why the superposition approximation does not modify t
long-distance behavior of the exact\4 correction. The result-
ing approximate expression~117! can be evaluated if the
classical pair distribution functiong2

c(x) is known. This was
achieved numerically using the HNC approximation. The n
merical results show that the asymptotic limit (;x210) is
approached at very large distances, very much larger than
one at whichg2 reaches its asymptotic limit 1. Concernin
the orders of magnitude, it appears that the long-range c
tribution plays, however, no significant role, in comparis
with the other terms involved in Eq.~117!, especially the
terms which contain derivatives ofg2

c(x).
We are planning to analyze the resulting effects of th

quantum corrections on the thermodynamic quantities~en-
ergy, free energy, pressure, etc.! and to compare with othe
quantum calculations@22#.

APPENDIX A: \4 CORRECTION FOR g„r 1 ,...,r N…

Starting from Eq.~9! and replacingP with its expansion
in increasing\2 powers,g is written in the form

g5exp~2bU !1\2H21\4H41O~\6!, ~A1!

where

H25E ¯E d3Np f2Y E ¯E d3Np expS 2b(
k51

3N pk
2

2Mk
D

~A2!

and
H45E ¯E d3Np f4Y E ¯E d3Np expS 2b(
pk

2

2Mk
D

5e2bUE ¯E d3Np~b3G31b4G41b5G51b6G6!expS 2b(
pk

2

2Mk
D Y E ¯E d3Np expS 2b(

pk
2

2Mk
D . ~A3!
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Replacingf 2 ([e2bUg2) with Eq. ~6! yields

H25e2bUF2 (
k51

3N
b2

8Mk

]2U

]r k
2 1 (

k51

3N
b3

4~3! !Mk
S ]U

]r k
D 2

1 (
k51

3N
b3

4~3! !Mk
2

]2U

]r k
2 pk

2G , ~A4!

where

f~pk!5E
2`

1`

dpkf~pk!exp~2bpk
2/2Mk!Y E

2`

1`

dpk

3exp~2bpk
2/2Mk!, ~A5!

f (pk) being any function ofpk . In the last sum of Eq.~6!,
only the terms withk5 l are taken into account, the rest
them becoming null after integration. The same rewriting
H4 is done from expressions ofG3 , G4 , G5 , andG6 . There
are sums of terms containing products of two momenta:

(
l ,m51

3N
plpm

MlMm

]2U

]r l]r m
or S (

l 51

3N
pl

M l

]U

]r l
D 2

.

Only the cases where the two momenta are the same con
ute toH4 ~i.e., pkpl does not contribute toH4 if pÞ l !. In the
expressions ofG5 and G6 , there are products of four mo
menta: pkplpmpn . Only the following cases are consid
ered:

~1! k5 l , m5n, andkÞm,
~2! k5m, l 5n, andkÞ l ,
~3! k5n, l 5m, andkÞ l ,
~4! k5 l 5m5n,

the other terms yielding a zero result. Using the relations

pk
25Mk /b and pk

453Mk
2/b2 ~A6!

gives

H25e2bUF2(
k51

3N
b2

2~3!!Mk

]2U

]rk
2 1(

k51

3N
b3

4~3!!Mk
S]U

]rk
D2G

~A7!

and

H45e2bUH 1

2 F2 (
k51

3N
b2

2~3! !Mk

]2U

]r k
2

1 (
k51

3N
b3

4~3! !Mk
S ]U

]r k
D 2G2

2
b3

2~5! ! S (
k51

3N
1

Mk

]2

]r k
D 2

U

1
b4

3~5! ! (
k,l 51

3N
1

MkMl
S ]2U

]r k]r l
D 2

1
b4

5! (
k,l 51

3N
1

MkMl

]U

]r k

]3U

]r k]r l
2

2
b5

2~5! ! (
k,l 51

3N
1

MkMl

]2U

]r k]r l

]U

]r k

]U

]r l
J . ~A8!

Derivatives of exp(2bU) are introduced to simplify the writ-
ing of H2 andH4 , as Jancovici@3# did. Then Eqs.~12! and
~13!, written by means of tensorial notation, are obtained
f

ib-

APPENDIX B: INVESTIGATION OF ORDERS
HIGHER THAN \4

Here the purpose is to investigate the orders higher t
\4, for the WK distribution functions.

P(r1 , . . . ,rN ,p1 , . . . ,pN) is expanded as follows:

P5exp~2be!@g01\2g21\4g41¯1\2ng2n1¯#.
~B1!

g0 is 1, g2 is a sum ofb2- andb3-order terms, andg4 is a
sum of terms ofb3, b4, b5, andb6 orders. What aboutg2n?

From Eq.~3!, the differential equation which definesf 2n
(5e2beg2n), it can be seen that the highest power ofb is
b3n. Let us show that this term is

A2nb3n5
b3n

n! F (
k51

N
~“kU !2

24Mk
1 (

k,l 51

N pkpl

24MkMl
•“k“ lUGn

5
b3n

n!
~A2!n. ~B2!

It is true for n50, 1, and 2. Assuming Eq.~B2!, A2n12 is a
solution to the equation

2 (
k51

N pk

Mk
•~“ rk

A2n12!1 (
k51

N

~“ rk
U !•~“pk

A2n12!

52
A2n

24 (
k,l ,m51

N pkplpm

MkMlMm
•“ rk

“ r l
“ rm

U, ~B3!

which gives

A2n125
1

~n11!!
~A2!n11. ~B4!

Considering the smallest order inb, we verify that it is

B2nbn1152
b

n! S (
k51

N b¹k
2

8Mk
D n

U. ~B5!

It is true forg2 andg4 . If it is true until g2n22 , the smallest
power ofb in the right-hand member of Eq.~3! is bn11 and
B2n satisfies a differential equation

2 (
k51

N pk

Mk
•~“ rk

B2n!1 (
k51

N

~“ rk
U !•~“pk

B2n!

5
1

8n~n! ! (
k1 , . . . ,kn ,kn1151

N

3
pkn11

M1¯Mkn11

•“ rkn11
¹ rk1

2
¯¹ rkn

2 U. ~B6!

B2n defined by Eq.~B5! is a solution to Eq.~B6!.
Therefore,P may be expressed as

P5exp~2be!@11\2~B2b21A2b3!

1\4~B4b31¯1A4b6!

1¯1\2n~B2nbn111¯1A2nb3n!1¯#, ~B7!
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whereA2n andB2n are defined by Eqs.~B2! and ~B5!.
What is possible to write concerningg(r1 ,...,rN)? The

averages on the momenta modify the orders with respec
b. Each product of two momenta decreases the order inb by
1, after the integrations. The general form ofg is

g5exp~2bU !@11\2E21\4E41¯1\2nE2n1¯#
~B8!

Considering the expansion ofE2n in powers ofb, it is easy
to check that the highest-order term is

C2n5
b3n

n! F (
k51

N
~¹kU !2

24Mk
Gn

. ~B9!

Thusg is of the form

g5expS (
k51

N
lk

2

24
¹k

2D e2bU

1e2bU@\2I 2b21\4~ I 4b31¯1J4b5!

1¯1\2n~ I 2nbn111¯1J2nb3n21!¯#, ~B10!

where

expS(
k51

N
lk

2

24
¹k

2D 5(
i 51

`
1

i ! S (
k51

N
lk

2

24
¹k

2D i

~B11!

is an operator applied to the functio
exp@2bU(r1 ,...,rN)#. I 2n andJ2n are functions ofU, gra-
dientsU, and LaplaciansU. That explains the form of Eq
~10!.

APPENDIX C: ASYMPTOTIC BEHAVIORS
OF THE TERMS IN INVOLVING LEGENDRE

POLYNOMIALS IN EQ. „32…

The first term comes from Line~32c!:

E d3x3

4p
g3

c~1,2,3!
P2~ x̂12• x̂13!

x12
3 x13

3

5E d3x3

4p
@g2T

c ~2,3!1g3T
c ~1,2,3!#

P2~ x̂12• x̂13

x12
3 x13

3 .

~C1!

The other terms in expansion ofg3
c @Eq. ~38!# yield zero

integrals.g3T
c (1,2,3) tends to zero at least exponentially

x12 approaches infinity. In Appendix D, it is proved that
to

s

A~x12!5E d3x3

4p
g2T

c ~x23!
P2~ x̂12• x̂13!

x13
3

52
1

3
g2T

c ~x12!1
1

x12
3 E

0

x12
dx x2g2T

c ~x!. ~C2!

Thus, in the large-x12 limit, making use of sum rule~41!
allows us to deduce the relation

E d3x3

4p
g3

c~1,2,3!
P2~ x̂12• x̂13!

x12
3 x13

3

52
1

3x12
6 1~ terms decreasing quickly!

for large x12. ~C3!

Here 21/3x12
6 cancels exactly the large-x12 term in

g2
c(x12)/x12

6 . Another integral that we have to study is@Line
~32d!#

E d3x3

4p
g3

c~1,2,3!
P2~ x̂31• x̂32!

x13
3 x23

3

52E
x13<x23

d3x3

4p

P2~ x̂31• x̂32!

x13
3 x23

3 @11g2T
c ~x12!1g2T

c ~x13!

1g2T
c ~x23!1g3T

c ~1,2,3!#. ~C4!

With the help of Appendix E@Eqs. ~E6! and ~E7!#, the last
expression is rewritten as

E d3x3

4p
g3

c~1,2,3!
P2~ x̂31• x̂32!

x13
3 x23

3

5E
x12/2

`

dx13g2T
c ~x13!S 1

x13
4 2

x12

x13
5 1

x12
3

8x13
7 D

12E
x13<x23

d3x3

4p
@g2T

c ~x23!1g3T
c ~1,2,3!#

P2~ x̂31• x̂32

x13
3 x23

3 .

~C5!

As x23>x13⇒x23>x12/2, Line ~32d! is shown to decrease a
least exponentially asx12 approaches infinity. We have t
consider finally term~32f! expressed by Eq.~36!. The vari-
ous distributions are expanded in truncated Ursell functio
In so doing, Line~32f! becomes
Line ~32f!5
l4

a4

3G2

40 E E d3x3 d3x4

~4p!2x13
3 x34

3 P2~ x̂31• x̂34!@g2T
c ~1,4!g2T

c ~2,3!1g2T
c ~1,3!g2T

c ~2,4!1g3T
c ~2,3,4!1g4T

c ~1,2,3,4!#

1
l4

a4

3G2

80 E E d3x3 d3x4

~4p!2x13
3 x14

3 P2~ x̂13• x̂14!@g3T
c ~2,3,4!1g4T

c ~1,2,3,4!#

1
l4

a4

9G2

160 E E E d3x3 d3x4 d3x5

~4p!3x34
3 x35

3 P2~ x̂34• x̂35![2g2T
c ~1,3!g3T

c ~2,4,5!14g2T
c ~1,4!g3T

c ~2,3,5!1g5T
c ~1,2,3,4,5!].

~C6!
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In this equation, the terms left out vanish, as can be chec
by angular integration and involving Eq.~E6!.

Appendixes D and E allow us to study the first integral
the right-hand member of Eq.~C6!. Taking into account Eq
~D14!, it may be seen that

E E d3x3 d3x4

~4p!2 S P2~ x̂31• x̂34!

x13
3 x34

3 g2T
c ~x23!g2T

c ~x14! large x12

52
1

3 E d3x3

4p S g2T
c ~x23!

x13
6 D

large x12

1~ terms decreasing quickly!, ~C7!

since the convolution product of two fast decreasing fu
tions is a fast decreasing function. Next, Eq.~E7! leads us to
see that

E d3x3

4p

P2~ x̂31• x̂34!

x13
3 x34

3 g2T
c ~x13!
ed

-

is convergent and is decreasing at least exponentially asx14
increases indefinitely. Here

E E d3x3 d3x4

~4p!2

P2~ x̂31• x̂34!

x13
3 x34

3 g2T
c ~x13!g2T

c ~x24!

has the same property in the large-x12 limit ~it is a convolu-
tion product of two functions decreasing at least expon
tially!. As x12 goes to infinity, it is deduced from Eq.~E12!
that

E E d3x3 d3x4

~4p!2 S P2~ x̂31• x̂34!

x13
3 x34

3 g3T
c ~2,3,4! D

large x12

5~ terms decreasing faster than anyx12
2n!. ~C8!

Let us examine now the second integral in the right-ha
member of Eq.~C6!. In Appendix F, the following expansion
valid for largex12 is derived:
in
I 5E E d3x3 d3x4

~4p!2 S P2~ x̂13• x̂14!

x13
3 x14

3 g3T
c ~2,3,4! D

large x12

52
2

3x12
6 S02

1

18 (
l 51

`
~ l 11!~ l 12!~2l 13!

x12
2l 16 S2l for large x12

5
2

9x12
6 2

1

72 (
l 51

`
~2l 14!!

~2l 11!!x12
2l 16 S2l , ~C9!

whereS2l is defined by Eq.~54!.
In the last integral of the right-hand member of Eq.~C6!, the term

E d3x4

4p

P2~ x̂34• x̂35!

x34
3 x35

3 g3T
c ~2,3,5!g2T

c ~x14!

is a convolution product ofg2T
c (x12) and @P2( x̂31• x̂35)/x13

3 x35
3 #g3T

c (2,3,5). Integrating overx3 andx5 yields, in the large-x12

limit, a convolution product of two fast decreasing funtions@see Eq.~C8!#. Thus it decreases at least exponentially asx12
increases indefinitely. Note also that

E d3x3

4p

P2~ x̂34• x̂35!

x34
3 x35

3 g3T
c ~2,4,5!g2T

c ~x13!

is a convolution product of@P2( x̂14• x̂15)/x14
3 x15

3 #g3T
c (2,4,5) withg2T

c (x12). Thus, integrating over the angles and expanding
decreasing powers ofx12, we arrive at

E E E d3x3 d3x4 d3x5

~4p!3 S P2~ x̂34• x̂35!

x34
3 x35

3 g3T
c ~2,4,5!g2T

c ~x13! D
large x12

5E d3x3

4p Fg2T
c ~x13!S 2

2

3x23
6 S02

1

18 (
l 51

`
~ l 11!~ l 12!~2l 13!

x23
2l 16 S2l D G

large x12

for large x12. ~C10!

Integrating nextx23
2622l @5(x12

2 1x13
2 22x12•x13)

232l # over the angles and expanding it in decreasing powers ofx12, the last
equation becomes
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E E E d3x3 d3x4 d3x5

~4p!3 S P2~ x̂34• x̂35!

x34
3 x35

3 g3T
c ~2,4,5!g2T

c ~x13! D
large x12

5
2

9 E d3x3

4p S g2T
c ~x13!

x23
6 D

large x12

2
1

72 (
l 51

`

(
m50

l 21
~2l 14!!S2mS2l 22m

~2m11!! ~2l 22m11!!x12
2l 16 for large x12. ~C11!

Note that the integral

E d3x3

4p S g2T
c ~x13!

x23
6 D

large x12

compensates the same integral in the right-hand member of Eq.~C7! @owing to the coefficients in Eq.~C6!# and that the term
corresponding tom50 in the last expression cancels exactly the sum overl in Eq. ~C9!. Gathering together all these resul
@Eqs.~C7!, ~C9!, and~C11!#, term ~32f! is expanded in powers ofx12

22 as follows:

Line ~32f!5
l4

a4

3G2

40 E E d3x3 d3x4

~4p!2 S P2~ x̂31• x̂34!

x13
3 x34

3 g2T
c ~x23!g2T

c ~x14! D
large x12

1
l4

a4

3G2

80 E E d3x3 d3x4

~4p!2 S P2~ x̂13• x̂14!

x13
3 x14

3 g3T
c ~2,3,4! D

large x12

1
l4

a4

9G2

80 E E E d3x3 d3x4 d3x5

~4p!3 S P2~ x̂34• x̂35!

x34
3 x35

3 g3T
c ~2,4,5!g2T

c ~x13! D
large x12

for large x12

5
l4

a4

G2

120x12
6 2

l4

a4

G2

640 (
m50

`

(
l 50

m
~2m18!!S2l 12S2m22l 12

~2l 13!! ~2m22l 13!!x12
2m110 for large x12. ~C12!
ns
tly

f
h

st

:

dre
At this stage, we have verified Eqs.~58! and~59!, valid in
the large-x12 limit.

APPENDIX D: EVALUATION OF A„x12… †Eq. „C2…‡

As this integral will be also used in the computatio
performed in Sec. VII, our purpose is to calculate it exac
for any x12 ~not only in the case wherex12 is large!.

ConsiderF(x) andG(x), two functions of the distancex,
and define another functionSn,F,G(x) as follows:

Sn,F,G~x12!5E d3x3

4p
G~x23!F~x13!Pn~ x̂12• x̂13!,

~D1!

wheren is an integer andPn is the Legendre polynomial o
ordern. The last integral is assumed to be convergent. T
first step of this appendix is the proof of the relation

Sn,F,G~x12!5
2

9p E
0

`

dq q2G̃0~q!F̃n~q! j n~qx12! ~D2!

with

H̃ l ~q!53E
0

`

dx x2H~x! j l ~qx!. ~D3!
e

The functionsj l are the spherical Bessel functions of fir
kind. Note thatH̃0 is the Fourier transform ofH. Equation
~D1! expresses a convolution product. Thus Eq.~D2! is veri-
fied if n50 and, in the general case~for any n!, we are
allowed to rewriteSn,F,G with the help of Fourier transforms

Sn,F,G~x12!5
1

24p3 E d3q e2 iq•x12G̃0~q!

3E d3x eiq•xF~x!Pn~ x̂12• x̂!. ~D4!

In polar coordinates, let

q5S 0
0
q
D , x125S 0

x12sin u2

x12cosu2

D ,

and x5S x sin u cosw
x sin u sin w

x cosu
D . ~D5!

Thus

x̂12• x̂5sinu 2sin u sin w1cosu2cosu. ~D6!

If nÞ0, Pn is expanded in terms of the associated Legen
functions of the first kindPn

m :
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Pn~ x̂12• x̂!5Pn~cosu2!Pn~cosu!12 (
m51

n
~n2m!!

~n1m!!

3Pn
m~cosu2!Pn

m~cosu!cosS mp

2
2mw D .

~D7!

Integrating overw cancels each term in the last expansio
except for the first one:

E
0

2p

dw Pn~ x̂12• x̂!52pPn~ q̂• x̂12!Pn~ q̂• x̂!. ~D8!

Expanding the exponential

eiq•x5 (
l 50

`

~2l 11!i l j l ~qx!Pl ~ q̂• x̂! ~D9!

gives

E d3x eiq•xF~x!Pn~ x̂12• x̂!

52pPn~ x̂12•q̂!E
0

`

dx x2F~x!E
21

11

dm eiqxmPn~m!

5
4p

3
i nPn~ x̂12–q̂!F̃n~q!. ~D10!

Next, the same calculations are performed for the integra
over u2 . Finally, Eq.~D2! is obtained.

Consider now the case where

n52, F~x!5 lim
«→0

exp~2«x!

x3 and G~x!5g2T
c ~x!.

~D11!

G̃0(q) is h(q), the Fourier transform ofg2T
c (x), and the

transformF̃2(q) is simply 1. Then Eq.~D2! becomes

S2,F,G~x12!5A~x12!5
2

9p E
0

`

dq q2h~q! j 2~qx12!

52
2

9p E
0

`

dq q2h~q! j 0~qx12!

2
2

3px12

d

dx12
E

0

`

dq q2
h~q!

q2 j 0~qx12!

52
1

3
g2T

c ~x12!2
1

x12

d

dx12
E d3x3

4px13
g2T

c ~x23!.

~D12!

Integrating over the angles

1

2 E
21

11 dm

x13
5

1

2 E
21

11 dm

~x12
2 1x23

2 22mx12x23!
1/2

5
1

sup~x12,x23!
~D13!
,

n

yields Eq.~C2!:

A~x12!5E d3x3

4p
g2T

c ~x23!
P2~ x̂12• x̂13!

x13
3

52
1

3
g2T

c ~x12!1
1

x12
3 E

0

x12
dx x2g2T

c ~x! .

~D14!

Note that the last integral in Eq.~D12! is convergent.

APPENDIX E: SOME INTEGRALS INVOLVING
LEGENDRE POLYNOMIALS

ConsiderP2( x̂31• x̂32)/x13
3 x23

3 @cf. Eq. ~C4!#. We have to
prove that the integral

E d3x3

P2~ x̂31• x̂32!

x13
3 x23

3 52E
x13<x23

d3x3

P2~ x̂31• x̂32!

x13
3 x23

3

~E1!

is convergent~there is a pole inx1350! and to evaluate it.
First, P2( x̂31• x̂32)/x23

3 is expressed in terms ofx12, x13, and
m (5 x̂12• x̂13):

P2~ x̂31• x̂32!

x23
3 5~x12

2 1x13
2 22mx12x13!

23/2

2
3

2
~12m2!x12

2 ~x12
2 1x13

2 22mx12x13!
25/2.

~E2!

Noting that

x23
2 5x12

2 1x13
2 22mx12x13>x13

2 ⇔m<
x12

2x13
⇔21<m<mmax

~E3!

with mmax5x12/2x13 if x13>x12/2,

and mmax511 if x13<x12/2,

P2( x̂31• x̂32)/x23
3 is integrated overm:

E
21

mmax
dm

P2~ x̂31• x̂32!

x23
3

5
1

x13
3 1

x132mmaxx12

x12x13
2 ~x12

2 1x13
2 22mmaxx12x13!

1/2

2
x12~12mmax!

2x13~x12
2 1x13

2 22mmaxx12x13!
3/2

2
~x12

2 1x13
2 22mmaxx12x13!

1/2

x12x13
3 , ~E4!

if x13<x12/2, E
21

11

dm
P2~ x̂31• x̂32!

x13
3 x23

3 50. ~E5!

As the angular integration equals zero for smallx13, integral
~E1! is convergent. Therefore,
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E d3x3

4p

P2~ x̂31• x̂32!

x13
3 x23

3 52E
x12/2<x13<x23

d3x3

4p

P2~ x̂31• x̂32!

x13
3 x23

3

5E
x12/2

` dx13

x13
E

21

x12/2x13
dm

P2~ x̂31• x̂32!

x23
3

5E
x12/2

`

dx13 S 1

x13
4 2

x12

x13
5 1

x12
3

8x13
7 D

50 if x12Þ0. ~E6!

The following relation can also be verified:

2E
x13<x23

d3x3

4p
g2T

c ~x13!
P2~ x̂31• x̂32!

x13
3 x23

3

52E
x12/2<x13<x23

d3x3

4p
g2T

c ~x13!
P2~ x̂31• x̂32

x13
3 x23

3

5E
z12/2

`

dx13g2T
c ~x13!S 1

x13
4 2

x12

x13
5 1

x12
3

8x13
7 D . ~E7!

Examine

P2~ x̂31• x̂34!

x13
3 x34

3 g3T
c ~2,3,4!5F3

2

~x12•x341x23•x34!
2

ux121x23u5x34
5

2
1

2ux121x23u3x34
3 G g3T

c ~2,3,4!

~E8!

which appears in the first integral of the right-hand mem
of Eq. ~C6!. Let (x23,u3 ,w3), polar coordinates of vecto
x23, and (x34,u4 ,w4), polar coordinates of vectorx34, with

u35~x12,x23!, u45~x23,x34!,
r

x̂12• x̂235cosu35m3 ,

x̂23• x̂345cosu45m4. ~E9!

It follows that

x̂12• x̂345cosu3cosu42sin u3sin u4sin w4 ~E10!

and

d3x3d3x45dw3dm3x23
2 dx23dw4dm4x34

2 dx34. ~E11!

Note thatg3T
c (2,3,4) is dependent onx23, x34, andm4 . Car-

rying out angular integrations, one gets

E
21

11

dm3E
0

2p

dw3E
0

2p

dw4

P2~ x̂31• x̂34!

x13
3 x34

3

5H 0 if x23,x12,

~4p!2P2~m4!

2x23
3 x34

3 if x23.x12.
~E12!

There is a pole inx1350 ~i.e., x125x23 andm3521!.

APPENDIX F: EXPANSION „C9…

In this appendix,I @Eq. ~C9!# is expanded with respect t
x12

21. From Eq.~D10!, it can be shown that

E d3x13

x13
3 P2~ x̂13• x̂14!e

iq•x1352
4p

3
P2~ q̂• x̂14!. ~F1!

Using twice the inverted form of this relation, to expre
(1/x13

3 )P2( x̂13• x̂14) and (1/x14
3 )P2(q̂• x̂14), I is rewritten in

the form
I 5E E d3x3d3x4

~4p!2 Fg3T
c ~2,3,4! lim

«,«8→0

E E d3q d3q8

~6p2!2 e2 i ~q1q8!•x12e2 iq•x232 iq•x24e2«q2«8q8P2~q•q8!G
large x12

. ~F2!

e2 iq•x23 ande2 iq•x24 are expanded in terms of Legendre polynomials and of spherical Bessel functions of the first kind@cf. Eq.
~D9!#:

I 5 (
l ,l 850

`

~2 i ! l 1 l 8~2l 11!~2l 811!E E d3x3d3x4

~4p!2 g3T
c ~2,3,4! lim

«,«8→0

E E d3q d3q8

~6p2!2 e2 i ~q1q8!•x12e2«q2«8q8P2~q•q8!

3 j l~gx23! j l 8~q8x24!Pl~ q̂• x̂23!Pl 8~ q̂8• x̂24!. ~F3!

The vectorsq8 andx24 are expressed in polar coordinates as follows:

x235S 0
0
x23

D , q85S 0
q8sin u8
q8cosu8

D , x245S x24sin u4cosw4

x24sin u4sin w4

x24cosu4

D . ~F4!

Equation~D8! is used to write

1

2p E
0

2p

dw4 Pl 8~ q̂8• x̂24!5Pl 8~ q̂8• x̂23!Pl 8~ x̂23• x̂24!. ~F5!
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We consider nowPl 8(q̂8• x̂23). Involving the vectorq, we process as forPl 8(q̂8• x̂24). The vectors are expressed with ne
polar coordinates:

q5S 0
0
q
D , q85S 0

q8sin u
q8cosu

D , x235S x23sin u3cosw3

x23sin u3sin w3

x23cosu3

D . ~F6!

Let

m35q̂• x̂23,

m45 x̂23• x̂24. ~F7!

Equation~F3! becomes

I 5 (
l ,l 850

`

~2 i ! l 1 l 8~2l 11!~2l 811!
1

4 E
21

11

dm3 Pl~m3!Pl 8~m3!E
21

11

dm4 Pl 8~m4!E
0

`

dx23x23
2 E

0

`

dx24x24
2 g3T

3 ~2,3,4!

3 lim
«,«8→0

E E d3q d3q8

~6p2!2 e2 i ~q1q8!•x12e2«q2e8q8P2~ q̂•q̂8!Pl 8~ q̂•q̂8! j l~qx23! j l 8~q8x24!. ~F8!

Because of the orthogonality of the Legendre polynomials, only the terms for whichl 5 l 8 contribute to the sum overl andl 8.
Therefore,

I 5(
l 50

`

~2 ! l~2l 11!E E d3x3 d3x4

~4p!2 Pl~ x̂23• x̂24!g3T
c ~2,3,4!

3 lim
«,«8→0

E E d3q d3q8

~6p2!2 e2 i ~q1q8!•x12e2«q2«8q8P2~ q̂•q̂8!Pl~ q̂•q̂8! j l~qx23! j l~q8x24!. ~F9!

Heree2 i (q1q8)•x12 is also expanded:

I 5(
l 50

`

~21! l~2l 11! (
k,k850

`

~2 i !k1k8~2k11!~2k811!E E d3x3 d3x4

~4p!2 Pl~ x̂23• x̂24!g3T
c ~2,3,4!

3 lim
«,«8→0

E d3q d3q8

~6p2!2 e2«q2«8q8Pk~ q̂• x̂12!Pk8~ q̂8• x̂12! j k~qx12! j k8~q8x12!

3P2~ q̂•q̂8!Pl~ q̂•q̂8! j l~qx23! j l~q8x24!. ~F10!

As previously, it can be proved that

I 5 (
l ,k50

`

~21! l 1k~2l 11!~2k11!E E d3x3 d3x4

~4p!2 Pl~ x̂23• x̂24!g3T
c ~2,3,4! lim

«,«8→0

E E d3q d3q8

~6p2!2 e2«q2«8q8P2~ q̂•q̂8!

3Pk~ q̂•q̂8!Pl~ q̂•q̂8! j k~qx12! j k~q8x12! j l~qx23! j l~q8x24!. ~F11!

With the help of the known relation

~2l 11!mPl~m!5~ l 11!Pl 11~m!1 lPl 21~m! if lÞ0, ~F12!

one gets

~2l 11!~2k11!E
11

11

dm P2~m!Pl~m!Pk~m!5~2l 11!~2k11!E
11

11

dm S 3m2

2
2

1

2D Pl~m!Pk~m!

5
3

2 E
11

11

dm@~ l 11!Pl 11~m!1 lPl 21~m!#@~k11!Pk11~m!1kPk21~m!#

2
1

2
~2l 11!~2k11!E

11

11

dm Pl~m!Pk~m! if l ,kÞ0. ~F13!
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Then it is shown that

~2l 11!~2k11!E
11

11

dm P2~m!Pl~m!Pk~m!53
l ~ l 21!

2l 21
dk,~ l 22!12

l ~ l 11!~2l 11!

~2l 21!~2l 13!
dk,l13

~ l 11!~ l 12!

2l 13
dk,~ l 12! .

~F14!

Thus, in the right-hand member of Eq.~F11!, the sum overl andk reduces to the cases wherek5 l 22, l , or l 12. Equation
~F11! is then rewritten as follows:

I 5
2

3p2x12
6 (

l ,k50

` F l ~ l 21!

2l 21
dk,~ l 22!1

2l ~ l 11!~2l 11!

3~2l 21!~2l 13!
dk,l1

~ l 11!~ l 12!

2l 13
dk,~ l 12!G

3E E d3x3 d3x4

~4p!2 Pl~ x̂23• x̂24!g3T
c ~2,3,4!Kk,l S x23

x12
DKk,l S x24

x12
D , ~F15!

whereKk,l(x/x12) is a function defined by

Kk,l S x

x12
D5 lim

«→0
E d3q

4p
e2«qj k~q! j l S q

x

x12
D . ~F16!

As x12 is large enough,j l(qx/x12) can be expanded in terms of increasing powers ofx/x12. This brings in the following
expansion for the functionKk,l :

Kk,l S x

x12
D5S x

x12
D l

(
m50

`

~21!mS x

2x12
D 2m I ~21 l 12m!,k

m! ~2l 12m11!!!
, ~F17!

where theI n,k’s correspond to the integrals

I n,k5 lim
«→0

E
0

`

du e2«uunj k~u!, ~F18!

which have here to be evaluated in the only case wheren>k, becausek is restricted tol 22, l , or l 12. If k.0, integrations
by parts provide

I n,k5~n1k21!I n21,k215~n1k21!~n1k23!¯~n2k11!I n2k,0 ~ for n.k!

[I n,n5~2n21!!! I 0,0 ~ for n5k!. ~F19!

One gets

I p,0
~p.0!

5 lim
«→0

E
0

`

du e2«uup21sin u5 lim
«→0

Im E
0

`

du e2u~«2 i !up215Im F ~p21!!

~2 i !p G5 H 0 ~ if p is even!
~21!~p21!/2~p21!! ~ if p is odd!,

I 0,05 lim
«→0

E
0

`

du e2«u
sin u

u
5

p

2
. ~F20!

Note that, in the present calculations, one is just concerned with evenp5n2k numbers. The peculiar feature thatI p,0 vanishes
in that case, except forp50, considerably simplifies the evaluation of expansion~F17!, as it is restricted to its termm50,
while k is also restricted to the single valuel 12, for a givenl number. This allows us to express Eq.~F15! in the simple form

I 5
1

6x12
6 (

l 50

`

~ l 11!~ l 12!~2l 13!E E d3x3 d3x4

~4p!2 g3T
c ~2,3,4!Pl~ x̂23–x̂24!

x23
l x24

l

x12
2l for large x12, ~F21!

which brings in an expansion in terms of the Legendre polynomialPl . Finally, making use of OCP sum rules~42! and ~45!
provides Eq.~C9!:

I 52
2

3x12
6 S02

1

18 (
l 51

`
~ l 11!~ l 12!~2l 13!

x12
2l 16 S2l for large x12. ~F22!
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