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Wigner-Kirkwood quantum corrections for the pair distribution function in a plasma
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We study the quantum corrections for the pair distribution funagig(m ,,) in a one-component plasma. Our
analysis is based on t€& expansion of the Wigner-Kirkwool-particle distribution function in phase space.
A resulting expression fog,(ry,) is derived exactly, at ordet®, valid at any interparticle distance. This
guantum pair distribution function is expressed in terms of the classical two-, three-, four-, and five-particle
distribution functions. Analytical properties of this expression are studied, both for small andrlgrge
Accurate approximate expressions, depending only on the classical pair distribution function, are proposed.
[S1063-651%98)09204-9

PACS numbdps): 05.30—d, 52.25-b

[. INTRODUCTION has been previously presented in a Lefi@r The analytical
properties of thei* term are studied in both the limits,

The knowledge of the static pair distribution functions — (Sec. IV) andr,—0 (Sec. \J. Of course, as explained
d2(r 12) plays a central role in the study of thermodynamicalat the end of Sec. Vt;, cannot be too small. In the other
and transport properties of a fluid]. In a partially degener- case, this semiclassical formalism would not be appropriate
ated fluid, quantum expressiog§(r 1) are needed. A pow- and the WK expansion would not converge. For largg
erful approach involves a semiclassical quantum distributioh® expansion with respect 1q," is derived exactly at all
function P(r4,..../n,P1.-...Pn) Proposed by Wigner in his orders[Eq. (60)]. This analysis of the behavior of thie*
original paper[2] to calculate quantum corrections for the €rm allows us to propose, in Sec. VI, approximate expres-
classical thermodynamical properties. Using the so-calle§ions for the WK pair distribution f‘_mCt'_Ogg(rlz) at order
Wigner-Kirkwood (WK) 72 expansion of the quantum dis- 7"~ These very accurate approximations need only the
tribution function, thef? correction forg,(r1,) was derived knowledge of the classical pair d_|str|but|on functigh(r 1,).
by Jancovici3] with a very simple result in the case of the In the last section, a few numerical results are shown.
one-component plasm@®CBP.

The #* term was already investigated by Alastuey and
Martin [4] and Cornu and Martif5] in order to analyze the Il. WIGNER-KIRKWOOD DISTRIBUTION
absence of exponential clustering in a quantum plasma. FUNCTION, #* CORRECTION
These authors predicted the asymptotic behavigr¢ o) of . , )
the charge-charge correlation function in the OCP. As a ma- |f We consider a set oN particles encloszed in volume¢
jor result, they have shown that, in contradistinction with the@t temperaturd (N andV are very largg 7~ expansion of
classical case whergi(r,,—)—1 (c stands for classical the unnormalizedN-particle WK distribution function in
decreases faster than any inverse power,gf(exponential phase spac?] reads
clustering [6], the #2 WK expansion ofgd(r;)—1 no
longer exhibits a decay bounded by an exponential, but an B 2 4
algebraic one. They proved that thé term is decreasing as P(ry,....rnP1y- - PN) =X — Be) +7if+h%f,
r-°. As explained by these authors, this tail arises from the P il SUSE (1
fluctuations of dipolar interactions which are not perfectly
screened in the quantum case. The knowl_edge oﬁﬂterm_ _ wheree is the total energy,
is thus shown to have a great importance in plasma statistics.

In the present work, we apply the WK formalism de-
scribed in Sec. Il to derive the exatf correction for the N 2
pair distribution function in the OCFSec. lll). At order#?, e= 2 &Jr U(ry,...00), 2
g3(ryp) is expressed in terms of the classical distribution k=1 2My
functionsgg(ry,...,rn) (Uup ton=5). This result[Eq. (32)]

andB=1/kgT (kg is Boltzmann's constajtr, andp, denote

the position and the momentum of thth particle in three-

*Also at Laboratoire des Matiaux Mineraux, Conservatoire Na- dimensional(3D) space M denotes its mass, aid stands

tional des Arts et Miers, 292 rue Saint-Martin, 75141 Paris Cedex for the potential energy. It can be seen tligt satisfies a
03, France. partial differential equatiof2]
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written here with the help of contracted tensor produﬁ‘t&. andek denote the gradients at andp,. f, was evaluated by

Wigner in his original worK 2]. In order to derive terms of higher orders, we conveniently make use of Wigner's notation: a
point in the phase space is specified lvy,(..,r3n:P1,---,P3n) Whererq,...r3y are the 3 spatial coordinates of thi
particles anddq,...,psy, the corresponding momentum coordinates. Let

fon= eiﬁEQZn . (4)
Upon evaluating thg derivatives ofe” #¢ andf,, the following equation is readily deduced:

3N 3N

3N
~ #U_ BppiPm #U Bp
kiim=1 rgdrdrm MMMy, =1 argary MM,

1 #PU U Bppipn
3 16 k1, mn=1 9rdrdry, ormdr, MMM M,
1

3N

Pk 994 4V 994 _ 92
+

K=1 Mk oy k=1 0"I'k &pk 314

3N

3N

> U B°PKPIPmPrPo
5 16 k1 mno=1 I mdr,dro MMM M M,
1 Ny ( 2U  #2U |\ Bpm
3!16k,|,m:1 ﬁrk &rkr?n (}]r|(9rm MkM|Mm
3N 3N
BNET U BPiPmpn 1 U Bpy
31321 fmh=1 Ar2orormdrny MMM M, 128 5=1 araror, MMM,
5
with [2]
3N 3N 3N
F A e wp 3 e o
9272 My arZ TE 24 \arg) =1 2dM M, arar,”

Noting thatg, is a sum of terms of order8? and 3%, it can be checked that the right-hand member of (Bjcontains terms
of orderspB?, g4 B°, andg®. Thusg, may be written in the form

d4=B°G3+ B*G,+ B°Gs+ B°Gg, )
where Gz, G4, Gg, and G4 are also solutions to four partial differential equations, easier to solve than the initial one.

Equation(5) can also be solved by rearranging its right-hand member according to powdrs of
As a final resultP at orderz* reads

N 202 N N 3 3/ X 22
B vku , Bop y B Vi
_ B . —Bel _ T - =
P ex;{ ﬂE"’ﬁ 2 2 (VkU) +’|2:1 24M M, ViViu || +7%e 2 kzl 8M U
B & (V)Y L (VV0)2 B . Vi

4
VLS

+16(3|) KI=1 Mle 32(3|) K21 MkMI + (3|) kI% 1 MkM M (plpm) (VIVmU)

B & (VU)-V, , B o (PP B < 1( S )2
G T P T I v A AL Ty PIR v A Y v
B P ) 6
‘16(5!)(21 PR A °
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with VkEV,k. In the last equation, the subscripts take values ranging from N, tthe number of particles. The spatial
distribution functiong(r4,...,ry) is deduced performing the averageRfr,,...,\n,P1,---.Pn) OVer the momenta:

f‘“fdspl'“dgpNP(rlv--er apl1'-'1pN)

M,..IN)= . 9
90 MW = T T, pyexp — AE,pZ2My) ©
It can be written in the compact form
N )\ﬁ
g(ry,..., rN):eXp(E zlVE)e—ﬁU+f12|:2+h4|:4+0(ﬁ6), (10)
where\ is the de Broglie wavelength associated with ktle particle:
N2=12BIM,. (12)
#2F, and#*F, are calculated in Appendix A with the results
N )\E
2k _ _ a—BU 7k g2
h2F,=—e kgl 54 ViBU (12)
and
N 2 N 2 N 2y 2 N 2 2
A 1 NN 19 A
g g2 K y2e-BU_ — LS . ~BUy 4 g BUl _ = K y2
hF=—| 2 24V|BU)kZl 52 Ve 50,2, 2a (VVIBY)-(ViVie ) e - 55| 3 2 Vi (V)
N 2 2 N 2y 2 N 2y 2
1 Ao s 1 Y , 7 NEA] )
T3 kzl ﬁvkﬁu) +ﬁ)k,|2:1 Sz (VkViBY) +a)k'|:l oz VKBU)- Vi (VipU) . (13

Equation(10) agrees with a result previously derived by Alastuey and Jancf®jcin the case of the magnetized OCP.

Terms of higher orders are investigated in Appendix B. It is proved, using a recurrence scheme, that the contribution
(1/n!)(2k)\§Vﬁ/24)”e‘BU arises at all the orders in th& expansion. This explains the choice made in writing @€) with
the emergence of an exponential operator.

[ll. PAIR DISTRIBUTION FUNCTION IN AN OCP

For the sake of simplicity, we restrict ourselves hereafter to the case of one single-particle spediepaRaes of mass
M, enclosed in a volum¥, the pair distribution function reads as

CN(N=1) [+ fd3r g -dryg(ry,.... )
92(r12)= sz'"fdsrl'"dSrNg(rlv---arN) '

(14)

with p=N/V. It can be expanded with respect#d as Jancovic[3] did for the first order, replacing(ry,...,ry) with its
expansion(10). g,(r1,), hereafter denoted agl(r,,), becomes

A2 . N(N=1) [ fd3 4 --d3r\F, N(N=21)f---fd3 5 --d3r\F,
91 = exp(l_zvz 021 g -y~ BU) 4pzf---fd3r1---dBrNexp(—ﬁw+O(ﬁ6)}
[ fd3NrF, [ fdNF, )2 [ AN,
X|1-h [Ny exp(—,BU)Hi4 [+ Jd3Nr exp(—BU) e [ fa3Nr exr(—,BU)Jro(ﬁﬁ) (19

where \? (=%2B/M) is the squared de Broglie wavelengtlf stands for the classical pair distribution function. In the
classical caseg(rq,...,ry) reduces to expfBU) so that

. O N(N=1) [ [d% g --dryexp — BU(ry,...rN)]
92l 12 = T T drex— AU, )]

(16)

g3 can be rewritten as
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N> 1)J fd rs rNFz_gz(rlz)j fdsN

J j d3Nr exp(— BU)

[+ [dNrF, [+ JdNrE, \Z ]
ejen s —gur| e et g | 12 | 1o
+0O(#45). (17

2

q A
9d(ri)=ex 73

Vz)gg(flz)”iz

x| 1-#2

> 1)f fd3r3 dr\Fy— gz(rlz)f J'daN
f fd?”\‘r exp(— BU)

Now we deal with a one-component plasf@CP made ofN particles of charg&Ze embedded in a uniform charged
background of opposite sign. In such a system, the potential energy is

1 d’r 1 d3r d3r’
U=2 2> u(ry)— zzezpf gz H (18)
2 7 K re—r Jr=r]
where
z%e?
U(rk|):—r ; (29
kl
ra=r—ry, andr=|r|. U satisfies Poisson’s law
ViU=—4nZ%? >, 8(rq)+4mZ%?p (20)
1{%k)
and
V. V\U=47272€?5(r,)) if k#I. (21)

The last equations and the relatié¢r,)e #Y=0 (i.e.,e AV is null if two particles are at a same positjalow us to express
Eqg. (17) in the form

A2 2N 2 N(N=1)f-[d3rg--d3r\(V, Ve PY)-(V,V,8U)
g3(rip)= exp(leZ)gz(rlz) sz pzf__,desNrgflﬁu ad
A % N(N=1)f---[drg--d®rye AUV, VU2 \* | % S [d¥Nre AY(V,V,8U)?
+ 5(24) (&1 P2 [dNre AU 5(24)2 gZ(rlZ)k,|:1 [ [d®™re AU

+0(#9). (22)

It remains to evaluate the various tensors and contracted products which appear in the last equation. After some calculations,
the last summation in Eq22) can be written as

N 4 4 4 A A
N N 4 N 1 2\ P (X - Xiem)
Ae AY(V V,8U)== — ’BU+——e’ BU —— e A —_, 23
szzl (ViViBU) 3 4 3 )\D k#1 Xkl 3 )\é k;m XEIXEm 23
(k1 #=m=#k)

wherex=r/a [a=(2mp) V3] and\p [=(47Z%e*Bp) 7] is the Debye screening length.is a unit vector: x=x/x and
P,, the second-order Legendre polynomial. Therefore,

, N f"'fdle' e*,BU(VkVIIBLj)Z N )\4 d3X3d3
A K21 [ fdNre AV 25)\_4 ff 2(X34)
d3x3d3x4d3x5 . o
+187\4 (477)3)(34)(35 03(X3,X4,X%s5) P2(X3s  X35), (24

wheregs is the classical three particle distribution functimee Eq.(27)].
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Consider next the second summation in the right-hand member aBq.Noting that

% N(N-1)f - fd’rg -d’rye (Vi VipU)2 | 2N(N—D)f-[drg drye P[(V,1V28U)%+ (V1V18U)°]
K21 p?f--fd3Nre~PY P2 [d™re PU

4N(N 1)(N=2)[-[d3r5--d3rye PY(V,V;8U)2
Zf fd3Nre BU
N(N 1(N=2)[--[d3r 5 --d3rye PY(V,V,58U)2
2f deN re —-BU
N(N 1)(N=2)(N=3) [+ [d3 4 --d3rye PY(V,V,8U)2
2f fd3Nre BU '

(25)
it is possible to write
)\4% N(N—l)f"'fd3r3'"dere_BU(VthBU)Z_ Cxen -+ fd3Nre BY(V,V,8U)2
=4 o2 [d®Nre PV J2(Xy [ [dNre AU
8\ 1 4 X3 4 2P2(>A<12'>A<13) Pa(Xa1- X32)
C
3)\4 xS, 92(X12)+4)\4 J I 93 (X1,%2,X3)| =5 13 s s
1o J’J' d3x5d3x, SR JJ d3x5d3x,
¥ @m>E, [94(X1,X2,X3,X4) — 95(X12) 95(Xas)] %S “am? 9a(X1,X2,X3,Xa)
2P2(>A(31'X34)+P2(X13'X14) fff d3x3d3x4d3x5 P(Ras- ag) [ GE(X1 Ko 1 X3 1 X4 1 X5)
Xi9X34 XiX1s (Am)33x3s X3Xgs o or TILESIILT2TS AT
= 05(X12)93(X3, X4, %s) . (26)
In the last equationgy is the classicah particle distribution function:
NS fd3r 1 d3ryexp(— BU)
g?\(rlvrzv" n)_ (N n)' n; fdgNr eX[X ﬂU) (27)

with n=2, 3, 4, or 5.
The first summation in Eq22) (the summation ovek andl taking values 1 and)zhas finally to be examined:

2 3

N(N—l)ffdgrS der(VkV|e BU) (VkVIﬁU) 4u(|’ 2) 222e pf d r :|
1
ro—r|

K21 sz deN re —BU

A =B\, V105(r1)- V4V

+Zﬁ)\4pf d33V,V105(r1.r0,r3)-VaViu(ryy). (29

Upon performing tensorial calculations, the last equation becomes

2

S N(N—1)f---fd3r§---d3rN(VkV_|e*BU)-(VkV|,BU) 2 \* V2 (x1) + 8)\_4i( , 3 d )g )
k=1 p?f---JdNre Y 3al\2 " P22 T3 a2 3, X1 dxgp) 227
+2—)\47 d V.V.0S T
a2 ) amd, 't 193(X1,%2,X3) - T3y, (29

Where?gl is a tensor of order 2. In the orthogonal normalized natural base associated with therygcfo;l reads

-2 0 O
Tey=( 0 1 0. (30)

0 0 1

Then the contracted tensor product in the last integral of(28).can be expressed as
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az

- L 9 L
V1 V105(X1,X2,X3) - Tag= — 2Po(X12° X13)X13 3713 ( ) 05(X12,X13,X29) — 4P1(X12: X13) 05(X12,X13,X29)

X139X13 IX120X13

A Jd
—2P5(Xq2 X13)X12 Xy ( ) 05(X12,X13,X23), (31

X120X12
in which Py, P1, andP, are Legendre polynomials of orders 0, 1, and 2.

Finally, making use of Eqg26) and(29) allows us to reexpress each term of the right-hand member of22y.with the
result

A2 V2 M T [v2 1 /1 d)\? 2
(X12) ex 12a2 92(X12) a 180 4 —+t X12 X12 Xm gZ( 12) ( a)
AT d3xg
+z 2% 240 ﬁ‘ V,V,05(1,2,3- T31 (32b)
N2 (1 2(X12 X13)
ta 40[ 692 1ﬁ+j— )W} (329
ANT2 [ od3xg Po(Xa1- X30)
Y80 dn G123 g (%2
A\AT? d3xs
"’g%“' yp 6 05(1,23 + — f f 2 6 [94(12 34— 92(X12)92(X34)]] (328
] I d*x3d®x, Po(Xa1-Xaa) ~ Pa(Xya X14)
+ o M g5(1,2,3 +
a" 80 U (am? 94 "[ G s
d3x3,d3x4d3x5 66
3 [ [ e Patkar fed (0612348~ 65x1)05(345]| +O0/a), (320
(4m) X34 35
wherel is the coupling constant:
I'=272%e?pla. (33

g:(1,2, ... n) stands forg;(X1,Xz, ... X,)-

Expression(32) provides an exact expansioap to4 %) of the quantum pair distribution function in the OCP. This result is
analogous with the one obtained previously by Alastuey and Mpdtifor the charge-charge correlation function in the OCP
[see Eqs(4.40 and(4.44) in their paper, hereafter denoted dsusing very compact notations. We have checked that the term
(4.400 in | corresponds exactly to thie* terms of our Lineg32a and(32b). It could also be verified that

N
h*XEq. (4.44a-)=p2e? 2| 200 i, g5(xyp) +Line (328,
hAXEq. (4.44b-)=h*X Eq. (4.44a-)+ p®e?[Line (320)+Line (32f)+remaining term in Line(320]. (34

In accordance with Alastuey and Mart[#], we conclude that the evaluation of thé term of the Wigner-Kirkwood
expansion needs the knowledge of the classical two-, three-, four-, and five-particle distribution functions.

The following sections are devoted to a study of the \Wr1,) expressed by Eq32). In order to simplify the analysis
of this expression in the limix;,— % (next sectioh and to develop further an approximate expresg®ec. V), it appears
useful to rewrite Ling(326 in the form

)\4 2 d3 431‘*2 d3x3d3
Line (32¢= +a 20] e 6 [95(1,2,3) — 95(X12)95(X13) ]+ 280 ff @m2E, ———— [03(1,2,3,4 +05(X12) 95(X34)

—05(%1295(1,3,9 —95(x195(2,3,4)]. (35)

The constantf (d3x/4mx®)g5(x) in the first integral cancels exactly the other constaff[ d®x3d3x,/(47)2x5,][95(1,3,4)
—05(xs4)] in the second integral. This can be verified expandjp@andg$ in Ursell functiong Egs.(37) and(38)] and taking
into account OCP sum rulg¢&qgs.(41) and(42)]. In a similar way, Line(32f) is rewritten as
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2P(X31- X34) Pz(Xls X14)

Line (32)=+ —
X§3X§4 13X14

A4 312 d3x5d3x,
f f [04(1,2,3,4—05(X12)95(1,3,9)]

a? 80 (4)°

Vgrszf s s R[G5 123,45 + G5(x12) 05(3.4,5) — 205(x19 GE(L3.4
a* 160 (47T)3X34X35 2(X34-X35)[95(1,2,3,4,9 + 95(X12)93(3,4,5) — 295(X12)94(1,3,4,3 ].
(36)

As previously mentioned, the constanf [ d®x3d%x, /(47)2x3x3,]Po(X13- X14)95(1,3,4) (in the first integral compensates
the other onef [ [ d3x3d®x,d3xs/(47)3x3 %351 P2 (Xaa- X39)[95(1,3,4,5)- g5(3,4,5)] (in the second integral This can be
checked with the help of the Ursell function expansi¢d® and(39) and of the sum rule$4l), (42), and(43). When lines

(32e and(32f) are expressed in the forn§35) and(36), each integral does not tend to a constantgsapproaches infinity
(see next section

IV. ASYMPTOTIC BEHAVIOR OF THE QUANTUM PAIR DISTRIBUTION FUNCTION

Each term of the right-hand member of Eg2) is considered in the limit;,— . This study is based on properties obeyed
by the classical distribution functiorgy,: the exponential clustering and a number of well-known OCP sum [alas).

As Alastuey and Martif4] did, we first expandy;; in the Ursell functiongor truncated functionsysr, 951, 947, andgsr,
defined by the relations

95(1,2): l+g(2:T(112)1 (37)
05(1,2,3=1+051(1,2 + g57(1,3 + 957(2,3 +937(1,2,3), (38)
0:(1,2,3,4,5=1+[0g5:(1,2 + (permutations] + [ g5+( 1,2 g5+(3,4) + (permutations] + [ g51(1,2,3) + (permutations]
+[951(1,2951(3,4,5 + (permutations] + [ g51(1,2,3,4 + (permutations] + gc(1,2,3,4,5. (40
According to the exponential clusterirfgalid for a plasma in the classical framewpif6], g5 (1, . . ., i, | n)

decreases faster than any power of any distagiceasx;; approaches infinityi.e., at least exponentially
The OCP sum rules used here §8¢10|

3

f X 95 (x) = — = 41
471_ gZT(X) - 3 , ( )
d®; . 2 .
f T 931(1,2,3) = — 3 951(X12), (42)
d3X4 c c
f H g4T(1121314: _g3T(11213)! (43)
d®x ) 2
j 77 X 9210 =~ 3, (44)
d3 1 I ~C ;
j e X13P (X12-X19957(1,2,3 = 3 X1051(X12)  (if 1=1), (45)

whereP, is the Legendre polynomial of order Equation(44) (the second moment af;) is the well-known Stillinger-Lovett
condition(i.e., the perfect screening condition of an infinitesimal external charge

Hence it follows that the terms containing derivatives in the right-hand member ¢8BdLine (323 ] decrease faster than
any power ofx;,, asxj, tends to infinity, and

1 1
& g5(X10) = X—6—+(terms decreasing faster than amy,’) for large Xj,. (46)
12 12
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Next, consider in Ling32b) the contracted product expressed in E1). Making use of the expansion gf in truncated
functions[Eq. (38)] and then eliminating the terms with zero value lead to the result

3 d
(47)

3
1V1095:1(1,2,3) - Ty,

fdx V.V.0%(1,23-T fdxgv
2 X13 1 193( ) - Ta= 477Xi3

which decreases faster than any powexgf, for largex,, [asg$:(1,2,3) doeg

Let us consider now Lin€32e written under the form{35). One can write
3

d3x d X
f 4—2 [95(112,3)—gg(xlz)gg(xls)]:_ggT(Xlz)f e gg(x)+f Fxli[g(z:T(X12)+ggT(X23)+g§T(1!2-3)]-
(48)

ng(X23)>
==

X13

And for largex,,

d°x13
f ﬂ‘[93(123) 05(X12)95(X34) 1= J

+ (terms decreasing faster than amy,')

large X,

for large Xx45. (49

In the same way, the second integral in E8p) becomes

d3x
f f 3 6 [94(1 2,3,4+05(X12)95(X34) — 95(X12)95(1,3,4) — 95(x1295(2,3,4) 1= 3 ng XlZ)J' pp—a g3(x)

J'J' d3X3d3X4(QZT(X14)9(2:T(X23))
(477)2 Xg4 large x;,

d3x5d3x,
f f WF [295(X14)95(X23) +2957(1,2,3) +957(1,2,3,4]1=2
(50)

+(terms decreasing quickly for large x;,.

in the right-hand members of Eq&0) and (49):
(51)

Considerxz? andx;5
6 (2 12 3
X313 = (X1o+ X535~ 2u3X12X23) 7,

-6 2 2 -
X3a = (Xigt XT3~ 21aX19%10) 2,
with p,=Xq3-X14 and u3=X,1- Xo3. Performing angular integrations followed by expansions in terms of inverse powefs of

provides
2|

1 j“ dus i (21 +4)! x23 -
2 )1, X_?2|=0 41(21+1)! X% T X127 %23,
= dp 1 oo (@F2mid) xSl 1 1 o (2144) XEr g
_f d/~l«3f 5 = "% 2 2 [ | 0 2|+2m 5 +—6 (7] ' o
4 -1 -1 X34 X12m=OI=0 (2 +1) (2m+1) XlZ X12|=]_ 4(2 +1) Xlz
LS emean g
il _ - |
+X6132 m2:2 ;1 4121+ D)I(2m—21+1)! X%? it X12>Xo3,X14 (52

Taking into account sum rulgd1) and(44), term (32¢) becomes

_ NT2 N S (2mE8)!SyoSm a2
Line (328=~ 27 15068, * a% 3202 0 (2113)1(2m—21 + 3)h2g+D for large xaz, ®3
whereS,,, is the 2n-order momentum o5+ :
d3X 2n~C ” n+2~C
=| 2. g5+(x)= dex2 g57(X). (54)
We remark thafcf. Egs.(41) and (44)]
2
(59

S=—5 and 82:—3—1,.
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S, is related to the compressibilifft1-13. In Eg. (53) there is no contribution of ordeng. Thus gathering together Egs.
(46) and(53) provides

)\4 I 2 )\4 I 2 (2| ! 8)ISZI+ZSZm 21+2
(X1 +Line ( a* SZOmZ 20 (21+3)1(2m—21 +3)1xZ0 10 for large x;,. (5

275706 9
a* 120¢5, 72

There is no contribution of ordes,> andx;.
As proved by Alastuey and Marti#], the quantity

1>\4 oz

[which corresponds to E@4.444 in 1] is the only contribution to the large, behavior of4* term. Thus the sum of all the
other termgcorresponding to Eq4.44b in |] decreases at least exponentially. This is confirmed in Appendix C where all the
integrals involving Legendre polynomials in E@2) are examined. From the above analysis, it follows that the terms which
contribute to the largeq, tail come solely from the integral

(4)° X3,

f f d3x3dx, (93T(X14)95T(X23))
large x
in Eqg. (50), in agreement with paper I.
As shown in Appendix C, Lin€32d) decreases at least exponentiallyxagsapproaches infinity. Concerning Lirt820), we
prove that

d; Pa(XipX19) 1
—05(1,2,3 T = 6 + (terms decreasing quicKly for large Xq5. (57
4 X12X13 3

Thus we remark that 1/3x$, cancels exactly the;,>-order term ing5(x,5)/x5,, in the largex,, limit [Eq. (46)]. So Line(320
has no algebraic contribunon in this limit. It is no Iongerxaﬁ -order term. It is worthwhile to note that

Line (32f)+ —f —05%(1,2,3 M Line (32e+ ML 5(X1p) | for large x (58)
2% 20 93 X12X::I;.3 2 P 120(6 92(Xy g
or
4 1'*2 1 4 F2
i - = = + :
Line (32f) a7 m—z 2 Line (329 4 2—0(?—2 for Iarge X (59)

Hence Eq(56) givestwicethe exact long-range expansion of thibterm ofgJ. In a previous Lettef14], we claimed that
this remarkable relatiotthe factor of 2 is valid only for ordersc;, andx1 12 'In fact, this relation holds at all the next orders.
As a main result, we can conclude that, for a large separatlon

g3 (x)=gJ(x) —1=Line (320+Line (32f)+O(\%a% for large x

—)\_4F_2 S § (2m+8)!Sy 4 2Sm-—21+2 o \® or larde x
T a7 6402, S (2113)1(2m-21+3)x> 0 Ol gF 9
N[ 721r 33r 207972 e 16/
=7 | oy o2 S 1 Set g Sit O(X ) |+ O(NYa?), (60)

in which x substitutes foix,,.

The largex expansion ogJ(x) (at order?) is then achieved through E¢60) at any order As proved by Alastuey and
Martin [4] and Cornu and Martifi5], there is no exponential clustering in a quantum plasma. The first Gers 9 is in
agreement with their results. In the case of plasmas with Fermi or Bose statistics, recent papers Oyl 8}aronfirm the
presence of algebraic tails.

V. SMALL SEPARATION BEHAVIOR OF THE QUANTUM PAIR DISTRIBUTION FUNCTION

The right-hand member of E@32) is hereafter examined in the small, limit. The validity of the resulting expansion is
discussed at the end of this section. For our purpose, consider the total potential[&tp(dp)] for the N charged particles:
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Un(l,. .. N)=——+ > —+ > —+= ——Zzep
Mo k=3 Tl k=3 Tk 2kI=3 [l
(k#

o] [ 4157

Let us choose the coordinate origin at the mass center of the two particles 1 ang=2=r,=r,,/2. In order to deduce the
expansion oy, 1/ry+ 1ir and fd3r/|r—rq|+ [d3f/|r —r,| are expanded in powers of, according to

72e2 N 72e2 N 7262 1 72e2 J,

—Zze pf d°r —Zze pz f
Ir— [r=rs |r_rk|

r r, g , x2,
BUN(L,2,3 ... N)= X_+,3U(N71)’(0a3, N+ 2 X1t 2 > 41 S(X)X TP 1 (i) + —7 Pa(my)
12 k=3 Xy
+0(I'x},) for small x, (62

with u,=X1,-Xc. P; and P, are the Legendre polynomials of first and second ordgfg.- 1y (0,3, ... N) is the potential
energy ofN—1 particles: one of chargeZz at the origin and the other ones of chaige atrs,... andry. Then, the
classical pair distribution is also expanded as

N(N—=1) - fd35 - -d3xyexd — BUN(L,2, ... N)]

Cc —
95(X12) = p2a5] - [dxq- - doxye PON
r I ,\ NN-1) o
=exX _X_lz_lez 235 ke~ BUNJ de3 d°xnexpg —BUnn-1)/(0,3,... N)
r & X2,
-7 k23 Po( ) ;3—+O(Fx‘l‘2)) for small x,,. (63)
= k

It was noted by Jancovi¢il6] that:

N(N—1) - fd3z - -d3xnexd — BUny_1)(0,3, ... N)]
2a6f. . .fdgxl. . .dSXNe_BUN

=exd BF(ON)—BF(1LN—2)]=exp — A), (64)

whereBF(M,N) is the excess free energy of a mixture mad®loparticles of charge 2e andN particles of charg&e. Then
Eq. (63) becomes

. r r 3r [ d®%; . X3, .
G5(xid=exp| =5 —— A= 7 xp|| 1= | 77 02(Xs)Pa(ug) 13 +O(I'xiy) | for small x, (65)
3

in which gg,(xg) [=g§,(0,3)] is the pair distribution function of a chargeZz2 and a chargeZe. Let gg,(0,3,4) be the
three-particle distribution function of chargeZ@ at the origin and two chargese atr; andr, (the other particles of the
plasma bear charge&e). The same definitions stand fgﬁ,(0,3,4,5) and the other distribution functioftee charge Ze is
located at the origin As the integration ovep s yields 0, the smalk;, expansion ofy5(x,,) reads

r r
95(X10) = ex;{— —— A- x12 [1+ O(xlz)] for small x4,. (66)

In a similar way, the other distribution functions are also expanded as

[95/(0,3+0(x3)] for small xy,,

r
g§(1,2,3)=exr< -——A
X12
r
92(1,2,3,4=exr< “xa A) [95/(0,3,49+0(x3,)] for small x5,

r
g§(1,2,3,4,5=ex;< - X—M—A)[gj,(0,3,4,5+0(x§2)] for small Xy5. (67)

In the right-hand member of Eq32), let us consider now the terms involvirgf. The first one[Line (32b)] can be
expressed with the help of tensorial calculations as
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05(X12,X3, u3)[ = 2P2(X12 X13)]

( 49
X —_—
X$o0X1p 2 OX12

- d®xg
C =
f mvlvlg?,(l-zaa) Tap ml?g

05(X12,X3, 43)[6P2(X12- X13)] |- (68)

X120X12

It should be noted thax; and u3 do not depend explicitly orx; and that, moreovers;=3X,;. Then performing the
expansions 0fk;s [ = (3x2,+ X5+ w3X1%3) ¥2] and Py(X1p Xq9) (= Pa[(X12+ 2u3X3)/2X13]) in powers ofx;, allows us to
rewrite Eq.(68) as

d3X d3X3 3,(,L3 X12 Xiz F FZ 3F
1,2 To= — = 1-3u2+ = 2_3) —=+0|—= - ) ,
f 2 ng V.V105(1,2,3) - T3= J' 4 3us3 > (5u53—3) X O X2 eXF{ X0 A <X12 Xlz)gz (X3)
+0(x;2)| for small x,
r
=ex;{———¢4)0(x1 ). (69
X1

In a similar way, the first term in Lin€32e is expanded as

f d®xs 61232 F( r A)f d3xs L
4’7TX?3 93( ’ ,)—eX X12 47TXg

X12
—3u3 —+O

”[gz,(xs)JrO(xlz)] for small x;,

- Sy J O O(x2 70
=exX _X_lz_ o X—ggz,(x3)+ (Xlz)- ( )
The other integrals involving$ [Lines (320 and (32d)] become
47TX12X Pa(X12- X13)93(1, :)—;l?zex _X_12_ 4_§ ,U~3+_( ,U~3 )X—3+ (XTo/X5)
X[g5/(x3)+O(xTy] for small xy,
I -1
=expg — ——A|O(x1, (77)
X12
and
d°xs F( r ) dx; ((_%Xlz_xs)'(%xlz_xs)
e Py(Rar X 1,2,3)=ex ———Af 1+0(x2,)]P
f an X13X23 2(X31- X32) 95( ) = X1 47Txg[ (X12)1P2 X192
X[d3/(xg) +0(x5)] for small x;,
r * dX3 c P
=ex —X——A f —7 05/(X3) + O(xL,) | (72)
12 0 Xz

It is easy to check that the remaining integrals in the right-hand member ¢8B&mertaining to Line$32¢ and(32f) have
an expansion of the same form; the main term is an exponential term-Expe—.A) times a constantwhich depends only
onI):

ff 4% C XS0 M 1 16(1,2,3.4 — 05(X10) 65(Xan) ] = exp( F—A) dPxsd™s
Xg4 g4( 02(X12)02(X34 X1 (477)2Xg4

X[95/(0,3,4 —g5(X39) +O(x2,)] for small Xy, (73
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dx3d3x, { Pa(X31-X39)  Pa(X13-X14)
1,2,3
f (am? 941238 58 X1
r d3xad%%, . 2 [ 2P2(X3-X30) | Pa(X-X4)
= - - A N2 ! 1 1 + +
exp( X0 A)f f (am)? [95/(0,3,4) +O(x7,) ] 33, xg O(Xqp) | for small x5
d3x3d3, o 2Py(X3-X39)  Pa(X3-Xg)
=exp — —— ,(0,3,4 O(x , 74
F{ X12 )U f (4m? 9a/( ) X3X34 xS (X1 (74
d3x5d3x,d3xs d3xad3%,d3xs . .
J’ f A Pa(X34 X35)[95(1,2,3,4,5 — 95(X12)95(3,4,5 ] = ex J J CE P2(X34° X35)
X[9g5/(0,3,4,5—-05(3,4,5+0(x%,)] for small xy,. (75)

Let us examine now terms containing derivatijeme (323 ] which are calculated through the derivativeg§fEq. (66)].

We can conclude that, for smafl, the main contribution afi* order is 5[ (\%/12a%)V?]2g$

expressed by Eq32) is expanded as follows:
A2 (Fz I?

gg<x>=gg<x>[ex;{@ Cor,

0O(x%

Only

)\2
2
exp(ﬁz v
are kept in Eq.(76). The other terms are smaller ¥ is
sufficiently small. The exponential term

2
g5(x) o g5(x), and ! g5(x)
200y I x dx/ 92V X8 92

A2 T2
12a2 x*

(which goes toe asx approaches)0is an algebraic formu-
lation which generalizes a result due to Jancof®i Nev-

)\4{ r: 12

41 2x" T x

(x). Finally, the WK gJ(x)

6
—6) for small x.
a

——+ = +O(x™ % ]+o (76)

Storer evaluatedy3(0) exactly[17], and Minoo, Gombert,
and Deutsclf18] studiedgd(x) and expanded it with respect
to x for small x. Vieillefosse has also worked on this topic
[19].

VI. APPROXIMATE EXPRESSIONS FOR THE QUANTUM
PAIR DISTRIBUTION FUNCTION

The net evaluation of the WK pair distribution functigh
as derived in Eq(32) requires the whole knowledge of the
classical distribution functiongy(1,2,...n) up to n=>5.
Therefore, it appears necessary to derive an expression
which approximateg] accurately, but which is simpler to

ertheless, our study does not allow us to assert that at gl auate numerically. A first approximation has been previ-

orders the main term, in the smalllimit,comes from this
exponential term. In the present work, tke>0 limit is in-

vestigated only at orde? and%*; so we do not know the

x—0 behavior of the fully resummed WK expansion.

Assuming then? expansion to be a convergent, one im-
plies thatx cannot be too small. In the other case, this semi-

classical formalism would not be appropriate. But only a

proper study of the convergence of the WK expansion coul
provide the convergence criteria. Therefore, we propose only

a qualitative criteria for the validity of expansig@6). It
seems reasonable to impose that

)\2 2 )\2
> @2 ) gZ(X)<12a —— VAg5(x)<g5(x), (77)
ie.,
A2 T2

It should be mentioned that the exact quantg$t0) is

ously presented in a Lett¢i4].

This approximate expression has to behave tfefor
small and larges;, (same expansionsThus its derivation is
based on the large- and smaljl, behaviors detailed in Secs.

IV and V. For conveniencegj(x,,) is split into a short and
mtermedlate part, on the one hand, and a long part, on the

é)ther hand, according to

09(X12) = 9d(X12) + g/'(X10), (79

where the subscripts and| stand for short and long sepa-
rations, respectively. Following our previous analysis, we
first write (at order#?):

g.=Line (32a+Line (32b+Line (320+Line (32d),

g/=Line (32 +Line (32f). (80

A. Preliminaries

In the following, many terms will be computed by means

finite, strictly positive, and cannot be derived within the WK of Fourier techniques. We adopt the dimensionless Fourier
formalism. In particular, in the zero-density limit, Davies and transforms
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ViV105(1,2,3) - Ty

T@)=3 j " dx RE()io(G%)
° = — 2Pg(X12 X19)[057(X29) + 1]

2 (= ~
@fx=—Jd f(9)jo(gX), 81 d d
=7 | da dF@ioax, (8D XS0 2)X13d713(x13dx13 05(%e
with jo(u)=sinu/u. The Fourier transform af5(x) will be — 4P (K12 X19)[G57(Xp3) + 1] d% 95(X12)
denotedh(q). Because of the presence of Legendre polyno- 12

mials in the expressions to evaluate, a number of Fourier
transforms involve spherical Bessel functions of the first X

kind, j,(u), with 1=0 [j;(u)=+V37/ud;5(u)]. Among
them, the following one plays a key role:

d " A
Wm gg(xlii)) —2P(X12 X13)[ 957(X29) + 1]

X5 d d S 8
02(X13)X12 X1 | Xgo0Xes 9z(X12) |- 87
= dx = dx dg5(x) . . . _

=3 2] T a%(x)io(ax)=3 f R (ax The terms independent &p3 in the last equation are directly

x(@)=3q o X 92(x)12(ax=3q o X dx 11(a%) integrated orxs to give a zero result. The other ones, which
- d (1 dgE) ?Igez)fac_tolz;;ed l;_}gngl(ng,), are rewritten with the help of Eq.
= [ =222 , yielding, finally,
3]0 dx ax (x dx )]O(QX). (82

4 S _
l(x)=—5— gE(X)f dg o?h(a)x(@)jo(ax)
It is easy to check, writingg5(x)=1+g5:(x), that 0

8 (d * :
- —gg(x)) dg qh(g)x(a)js(ax)
97 \d
. X(g):L @3  \ dXx fo
g—0 q 4

d(d . \]( |
e fodq h(Q)x(@)]2(a%),

As th_e smallg pehavjor reflects the long-range behav_ior of 89)

the direct functions, it follows from Eq83) that neglecting

functions which decrease at least exponentiallx &snds to  ;,, \vhich h(q) denotes the Fourier transform g§(x) and

infinity [i.e., g5(x)=1+g5:(x)—1] is similar to simply re- x(q) is defined by Eq(82). In thex—oe limit, each term in

placing x(g) with g* in Fourier space. the right-hand member of E¢88) decreases at least expo-
nentially. In thex—0 limit, one gets

B. Short and intermediate separation termgy

In the following section, all terms contained @f [Eq. QZ(X)f dg o?h(a) x(a)jo(ax)
(80)] are evaluated numerically, at least approximately. 0
Therefore, Line$32b), (32¢), and(32d) have to be expressed .
in order to compute them at any distanceror this purpose, ~ gg(x)f dg ?h(q)x(q),
we make a wide use of the superposition approximation as x—0 0

95(1,2,3)=05(X12)95(X13) 95(X23)- (84) »

(& g%(X))J da qh(a)x(@)j1(ax)
0

First, consider Ling32b):

r . -
_ AN T as;ﬂo 3x 92(X) Jo dg o*h(q)x(a),
Line (32b)= g 2—40|(X12), (85)
d ( d . ) " da h _
where X x| xdx 92 fo dq h(g)x(q)j=(ax)
3 2 %
d = ~ =05 h .
I(X12)=j ﬁvlvlgg(l,zg)ﬁral_ (86) T 92(X) Jo dg o?h(a)x(a) (89

Hence the third term appears to be the leading one in this
Wheng$(1,2,3) is estimated by means of the superpositiodimit. It behaves like [?/x?)g5(x) as expectedsee Eq.
approximation, Eq(31) is modified according to (69)]. Moreover, it is smaller than the ones retained in the
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smallx approximation expressed by E(f6). Thus we are In the vicinity of x;,=0, g5(x)B(x)/x® behaves like
reinforced to use Eq88) in order to compute approximately g$(x)/x. From the above considerations, we are led to con-

1(x). . _ _ _ clude thaigS(x)B(x)/x® plays a negligible role. This conclu-
Let us examine now Lin€32¢) which can be written as  sjon has to be achieved through numerical calculations for
42 any distance as is done in the following section. TBusan
Line (320 = 7 J(X1), (90)  be seen as a correction o which is expressed a€gs.
40 (D12) and (D14)]
1 1 (*w2
where A == 5 8500+ 7 | “ax Ragi0. (@)
- -~ 12
I(Xgp) = ! °(x 2)+f — 2 9%1,2.3 —WPZ(X“'X”‘)
1 92 1 93 X3y Note that, ifA(x)+ B(x) is approximated byA(x),
(91
95(x)
lts numerical evaluation needs the knowledgegff The J(X)= 2)(3 X 3+A( )| (98
latter can also be estimated with superposition approximation
(84): J(x) is a function which decreases at least exponentially in
d3x, Po(Xyo X19) the limit x—o and behaves ag5(x)/3x® does in the case of
f 7. 9 05(1,2,3 RV smallx, as expected. Making use of sum rg#), A(x) in
12713 Eqg. (97) can be reexpressed in an equivalent form more ap-
d3xs Po(X1p X13) propriate to numerical computations:
=05(X12) J T 92(X1902r(Xed) — 5 7 1, Xy .
1213 3 X15927(X12) = jo dx x°g5r(x)
(92 A(Xyp) = —
The remaining integration involves a convolution product 3X§2L dx x°g5r(X)

and a Legendre polynomial. It can be performed, for in-
stance, by means of Fourier-Bessel technidiies (D2)]:

foxlzdx x3(d/dX) g5 (X)

1 2 g5(xy) = ©9
J(X12)= 5=5 95(X12) + =— :
=5 08+ g = 313 ax e(dIdg5;0)
0
X fo dg h(q) x(9)j2(gxq2). (93 Line (32d has also to be evaluated for amy at least

approximately. In the superposition approximation, it be-
The last equation can be rewritten in a different form morecomes
appropriate to an accurate numerical evaluation. The basic N4 T2
idea is to singularize in integrg92) the only part which Line (32d= 7 55 K(X12, (100
involves the asymptotic limitx,;,—o° (which is of order
xlz) In so doing,g5(x19) is first rewritten as ¥ g5(X13).

s Eal93 b in which
us Eq.(93) becomes P2(Xa1- X32)
1 (X12) K(x12) =935(X10) 92(X13)92(X23) —XW
J(X1p) = gz(xlz) + —3— [A(X12) +B(X12) ], (101
(94) The result(D10) or, more precisely, its inverted Fourier
with transform
o 27" (d%q
d3%5 P5(Xq1p X13) F(ng)Pn(x31~X32)=¥ f el 4%X52P, (Rgy- 6) F n(0),
A(Xyp) = f an —h g57(X23), (102
@3 Pa(¥1p X13) with
B(X12) = J —3_92T(X13)92T(X23) (95 n=2 and F(x23)=gS(X23)/X§3, (103

Let us first consideB(x;,). In the limit x;,—, it vanishes  allows us to evaluat&(x,,). Equation(102 becomes
at least exponentially as the prod@t(x13) g51(X,3) does.
It can be evaluated in Fourier spapeith the help of Eq.  95(X23)

(DZ)] as ng Pn()231' )232)

2 f d3q X(q)

2 0
BX)=5- L dalx(a)—a?Ih(q)j2(ax).  (96) =-3- | 2-¢ TP (Xay- Q) (104
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where x(q) is the function defined by Eq82). Writing X3,  extra contribution which does not vanish at least exponen-
=Xzt Xy, and expanding exp(ig-xs;) in terms of Leg- tially in the largex limit).
endre polynomial$Eq. (D9)], the following equation is ob- Therefore, all terms irgd [Eq. (80)] can be computed
tained: approximately for anyx, making use of the superposition
2 (q) approximation(84). For that purpose, only the knowledge of
X the classical pair distribution functiog; is required.

q°
In the x—0 limit, K(x) behaves likeg$(x). We have to C. Large separation term g’
check that it decreases at least exponentiallyx apes to It remains to derive an approximate expression d@r

infinity. First, let us rzerznark that Eq(109) is the Fourier  contribution[Eq. (80)] which possesses the following prop-
transform of3[ x(q)/q°]°. Recall thatx(q) is the Fourier erties: it provides the correct asymptotic behayig. (60)]

transform of the function in thex,,— limit, and it is hidden by the dominant terms in
c the smallx,, range[Lines (323 and(32¢)]. For that purpose,
f(x)= iz i (1 ng(X)) . (106) we take advantage of the fact that Li(82¢ givestwicethe
dx \x dx exact WK g3, behavior plus an additional termx,, in the

largex,, limit. Hence Line(320 is modified in order to re-
produce long-range expansi®80). Consider term(32e ex-
pressed by Eq(35). Making use of the superposition ap-
proximation

Thus x(q)/q? is the Fourier transform of a functioR(x)
expressed as

F(0= f 7 dy (107

which is decreasing at least exponentially in the laxge-

limit. In this limit, K(x) behaves like the convolution prod- 94(1,2,3,4=05(X12)95(X13) 95(X14)95(X23) 95(X24) 93(Xaa)

uct F(x)oF(x), which decreases as expected. (109
Thus the superposition approximation does not introduce

any drawback in the evaluation of Lii82d) (i.e., there isno  one gets

05(1,2,3 =05(X12) 95(X13) 95(X23),

05(1,2,3) — 95(X12)95(X13) = 95(X12) 95(X13) 957(X29) (109

and
04(1,2,3,4 +05(X12) 95(X34) — 95(X12)95(1,3,4) — 95(X12)95(2,3,9)

= 05(X12)95(X34)[ 957(X13) 957(X29) + 957(X13) 957(X20) + 957(X14) 957(X23) + 957(X14) 957(X24)
+ 957(X13) 957(X14) 957(X29) + 957(X13) 957(X14) 95 7(X24) + 957(X13) 957(X239) 95 7(X24) + I57(X14) 95 7(X22) 951 (X24)

+957(X13)957(X14) 957(X23) 957(X24) 1. (110

In the square brackets of the last equation, the two producidipole potentialsc;; andxz, are now weighted bg5(x;9)
051(X19957(X24) and g5(X14)957(X23) are the only ones andg$(xss), respectively. In the,,— 0 limit, approximation
which do not decrease at least exponentiallxgsgoes to ., behaves likeg5(xy,) times a constant, and so it is hidden
infinity. Therefore, discarding the other terms yields a flrstby the terms kept irgd [Eq. (80)], as required., is then

approximation called; : rewritten in Fourier space,
4 3, 92( 13) A T? o
i =y — 2 2 1
Line (328=n=2a 35 g f GorlXed) =g 55— 05(%) fo da Pe(q)[(h(a)+1)°~1]jo(ax),
112
d3X3d3X4 92(X34) (112
+ 40 92( 12) 4 2 . . . . c 6
a* ™) X34 in which ¢(q) is the Fourier transform af;(x)/x":
X g5r(X14)957(Xp)  for largex;,. (111 = dx
<p(q)=3J ~7 95(X)jo(GX). (113
The two integrals in this equation have to be compared with o x* 20

the ones which appear in the right-hand members of Egs.
(49 and (50) whose asymptotic forms are very similar, but  Expression(112) can be expanded in the largelimit
Eq. (111) can be evaluated at anyj, because the squared (i.e., the smallg limit). For that purposej,o(qx), which ap-
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pears in the definition oh(q), is expanded, providing an

expansion oh(q) in terms ofS,,, [Eq. (54)]:
NT? [ g5(x)
AR -

6x°

i zm: S/ 2Sm-2/42
m=o /o (2/+3)!(2m—2/+3)!

3 & < Sy +2Sm-2/42
t3 2 2 (27+3)(2m—2/13)]
C
(x)
><(v2)m+2(géxr”. (114
Noting that
1 d2m+2 2m+4 d2m+1 1
VZ m+2 — +
( ) ;G dX2m+2 X dX2m+l ;6
(2m+8)!
= 210 (119

it follows that expansion(53) is exactly recovered. Thus it

can be concluded that theo functions Line (32e) ang are
equivalent for large separation

In Eq. (112), the term of ordex 8, which is canceled by
another one coming from terff) of Eq. (32), can be simply

erased in order to get an approximate expressiomfor

\2 1A% _\2 T V2 1 d |2
gZ(XIZ) 92(X12)+ 12a2V 92(X12)+ 12a2v gZ(XlZ) a 180

A T2 [g5(x)]°
gP(x)=Line (320+Line (32)= 3 ~+ — 2240

A T2

~ 2 560- 9509 | da Pe(@h(@+1Tjo(ax),
(116

which is simple and very accurate.

Equation(116) is based on several approximations: the
superposition approximation and the deletion of a lot of
terms in Line(326, as explained below Eq110), and in
Line (32f). The major interest of the approximated formula
(116 relies on the fact that it reproducesactlythe long-
range expansiof60). So we are able to study correctly the
largex tail of g3. On the other hand, in the small separation
limit, approximation(116) behaves likeg5(x) [as Line(32¢
+Line (32f) doed and it is hidden by the dominant terms
which are expressed by Liné32g and(32d). Thus the dis-
carded terms in Line&32¢ and(32f) can be taken as negli-
gible.

In a previous Lette[14], another approximation tgy
was proposed. Its limiting behavios— 0 andx—«) were
also correctly reproduced. Nevertheless, in theco limit,
only the first order of the exact expansion was recovered.
Moreover, after numerical calculations, we have been led to
conclude that it could be rough at intermediate separations,
which is not the case of Eq116).

VII. NUMERICAL RESULTS

In order to put numbers on our previous calculations, we
present in this section some numerical results for/ther-
der term of the WK pair distribution functiog3(x). Gath-
ering all contributions, the latter reads for smafla? as

95(X12) (1179

X12 \ X120Xq2

4 - d -
S {gzma [["aa @ v@iotans +2] 51 g0 | [ da an@n(@isan
d [ d o
X 9 (—d gz(xlz))UO dg h(q)x(@)j2(ax2) (117b
X12 d c
A T2 g5(x1) fO o Xsd_XQZT(X) I g; Xlz) 27
F 120 - g t 8o & R dq h(a)[x(a) —a71j2(ax:2) (1179
2 j dx Xad—ggT(X)
0 X
A4 T2 =d
+ 5 3507 95002 | 53 r@ Pio(ax 117
+)‘—4F—2 S(x )Fd Po(q)[(h(g)+1)>—1]jo(gx )+)\—4F—2 gg(ﬁ 2 (1179+(1179
2% 360, 92(*12 o q ge(q q JolAX12) T 27 575 )
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Here(1179, (117b, (1179, (117d, and(1178+ (117 refer 6-004-
to the various terms mentioned in Sec. VI. The form retained x10°

in Eqg. (117) for line (117e+(117f) is taken intentionally in ®

order to get more accurate numerical results. Recall that the 4 gg | r=01
functionsh(q), ¢(q), and x(q) are the Fourier transforms Overall
of o contribution
1 d (1dgix) I
g5r(x), G300, and 5 o (; = ) 8 A
2 ‘
S 0.00 — ‘ \ '
, S . 0.06 0.08 0.10
[see Eq(82)], respectively. v iz = 1/2
The parameters involved in these calculations [aréhe ?
plasma parameter, and the quantum paramet&r®. At or- = 2,00 1
der#?#, various terms are scaled hy/a*. Consequently, all 2
our numerical results will be given in*/a* units.
In order to evaluate properly E¢L17), we have to choose -4.00 -

a “good” classical pair distribution functiom5(x) for the FIG. 1. The bold he WK ) i th

OCP. We retain the well-known hypernetted chéiNC) C 3. ° ACLjrve_represents the corrections in the
. . . . OCP at orderi” in A*/a” units as a function of the dimensionless

approximation, supplemented with the extracted bridge func-

. . ! separationx,, computed with formulg117), in the case wher&'
tion b(x) calculated by lyetomet al.[20]. Two explanations =0.1. g5 is evaluated with the HNC approximation. The major

justify this choice. On the one hand_, thls func_tlon rEpr_Oduce%ontributions arise from the term proportional to the squared La-
accurately the “exact” classical pair distribution function as placian [curve (1)], the term ~ (1/xqo)[(1/xq0)d/dx451205(Xe0)
deducc—;d from Monte Carlo smulauons. On the other ha”d[curve(z)], and finally Line(1179 [curve(3)]. In this case, all the
according to the HNC numerical schenisee Ng[21]),  gther contributions play no significant role in numerical calculations
g5(x) is computed in its standard forfiwith an additive [j.e., the bold curve reduces practically to the sum of cufgs2),
termb(x)] and (3)].

. r Numerical results were performed while computiigx)
9z2(x)=exp — - +h(x) —c(x) +b(x) (118 on a grid ofn=2048 points withdx=0.01, in the range
0.1=<I'=10. The function$(q), x(q), ande(q) as well as
simultaneously with the direct correlation functia{x) the other Fourier transformed functions which appear in Eq.
computed in Fourier space by means of the Ornstein-Zernikél17) were performed by means of fast Fourier transform

relation (FFT) techniques. Special attention was paid to the evalua-
tion of Line (117e+(117f), which is computed on an ex-
h(q)=C(q)+h(q)c(q). (119  tended grid of 8192 points in order to extract properly its
asymptotic behavior.
By imposing the well-known limits Figures 1-3 display some numerical results computed
r 15.00 -
lim c(x)=—Bu(x)=——,
X—00 X
n
3T 10.00 1 Overall
lim c(gq)=—gu(g)=— ?, (120 é contribution r=1
q—0 g
5 5.00
it follows that c
~ S
C & _
lim h(q)= lim oo g 000 ' - -
4—0 q—o0 1—c(a) 2 0.p0 040 060 0.80 1.00
= Xp=1rla
9 -5.00 -
lim S(gq)=Ilm[1+h(q)]===. (121 (2
q—0 q—0 3r

This implies that sum rule41) and (44) for the truncated +10.00 -

function g3 are well fulfilled with this approximation. As a FIG. 2. WK corrections at order? in A*/a* units as a function
consequence, the evaluation of Liflel7+(1171f) will re- of the dimensionless separation, computed with expression
produce the exact asymptotic behavigi/x'©). (117. T is kept fixed at 1. Other factors the same as in Fig. 1.
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1.50 -
Overall contribution 40 4
100 - ) I'=0.1
=10 o
5
[22] bz -
£ ©) g 30 =05
£ 050 - 5
2 o
g @ £
o 2 r=1.0
€ 000 AN . . g 207
E o
g  0po 1 l) 2.00 3.00 4.00 5.00 X
o fa
X X1z =1 «
2 -0.50 A =10 4
=
-1.00 @ 1
0 . . . .
0 10 20 30 40 50
1.50 Xip=rla
FIG. 3. Plot of various contributions to the overalt WK cor- FIG. 5. Comparison between the asymptotic behavior of Line

rections in the OCRbold curve which is the sum of the four other (1176+(117f scaled by the asymptotic limit (7/8);"°, for three
curves in A*/a* units as a function of the separatiry, calculated ~ values of I' in the weak-coupling rangel(<1). The limit is

with formula (117) for T=10. g5 is computed from the HNC reached at a very large distance, much larger than the distance
approximation supplemented with the extracted bridge functiongvheregr can be considered to equal 0. These results are strongly
derived by lyetomiet al.[20]. Contributions(1), (2), and(3) origi- dependent of’. The smalled” is, the farther théi* term behaves
nate from the same terms as detailed in Fig. 1. Cufecorre-  like (7/9)x3,°.

sponds to the net contribution of all the remaining terms which can

no longer be neglected in the strong-coupling case. This results in 1/1 2

an oscillating behavior of th#* order. ~3 (; &) g5(x),

from Eq. (117) as detailed above, for three values of the
plasma parametdr=0.1, 1, and 10. It is seen that in the
weak-coupling rangéi.e.,I'<1), numerical contributions to
the #1* correction for the WK pair functiogd(x) come es-
sentially from three terms: the squared Laplacian term, th

and the first term in Ling1179 [neglectingB(x)]. This is a
consequence of the fact that at small coupling, the function
5(x) increases very rapidly witk, so that those derivative

erms get significantly enhanced.

term
1.50 50
x 10*
40 -
1.00 -
r = 1 30 r=5 I'=10
@ w
c 20 1
€ 0.50 - g
I £ 10-
5 ¢ A
E 0.00 T T T 1 g 0 T '\/’ T T
2 3o 00 5.00 6.00 7.00 5 5 10 Vs 20
S Xiz=T/a g0+ %oz = 1fa
T N
< 050 ) 2 0
2 <
< -30 4
-1.00 -
-40 A
-1.50 - -50

FIG. 4. Comparison between the asymptotic behaviors calcu- FIG. 6. Same as in Fig. 5, but it concerns two value¥ af the
lated from Line(117e+(1171) [curve (2)] and the remaining con- strong-coupling rangel{>>1). As in Fig. 5, it is shown that the
tributions in Eq.(117) [curve(1)] for the WK corrections at order asymptotic limit is correctly reproduced again at a separation sub-
% in A%/a* units as a function of the dimensionless separatign stantially larger than the typical values at whigh approaches its
with I'=1. This features the long-range behavior of Line asymptotic limit. In contradistinction to the weak-coupling case, the
(1178+(117f which vanishes like (7/9;°, while all the other  term (7/9%;,.° is now approached much more readily Bsis
terms vanish much more quickly according to the exponential clussmaller. Also, it should be noticed that Ligg17¢+(117f) exhibits
tering. a strong oscillating behavior at thg,— limit.
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It should be appreciated that, at very snialalues(i.e., proved by Alastuey and Martin[4] [term equals

I'<0.1), the #* correction in\*/a* units is significantly  (\4/a%)Z(1/x'9] has been recovered and an expression for
greater than 1, especially at smalvalues. This reflects the )| the other terms of orders—2P has been derivedEq.
breakdown of the WK formalism in the— 0 limit. (60)].

Results displayed in Fig. 3 show that, at lajevalues It seems unlikely to compute exactly tHié correction as
(herel'=10), the contribution of the three dominant terms asit would need the full knowledge of the classical distribution
desc_rlbed_above is still |mportant, but all the other termsg,nctions for several particlg@ip to 5. Then, in order to get
[retained in Eq.(117)] contribute equally well and add t0 ap jgea of the importance of those quantum corrections, es-
each other, resulting in an oscillating beha_vmr. _ pecially of thex1° long-range part, an approximate but ac-

Figures 4—6 serve to illustrate the behavior of BA7) in  ¢yrate” expression for the* term has been derived which
the x—o limit. It should be appreciated that the rigorous reproduces correctly the behavior of all the various terms in
asymptotic limit§(1/x™) is correctly approached by the ap- Eq (32) in both the limitsx—0 andx— . For that purpose,
propriate term retained in Eq(117) [i.e., Line (1178 e have made much use of the superposition approximation
+(1179], but only at a very large interparticle separation gng have suppressed some terms taken as negligible. Dealing
(much larger than the distance at which the correlation funcyith the long-range behavior, the approximate expansion
tion g,r approaches zeypwhich depends on the valué  (116) permits us to recover exactly the large distance expan-
This is primarily a consequence of the fact that thesjon (60) at all orders. We remark that expansit0) de-
asymptotic behavior of I2_|r_16{117e)+(11_7f)_ IS dlge_ctly '®  pends only oS before any approximation. This can explain
lated toS*(q) =[1+h(q)]?, in theq—0 h;mt. If q%is small  \hy the superposition approximation does not modify the
enough,S(q) is well approximated byg*/3l', and if X IS |ong_gistance behavior of the exdct correction. The result-
large enough, the ZQSC'”g‘“”g functign(gx) truncates the  jnq"approximate expressiofi17) can be evaluated if the
integrant ~¢(q)(q/31)". Then the asymptotic limit ¢ assical pair distribution functiogé(x) is known. This was

Z 1 . . . .
1‘1(.1/)( ) is correitly reprod;jce%ﬁlmlj I arlsislvery ra;;@ly 3Sachieved numerically using the HNC approximation. The nu-
increases, in the case of smélvalues ('<1) according 1 arica) results show that the asymptotic limit %~ 19) is

to F_ig. 5 More specifipally, it should be noted that t_he alge'approached at very large distances, very much larger than the

i ; Bne at whichg, reaches its asymptotic limit 1. Concerning
lation length which controls the decay g§(x). Atsmalll" 0 grders of magnitude, it appears that the long-range con-
values, this length reduces to the Debye omg  {ripytion plays, however, no significant role, in comparison
(=a/y3T) and the algebraic tail appears at distances largefiith the other terms involved in Eq117), especially the
and larger ad’ decreases. In the opposite case>(1), Fig.  terms which contain derivatives of(x).

6 shows that the asymptotic behavior is reached much more \ye gre planning to analyze the resulting effects of these
quickly asI" is smaller, at least in the range bfvalues in quantum corrections on the thermodynamic quantites

which computations have been performed. This is a CONS&srgy, free energy, pressure, ¢tand to compare with other
quence of the fact thay; reaches its asymptotic limit 1 at guantum calculationf22].

larger distances ds is larger. Moreover, in this cagé™>1),
Line (117e+(117%) exhibits an oscillating behavior in the

X1— limit, which is also related to thg5 behavior.
APPENDIX A: #* CORRECTION FOR g(ry,...,'n)

Starting from Eq.(9) and replacingP with its expansion
VIIl. CONCLUSION in increasingk? powers,g is written in the form

The #* term in the Wigner-Kirkwood expansion of the g=exp — BU)+A2H,+A%H,+ O(4°), (A1)
pair distribution function in the one-component plasma,
0J(x), has been derived exact[fq. (32)]. This term de- Where
pends on the classical distribution functions for two, three, 3N )
four, and five particles. Its behaviors both for large and small | :j j I ff 4*Np exg — Pic
separations have been fully investigated with the resulting 2 Pl2 pe 'Bkzl 2M
expansiong60) and (76). We have to mention that, for too (A2)
small separations, the semiclassical WK formalism is not
appropriate. At large distances, the polynomial behavior firsand

H4:j...fd3pr4/ f...fdsz exp<_ﬁ2 2D_NE|k)

Pk Pk
:e_ﬂuj "‘fdng(,33G3+/5'4G4+,35G5+,36GG)9XF{—,32 2_I\/Ik)/ f"'stNp exF(‘BZ 2_I\/Ik) (A3)
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Replacingf, (=e #Yg,) with Eq. (6) yields

3N 2 2 3N 3 2
H2:e—BU _ B—Q—F B— (E)
k=1 8Mk (?rk k=1 4(3|)Mk Iy
3N 3 2
B U
+k21 RN pk} (A4)
where
- + o0 2 +
o= | dndpoexai—peiiamy) /[ “ap,
X exp(— Bpe/2M ), (A5)

f(py) being any function ofp, . In the last sum of Eq(6),

only the terms withk=I are taken into account, the rest of
them becoming null after integration. The same rewriting of A=

H, is done from expressions &5, G,, G5, andGg. There
are sums of terms containing products of two momenta:

pipm  *U % p v\’
=1 M| (9I’| ’

Im=1 MM, ardrg,

Only the cases where the two momenta are the same contri

ute toH, (i.e., pxp, does not contribute tbl, if p#1). In the

expressions ofs; and Gg, there are products of four mo-
Only the following cases are consid-

menta:  pyP;PmPn -

ered:

(1) k=1, m=n, andk#m,
(2) k=m, I=n, andk#I,
(8) k=n, I=m, andk#I,
(4) k=I=m=n,

the other terms yielding a zero result. Using the relations

=M,/B and pi=3M% B2 (A6)
gives
3N ,82 (92U 3N ﬁg U 2
+ _— —
E 1 2(3)M, ang |<§=:1 4(3!)|V|k(f9rk> }
(A7)
and
3N 2 2
J°U
H4:efﬁu — _2 ﬁ—_z
2| & 2(3)My ar?
+§ 53 U 212 '83 3N 1&22
& 4BOMar | 2(5) | & My dry
4 3N 2 2
1 d°U
+ A >
3(5') KI=1 MkM| aryar,
g4 3N 1 s U
51 21 MM, dry drar?
g N1 52U U U As
~2(51) k1 MM, drgary ary ary (A8)

Derivatives of exp{ BU) are introduced to simplify the writ-
ing of H, andH,, as Jancovicj3] did. Then Eqgs(12) and

(13), written by means of tensorial notation, are obtained.
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APPENDIX B: INVESTIGATION OF ORDERS
HIGHER THAN #*

Here the purpose is to investigate the orders higher than
#4, for the WK distribution functions.
P(ri, ... In:P1, ---,Pn) IS expanded as follows:

P=exg — Be)[go+72g,+higs+-+H2g+ 1.
(B1)

Jo is 1, g, is a sum of3?- and B3-order terms, ang, is a
sum of terms of3%, B*, B°, andB® orders. What aboud,,,?

From Eq.(3), the differential equation which definds,
(=e P<g,,), it can be seen that the highest poweris
B3". Let us show that this term is

B[ & (VU)? PP "
n! kzl 2, T 2, VKV
B3r‘l

:W(Az)n- (B2)

It is true forn=0, 1, and 2. Assuming EqB2), A,,,» is a
golution to the equation

N N
Py
-2 W (VrkA2n+2)+E (V, U)- (Y Azns2)
Ao < PPP
2n kPiPm
__ﬁm%:l MM M, -V, V.V, U, (B3)
which gives
1 n+1
A2n+2:(n+—l)! (Az) . (B4)

Considering the smallest order ) we verify that it is

ﬁﬂ)"u,

N
B
n+1_ _
Banf n' | & 8M,

(B5)

It is true forg, andg,. If it is true until g,,_», the smallest
power of B in the right-hand member of E¢Q) is 8"** and
B,, satisfies a differential equation

N
(Y, BZn>+E V. U)-(V,Ba)

—E

8'(N!) Ky, .. okt

n+1

X—.V
Ml" r
n+1

2 2
M. AR A (B6)

n+1

B,, defined by Eq(B5) is a solution to Eq(B6).
Therefore,P may be expressed as

P=exp(— Be)[1+h%(B,B%+ A%
+AH BB+ + AsB%)

A (BonB e+ Ag B 1], (BY)
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whereA,,, andB,, are defined by EqgB2) and(B5). Po(X1p X13)
What is possible to write concernirg(ry,...,ry)? The A(X1) = f > 05r(Xos B
averages on the momenta modify the orders with respect to
B. Each product of two momenta decreases the ordgrtig 1 1 (*
1, after the integrations. The general formgpfs =—3 957(X12) + 3, jo dx x*g5(x). (C2)

=exp(— BU)[1+A2E,+h%Ey+- -+ A2 "Egp+- -
9 =AU 2 4 an ](B8) Thus, in the larges;, limit, making use of sum rulé41l)

allows us to deduce the relation
Considering the expansion &, in powers ofg, it is easy

to check that the highest-order term is ds €123 Pa(X12 X13)
2. 9123 — 5 53—
an[ N 2]n m X12X13
B (Vi U)
Can=T1 24N (B9) 1
- Lk=1 k =T 30, +(terms decreasing quicKly
Thusg is of the form 2
N o for large xq,. (C3
_ 2 ﬁvQ -BU 6 .
9=eXn & 27 Vk|€ Here —1/3x§, cancels exactly the large, term in
gg(xlz)/xfz. Another integral that we have to study[lsine
+e PULA21, B2+ A1 483+ +3,8%) (320)]
e B2 +14... 3n—1y...
+o A1, 4+ 5,87 ) -], (BLO) j d3xs 8123 P, (Kay- Kap)
where A FE X193
N )\E o 1 N )\E i d3 ( )
e —VZ|=> = — V2 B11 a3 P, Xa1 X3
X Z 24 k) 21 it (I(Zl 24 k) (B1D :ZJ - T[1+92T(X12)+92T(X13)
X13<Xp3 T X13X23

is an operator applied to the function . s
exd —BU(r,....,/n)]1. 1, andJd,, are functions ofJ, gra- 921(X23) +05r(1,2,3)]. ©4

dientsU, and Laplaciand). That explains the form of Eq. \yith the help of Appendix HEgs. (E6) and (E7)], the last

(10). expression is rewritten as
APPENDIX C: ASYMPTOTIC BEHAVIORS d3xs P2(Xa1- X32)
OF THE TERMS IN INVOLVING LEGENDRE f A 05(1,2,3 O3
POLYNOMIALS IN EQ. (32 13X23
» 3
The first term comes from Lin&20): :f dX1392T(X13)( 1 X12+ X172)
3 X122 X13 X13 8X13
d>x3 Pa(X12 X13)
An g5(1,2,3 T 3X P2(Xa1 Xa2
12713 +2 - [957(X29) +051(1,2 3)]—rr
3 X13\X23 13X23
d Pa(X12: X13
= [ng(2 3 +03r(1,2,3] 33 (CH
12X13

(C1)  As Xpg=X13= X35> X192, Line (320) is shown to decrease at
least exponentially ag;, approaches infinity. We have to
The other terms in expansion of [Eq. (38)] yield zero  consider finally term32f) expressed by Eq36). The vari-
integrals.g51(1,2,3) tends to zero at least exponentially asous distributions are expanded in truncated Ursell functions.
X1 approaches infinity. In Appendix D, it is proved that In so doing, Line(32f) becomes

Line (32f)= 2 720 ————3—3 Py(Xa1- X39[951(1,4951(2,3) + 951(1,395:(2,4 + 951(2,3,4 + 951(1,2,3,4]

A4 3I? ff d3x3d3x,
(47) X734

>\4 3r2 d3x4 d3x,
Ta 80 f f Am23x, P,(X13- X19)[9571(2,3,49 + 951(1,2,3,4]

)\4 or? d3x3 d3x, d3xs R . . . c c
T 160fff A, 2 hor XaD12057(1:903r(24.9+ 4057 (1. 905 (23,9 95r(1.2.34],

(C6)
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In this equation, the terms left out vanish, as can be checked convergent and is decreasing at least exponentialky as

by angular integration and involving E¢E6). increases indefinitely. Here
Appendixes D and E allow us to study the first integral in
the right-hand member of E¢C6). Taking into account Eq. d3x3 d3x, Po(Xay- X34) . .
D14), it b that f f X X
(D14), it may be seen tha (472 xS, 921(X13)927(X24)
d®5 A%, | Pa(Xa1 Xa0) c _ o
(am)? ol 921(X23) 927(X14)large x,., has the same property in the lange-limit (it is a convolu-

tion product of two functions decreasing at least exponen-
tially). As x4, goes to infinity, it is deduced from EGE12)
that

3 iy

1 d3x3 ( 9571(X29)

6 )
X13 large X1,

d3x3d3%, [ Py(Xa;- X
+(terms decreasing quickly (C7 f f el ( 2 31 o 051(2,3,4)
. . . (4m)° 13X34 large x5
since the convolution product of two fast decreasing func-
tions is a fast decreasing function. Next, Eg7) leads us to =(terms decreasing faster than amy,). (C8)
see that
035 Po(Xay- Kao) Let us examine now the second integral in the right-hand
f — 732\ 781 74 95 (X19) member of Eq(C6). In Appendix F, the following expansion
4T XiXay valid for largex,, is derived:
|
d3x3d3x, (P2(>‘<13- X14) 2 1 « (F+1)(/+2)(2/+3)
I=ff 57(2,3,4 =——% S9— — for large x
(472 X§3X§4 ar( ) e 3x‘152 18 ~, X§2+6 Sos ge X2
12
2 1 (2/+4)! 9
=ov6 7o YA NN ,
xS, 7241 (2/+1)1x% 78 2/

whereS,, is defined by Eq(54).
In the last integral of the right-hand member of EGS6), the term

d3X4 P2(X34° X35)
f ar G 0571(2,3,50951(X14)

is a convolution product o§5(X1,) and[P,(Xs;: x35)/x13x35]93T(2 3,5). Integrating ovex; andxs yields, in the large¢,
limit, a convolution product of two fast decreasing funtidsee Eq.(C8)]. Thus it decreases at least exponentiallyxgs
increases indefinitely. Note also that

d3X3 P2(X34° X35)
J PE R 0571(2,4,9951(X13)

is a convolution product dfP,(Xy4- x15)/x14x15]g3T(2 4,5) withg5(x15). Thus, integrating over the angles and expanding in
decreasing powers of;,, we arrive at

d3x5 d3x, d3x5 [ Py(Xas- X3s)
fjj (4m)° ( 7.3 951(24.5951(x19)

X34X35 large x;,
d3x, 2 1 Z (/D) (/+2)(2/+3)
:J g57(X13) 3_6_ 2 2/ 6 S,/ for large x45. (C10
’= 23 large x;,

Integrating next,+ 2" [ = (X34 X35~ 2X1,-X19) ~3~7] over the angles and expanding it in decreasing powexs.ofthe last
equation becomes
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x5 A%, A5 | Po(X34: X35)

X34X35

large X,

w /-1

) _i (2/+4)!82m52/72m
X5g argoxg, 12710 (2m+1)!1(2/—2m+1)!x35*°

for large Xy,. (C1)

_EJ d3x3 [ 957(X13)
9 4o

Note that the integral

f d3s ( 957(X13)
4

6 )
X23 large x;,

compensates the same integral in the right-hand member qf0Zy[owing to the coefficients in EqC6)] and that the term
corresponding tan=0 in the last expression cancels exactly the sum gver Eq. (C9). Gathering together all these results
[Egs.(C7), (C9), and(C11)], term (32f) is expanded in powers o<f[22 as follows:

A4 3I? J' J d3x3d3x4 (Pz(x31 X34)

Line (32f):¥ 40 (4m)° x13x34

957(X22)957(X14) )

large x,,

)\4 3r? f f d3x3d3xg [ Po(X13- X14)
iy (4m? | xixi,

ST(213!4))

large x;,

)\4 or? d3x3d3x4d3x5 Pz(X34 X35)
C (o3
t¥ 80 J'J'J' (4m)3 ( e 3T(21475)92T(X13)) for large x;,
large X1,

M2 T2 5D (2mE8)!S, 4 0Smoasie

>

“ 2 1206, 2% 6402 & (2/13)1(2m—2/ 1)L o large xo

(C12

At this stage, we have verified E¢$8) and(59), valid in  The functionsj, are the spherical Bessel functions of first

the largex; limit. kind. Note thatH, is the Fourier transform ofl. Equation
(D1) expresses a convolution product. Thus E2R) is veri-
APPENDIX D: EVALUATION OF A(xyy) [Eq. (C2)] fied if n=0 and, in the general cagéor any n), we are

allowed to rewriteS; ¢ ¢ with the help of Fourier transforms:
As this integral will be also used in the computations
performed in Sec. VII, our purpose is to calculate it exactly 1 3. g
for any x4, (not only in the case where,, is large. SnF.6(X12) = 2473 d*q e '"712G(q)
Consider~(x) andG(x), two functions of the distance,

and define another functio®, ¢ g(x) as follows: degx I ()P, (Rp-K). (DA

d3x .. .
Sn,F,G(X12):J 4_7:‘ G(Xp9) F (X13) P(X12- X13), In polar coordinates, let
(D1 0 0
. . . . aq={ 0, xgp=| XuSin 0,
wheren is an integer andP,, is the Legendre polynomial of q X1,C0S 6
ordern. The last integral is assumed to be convergent. The ! 2
first step of this appendix is the proof of the relation X sin 6 cos ¢
2 [w and x=| X sin @ sin ¢ (D5)
ShF.6(X12) = oy fo dg ofGo(a)Fn(A)jn(ax) (D2) X cos ¢
Thus
with A A : .
X1+ X=15in6 ,Sin 6 sin ¢+ cos 6,cos 6. (D6)
o ” - If n#0, P, is expanded in terms of the associated Legendre
H (q)=3| dx xH(x)j,(qXx). D3 o 1S EXP 9
A9 f X (1A% (b3) functions of the first kindP}':
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é (n—m)! yields Eq.(C2):
X1+ X)=P(cos 6,)P,(cos 0) + 2
n( 12° ) n( 2) n( ) (n+m) PZ(Xlz X13)
A(X12) = 92T( 23) —3_
mar
X P{'(cos 6,) P](cos 0)cos<—— m<p>
2 1 c 1 X12 c
(D7) =73 g1(X1) + X_i,z fo dXx X°g5(X) .

Integrating overe cancels each term in the last expansion,

except for the first one:
2
. de Pa(Xi2: X)=27Py(q-X12)Pr(q-x).  (D8)
Expanding the exponential
¢%= 23, (2/+DI'j(aWPA@-% (D9
/=0
gives
f d3x €9XF(X)Ppy(X12- X)
R R o0 +1 .
=27,y 8) | dOPFO0 [ ey ()
0 -1

41 L~
=3 i"Pr(Xq2-Q)Fn(q). (D10)

Next, the same calculations are performed for the integration

over 0,. Finally, Eq.(D2) is obtained.
Consider now the case where

exp(—eX
n=2, F(x)=|im%

e—0

and G(x)=g5¢(X).

(D11)

ao(q) is h(q), the Fourier transform of5+(x), and the

transformF,(q) is simply 1. Then Eq(D2) becomes

2 (- |
Sor X1 = A0 = o= | da Fhi@istan

2 00
-2 jo dq Ph(a)jo(ax)

2 h(a)
- 2 i
Brxe, dX0y fo dg g — 7z~ Jo(9%12)
1. 1 d f dg
-3 Oor(X12) — X2 OX1p ) dXps 951(X23)-
(D12

Integrating over the angles

J+1 du 1 J du
2 )1 x3 2 )1 (G, x5— 2uxi%09) 2
1

B SUR(X12,X23) (b3

(D14)

Note that the last integral in EqD12) is convergent.

APPENDIX E: SOME INTEGRALS INVOLVING
LEGENDRE POLYNOMIALS

ConsiderP,(Xa1- X30)/ X335 [cf. Eq. (C4)]. We have to

prove that the integral

Xa1- X P,(Xap: X
f o, Pa( 31 X32) _ZJ P, 2( a1 32)
X135X23

1 23 X13%23
(ED

is convergen(there is a pole ik;3=0) and to evaluate it.

First, P2(x31 x32)/x23 is expressed in terms of;,, X;3, and

w (=Xqp X19):

P2(Xa1- X30)
3 = (X4, X4g— 2 Xy X19) 2
X33

3
2,02 L o2 -
3 (1= w?) XA XTpt XT3— 2uX1X19) ~ 2

(E2
Noting that
2 2 2 2 X12
X53= X1 X137 2 X12X13= X139 U< 2_3@ 1< p=pmax
(E3
With pmax=X12/2%13 I X332 X122,
and ppa= 11 if X13=Xq42,
P,(Xa1- X32)/%34 is integrated ovey:
fﬁmax Pz()231‘ )232)
B
-1 X23
1 " X137 MmaX12
-3
Xiz  XiXia(Xiot Xig— 2 tmax12X13) 2
_ X121 = Mmax)
2X13(Xo+ XI5~ 2 ma1X19) ¥
B (X3t X553~ 2 ma1X19) 2 Ea)
X12X§3 ’
(X31- X
R T
X13X23

As the angular integration equals zero for snxal, integral
(ED is convergent. Therefore,
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f d%s Pa(Xar ¥a) _zf d3X3 P2(Xa1 X32) X12* X93= COS 03= u3,
PR i R ———
4T XiXa3 X12/2=X13=Xp3 EZ R o
R X93' X34= COS 04= p4. (E9)
_ foc dx]_3 X12/2X13d Pz(X31' X32)
X12/2 X13 -1 'LL X§3 It fOIIOWS that
oc 1 Xp X5, X12° X34= COS 03C0S 0, — Sin O5Sin 6,sin ¢, (E10
= f dxiz| 7= 5 + o7
X122 Xi3 Xis B8Xis and

d3x30%%s = do3d 1 3x5:0 X050 04010 4X5, 0%, (E1D)
The following relation can also be verified:
Note thatg$:(2,3,4) is dependent aXps, X34, andu,. Car-

d3X3 Pa(Xa1- X32) rying out angular integrations, one gets
2 9or(X19 — 33—
X135 X923 47T X 3X23
3 SN 2m 2w Po(Xa1-X39)
d X3 c P2(X31' X32 d,bL3 d()D3 d(lD4 T 343
=2 —— Uor(X1d) ——3 3 -1 0 0 X13%34
o X13%23

0 if Xp3<Xqp,

* 1 Xp Xiz _ 2
:f XmSQ(Z:T(Xls)(T__S+8_7 . (E7) =\ (4m)°P (M4) o (E12
21902 X13 X13  ©Xp3 2x2 3x34 23~ X12-

Examine : . .
There is a pole in;3=0 (i.e., X;5=Xo3 and uz=—1).

3 (Xq2' Xgat Xz X34)
2 |X12+X23| X34 APPENDIX F: EXPANSION (C9)

Po(Xgq- X
2( 3313 34) 05:(2,3.4) =

X13X34

In this appendix] [Eq. (C9)] is expanded with respect to

1
951(2,3.4 X1 From Eq.(D10), it can be shown that

2|X12+X23|3X34

(E8) A

. _ o . J _F P (X1 X14) €9 13= — 3 Po(G-X1). (F1)
which appears in the first integral of the right-hand member

of Eq. (C6). Let (xp3,63,¢3), polar coordinates of vector

X3, and Kas, 04, @4), polar coordinates of vectot,, with Using twice the inverted form of this relation, to express

(139 Po(Xq5-X10) and (1K3,)Po(§-X1s), | is rewritten in
03=(X12,X23),  04=(X23,X34), the form

)%

e~ 1923 gnde 1924 are expanded in terms of Legendre polynomials and of spherical Bessel functions of the fifst kit
(D9)]:

d3q cq .
T(234 ||m ff G 2) e 1a+0") X100 —10 X310 X409 —20—¢"q P,(g-9") . (F2)

large x;,

- : d’q &®q" o i
1= 2 (=)@ +1>” —2—93T<234) im ” (quz_f e-i(a+a) xzg=ea=¢'a'p (. ")
1I'=0
X j1(9%23)]17(Q" X24) Py(G- X23) Py (q' - Xp9). (F3
The vectorsy’ andx,, are expressed in polar coordinates as follows:
0 0 X24SiN 0,C0S @4
Xp3=| 0 |, q’'=[a’'sing" |, xpu=| X245IN 04Sin @y | . (F4)

X3 g’'cos 6’ X24C0S 0,4

Equation(D8) is used to write

1

2
> f des P11 (Q" - Xa4) = P11(Q" - X23) Pyr (Xa3 X24) - (F5
0
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We consider nowP,,(q’ - X,3). Involving the vectorg, we process as foP:(q’ - X,4). The vectors are expressed with new

polar coordinates:
0 0
g=| 0|, g'=[ad'sind]|, x,5=
q q'cosé

X,3Sin #5C0S <p3>

X238iN 03Sin @3 (F6)
X23C0S 63
Let
Mszd'izsv
a=Xog Xo4. (F7)
Equation(F3) becomes
| = Z (—n"@+1)21'+1) S J dus |(M3)P|'(M3)f dM4P|'(M4)f dXz3X23f d%4X5937(2,3,4)
LI'=0
d3q d3 7i( +q") X{0n—eq—e’q’ oA AN : ’
X lim JJ onpz & e P AP (A-a)]i(axa) i1 (a4 Xea)- (F8)

e,e’ —0

Because of the orthogonality of the Legendre polynomials, only the terms for Whichcontribute to the sum ovérandl’.
Therefore,

X5 d3 N
l—E( Ja+n| [ ° (43 7 P Sod g5 (234

d3 ! . ’ It A A A A . .
X fim ff (672 e '+ e 22 P, (-G )P (G- G')j1(A%29) 10" X29). (F9)

g, =0
—i ! .
Heree '(a7d)x12 5 also expanded:

ds3 o
I—E( D@41 S (—i) 2k 12K+ 1) f f %P.(mgxz@g%ﬂz,a,m

k,k'=0

. dqd’q’ |
X lim fwe 2472"0' P (- X10) Pir (4" X12) [ (G%12) 1 (4 X12)

e,e' —0
XPo(q-q")P(0-9")ji(ax%29)j1(a" X24). (F10

As previously, it can be proved that

|:|EO (—1)'+k(2|+1)(2k+1)ff (%3—:;)(4 P (Xog- x24)g3T(234)£ Ll'mo f J d(sg Of;z e °972'9Py(g-q')
XP(Q-a")P1(G-9")jk(a%12) i k(Q"X12) [1(A%23)]1(0 X24). (F11)
With the help of the known relation
21+ D) P (w)=(+1)P (w)+IP _4(n)  if 1#0, (F12

one gets

+1 +1 3u® 1
0@t [ PP =@ ey [ a2 e wpi

3 (+1
=3 fﬂdl““[(l+1)PI+1(M)+|P|—1(M)][(|(+1)Pk+1(,u)+kPk_1(/_L)]

—%(2|+1)(2k+1)f+1d,u, P(w)P(p) if I,k#0. (F13
+1
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Then it is shown that

+1 I(1-1) I(1+1)(21+1) (I+21)(1+2)
(2|+1)(2k+1)f+ du Po(m)Pi(1)Pu(p) =351 5k,<|—2)+2m Skit3 =573 ka+a)-

(F14

Thus, in the right-hand member of E@:11), the sum ovet andk reduces to the cases wheére | -2, 1, or|+2. Equation
(F12) is then rewritten as follows:

I 2 = [I(1-1) 5 21(1+1)(21+1) (I+1)(1+2) 5
T35, 1o | 21-1 k'<'—2>+3(2|—1)(2|+3) KIT o113 %ki+2
d3X3d3X4 X24
xf f — 7 Pi(es X24)93T(234)Kk| Kkl — (F15
(4m) X12
whereK, |(x/X19) is a function defined by
Ko | —|=1i J 9 i@ [0 F16
kX —SITO 2. & T 9% (F16

As Xy, is large enoughj,(gqx/x,5) can be expanded in terms of increasing powers/af,. This brings in the following
expansion for the functioky :

K x| _[(x |§ (—1ym X 2™ lasisamk (F17
W) I xa) #0 2x1,/  mi(21+2m+ 1)1t
where thel, 's correspond to the integrals

Ink=lim J du e ©"u"j(u), (F18
0

e—0

which have here to be evaluated in the only case wher&, becausd is restricted td — 2,1, or |+ 2. If k>0, integrations
by parts provide

lnk=(n+k=1)1_1—1=(N+k=1)(n+k=3) -~ (n—k+1)l,_xo (for n>k)
=l n=02n—1)!1y, (for n=k). (F19
One gets

o) o0
Ipo = lim f du e *“uP~Isinu=lim Im f du e U= DyP~1=1m
(p>0) &—0 0 e—0 0

(p—D!| [0 (if p is even
(—i)P _{(—1)“’1)’2@—1)! (if p is odd,

| i de G Sinu 20
00 e—0 ue u 2

Note that, in the present calculations, one is just concerned withgwen-k numbers. The peculiar feature thg vanishes
in that case, except fqu=0, considerably simplifies the evaluation of expansiBf?), as it is restricted to its terrm=0,

while k is also restricted to the single valu¢ 2, for a givenl number. This allows us to express EF15) in the simple form

d3X3d3X4 c A A X|23X|24
o LS aenaro@en [ [ 00N e o aapartad D tor lrgex, (P21
12

which brings in an expansion in terms of the Legendre polynoijalFinally, making use of OCP sum rulé4$2) and (45)
provides Eq.(C9):

©

2 1 (1+1)(1+2) (21 +3)

|=— ", ST 21 LS S, for large xy5. (F22
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