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Functional approach for quantum systems with continuous spectrum

Roberto Laura*
Departamento de Fı´sica, FCEIA, Universidad Nacional de Rosario, Instituto de Fı´sica Rosario, CONICET-UNR,

Avenida Pellegrini 250, 2000 Rosario, Argentina

Mario Castagnino†

Instituto de Astronomı´ay Fı́sica del Espacio, Casilla de Correos 67, Sucursal 28, 1428 Buenos Aires, Argentina
~Received 22 January 1997!

Considering quantum states as functionals acting on observables to give their mean values, it is possible to
deal with quantum systems with continuous spectrum, generalizing the concept of trace. Generalized observ-
ables and states are defined for a quantum oscillator linearly coupled to a scalar field, and the analytic
expression for time evolution is obtained. The ‘‘final’’ state (t→`) is presented as a weak limit. Finite and
infinite numbers of excited modes of the field are considered.@S1063-651X~98!09004-7#
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I. INTRODUCTION

There is a great deal of interest in the search for a phys
explanation for the evolution towards equilibrium of qua
tum systems in quantum statistical mechanics. For m
years a great number of papers were devoted to this prob
As it is almost impossible to quote them all, let us only gi
some examples.

Standard results on dynamical systems show the impo
bility that a system of linearly coupled oscillators will reac
statistical equilibrium. This is due to the fact that the pro
lem can be reduced to a set of noninteracting oscillators~the
normal modes!. As there is no mechanism for transferrin
energy between normal modes, the initial distribution of n
mal modes is not modified by time evolution.

In his pioneering work, Fermiet al. @1# showed that non-
linear couplings in general do not determine the approac
equilibrium. Prigogine@2# showed that for a very big set o
coupled oscillators, a weak nonlinear part of the interact
produces the approach to equilibrium.

The problem of a chain of independent quantum osci
tors with a linear coupling between first neighbors was a
lyzed by Blaiseet al. @3#. Numerical experiments show tha
for the initial condition of a single excited oscillator the sy
tem evolves first towards equilibrium~equipartition of en-
ergy!, and later a recurrence time appears for which the
ergy returns to the oscillator of the initial condition. Th
recurrence time grows proportionally to the number of os
lators.

A line of research@4–6# studied the quantum Brownia
motion with path integrals, i.e., the motion of a quantu
oscillator linearly coupled to a thermal bath.

This problem was also analyzed by Gruveret al. @7# by
numerical methods, showing that a quantum ‘‘big’’ oscillat
linearly coupled with a great number of identical ‘‘small
oscillators with a thermal distribution, evolving in such
way that it is possible to adjust its time evolution with a
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exponential that leads the ‘‘big’’ oscillator subsystem to t
thermal equilibrium with the bath.

The works of Refs.@3#, @6#, and@7# deal with linear cou-
plings for which the total Hamiltonian can be reduced
noninteracting normal modes.

The microscopic explanation of the approach to equil
rium was related also to the so-called ‘‘intrinsic irreversib
ity’’ of quantum systems. Misraet al. @8,9# pointed out the
existence of a time operator for the statistical description
classical and quantum systems. The mean value of this
erator is the ‘‘age’’ of the system, which is a growing fun
tion of time. Bohmet al. @10,11# related the intrinsic irre-
versibility to the existence of generalized eigenvectors of
Hamiltonian with complex eigenvalues, corresponding
poles of the analytic extension of the scattering matrix. Co
plex eigenvalues have been obtained by Sudarshan@12# by
analytic continuation in a generalized quantum mechan
Intrinsic irreversibility appears also through subdynam
theory @13,14#.

When it is necessary to deal with systems with a hu
number of particles, the standard procedure is to start witN
particles in a box of volumeV, making the limit N→`,
V→` with N/V5c,` in the last step of the calculations
Even for a finite number of particles, the limitV→` pro-
duces a continuum spectrum in the unperturbed Hamilton
The usual formalism of quantum mechanics cannot be u
in this case, due to the appearance of diagonal singularitie
states and observables@15–17#.

The Friedrichs model, describing the interaction betwe
a quantum oscillator and a scalar field in the one exci
mode sector, was extensively analyzed in the literature
the one excited mode sector. It is an exactly solvable mo
in which the quantum oscillator decays to the ground st
for all initial conditions. Sudarshanet al. @12# computed the
complex spectral decomposition in the framework of a g
eralized quantum mechanics. The spectral decompos
was also obtained by Petroskyet al. @18# using subdynamic
theory. The spectral decomposition with complex eigenv
ues was interpreted in terms of Rigged-Hilbert spaces
Refs.@19# and @13#.

Based in the pioneering work of Segal@20#, Antoniou
3948 © 1998 The American Physical Society
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57 3949FUNCTIONAL APPROACH FOR QUANTUM SYSTEMS . . .
et al. @15,16# developed a formalism for quantum system
with diagonal singularity. The quantum states of this the
are functionalsover certain space of observablesO. Math-
ematically this means that the spaceS of states is contained
in O3. Physically it means that the only thing we can rea
observe and measure are the mean values of the observ
OPO in statesrPS,O3: namely, ^O&r5r@O#[(ruO).
This is the natural generalization of the usual trace Tr(r̂Ô),
which is ill defined in systems with continuous spectrum.

In this work we apply this formalism to a quantum osc
lator linearly coupled to a scalar field, for a finite number
excited modes~decay process! and for the thermodynamic
limit ~infinite number of excited modes of the field!. We will
be able to obtain the time evolution of a finite number
excited modes, and to give an analytic expression for
‘‘final’’ state ( t→`) as a weak limit on the ‘‘test observ
ables’’O. As we shall see, the formalism can also be adap
to obtain exact expressions for the time evolution in the th
modynamic limit, where an infinite number of excited mod
of the field drives the quantum oscillator to a final excit
state. These results will be obtained without using coa
graining, complex generalized eigenvalues, or box norm
ization.

The model is presented in Sec. II. In Sec. III we discu
the characterization of states and observables with diag
singularity, both for a finite and infinite number of excite
modes. In Sec. IV we obtain the exact solution of the pr
lem using the diagonalized form of the Hamiltonian. T
master equation is solved in Sec. V, and their solutions
compared with the exact expressions of Sec. IV.

II. THE MODEL

We consider a quantum oscillator with the Hamiltonian

HS5Vb†b, @b,b†#51, ~\51!, ~1!

and a quantum field with the Hamiltonian

HF5E dkvkak
†ak , @ak ,ak8

†
#5d3~k2k8!,

vk5k[uku, ~c51!. ~2!

The interaction is given by

H int5E dk Vk@ak
†b1b†ak#, Vk* 5Vk ,

@ak
† ,b†#5@ak

† ,b#50. ~3!

The functionVk is chosen in such a way that

h6~vk![vk2V2E dk8Vk8
2

vk2vk86 i0
~4!

does not vanish for anykPR1, and the analytic extensio
h1(z) from the upper to the lower complex half plane
h1(k) has a simple zero atz5z0PC2(C2 is the lower part
of the complex plane!.
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The total HamiltonianH5HS1HF1H int can be diago-
nalized in terms of the creation~annihilation! operatorsAk

†

(Ak):

H5E dkvkAk
†Ak , @Ak ,Ak8

†
#5d3~k2k8!, ~5!

where

Ak
†[ak

†1
Vk

h1~vk!
Fb†1E dk8Vk8ak8

†

vk2vk81 i0
G ,

Ak[ak1
Vk

h2~vk!
Fb1E dk8Vk8ak8

vk2vk82 i0
G . ~6!

The operatorsb†, b, ak
† , andak can be written in terms of

Ak
† andAk :

b†5E dkVk

h2~vk!
Ak

† ,

b5E dkVk

h1~vk!
Ak ,

ap
†5E dkFd3~k2p!1

VkVp

h2~vk!~vk2vp2 i0!GAk
† ,

ap5E dkFd3~k2p!1
VkVp

h1~vk!~vk2vp1 i0!GAk . ~7!

Equations~5! and ~7! can be proved using Eqs.~1!–~4!
and the following identities:

1

h6~vk!
52E dk Vk

2

h1~vk!h2~vk!~vk2vp7 i0!
, ~8!

E dk Vk
2

h1~vk!h2~vk!
51, ~9!

1

h2~vk8!~vk82vk92 i0!
1

1

h1~vk9!~vk92vk81 i0!

52E dk Vk
2

h1~vk!h2~vk!~vk2vk92 i0!~vk2vk81 i0!
.

~10!

Equations~8!, ~9!, and~10! are proved in Appendix A.

III. STATES AND OBSERVABLES

As is discussed in Refs.@17–19#, for quantum systems
with continuous spectrum the usual approach of density
erators is not applicable. For a density operatorr̂ represent-
ing a state and an operatorÔ representing an observable
expressions such as Tr(r̂Ô) are meaningless due to the pre
ence of singular diagonal terms. The usual way to av
these problems is to ‘‘discretize’’ the spectrum by enclos
the system in a box with periodic boundary conditions. T
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3950 57ROBERTO LAURA AND MARIO CASTAGNINO
size of the box is considered to be infinite only at the l
step of the computation of relevant quantities.

A way to consider the continuous spectrum from the
ginning was introduced in Refs.@17–19#. For a given setO
of operators representing physical observables, the state
the system can be represented by a setS of functionals acting
onO (S,O3). The mean value of an observableOPO in a
staterPS is given by the value of the functionalr on O,
denoted by^O&r5(ruO). This expression generalizes th
usual Tr(r̂Ô). As usual, the time evolution of the obser
ables in the Heisenberg representation is given by

Ot5eiL†tO, where L†O[@H,O#, OPO. ~11!

For the model presented in Sec. II, let us consider a s
cial setO of observables given by a generalized linear co
bination of products of one creation and one annihilat
operator:

O5O1b†b1E dkE dk8Õkk8ak
†ak81E dkOk1ak

†b

1E dk8O1k8b
†ak8, ~12!

O1* 5O1 , Õkk8
* 5Õk8k , Ok1* 5O1k .

Due to Eq.~11! and the form of the total HamiltonianH
5HS1HF1H int given by Eqs.~1!, ~2!, and~3!, this form is
preserved by time evolution (eiL†tO,O).

Some observables inO are especially important for ou
purposes:

n[b†b number of discrete modes,

N[E dkak
†ak number of continuous modes,~13!

s~r ![c†~r !c~r !

density of continuous modes at the pointr ,

where in the last expressionc†(r )[(1/A8p3)*dkeik•rak
† is

the creation operator for one continuous mode at the pos
r . Notice that to include observables such asN or H in the
setO it is necessary to allowÕkk8 to have a singular par
proportional tod3(k2k8).

For the cases in which the total number of excited mo
is finite (^NT&5^n&1^N&,`), observables such asH and
N are well defined and should be included inO. Therefore,
in this case we denote byOD ~theD corresponds to ‘‘decay
ing’’ processes! the set of observables of the form~12!, for
which

Õkk85Okd
3~k2k8!1Okk8, ~14!

whereOk , Okk8, Ok1, andO1k8 are regular functions of the
variablesk andk8.
t

-

of
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-
n
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s

For all OPOD we obtain

^O&r5~ruO!5r1* O11E dk rk* Ok1E E dk dk8rkk8
* Okk8

1E dk rk1* Ok11E dk8 r1k8
* O1k8, ~15!

where

r1* [~rub†b!, rk* [~ruak
†ak!, rkk8

* [~ruak
†ak8!,

rk1* [~ruak
†b!, r1k8

* [~rub†ak8!. ~16!

Therefore, the statesrPS,OD
3 are represented by th

‘‘components’’ r1* , rk* , rkk8
* , rk1* , andr1k8

* , while the ob-
servablesOPOD are represented by the ‘‘components’’O1,
Ok , Okk8, Ok1, andO1k8. We stress the need for ‘‘singula
components’’rk* andOk in both states and observables.

The condition on the states representing a finite numbe
excited modes is given by

r1* 1E dkrk* 5^n1N&r,`. ~17!

As the total number of modes operatorNT[n1N com-
mutes with the total Hamiltonian, the value of^n1N&r is
time independent.r1* gives the mean number of excite
modes for the oscillator, whilerk* dk is the mean number o
continuous modes having momentum betweenk andk1dk.

If we wish to describe a situation in which there is a
infinite number of excited modes in the field (^N&5`), as is
the case when the oscillator is interacting with a bath
radiation with uniform concentration of continuous mode
we need a different characterization of observables
states. In this case, extensive observables such asN or H are
not well defined and should be excluded from the set
observablesO. Therefore, only intensive observables of t
field are accessible for measurement, and we define the c
OTD ~the TD corresponds to ‘‘thermodynamic limit’’! of ob-
servables of the form~12!, for which

Õkk85Okk8, ~18!

whereOkk8, Ok1, andO1k8 are regular functions of the vari
ablesk and k8. For the mean value of any observableO
POTD we have

^O&r5~ruO!5r1* O11E E dk dk8 r̃ kk8
* Okk8

1E dk rk1* Ok11E dk8 r1k8
* O1k8, ~19!

where r1* [(rub†b), r̃ kk8
* [(ruak

†ak8), rk1* [(ruak
†b), and

r1k8
* [(rub†ak8).

A singular part should be included inr̃ kk8
* , if we want to

consider the possibility of states having a uniform concen
tion of continuous modes. This fact can be understood
computing the mean value of the density given by Eq.~13!:
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57 3951FUNCTIONAL APPROACH FOR QUANTUM SYSTEMS . . .
^s~r !&5
1

8p3E dk dk8ei ~k2k8!r r̃ kk8
* .

For a state with uniform concentrationc we should have
r̃ kk8

* proportional tod3(k2k8). Therefore we assume th
general form

r̃ kk8
* 5rk* d3~k2k8!1rkk8

* , ~20!

whererk* and rkk8
* are regular functions of the variablesk

andk8. Combining Eqs.~19! and~20!, we obtain the genera
expression

^O&r5~ruO!5r1* O11E dk rk* Okk

1E E dk dk8rkk8
* Okk81E dk rk1* Ok1

1E dk8 r1k8
* O1k8, ~21!

for computing the mean value of any observableOPOTD in
a staterPS,OTD

3 . The statesr are represented by the
‘‘components’’r1* , rk* , rkk8

* , rk1* , andr1k8
* , where in gen-

eralrk* andrkk8
* are independent objects (rk* Þrkk* ), while O

is represented by the ‘‘components’’O1, Okk8, Ok1, and
O1k8. Notice that in this case there is no singular part for
observables.

IV. TIME EVOLUTION

In the Heisenberg picture, the functionalsr representing
states are time independent, while the observables evolv
time according to

2 i
d

dt
O5L†O[@H,O#.

For the creation and annihilation operatorsAk
† andAk given

in Eq. ~6!, we obtain

d

dt
Ak

†5 ivkAk
† ,

d

dt
Ak52 ivkAk ,

and therefore

Ak
†~ t !5eivktAk

†~0!, Ak~ t !5e2 ivktAk~0!. ~22!

The time evolution ofak
† , ak , b†, and b can be easily

obtained replacing Eq.~22! in Eq. ~7!:

b†~ t !5E dk Vk

h2~vk!
eivktAk

†~0!,

b~ t !5E dk Vk

h1~vk!
e2 ivktAk~0!, ~23!
e

in

ap
†~ t !5eivptAp

†~0!1E dk VkVp

h2~vk!~vk2vp2 i0!
eivktAk

†~0!,

ap~ t !5e2 ivptAp~0!

1E dk VkVp

h1~vk!~vk2vp1 i0!
e2 ivktAk~0!. ~24!

Using Eqs.~23! and ~24! we obtain

~rub†b! t5E dkdk8VkVk8~ruAk
†Ak8! t50ei ~vk2vk8!t

h2~vk!h1~vk8!
~25!

~ruap
†ap8! t

5~ruAp
†Ap8! t50ei ~vp2vp8!t

1E dk8Vk8Vp8~ruAp
†Ak8! t50ei ~vp2vk8!t

h1~vk8!~vk82vp81 i0!

1E dk VkVp~ruAk
†Ap8! t50ei ~vk2vp8!t

h2~vk!~vk2vp2 i0!

1E dkdk8VkVk8~ruAk
†Ak8! t50ei ~vk2vk8!t

h1~vk8!~vk82vp81 i0!h2~vk!~vk2vp2 i0!
.

~26!

In the previous expressionsAk
†(0) andAk(0) can be ex-

pressed in terms ofak
†(0), ak(0), b†(0), andb(0) using Eq.

~6!.
The total number of modes, given by the operator

NT[n1N5b†b1E dkak
†ak ,

satisfies

@H,NT#50 ~27!

and thereforeNT is conserved during time evolution. Tw
different physical situations will be discussed in the follow
ing subsections: first we will analyze the case with a fin
number of modes, and then the case with an infinite num
of modes~thermodynamic limit!.

A. Finite number of excited modes„decaying process…

In this case, extensive observables of the field such as
number of modeŝN& or the energŷ HF& are finite. In Eqs.
~12!, ~14!, ~15!, and ~16! we obtained the general form fo
states and observables.

Let us consider an initial state for which the mean num
of excited modes in the oscillators is^n&0, and the mean
number of modes of the field iŝN&0, with a momentum
distribution f (k), i.e.,

r1* 5^b†b&05^n&0 , rk* 5^ak
†ak&05 f ~k!,

E dk f ~k!5^N&0 , rkk8
* 5rk1* 5r1k8

* 50. ~28!



ni
e

3952 57ROBERTO LAURA AND MARIO CASTAGNINO
The densitys(r ) of continuous modes at the pointr ,
defined in Eq.~13!, is of the form given in Eqs.~12! and
~14!, with

@s~r !#15@s~r !#k5@s~r !#k15@s~r !#1k50,

@s~r !#kk85
1

8p3
ei ~k2k8!r.

The mean value of the densitys(r ) in the state defined by
Eq. ~28! is obtained using Eq.~15!:

^s~r !&r5„rus~r !…50,

which is a reasonable result, as we are dealing with a fi
number ^N&0 of continuous modes in an infinite volum
(R3).
in
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rp
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te

From Eqs.~6! and ~28! we obtain

~ruAp
†Ap!05 f ~p!1

Vp
2^n&0

h1~vp!h2~vp!
, ~29!

~ruAp
†Ap8!05

VpVp8^n&0

h1~vp!h2~vp8!
. ~30!

Replacing Eqs.~30! in ~25! we obtain

^b†b& t5^n&0U E dk Vk
2eivkt

h1~vk!h2~vk!
U2

. ~31!

Replacing Eqs.~29! and~30! in Eq. ~26! ~with p5p8), we
obtain
^ap
†ap& t5 f ~p!1

^n&0Vp
2

h1~vp!h2~vp!
1

^n&0Vp
2eivpt

h1~vp!
E dk8Vk8

2 e2 ivk8t

h1~vk8!h2~vk8!~vk82vp1 i0!

1
^n&0Vp

2e2 ivpt

h2~vp!
E dk Vk

2eivkt

h1~vk!h2~vk!~vk2vp2 i0!
1E E dkdk8Vk8

2 Vk
2^n&0Vp

2ei ~vk2vk8!t

uh1~vk!u2uh1~vk8!u
2~vk2vp2 i0!~vk82vp1 i0!

.

~32!
at
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The Riemann-Lebesgue theorem can be used in Eqs.~31!
and ~32! to obtain

lim
t→`

^b†b& t5 lim
t→`

^n& t50,

lim
t→`

^ap
†ap& t5 f ~p!1

^n&0Vp
2

h1~vp!h2~vp!
. ~33!

From Eqs.~9!, ~13!, and the previous equation we obta

lim
t→`

^N& t5 lim
t→`

E dp^ap
†ap& t

5E dpf ~p!1^n&0E dp Vp
2

h1~vp!h2~vp!

5^N&01^n&0 .

Therefore the discrete system decays to the vacu
transferring the initial number of modes to the field@as we
pointed out in Eq.~27!, the total number of modes is a con
stant of motion#.

The momentum distribution fort→` is equal to the ini-
tial distribution f (p) plus an isotropic term having a sha
peak aroundvp5V „it is easy to prove that for small inter
actions@Vp

2/h1(vp)h2(vp)#.d(vp2V)/4pV2
…. The en-

ergy of the discrete system is completely transferred to
field.

Expression~31! is a well known result for Friedrichs
model@12,21#, which we reobtain in the functional approac
,

e

From this expression it is possible to prove th
d/dt^b†b& t5050 ~Zeno regime! and also that fort→`, the
asymptotic form of^b†b& t is proportional tot26 ~Khalfin
regime @22# corresponding tovk5uku, see Appendix C for
the proof!. Therefore, the functional approach applied to t
model with a finite number of excited modes does not all
exponential decay.

B. Infinite number of excited modes„thermodynamic limit …

In this case extensive observables such as energy or n
ber of modes of the field are not well defined, since they
really infinite and therefore cannot be considered. Only lo
observables of the field such as the densitys(r ) defined in
Eq. ~13! are available. In Eqs.~18!–~21! we obtained the
general form of observables, states, and mean values.

We are going to consider the initial condition for whic
the mean number of discrete modes in the system is^n&0
,`:

~rub†b! t505^n&0 , ~34!

and the field has a uniform distribution in the space w
concentrationc:

„rus~r !…5
1

8p3E dkE dk8ei ~k2k8!r~ruak
†ak8!5c.

From the previous equation we obtain
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57 3953FUNCTIONAL APPROACH FOR QUANTUM SYSTEMS . . .
r̃ kk8
* 5~ruak

†ak8! t505r~k!d3~k2k8!, E dkr~k!58p3c.

~35!

We also assume for simplicity that there is no initial cor
lation between the discrete system and the field:

rk1* 5~ruak
†b! t5050, r1k* 5~rub†ak! t5050. ~36!

Using Eqs.~34!, ~35!, ~36!, and the definition~6! for Ak
†

we obtain

~ruAp
†Ap8! t505r~p!d3~p2p8!1

^n&0VpVp8

h1~vp!h2~vp8!

1
VpVp8r~p!

h2~vp8!~vp82vp2 i0!

1
VpVp8r~p8!

h1~vp!~vp2vp81 i0!

1
VpVp8

h1~vp!h2~vp8!

3E dk Vk
2r~k!

~vp2vk1 i0!~vp82vk2 i0!
.

~37!

The last expression can be replaced in Eqs.~25! and~26!
to obtain the explicit expressions for^b†b& t and ^ak

†ak8& t .
The time dependence is rather complicated, but
Riemann-Lebesgue theorem can be used to eliminate the
cillating terms and to obtain the following asymptotic e
pressions fort→`:

lim
t→`

~rub†b! t5E dp Vp
2r~p!

h1~vp!h2~vp!
, ~38!

Wlim
t→`

~ruap
†ap8! t

5r~p!d3~p2p8!1
VpVp8r~p8!

h2~vp8!~vp82vp2 i0!

1
VpVp8r~p!

h1~vp!~vp2vp81 i0!

1E dk Vk
2r~k!VpVp8

h2~vk!h1~vk!~vk2vp2 i0!~vk2vp81 i0!
.

~39!

The last limit should be understood in the weak sense, i

lim
t→`

E E dp dp8~ruap
†ap8! tOpp8

5E E dp dp8@Wlim
t→`

~ruap
†ap8! t#Opp8.
-

e
os-

.,

The main difference with the results of Sec. IV A is th
in this case Eq.~38! shows that the discrete system does n
decay towards the vacuum. The infinite number of modes
the field surrounding the discrete system produces a fi
state of the system independent of^n&0, but dependent on the
interaction and the initial momentum distribution of the fiel

If the initial condition for the bosonic field is a canonic
distribution with temperatureT51/kb (k is the Boltzmann
constant!, we have

r~k!5
1

ebvk21
. ~40!

If, in addition, we assume a small interaction, we have

Vp
2

h1~vp!h2~vp!
.

d~vp2V!

4pV2
. ~41!

Replacing Eqs.~40! and ~41! in Eq. ~38! we obtain

^b†b& t→`.
1

ebV21
,

which is the mean number of modes of the discrete sys
we would have obtained for a quantum oscillator of fr
quency V in a canonical distribution with temperatureT
51/kb. This result cannot be obtained without the assum
tion of weak interaction.

V. THE MASTER EQUATION

In Sec. IV A we showed how the quantum oscillator d
cays toward the vacuum in the presence of a finite numbe
modes of the field. In Sec. IV B we showed how a therm
bath thermalizes the quantum oscillator. These results h
been obtained without approximations using the Riema
Lebesgue theorem only. It is instructive to compare th
results with the predictions of the master equation obtai
in the so-called ‘‘l2t approximation,’’ where the interaction
parameterl→0, t→`, andl2t is finite @2#.

The master equation provides the time evolution ofPr,
whereP is the projector onto the part ofr that is invariant by
the time evolution without interaction.~In this section we
consider the Schro¨dinger representation, where the states
time dependent and the observables are time independ!
Calling by L0 andL4L01L1 the generators of free and in
teracting time evolution, we have

i
d

dt
Pr5S PL1Q

1

i02L0
QL1PDPr, P25P, Q5I2P.

~42!

We consider the statesr as functionals acting on the
spaceO of observables (rPS,O3). Therefore it is neces-
sary to give a precise definition of the operators appearin
Eq. ~42!. For a given setO of observables, any super
operatorM† acting onO for which M†O,O is extended to
an operatorM acting on the space of statesS,O3 by the
following definition:

~MruO!5~ruM†O!, for all OPO. ~43!
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Therefore we have

~L0ruO!5~ruL0
†O!, ~LruO!5~ruL†O!

L0
†O[@H0 ,O#, L†O[@H,O#. ~44!

For the model presented in Sec. II,

H05Vb†b1E dkvkak
†ak ,

V5E dkVk@ak
†b1akb

†#, H5H01V.

As we shall see, completely different physical proces
can be described with the same formal Eq.~42! if we allow
or not for a singular part in the setO of ‘‘test observables.’’

A. Master equation for the decay process

We consider the class of observablesOPOD , as we de-
fined in Eqs.~12!, ~14!, ~15!, and ~16!. In this case an ob-
servableO is represented by the constantO1 and the regular
functions Ok , Okk8, Ok1 , and O1k , while the stater is
represented by the constantr1* and the regular functionsrk* ,
rkk8
* , rk1* , andr1k* .

The statesPr, invariant under the time evolution gene
ated byL0, satisfy

05~L0PruO!5~PruL0
†O!

5E dkE dk8~Pr!kk8
* ~vk2vk8!Okk8

1E dk~Pr!k1* ~vk2V!Ok1

1E dk8~Pr!1k8
* ~V2vk8!O1k8, ~45!

for all OPOD , which implies

~Pr!kk8
* 5~Pr!k1* 5~Pr!1k8

* 50, ~46!

and therefore, using (PruO)5(ruP†O), we obtain

P†O5O1b†b1E dkOkak
†ak . ~47!

The master equation~42! implies

S d

dt
PrUP†OD5FPrUS 2 iP†L†Q†

1

L0
†1 i0

Q†L†P†D P†OG .

~48!

Two independent equations can be obtained if we cho
the operatorsb†b and ak

†ak for P†O. Using the definitions
~44! and ~47! for L0

† , L†, andP†, we obtain

d

dt
~rub†b!528p2V2VV

2 ~rub†b!, ~49!
s

se

d

dt
~ruak

†ak!52pVV
2 d~vk2V!~rub†b!. ~50!

The proof of these equations is given in Appendix B.
The solution of Eqs.~49! and ~50! is

~rub†b! t5e2Gt~rub†b!0 , G[8p2V2VV
2 ,

~ruak
†ak! t5@12e2Gt#

d~vk2V!

4pV2
~rub†b!01~ruak

†ak!0 .

~51!

For t→`, expressions given in Eqs.~51! give

~rub†b!`50,

~ruak
†ak!`5

d~vk2V!

4pV2
~rub†b!01~ruak

†ak!0 .

These expressions are coincident with the results give
Eq. ~33! for small interaction. However, the master equati
gives an exponential decay that is not found in the ex
expressions~31! and ~32!. The reason is that for the maste
equation to be valid it is necessary that the interaction
rameterl be small (l!1) and that the time be not too larg
(t&l22). See Appendix D for a discussion on this point.

B. Master equation for the thermodynamic limit

We now consider the class of observablesOTD given in
Eqs. ~18!–~21! corresponding to an infinite number of ex
cited modes of the field.

StatesPr are invariant under the time evolution withou
interaction, and therefore they satisfy Eq.~45! for all O
POTD .

In addition, we assume thatPr is translationally invariant
for all the field observables, i.e.,

~LP̄PruOfield!5~PruLP̄
†
Ofield!5~Pru@ P̄,Ofield# !50,

~52!

where

Ofield5E dkE dk8Okk8ak
†ak8, P̄5E dkkak

†ak ,

~53!

andLP̄ is the generator of space translations for the state
Equation~52! implies

E dkE dk8~Pr!kk8
* ~k2k8!Okk850,

from which we obtain

~Pr!kk8
* 5~Pruak

†ak8!5rk* d3~k2k8!. ~54!

We also assume there is no correlation between the field
the discrete system inPr, i.e.,

~Pruak
†b!5~Prub†ak!50. ~55!

In summary,Pr andQr satisfy
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~Pruak
†ak8!5rk* d3~k2k8!, ~Qruak

†ak8!5rkk8
* ,

~Prub†b!5r1* , ~Qrub†b!50,

~Pruak
†b!50, ~Qruak

†b!5rk1* , ~56!

~Prub†ak!50, ~Qrub†ak!5r1k* ,

and the mean value ofOPOTD in a general stater5Pr
1Qr is

^O&r5~ruO!5r1* O11E dk rk* Okk1E dkE dk8rkk8
* Okk8

1E dk rk1* Ok11E dk8 r1k8
* O1k8.

The operatorP† acting onOTD is defined by

~ruP†O![~PruO!5r1* O11E dk rk* Okk .

In Appendix B, the functional master equation~42! is
evaluated on observablesO1b†b and *dk*dk8Okk8ak

†ak8,
obtaining the following differential equations:

d

dt
r1* ~ t !528pV2VV

2 r1* ~ t !12pVV
2 E dkd~vk2V!rk* ~ t !,

~57!

d

dt
rk* ~ t !50. ~58!

The solution of these equations is

r1* ~ t !5r1* ~0!e2Gt1

@12e2Gt#E dk d~vk2V!rk* ~0!

4pV2
,

~59!

rk* ~ t !5rk* ~0!. ~60!

Equation ~60! states that the momentum distribution
the continuous modes does not change in time, while
~59! gives the time evolution of the mean number of discr
modes. Fort→` these equations give

r1* ~`!5

E dkd~vk2V!rk* ~0!

4pV2
, rk* ~`!5rk* ~0!,

which coincide with the exact expressions~38! and ~39! for
small interaction. Once again, the master equation gives
exponential approach that is not found in the exact time e
lution ~see Appendix D!.

VI. CONCLUSIONS

Let us summarize our main results. We considered
linear coupling between a quantum oscillator and a quan
field with the Hamiltonian
q.
e

an
o-

e
m

H5Vb†b1E dkvkak
†ak1E dk Vk@ak

†b1b†ak#,

Vk* 5Vk , \5c51,

@b,b†#51, @ak ,ak8
†

#5d3~k2k8!, @ak
† ,b†#5@ak

† ,b#50.

For a finite number of excited modes, we used the fu
tional approach to obtain the time evolution of a state hav
a finite number of excited modes. The mean number of d
crete modes is given by

^b†b& t5^n&0U E dk Vk
2eivkt

h1~vk!h2~vk!
U2

,

h6~vk![vk2V2E dk8Vk8
2

vk2vk86 i0
.

This is a well known result@12,21#, which we reobtain in
the functional approach. From this expression it is poss
to prove thatd/dt^b†b& t5050 ~Zeno regime! and also that
for t→`, the asymptotic form of̂ b†b& t is proportional to
t26 ~Khalfin regime@22# corresponding tovk5uku, see Ap-
pendix C for the proof!. Therefore, the functional approac
applied to the model with a finite number of excited mod
does not allow exponential decay.

The functional approach is a powerful tool to deal wi
the case of an infinite number of excited modes in the fie
In this case, the mean number of discrete modes approa
in nonexponential form

^b†b&`5 lim
t→`

~rub†b! t5E dp Vp
2r~p!

h1~vp!h2~vp!
.

This number depends on the initial momentum distribut
r(p) of the field and the form of the interactionVp , but it
does not depend on the initial condition of the quantum
cillator. If the interaction is very small,̂b†b&` is indepen-
dent of the form of the interaction, precisely

^b†b&`.
1

4pV2E dpd~vp2V!r~p!.

If in addition the initial momentum distribution of the field i
the canonical distribution with temperatureT, we obtained

^b†b&`.
1

eV/kT21
,

which is the mean number of modes for a single oscilla
having temperatureT. Therefore, for a small interaction, w
proved the evolution of the oscillator to the thermal equil
rium with the field.

It is interesting to note the following.
~i! The space of ‘‘test observables’’OD for a finite num-

ber of excited modes is different from the spaceOTD for an
infinite number of excited modes. In the latter case only
tensive observables of the field are accessible for meas
ment, and therefore we excluded the possibility of a singu
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part*dkOkak
†ak fromOTD . This difference betweenOD and

OTD determines different time evolution for the states, sin
they are functionals whose properties depend on the dom
of definition.

~ii ! The strong limit of the state for infinite time does n
exist, but a functionalr` exists such that limt→`(r tuO)
5(r`uO) for all O in the set of observables. We do n
have, as is the case in the ‘‘coarse graining’’ method, a p
ferred set of relevant components of the state, obtained f
set of preferred observables. In our case we really cons
the set of ‘‘components’’ (ruO) of the statesr, labeled by all
the observablesO. The difficulty of defining a canonica
coarse graining is avoided in this approach.

~iii ! As no analytic extensions have been involved to o
tain the exact results, no special riggings of the space
states and observables like in Refs.@10#, @11#, @13#, and@19#
have been used. Only mild conditions on the moment
distribution of the field are necessary to use the Riema
Lebesgue theorem in order to obtain the states fort→`.

~iv! In Sec. V we used the functional approach to so
the master equation. Both for finite and infinite numbers
modes, the master equation gives a time evolution for wh
the t→` limit coincides with the corresponding limit of ex
act solutions with very small interactions. However, the m
ter equation predicts exponential approaches that are no
tained in the exact solutions. These different results app
because, as we discuss in Appendix D, a necessary cond
for the master equation to be valid is that the parameterl of
the interaction be small (l!1) and that the time be not too
large (t&l22). The master equation approximation elim
nates the Khalfin effect.
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APPENDIX A: DIAGONALIZATION
OF THE HAMILTONIAN

In this section we give the proof of Eqs.~8!, ~10!, and~9!,
which are necessary to obtain the diagonalized expressio~5!
of the total Hamiltonian. The proof follows essentially th
same arguments of Ref.@12#, adapted to the model of Sec. I

From

h6~vk![vk2V2E dk8Vk8
2

vk2vk86 i0
, vk5uku,

we obtain

h1~vk!2h2~vk!58p2ik2Vk
2

and
e
in

-
a

er

-
of

n-

e
f
h

-
b-
ar
ion

le

Vk
2

h1~vk!h2~vk!
5

1

8p2ik2F 1

h2~vk!
2

1

h1~vk!
G . ~A1!

Therefore,

I 1[2E dkVk
2

h1~vk!h2~vk!~vk2vk87 i«!

5E E E dk

8p2ik2F 1

h1~vk!
2

1

h2~vk!
G 1

~vk2vk87 i«!

5
1

2p i E0

` dk

k2k827 i«
F 1

h1~k!
2

1

h2~k!G
5

1

2p i EC

dz

h~z!~z2@k86 i«#!
,

h~z![z2V2E dk8Vk8
2

z2vk8

, «.0. ~A2!

In the last expression,C is the curve in the complex plan
surroundingR1, as is shown in Fig. 1. The integrand b
haves asz22 whenuzu→`, and therefore the integral overC
can be closed with a curveG as shown in Fig. 1. The integra
over C1G can be evaluated computing the residue at
point k86 i«:

I 15
1

2p i EC1G

dz

h~z!~z2@k86 i«#!
5

1

h~k86 i«!
. ~A3!

Combining Eqs.~A2! and ~A3! we obtain

1

h6~k8!
52E dk Vk

2

h1~vk!h2~vk!~vk2vk87 i0!
, ~A4!

which is Eq.~8!.
We also have

I 2[2E dk Vk
2

h1~vk!h2~vk!~vk2vk81 i«!~vk2vk92 i«!

5
1

2p i EC

dz

h~z!~z2@k82 i«#!~z2@k91 i«#!
, ~A5!

where the curveC is shown in Fig. 2. The integrand behav
as z23 when uzu→`, and once again the integral can b

FIG. 1. Contour and poles for computingI 1 in Eq. ~A3!.
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closed with the curveG shown in Fig. 2. The integral ove
C1G can be evaluated computing the residue at the po
k82 i« andk91 i«:

I 25
1

h2~k8!~k82k92 i«!
1

1

h1~k9!~k92k81 i«!
.

~A6!

Combining Eqs.~A5! and ~A6! we obtain Eq.~10!:

2E dk Vk
2

h1~vk!h2~vk!~vk2vk81 i0!~vk2vk92 i0!

5
1

h2~vk8!~vk82vk92 i0!
1

1

h1~vk9!~vk92vk81 i0!
.

~A7!

Using Eq.~A1! we obtain

I 3[E dk Vk
2

h1~vk!h2~vk!
5

1

2p i E0

`

dkF 1

h~k2 i0!
2

1

h~k1 i0!G
52

1

2p i EC

dz

h~z!
5

1

2p i EG

dz

h~z!
, ~A8!

where the last identity follows from the analyticity of 1/h(z)
in C2R1, and the curvesC andG are shown in Fig. 3. For
uzu→` we haveh(z).z and therefore

1

2p i EG

dz

h~z!
5 lim

uzu→`

1

2p i EG

dz

z
. ~A9!

From Eqs.~A8! and ~A9! we deduce Eq.~9!:

FIG. 2. Contour and poles for computingI 2 in Eq. ~A6!.

FIG. 3. Contour and poles for computingI 3 in Eq. ~A8!.
ts

E dk Vk
2

h1~vk!h2~vk!
51. ~A10!

With Eqs.~A10!, ~A7!, and~A4! the proof of Eqs.~5! and
~7! is straightforward. Consider, for example,

E dk Vk

h2~vk!
Ak

†5E dk Vk

h2~vk!
ak

†1b†E dk Vk
2

h2~vk!h1~vk!

1E dk8 Vk8
2 ak8

† E
3

dk Vk

h2~vk!h1~vk!~vk2vk81 i0!
.

Using Eqs.~A10! and ~A4! we deduce

E dk Vk

h2~vk!
Ak

†5b†,

which is the first equation in Eq.~7!.

APPENDIX B: DEDUCTION
OF THE MASTER EQUATION

Taking into account that LV
†O5@V,O# and L0

†O
5@H0 ,O#, where

H05Vb†b1E dkvkak
†ak , V5E dk Vk@ak

†b1b†ak#,

~B1!

we obtain

L0
†b†b50, ~B2!

L0
†ak

†ak85~vk2vk8!ak
†ak8, ~B3!

L0
†b†ak5~V2vk!b

†ak , ~B4!

L0
†ak

†b5~vk2V!ak
†b, ~B5!

and

LV
†b†b5E dk Vk~ak

†b2b†ak!, ~B6!

LV
†ak

†ak85Vkb
†ak82Vk8ak

†b, ~B7!

LV
†b†ak5E dp Vpap

†ak2Vkb
†b, ~B8!

LV
†ak

†b52E dpVpak
†ap1Vkb

†b. ~B9!

We first consider the deduction of the master equation
the decaying process. In this case, as we deduced in Se
A, the projector on the invariant part of the observablesOD
under the time evolution generated byL0 is

P†O5O1b†b1E dkOkak
†ak . ~B10!
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From Eqs.~B10!, ~B4!, ~B5!, and~B6! we obtain

1

L01 i0
Q†L†P†b†b5E dk VkS ak

†b

vk2V1 i0
1

b†ak

V2vk1 i0D .

~B11!

Using Eqs.~B8!, ~B9!, and~B10!,

S 2 iP†L†Q†
1

L0
†1 i0

Q†L†P†D b†

5 i E dk Vk
2S 1

V2vk2 i0
2

1

V2vk1 i0Db†b

522pE dk Vk
2d~V2vk!b

†b528p2V2VV
2 b†b.

~B12!

To obtain the last equation we used the relation

S 1

x2 i0
2

1

x1 i0D52p id~x!. ~B13!

Replacing Eq.~B12! in Eq. ~48!, with O5b†b we obtain
Eq. ~49!,

d

dt
~rub†b!528p2V2VV

2 ~rub†b!.

From Eqs.~B10!, ~B7!, ~B4!, and~B5!,

1

L01 i0
Q†L†P†ak

†ak

52VkS ak
†b

vk2V1 i0
2

b†ak

V2vk1 i0D .

Using Eqs.~B10!, ~B8!, and~B9!,

S 2 iP†L†Q†
1

L0
†1 i0

Q†L†P†D ak
†ak

52 iVk
2S 1

V2vk2 i0
2

1

V2vk1 i0Db†b

52pd~V2vk!VV
2 b†b. ~B14!

To obtain the last expression we used Eq.~B13!. Replac-
ing Eq. ~B14! in Eq. ~48! with O5*dkOkak

†ak we obtain
Eq. ~50!:

d

dt
~ruak

†ak!52pVV
2 d~vk2V!~rub†b!.

Let us deduce the master equation in the thermodyna
limit. In this case, from Eqs.~56! we have the projectorsP
andQ, defined by

~ruP†O![~PruO!5r1* O11E dkrk* Okk , ~B15!
ic

~ruQ†O![~QruO!5E dkE dk8rkk8
* Okk8

1E dkrk1* Ok11E dk8r1k8
* O1k8, ~B16!

for all OPOTD , i.e., without the singular part.
Using Eqs.~B16! and ~B2!–~B9!, we obtain

L1
†Q†

1

L0
†1 i0

Q†L1
†P†b†b

5E dk Vk
2S 1

vk2V1 i0
1

1

V2vk1 i0Db†b

2E dkE dp VkVpS ak
†ap

vk2V1 i0
2

ap
†ak

V2vk1 i0D .

~B17!

From Eqs.~B15! and ~B17!,

S rUP†L1
†Q†

1

L0
†1 i0

Q†L1
†P†b†bD

5S PrUL1
†Q†

1

L0
†1 i0

Q†L1
†P†b†bD

522p i E dk Vk
2d~vk2V!r1* 12p i

3E dk Vk
2d~vk2V!rk* . ~B18!

For the last equation we use Eq.~B13!. Replacing Eq.
~B18! in Eq. ~48! with O5b†b, we deduce Eq.~57!:

d

dt
r1* ~ t !528pV2VV

2 r1* ~ t !12pVV
2 E dkd~vk2V!rk* ~ t !.

If we consider O5*dkdk8Okk8ak
†ak8 and Eqs. ~B7!,

~B4!, ~B5!, ~B8!, ~B9!, and~B16!, we obtain

LV
†Q†

1

L0
†1 i0

Q†LV
†O

5E dkE dk8Okk8VkVk8

3S 1

V2vk81 i0
1

1

vk2V1 i0D b†b

1E dkE dk8Okk8E dp

3S VpVkap
†ak8

V2vk81 i0
1

Vk8Vpak
†ap

vk2V1 i0D . ~B19!

From Eqs.~B15! and ~B17!,
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S LVQ
1

L02 i0
QLVPrUOD

5S PrULV
†Q†

1

L0
†1 i0

Q†LV
†OD

5E E dkdk8VkVk8Okk8

3H F 1

V2vk2 i0
1

1

vk82V2 i0
Gr1*

1
rk8
*

V2vk81 i0
1

rk*

vk2V1 i0J . ~B20!

Comparing Eq.~B20! with Eq. ~B15!, we conclude that
the singular part

PS LVQ
1

L02 i0
QLVPrD

is zero, because it is impossible to obtain a factor prop
tional tod(k2k8) from the expression between curly brac
ets in Eq.~B20!. The master equation gives

S i
d

dt
PrU E dkdk8Okk8ak

†ak8D
52 i E dk

d

dt
rk* Okk5S PLVQ

1

i02L0
QLVPrUOD50

and therefore we deduce Eq.~58!:

d

dt
rk* ~ t !50.

APPENDIX C: LONG TIME BEHAVIOR
OF THE DECAYING PROCESS

In this section we analyze the long time behavior of t
decaying term:

^b†b& t5^n&0ua~ t !u2, a~ t !5E dkVk
2eivkt

h1~vk!h2~vk!
,

~C1!

obtained in Eq.~31! for the case of a finite number of excite
modes. As in our modelvk5k, we can use polar coordinate
to write

a~ t !54p lim
K→`

E
0

K

eiktg~k!dk, g~k![k2F~k!,

F~k![
Vk

2

h1~k!h2~k!
. ~C2!

Performing three partial integrations in the previous e
pression, we obtain
r-

-

E
0

K

eiktg~k!dk52
i

t
@eiktg~k!#0

K1
1

t2
@eiktg8~k!#0

K

1
i

t3
@eiktg9~k!#0

K2
i

t3E0

K

eiktg-~k!dk,

~C3!

where

g8~k!52kF~k!1k2F8~k!,

g9~k!52F~k!14kF8~k!1k2F9~k!, ~C4!

g-~k!56F8~k!16kF9~k!1k2F-~k!.

If Vk is a Schwartz function inR1 ~a reasonable choice fo
the interaction! F(k) and g(k) are also Schwartz function
in R1 and g(`)5g8(`)5g9(`)50. Therefore, replacing
Eq. ~C3! in Eq. ~C2! we obtain

a~ t !5
8p iF ~0!

t3
2

i

t3E0

`

eiktg-~k!dk.

The integral in the last expression vanishes fort→`, as a
consequence of the Riemann-Lebesgue theorem, and w
nally obtain

lim
t→`

t3a~ t !58p iF ~0!.

As a conclusion, ifVk50 does not vanish,a(t) behaves as
t23 for t→`.

APPENDIX D: ON THE APPLICABILITY
OF THE MASTER EQUATION

In Ref. @13#, Antoniou and Tasaki gave a perturbativ
algorithm based on the subdynamics formalism@13,14#, from
which a generalized spectral decomposition of the Liouvill
Von Newmann operator can be obtained. This spectral
composition is analytic in the interaction parameter. An e
tension of this formalism to the functional approach w
recently used by Id Betan and one of us@23# to discuss the
Friedrichs model.

The construction is based on the decomposition of
states through projectorsPn

† (n50,1,2, . . . ) onto the degrees
of correlation defined by

Pn
†P

n8
†

5dnn8Pn
† , L0

†Pn
†5Pn

†L0
† ,

(
n

Pn
†5I†, P0

†~L1
†!nPm

† H 50 if n,m

Þ0 if n5m.
~D1!

In the last expressions,P0
† is the projector onto the invarian

part of the states under the action of the free time evolut
(L0

†P0
†5P0

†L0
†50), I† is the identity operator (I†O5O), and

L1
† is the interaction part of the Liouville–Von Newman

operator (L1
†O[@V,O#).
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Through a nonunitary transformation, the Liouville–Vo
Newmann operatorL† is made isospectral to an intermedia
operatorQ†, which is block diagonal in the degrees of co
relation

L†5V†21Q†V†, Q†5(
n

Pn
†Q†Pn

†5(
n

Qn
† ,

Qn
†5Pn

†L†Pn
†1Pn

†Cn
†L†Pn

† ,

V†5(
n

~Pn
†1Cn

†!, V†215(
n

~Pn
†1Dn

†!~Pn
†1Cn

†Dn
†!21.

~D2!

The operatorsCn
† andDn

† ~called creation and destruction o
correlations! can be obtained by iteration from the equation

Cn
†Pm

† 52 i E
0

6`

dte2 iL0
†t~Pn

†1Cn
†!L1

†~Cn
†Pm

† 2Pm
† !eiL0

†t,

m:n,

Pm
†Dn

†52 i E
0

6`

dte2 iL0
†t~Pm

† 2Pm
†Dn

†!L1
†~Pn

†1Dn
†!eiL0

†t,

m"n, ~D3!

starting withCn
†(0)5Dn

†(0)50. To obtain the previous equa
tions, boundary conditions have been imposed in such a
that the increase of correlations is future oriented.

Once the spectral decomposition ofQ† is obtained in the
form

Q†5(
n

Qn
†5(

n
(
a

znau ũna)~unau,

the generalized eigenvectorsu f̃ na)5(V†)21u ũna) and
( f nau5(unauV† of the Liouville–Von Newmann operato
can be computed. The time evolution of a state is given

(r tu5(
na

eiznat~r0u f̃ na!~ f nau.
rk

. E
51, 6263~1995!.
,

ay

As the eigenvectors and eigenvalues are obtained fro
perturbative expansion in powers of the interaction para
eter, one possible approximated time evolution can be gi
computing the eigenvectors up to zero order and the eig
values up to second order:

(r tu>(
na

eizna
~2!t~r0u f̃ na

~0!!~ f na
~0!u. ~D4!

Taking into account thatu f̃ na
(0))5u ũna

(0)) and (f na
(0)u5(una

(0)u,
Eq. ~D4! gives

(r tuP0
†>(

na
eizna

~2!t~r0u ũna
~0!!~una

~0!uP0
† .

As (una
(0)uP0

†5dn0(u0a
(0)u, we obtain

(r tuP0
†>(

a
eiz0a

~2!t~r0u ũ0a
~0!!~u0a

~0!u5~r0uexp~ iQ0
†~2!t !.

In the last expression,Q0
†(2) is the second order approxima

tion for Q0
† . It can be computed from Eqs.~D2! and~D3! as

Q0
†~2!52P0

†L1
†Q0

† 1

i01L0
† Q0

†L1
†P0

† , Q0
†[I†2P0

† .

Therefore, if we admit the approximated expression~D4!,
(P0r tu satisfies the master equation

2 i
d

dt
~P0r tu5~P0r tuQ0

†~2! ,

which is equivalent to Eq.~42!. The master equation is valid
when expression~D4! is a good approximation for the tim
evolution. If this is the case, the interaction parameterl
should be small, but in addition the time cannot be too lar
i.e., l!1 andl3t!1, or equivalently

l!1, t&l22.

This result shows why the exact solutions obtained in S
IV differ from the solutions of the master equation fort
→`. Therefore, the approximation of the master equat
eliminates the Khalfin effect.
d.
@1# E. Fermi, J. Pasta, and S. Ulam, inCollected Papers of Enrico
Fermi ~University of Chicago Press, Chicago, 1965!, Vol. II,
p. 978.

@2# I. Prigogine, Non Equilibrium Statistical Mechanics~Inter-
science Publishers, John Wiley and Sons Inc., New Yo
1962!.

@3# P. Blaise, P. Durand, and O. Henri-Rousseau, Physica A209,
51 ~1994!.

@4# H. Grabert, P. Schramm, and G.L. Ingold, Phys. Rep.168, 115
~1988!.

@5# U. Weiss, Quantum Dissipative Systems~World Scientific,
Singapore, 1993!.

@6# B.L. Hu, J.P. Paz, and Y. Zhang, Phys. Rev. D45, 2843
~1992!.

@7# J.L. Gruver, J. Aliaga, H. Cerdeira, and A. Proto, Phys. Rev
,

@8# B. Misra, I. Prigogine, and M. Courbage, Physica A98, 1
~1979!.

@9# B. Misra, I. Prigogine, and M. Courbage, Proc. Natl. Aca
Sci. USA76, 4768~1979!.

@10# A. Bohm, I. Antoniou, and P. Kielanowski, J. Math. Phys.36,
1 ~1995!.

@11# A. Bohm, Phys. Rev. A51, 1758~1995!.
@12# E.C.G. Sudarshan, C.B. Chiu, and V. Gorini, Phys. Rev. D18,

2914 ~1978!.
@13# I. Antoniou and S. Tasaki, Int. J. Quantum Chem.46, 425

~1993!.
@14# T. Petrosky and I. Prigogine, Physica A175, 146 ~1991!.
@15# I. Antoniou and Z. Suchanecki, inNonlinear, Deformed and

Irreversible Quantum Systems, edited by H.D. Doebneret al.



a

57 3961FUNCTIONAL APPROACH FOR QUANTUM SYSTEMS . . .
~World Scientific, Singapore, 1995!.
@16# I. Antoniou and Z. Suchanecki, Found. Phys.24, 1439

~1994!.
@17# I. Antoniou, Z. Suchanecki, R. Laura, and S. Tasaki, Physic

241, 737 ~1996!.
@18# T. Petrosky, I. Prigogine, and S. Tasaki, Physica A173, 175

~1991!.
A

@19# I. Antoniou and I. Prigogine, Physica A192, 443 ~1993!.
@20# I.E. Segal, Ann. Math.48, 930 ~1947!.
@21# E.C.G. Sudarshan, Phys. Rev. A46, 37 ~1992!.
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