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Considering quantum states as functionals acting on observables to give their mean values, it is possible to
deal with quantum systems with continuous spectrum, generalizing the concept of trace. Generalized observ-
ables and states are defined for a quantum oscillator linearly coupled to a scalar field, and the analytic
expression for time evolution is obtained. The “final” state{«) is presented as a weak limit. Finite and
infinite numbers of excited modes of the field are considgrgi063-651X98)09004-1
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[. INTRODUCTION exponential that leads the “big” oscillator subsystem to the
thermal equilibrium with the bath.

There is a great deal of interest in the search for a physical The works of Refs[3], [6], and[7] deal with linear cou-
explanation for the evolution towards equilibrium of quan- plings for which the total Hamiltonian can be reduced to
tum systems in quantum statistical mechanics. For manponinteracting normal modes.
years a great number of papers were devoted to this problem. The microscopic explanation of the approach to equilib-
As it is almost impossible to quote them all, let us only giverium was related also to the so-called “intrinsic irreversibil-
some examples. ity” of quantum systems. Misra&t al. [8,9] pointed out the

Standard results on dynamical systems show the imposséxistence of a time operator for the statistical description of
bility that a system of linearly coupled oscillators will reach classical and quantum systems. The mean value of this op-
statistical equilibrium. This is due to the fact that the prob-erator is the “age” of the system, which is a growing func-
lem can be reduced to a set of noninteracting oscillahies  tion of time. Bohmet al. [10,11] related the intrinsic irre-
normal modeps As there is no mechanism for transferring versibility to the existence of generalized eigenvectors of the
energy between normal modes, the initial distribution of nor-Hamiltonian with complex eigenvalues, corresponding to
mal modes is not modified by time evolution. poles of the analytic extension of the scattering matrix. Com-

In his pioneering work, Fermgt al.[1] showed that non- plex eigenvalues have been obtained by Sudarghzhby
linear couplings in general do not determine the approach tanalytic continuation in a generalized quantum mechanics.
equilibrium. Prigoging 2] showed that for a very big set of Intrinsic irreversibility appears also through subdynamic
coupled oscillators, a weak nonlinear part of the interactiortheory[13,14.
produces the approach to equilibrium. When it is necessary to deal with systems with a huge

The problem of a chain of independent quantum oscillanumber of particles, the standard procedure is to start Mith
tors with a linear coupling between first neighbors was anapatrticles in a box of volume/, making the limitN—oo,
lyzed by Blaiseet al. [3]. Numerical experiments show that V—o with N/V=c< in the last step of the calculations.
for the initial condition of a single excited oscillator the sys- Even for a finite number of particles, the limit— o pro-
tem evolves first towards equilibriurequipartition of en- duces a continuum spectrum in the unperturbed Hamiltonian.
ergy), and later a recurrence time appears for which the enThe usual formalism of quantum mechanics cannot be used
ergy returns to the oscillator of the initial condition. The in this case, due to the appearance of diagonal singularities in
recurrence time grows proportionally to the number of oscil-states and observablgs5-17.
lators. The Friedrichs model, describing the interaction between

A line of researcH4—-6] studied the quantum Brownian a quantum oscillator and a scalar field in the one excited
motion with path integrals, i.e., the motion of a quantummode sector, was extensively analyzed in the literature for
oscillator linearly coupled to a thermal bath. the one excited mode sector. It is an exactly solvable model,

This problem was also analyzed by Gruwaral. [7] by  in which the quantum oscillator decays to the ground state
numerical methods, showing that a quantum “big” oscillator for all initial conditions. Sudarshaet al. [12] computed the
linearly coupled with a great number of identical “small” complex spectral decomposition in the framework of a gen-
oscillators with a thermal distribution, evolving in such a eralized quantum mechanics. The spectral decomposition
way that it is possible to adjust its time evolution with an was also obtained by Petrosky al. [18] using subdynamic

theory. The spectral decomposition with complex eigenval-
ues was interpreted in terms of Rigged-Hilbert spaces in
*Electronic address: laura@ifir.ifir.edu.ar Refs.[19] and[13].
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et al. [15,1€ developed a formalism for quantum systems The total HamiltonianH=Hg+Hg+H;, can be diago-
with diagonal singularity. The quantum states of this theorynalized in terms of the creatiofannihilation operatorsAfﬂ
are functionalsover certain space of observabl@s Math-  (A)):
ematically this means that the spagef states is contained

in ©*. Physically it means that the only thing we can really
observe and measure are the mean values of the observables
OeO in statespe SCO™: namely,(O),=p[O]=(p|O).

H=Jdkka;Ak, [AGALTI=8k—k), (5

This is the natural generalization of the usual tracep@Y, where
which is ill defined in systems with continuous spectrum. p t
; . . : Vi dk'Vy.a,,
In this work we apply this formalism to a quantum oscil- AEEaEﬁL X Ipf+ | —
lator linearly coupled to a scalar field, for a finite number of 7+ (@) w— i +i0

excited modegdecay procegsand for the thermodynamic
limit (infinite number of excited modes of the figldVe will 5
be able to obtain the time evolution of a finite humber of A=ay+ m
excited modes, and to give an analytic expression for the -1 %k
“final” state (t—) as a weak limit on the “test observ-
ables” 0. As we shall see, the formalism can also be adapte%
to obtain exact expressions for the time evolution in the ther=%
modynamic limit, where an infinite number of excited modes

dk’'Vy,ay
b+J—kk.
wk—wk/—IO

The operatord’, b, al, anday can be written in terms of
andA,:

. (6)

dkV
of the field drives the quantum oscillator to a final excited b*zf X Al
state. These results will be obtained without using coarse 7- (@)
graining, complex generalized eigenvalues, or box normal-
2. dkVy
ization. b= ——A,,
The model is presented in Sec. Il. In Sec. Ill we discuss 7+ (o)

the characterization of states and observables with diagonal

singularity, both for a finite and infinite number of excited aT:f dk| 8 (k—p)+ ViVp Al
modes. In Sec. IV we obtain the exact solution of the prob- P P 7-(wp) (o= w,—i0)|

lem using the diagonalized form of the Hamiltonian. The

master equation is solved in Sec. V, and their solutions are ViV

compared with the exact expressions of Sec. IV. apzf dk| 8°(k—p)+ 7+ (o) (@ — wp+i0) Ac. (7)

Equations(5) and (7) can be proved using Eq§l)—(4)

) ) ) ~and the following identities:
We consider a quantum oscillator with the Hamiltonian

Il. THE MODEL

. . 1 f dk V2 @
Hs=Qb'b, [bbM=1, (A=1), @) 7e(00 ) 7@ 7 (@) (@ wpi0)’
and a quantum field with the Hamiltonian dk V2
k
J ——=1, 9
T T 3 7+ (@) 7- (@)
He= | dkoyagay, [ax,a,,]=38"(k—k"),
1 N 1
wk=kE|k|, (C:l) (2) n,(wkr)(wkr—wkn—iO) 7]+(wkn)(wkrr_0)kr+io)
The interaction is given by ~ f dk V2
7+ (0 7 (@) (0~ i —10) (@~ @ +i0)
Hine= f dk Vi[alb+bTa,], Vi=V,, (10)
[ai ,bT]=[aE,b]=0. 3 Equations(8), (9), and(10) are proved in Appendix A.

The functionV, is chosen in such a way that lll. STATES AND OBSERVABLES

As is discussed in Ref§17-19, for quantum systems
with continuous spectrum the usual approach of density op-

erators is not applicable. For a density operétoepresent-
ing a state and an operat@ representing an observable,

dk'VZ,
n:(wozwk—n—f— @
Wy

—wk,iiO

does not vanish for anke R*, and the analytic extension expressions such as Q) are meaningless due to the pres-
n.(2) from the upper to the lower complex half plane of ence of singular diagonal terms. The usual way to avoid

7. (K) has a simple zero &=z, C” (C™ is the lower part

of the complex plane

these problems is to “discretize” the spectrum by enclosing
the system in a box with periodic boundary conditions. The
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size of the box is considered to be infinite only at the last For all O e Op we obtain
step of the computation of relevant quantities.

A way to consider the continuous spectrum from the be- B - . . %
ginning was introduced in Ref§17—19. For a given set) (0),=(plO)=p101+ | dk pi Oyt dk dk’pyc Owe
of operators representing physical observables, the states of
the system cx:an be represented by aSset functionals a_ctmg T f dk pi O+ f dk’ PIkrolkm (15)
on O (SCO™). The mean value of an observalide= O in a
statep e S is given by the value of the functional on O,
denoted by(O),=(p|O). This expression generalizes the

usual TrpO). As usual, the time evolution of the observ- 5= (plb'b)
ables in the Heisenberg representation is given by p1=1p '

where
* T * T
pr=(plagay), pu.=(plagag),

* T * 1
. pii=(plagb), pi,=(plb'ay). (16)
0,=¢""'0, where L'O=[H,0], 0c0O. (11 “ “ 1k “

. . Therefore, the state COj are represented by the
For the model presented in Sec. Il, let us consider a spe: pESCOp P y

n ok * * * * . 5
cial setO of observables given by a generalized linear com- COMPONENIS” p1, pic, Py » Pia» andp,,, , while the ob

bination of products of one creation and one annihilationS€Tvable<O € Op are represented by the "components;,
operator: Oy, Ok, Ok1, andOyy:. We stress the need for “singular

%

components”py andOy in both states and observables.
The condition on the states representing a finite number of

0=0,;b"b+ f dk f dk’ O -ajay + f dkOy,alb excited modes is given by
+f dk’ Oy bTay, (12) p’{-l—J dkpg =(n+N),<oe. 17
As the total number of modes operafdy=n+N com-
0f=0,, 6’k*k,=6k,k, OF1=04. mutes with the total Hamiltonian, the value @fi+N), is

time independentp; gives the mean number of excited
Due to Eq.(11) and the form of the total Hamiltoniad  modes for the oscillator, whilg dk is the mean number of
=Hgs+Hg+Hiy given by Egs(1), (2), and(3), this form is  continuous modes having momentum betwkemndk + dk.

preserved by time evolutiorei(l‘“(’)c(’)). If we wish to describe a situation in which there is an
Some observables i are especially important for our infinite number of excited modes in the fielfN) =), as is
purposes: the case when the oscillator is interacting with a bath of

radiation with uniform concentration of continuous modes,
we need a different characterization of observables and
states. In this case, extensive observables subh@aH are

not well defined and should be excluded from the set of
observableg). Therefore, only intensive observables of the
field are accessible for measurement, and we define the class
O+p (the TD corresponds to “thermodynamic limit'df ob-
servables of the forngl2), for which

n=b'b number of discrete modes,

NEJ dkalai< number of continuous modes,(13)

a(N=y'(r)y(r)

density of continuous modes at the paint O = Oy, (18

where in the last expressiofi' (r)=(1/\/87°) [dke'* "a] is whereOy, Oy1, andO,,, are regular functions of the vari-
the creation operator for one continuous mode at the positioablesk and k’. For the mean value of any observalie
r. Notice that to include observables suchN®r H in the e Oy we have

setO it is necigsary to allovD, to have a singular part
roportional tos°(k—k’). _ _ % ey
P Igor the cases(in whi)ch the total number of excited modes (0),=(pl0)=p3 01+J f dk dk” pyec O
is finite (N1)=(n)+(N)<), observables such d&$ and
N are well defined and should be includeddn Therefore, +f dk p:10k1+f dk’ p:k'olk" (19
in this case we denote 19 (theD corresponds to “decay-
ing” processesthe set of observables of the forth2), for

which where pf =(p|b'b), bi¢.=(plataw). pi=(plaib), and
P =(plbTay).
Our =04 3(k—k') + Oy, (14) A singular part should be included py, , , if we want to

consider the possibility of states having a uniform concentra-
whereO,, O+, Oy1, andOy,, are regular functions of the tion of continuous modes. This fact can be understood by
variablesk andk’. computing the mean value of the density given by &d@):
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_ 1 dk dk’ei(k—krp* a*(t)ze‘wptA*(O)Jrf ak ViV e'“cAl(0)
(ol=g 5 e TP P P ] (oo wp-10)© K
For a state with uniform concentratianwe should have ap(t):e_iwptAp(o)
F:k’ proportional to53(k—k’). Therefore we assume the j dk V,.V,, Cieda (0 o
general form 7+ (@0 (@x—wp +10) e (0). (24
;:k':P: é\°’(k—k’)+p’k‘k, , (20) Using Eqgs.(23) and (24) we obtain
’ T i(w— o)t

wherepj and py,, are regular functions of the variablés (P|bfb)t:f dkdk'ViVie (p| AA =o't
andk’. Combining Eqs(19) and(20), we obtain the general 7_ () 74 ()
expression (25

+
(p|apap’)t

— — % *
<O>p_(p|o)_p1 Ol+ f dk Pk Okk :(P|A2—)Ap’)tzoei(wp_mp')t

+f fdk dk'P:k'Okk""f dk pi10k1 +J’ dk’ Vi Vs (p| AJAK )= g€!(2p ™kt
77+(wk/)(wk,—wp/+i0)
+f dk’ p;_(k’olk/r (21)

f dk ViV (p| AfAy ) =o€ (k™ @p1)t

for computing the mean value of any observaBle Oy in 7-(0) (@ = wp=i0)

X .
?. statepeSC”(’)ID. Ihe *state*Sp are re*presented .by their AkdK'V,Vie (p|ATA ) gl (@ ok
components”py , pi , Py » Pk1» @ndpj,,, where in gen- +f

eralp; andpy, , are independent objects{ # pis,), while O 7+ (@) (0 —wp+i0) 7 (@) (0= wp—i0)
is represented by the “component®,, O/, Oy, and (26)
O - Notice that in this case there is no singular part for the
observables.

In the previous expressiorA;I(O) andA,(0) can be ex-
pressed in terms czil(O), a,(0), bT(0), andb(0) using Eq.
(6).

IV. TIME EVOLUTION The total number of modes, given by the operator

In the Heisenberg picture, the functionalsepresenting
states are time independent, while the observables evolve in Ny=n+ szTb+f dkajay,
time according to

satisfies

d
—|ﬁO=LTOE[H,O]. [H,N7]=0 (27)

For the creation and annihilation operatésandA, given and thereforeNy is conserved during time evolution. Two
in Eq. (6), we obtain different physical situations will be discussed in the follow-

ing subsections: first we will analyze the case with a finite
q number of modes, and then the case with an infinite number
— A= —iwA, of modes(thermodynamic limit

d
TA=TOAL, T

dt

A. Finite number of excited modes(decaying proces
and therefore (decaying p 13

In this case, extensive observables of the field such as the
number of modegN) or the energyH¢) are finite. In Egs.
(12), (14), (15, and(16) we obtained the general form for
states and observables.

Let us consider an initial state for which the mean number
of excited modes in the oscillators {)y, and the mean
number of modes of the field i&N),, with a momentum
distribution f(k), i.e.,

pt=(b'bYyo=(n)o, pi=(atay)o="1(K),

Al =€"Al0), A(t)=e 'A(0). (22

The time evolution ofal, a,, b', andb can be easily
obtained replacing Eq22) in Eq. (7):

_ dk Vk iw T
b*(t)—Jme AL (0),

b(t)=f K Vi g-ionip,(0) (23) f dkf(K) = (N s _a_x _g (og
7]+(wk) ' ( ) < >O| pkkr Px1 plk’ . ( )
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The densityo(r) of continuous modes at the point From Egs.(6) and (28) we obtain
defined in Eq.(13), is of the form given in Egs(12) and
(14), with ) Va(n)o
(p|ApAp)0=T(p)+ PROSERCS) (29)
[o(n]1=[o(r) k=[o(N)]k=[o(r)]=0, 4l @p) -1 Wp
1 . , vap’<n>0
Ny = —— @i (k=kr (p|AIA, ) g=— (30)
[o(r) 8.3 prpI0 74 (wp) n_(wp)
The mean value of the density(r) in the state defined by Replacing Eqgs(30) in (25) we obtain
Eq. (28) is obtained using Eq15):
dk V2eiwk’[ 2
(a(r)),=(plo(r))=0, b'b)=(n f—" : 31
g (bB)= (Mo 7+ () 7-(wy) S

which is a reasonable result, as we are dealing with a finite
number (N)q of continuous modes in an infinite volume  Replacing Eqs(29) and(30) in Eq. (26) (with p=p’), we

(R3). obtain
J
(MoVp  ()oVpe'™s dk'Vi e~ ex!
(agap>t:f(p)+ ( ) : ) i ) f .
7+ (wp) 7-(wp 7+ (wp 7 (@) 7- (o) (ww—w,+i0)
(m)oVpe ™' f dk Vie'ex . f J dkdk' V2, VE(n)oV2el (oh et
7-(wp) 7+(0) 7-(0) (0= wp—i0) |74 (0| 74 (@) | 20— 0p—10) (@ — wp+i0)

(32

The Riemann-Lebesgue theorem can be used in[@Bds. From this expression it is possible to prove that
and (32) to obtain d/dt(bTb)t=0=0 (Zeno regimg and also that fot— o, the
. ‘ ] asymptotic form of(b'b), is proportional tot ¢ (Khalfin
lim(b'b)=lim(n);=0, regime[22] corresponding taw,=|k|, see Appendix C for
i i the prooj. Therefore, the functional approach applied to the
. (n>oV§ model witt_hladfinite number of excited modes does not allow
i - /97 exponential decay.
lim agap)=f(p) + -2 (33 exp y

From Eqs.(9), (13), and the previous equation we obtain B. Infinite number of excited modes(thermodynamic limit)

In this case extensive observables such as energy or num-
lim (N, = lim J do(a’a ber of.m_OQes of the field are not well defmc_ad, since they are
(N> P(352p) really infinite and therefore cannot be considered. Only local
observables of the field such as the densify) defined in

t—x {—o

dp VS Eq. (13) are available. In Egs(18)—(21) we obtained the
:f dpf(p)+(n>0f 7 (@) 7 (@p) general form of observables, states, and mean values.
We are going to consider the initial condition for which
=(N)o+(n)o. the mean number of discrete modes in the systernjg
o
Therefore the discrete system decays to the vacuumf '
transferring the initial number of modes to the fi¢as we (p|b'D)¢—o=(N)o, (34)

pointed out in Eq(27), the total number of modes is a con-
stant of motion.

The momentum distribution far— is equal to the ini-
tial distribution f(p) plus an isotropic term having a sharp
peak aroundo,=(} (it is easy to prove that for small inter-
actions[V3/ . (wp) n-(wp) 1= 8(w,—Q)/47Q?). The en- 1 e :
ergy of the discrete system is completely transferred to the ~ (plo(r))= ﬁf dkf dk’e' kK (plafa, ) =c.
field.

Expression(31) is a well known result for Friedrichs
model[12,21], which we reobtain in the functional approach. From the previous equation we obtain

and the field has a uniform distribution in the space with
concentratiorc:
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Prcr=(plafag)i—o=p(k) 8(k—k"), fdkp(k)=8w3c.
(35

3953

The main difference with the results of Sec. IV A is that
in this case Eq(38) shows that the discrete system does not
decay towards the vacuum. The infinite number of modes of
the field surrounding the discrete system produces a final

We also assume for simplicity that there is no initial corre-state of the system independent o}, but dependent on the

lation between the discrete system and the field:
p1=(plafb)i=0=0, pi=(p|b'aK)i-0=0. (36

Using Egs.(34), (35), (36), and the definition(6) for Al
we obtain

n)oVpVy:
(plA;Apf>t=o=p<p>éG<p—p'>+M’A
77+(wp)7]—(wp’)
Vpr’P(p)
77—(0"p’)(00p’_wp_io)
Vpr’P(p,)
7]+(wp)(wp_wp’+io)

YAV
N+ (wp) n-(wp)
y f dk Vigp(k) |
(wp— wi+i0)(wp — w—i0)
(37)

The last expression can be replaced in E5) and(26)
to obtain the explicit expressions féb'b), and(ajay);.
The time dependence

is rather complicated, but the

interaction and the initial momentum distribution of the field.

If the initial condition for the bosonic field is a canonical
distribution with temperaturd =1/xB (« is the Boltzmann
constank, we have

p(k)= (40)

efo—1
If, in addition, we assume a small interaction, we have

Vi _wp—0)
ni(wp)n-(@p) 4702

(41)
Replacing Egs(40) and (41) in Eq. (38) we obtain

T _—
<b b>t_‘oc_ eBQ_ll

which is the mean number of modes of the discrete system
we would have obtained for a quantum oscillator of fre-
quency () in a canonical distribution with temperaturie
=1/kB. This result cannot be obtained without the assump-
tion of weak interaction.

V. THE MASTER EQUATION

In Sec. IV A we showed how the quantum oscillator de-

Riemann-Lebesgue theorem can be used to eliminate the osays toward the vacuum in the presence of a finite number of
cillating terms and to obtain the following asymptotic ex- modes of the field. In Sec. IV B we showed how a thermal

pressions fot—oo:

dp Vp(p)
fim (p{o"b): / 7 (wp)n (g 8
Wiim (plaja, ),
t—o
VpVpp(p')
— 53 —0' )+ PP
p(p)&°(p—p") 7 () (@0 — 7 10)
Vpr’P(p)
77+(wp)(wp_wp’+i0)
+f dk Vﬁp(k)V?Vpr _
7- (@) 7+ () (0= 0p—i0)(w—wy +i0)
(39

The last limit should be understood in the weak sense, i.e.,

Iimf f dp dp’(plajay,)Oppr

t—oo

=f fdp dp’[WIim (p|afay)]Opp-
t—oo

bath thermalizes the quantum oscillator. These results have
been obtained without approximations using the Riemann-
Lebesgue theorem only. It is instructive to compare these
results with the predictions of the master equation obtained
in the so-called ‘At approximation,” where the interaction
parametei —0, t—o, and\?t is finite [2].

The master equation provides the time evolutionPpf
whereP is the projector onto the part pfthat is invariant by
the time evolution without interactior(In this section we
consider the Schringer representation, where the states are
time dependent and the observables are time indepehdent.
Calling by, andL. =14+ L, the generators of free and in-
teracting time evolution, we have

d 1

i—Pp= T . (1L, 21 TP 2: > (=1—F

i =| PGVl [P, P2=P, =1-T.
(42)

We consider the states as functionals acting on the
space® of observables{e SC O*). Therefore it is neces-
sary to give a precise definition of the operators appearing in
Eq. (42). For a given setO of observables, any super-
operatorM acting on® for which MTOC O is extended to
an operatorM acting on the space of stat& O by the
following definition:

(Mp|O)=(p|MTO), forallOeO. (43
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Therefore we have
(Lop|0)=(p|L{O), (Lp|0)=(p|L'O)

LiO=[H,,0], L'O=[H,O]. (44)

For the model presented in Sec. Il,

Ho=Qb'b+ f dkw,ajay,

v=f dkVvfalb+ab’], H=Hy+V.

As we shall see, completely different physical processes

can be described with the same formal Ep) if we allow
or not for a singular part in the sét of “test observables.”

A. Master equation for the decay process

We consider the class of observab®s Oy, as we de-
fined in Egs.(12), (14), (15, and(16). In this case an ob-
servableO is represented by the constadt and the regular
functions Oy, Oy, Oy, and Oy, while the statep is
represented by the constasit and the regular functions; ,
Pk Pirs andply.

The states’p, invariant under the time evolution gener-
ated byl satisfy

0= (Lol’p|0)=(Ip|L§O)

:f dkj dk’(]Pp):k,(wk—wk,)Okk/

+ f dk(Pp)2y(@x— Q)0

+J dk’(Pp)3y (Q— @) Oy, (45)
for all O e Op, which implies

(PP =(Pp)ia=(Pp)3,, =0, (46)
and therefore, usingl{p|O) = (p|P'0), we obtain

Pfo=0,b'b+ f dkOajay. (47

The master equatio®#2) implies

Pp

1
—iPTLIQOT ——0L'PT | PTO
Lo+i0

(d : )_
m]Pp]PO -
(48)

Two independent equations can be obtained if we choose

the operatord™ anda/a, for PTO. Using the definitions
(44) and (47) for 1}, LT, andP', we obtain

d
i (plb'b)=—872Q2V{ (plb'D), (49)

ROBERTO LAURA AND MARIO CASTAGNINO

d
Ji(plata =2mVE 8w Q)(plb'D).  (50)
The proof of these equations is given in Appendix B.
The solution of Egs(49) and (50) is

(p|b’b)=e " "(p|bTb)y, TI'=8720%V3,

00— Q)
(plafa)=[1—e FI]W(M b'b)o+ (plafay)o.

(51
Fort— o, expressions given in Eq&1) give

(p|bb)..=0,

o w—1Q)

gz (PIbD)ot (placado.

(plafay) .=

These expressions are coincident with the results given in
Eq. (33) for small interaction. However, the master equation
gives an exponential decay that is not found in the exact
expressiong31) and(32). The reason is that for the master
equation to be valid it is necessary that the interaction pa-
rameter\ be small f <1) and that the time be not too large
(t=\"?). See Appendix D for a discussion on this point.

B. Master equation for the thermodynamic limit

We now consider the class of observab@g, given in
Egs. (18)—(21) corresponding to an infinite number of ex-
cited modes of the field.

StatesPp are invariant under the time evolution without
interaction, and therefore they satisfy E@5) for all O
e Omp.

In addition, we assume th&¥p is translationally invariant
for all the field observables, i.e.,

(LpPp|Ofieia) = (Pp| LEOﬁem) =(Pp|[P,Ofieia]) =0,
(52

where
Ofield:j dkf dk’Okk/aEak/, E:f dkkalak,
(53

andLp is the generator of space translations for the states.
Equation(52) implies

f dkf dk’(]Pp):k,(k—k’)Okk,:O,
from which we obtain
(Pp) = (Pplafay)=pk 8(k—k'). (54)

We also assume there is no correlation between the field and

the discrete system ihp, i.e.,
(Pplagb)=(Pp|ba,)=0. (55)

In summary,Pp and()p satisfy
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(Pplafa)=pf 3(k—K"), (Uplafaw)=pp,.,

(Pp|b™b)=pT, (Qp|b'b)=0,
(Pplab)=0, (Qplakb)=pf;, (56)
(Pplb'a)=0, (Qp[bTay)=p¥,,

and the mean value dD e O;p in a general statg="Pp
+Qp is

(0),=(pl0) =0+ [ ok prOy+ [ ok [ k' O
+f dk p:10k1+f dk’ pl, Ok
The operato®’ acting onOqp is defined by
(plF70)=(Pp|0) =p1 Oy + [ dk p} O

In Appendix B, the functional master equati®4?2) is
evaluated on observable®;b'b and fdk[dk’ O aja,
obtaining the following differential equations:

d
JiP1 (D= —87Q2VEpT () +27V] f dk 8w — Q) pi (1),
(57)

d *
qPEm=o0. (58)

The solution of these equations is

[1—e—”]J dk 8(w—Q)p} (0)

p1(D=p1(0)e M+
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H=Qb*b+J dkwkaﬁaﬁj dk Vi [ajb+bTa,],

Vi=V,, h=c=1,

[bbT1=1, [a.a] ]1=8%k—k'), [afbf]=[a},b]=0.

For a finite number of excited modes, we used the func-
tional approach to obtain the time evolution of a state having
a finite number of excited modes. The mean number of dis-
crete modes is given by
f dk Vie'lort |2

Ty o Tk
<b b>t <n>0 77+(wk)77*(wk)

dk'VZ,
ﬂt(wk)Ewk_Q_f

wk—wk,tio

This is a well known result12,21], which we reobtain in
the functional approach. From this expression it is possible
to prove thatd/dt(b'b),_,=0 (Zeno regimg and also that
for t—o, the asymptotic form ofb'b), is proportional to
t~% (Khalfin regime[22] corresponding tav,=|k|, see Ap-
pendix C for the proof Therefore, the functional approach
applied to the model with a finite number of excited modes
does not allow exponential decay.

The functional approach is a powerful tool to deal with
the case of an infinite number of excited modes in the field.
In this case, the mean number of discrete modes approaches
in nonexponential form

dp V2
im(p|bTb)t=f p Vpp(p)

T — P ol
(b7b)..= li RUNERCNE

This number depends on the initial momentum distribution
p(p) of the field and the form of the interaction,, but it

47Q? ' does not depend on the initial condition of the quantum os-
(59 cillator. If the interaction is very smal(b'b).. is indepen-
N . dent of the form of the interaction, precisely
Py ()=p5 (0). (60)

Equation (60) states that the momentum distribution of
the continuous modes does not change in time, while Eq.

(59) gives the time evolution of the mean number of discrete | » o o o
modes. Fot— o these equations give If in addition the initial momentum distribution of the field is

the canonical distribution with temperatufe we obtained

(b'b)..= : fdp(S(w ~Q)p(p)
© 4m02 P .

dk&(w— Q) p} (0)

HOE L PR ()= (0), (bb).= -

47792 Q/KT_l'

which coincide with the exact expressiof@8) and (39) for ~ Which is the mean number of modes for a single oscillator
small interaction. Once again, the master equation gives ahaving temperatur&. Therefore, for a small interaction, we

lution (see Appendix D rium with the field. .
It is interesting to note the following.

(i) The space of “test observables?y for a finite num-
ber of excited modes is different from the spa@gq, for an

Let us summarize our main results. We considered thénfinite number of excited modes. In the latter case only in-
linear coupling between a quantum oscillator and a quanturtensive observables of the field are accessible for measure-
field with the Hamiltonian ment, and therefore we excluded the possibility of a singular

VI. CONCLUSIONS
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partfdkokalak from O1p . This difference betwee®, and

O+p determines different time evolution for the states, since
they are functionals whose properties depend on the domain
of definition.

(ii) The strong limit of the state for infinite time does not
exist, but a functionalp,, exists such that lim,..(p;|O)
=(p-|0) for all O in the set of observables. We do not
have, as is the case in the “coarse graining” method, a pre-
ferred set of relevant components of the state, obtained for a I
set of preferred observables. In our case we really consider
the set of “components” ¢|O) of the statep, labeled by all

the observable©. The difficulty of defining a canonical FIG. 1. Contour and poles for computitg in Eq. (A3).
coarse graining is avoided in this approach. 5
(iii) As no analytic extensions have been involved to ob- Vi 1 { 1 1 } (A1)

tain the exact results, no special riggings of the spaces of 7o (o) n_(w) 8772ik2{ (o) 7i(wy)
states and observables like in RgfB0], [11], [13], and[19]
have been used. Only mild conditions on the momentum Therefore,
distribution of the field are necessary to use the Riemann- 5
Lebesgue theorem in order to obtain the statedfore. |= _f dkVi

(iv) In Sec. V we used the functional approach to solve * 74 (0) 71— (0 ) (w— e Fie)
the master equation. Both for finite and infinite numbers of
modes, the master equation gives a time evolution for which dk [ 1 1
thet—oc limit coincides with the corresponding limit of ex- Zf f f 2k 7+ (00 7—(wy)
act solutions with very small interactions. However, the mas- 8k 7+ @) -k
ter equation predicts exponential approaches that are not ob- 1 (= dk 1 1
tained in the exact solutions. These different results appear = _—_ { —
because, as we discuss in Appendix D, a necessary conditon 27 Jo k—k'— Tiel 7+(K)  7_(k)
for the master equation to be valid is that the parametef

1

((()k_ wk,Iis)

the interaction be small\(<1) andthat the time be not too :i dz
large t=<\"?). .The master equation approximation elimi- 27 Jep(z)(z—[K +ie])’
nates the Khalfin effect.
dk’VZ,
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In the last expressiolf; is the curve in the complex plane
surroundingR™, as is shown in Fig. 1. The integrand be-
haves ag~ 2 when|z|—o, and therefore the integral over

OLAM Oint k’ii{-}:
- 1 dz B (A3)

OF THE HAMILTONIAN

In this section we give the proof of Eq®), (10), and(9), Combining Eqs(A2) and(A3) we obtain

which are necessary to obtain the diagonalized expre¢5Sjon 1 dk Vﬁ
of the total Hamiltonian. The proof follows essentially the - :—f —, (A4)
same arguments of RéfL2], adapted to the model of Sec. Il. 7-(k") 7+ () 7- (@) (0= @ +i0)

From

which is Eq.(8).
We also have

dk'VZ,
pe(wg=o—0- [ ——— =l dk V2
wk—wk,ilo |25—f - -
N+ () 7- () (0~ o tie)(wx—ww—ie)
we obtain 1 dz
:ﬁ s "o ! (AS)
7+ (00— 7 (0 =8m2ik2V2 mJcy(z)(z—[K' —ie])(z—[K"+ie])

where the curve& is shown in Fig. 2. The integrand behaves
and as z 3 when |z]—, and once again the integral can be
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O

k'—ie

FIG. 2. Contour and poles for computihg in Eq. (A6).

closed with the curvd™ shown in Fig. 2. The integral over
C+T can be evaluated computing the residue at the points

k' —ie andk’ +ie:

1 1

(KK —K'—ie) ’ 7. (K)(K' =K' +ig)’
(AB)

P

Combining Egs(A5) and (A6) we obtain Eq(10):

J dk V32
7+ (o) - () (0= 0 +10) (0= 0w —i0)
1 1
= . + R .
ﬂ_(wkr)(a)kr_wku_l()) 77+(wku)(wku—wkr+|0)
(A7)
Using Eq.(Al) we obtain
'_f dk Vi 1 de[ 1 1
) ni@dn (o) 2milo [ n(k=i0) n(k+i0)
B 1J dz B 1f dz A3
" 2 )en@  2m )@ (A8)

where the last identity follows from the analyticity of/i(fz)
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J —dk Vi =1 Al10
74+ () - () B ( )

With Egs.(A10), (A7), and(A4) the proof of Eqs(5) and
(7) is straightforward. Consider, for example,

dk V dk V dk V2
| S oni- | S apt |
Uf(wk) Uf(wk) ﬂf(wk) 77+(wk)

+f dk’ Vi,al,f

dk Vi
7-(0) 7+ (@) (0= 0 +i0)
Using Egs.(A10) and(A4) we deduce

dk V,
Al=bT,
f 7-(wy) k

X

which is the first equation in Edq7).

APPENDIX B: DEDUCTION
OF THE MASTER EQUATION

Taking into account thatliO=[V,0] and LJO
=[Hy,0], where

HozﬂbTb+f dkwalay, v=f dk Vi Ja/b+b'a,],

in C—R™, and the curve€ andI" are shown in Fig. 3. For and

|z| - we havez(z)=z and therefore

1 dz ) 1 dz

m F%: lim ﬁ F?. (Ag)

|2 =2

From Egs.(A8) and(A9) we deduce Eq(9):

r

FIG. 3. Contour and poles for computihg in Eq. (A8).

(B1)

we obtain
Lib'b=0, (B2)
Lgalaer(wk—wk;)alaky, (83)
LibTa,=(Q—wb'ay, (B4)
Lialb=(w—Q)alb, (B5)
LibTb= f dk Vi(alb—b'ay), (B6)
L;r/alakr = kaTakr - Vkr alb, (B?)
IibTa,= f dp Vyala,—Vib'b, (B8)
Lialb=— f dpV,ala,+ Vb (B9)

We first consider the deduction of the master equation for
the decaying process. In this case, as we deduced in Sec. V
A, the projector on the invariant part of the observalilgs
under the time evolution generated by is

Pfo=0,b"b+ J dkOalay. (B10)
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From Egs.(B10), (B4), (B5), and(B6) we obtain

ajb b'a,
Q+|O Q—w+i0)’
(B11)

O tpthth —
g0 LT’ folkvk

Using Egs.(B8), (B9), and(B10),

( _ IPTLTQT QTLTPT> bT

0+

1
— T
Ifdkvk< —w—i0 Q- wk+|0)bb

= —27Tf dk V26(Q— w)bTb=—872Q2V3b'h.
(B12)
To obtain the last equation we used the relation

1
Xx—i0

=2 8(X). (B13)

X+i0

Replacing Eq(B12) in Eq. (48), with O=b'b we obtain

Eq. (49,
d ot 2022 (bt
a(p|b b)=—-8mQ*V§(p|b'b).

From Egs.(B10), (B7), (B4), and(B5),

oty tptat

L0+iOQ L'Praay
ajb bta
—Q+i0 Q—w+i0)

Using Egs.(B10), (B8), and(B9),

1
—iJPTJL.T‘ i
( Ve

iOQTLTPT) alak
0
1 1

_ t
Q—-w—i0 Q—w+i0 b'b

=—iv§(

=278(Q— w,)V3b'b. (B14)

To obtain the last expression we used E{L3). Replac-
ing Eq. (B14) in Eq. (48) with O=fdkOkalak we obtain
Eq. (50):

d ¢ 2 t
gi(Plaka) =27V d(w— Q)(p|b™b).

Let us deduce the master equation in the thermodynamic

limit. In this case, from Eqs(56) we have the projectord
and(), defined by

(pIP0)=(Pp|0)=p} O+ [ dkptOu. (819
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(9100 =(0510) = [ ok [ k' O

+f dkp*k*lokﬁf dk’pl, Owxr, (B16)
for all O e O¢p, i.e., without the singular part.
Using Egs.(B16) and (B2)—(B9), we obtain
Lio* ! Q'LIP™b™o
S L+i0”
= f dk V2 L + ! b'b
B Klog—Q+i0  Q—w+i0
T T
aay apay
fko dp V"Vp(wk—QHO Q—w+i0)"
(B17)
From Egs.(B15) and(B17),
p ]PT]LT@T 1 QTLTPTbTb
YLty t
— Pp LTQT 1 QTLTPTbTb
Yopiiot Tt
:—2wif dk V28(wy—Q)p} + 27
xfdk V28(w—Q)pi . (B19)

For the last equation we use E@13). Replacing Eq.
(B18) in Eq. (48) with O=b"b, we deduce Eq(57):

giP1(D=—870VGpi(t )+2wV5J dk 8(w— Q) p (1).

If we consider O= fdkdk'Oy.aja, and Egs.(B7),
(B4), (B5), (B8), (B9), and(B16), we obtain

vQT QTLV

:f dkf dk'Okk/Vka,

y 1 . 1
Q—wp+i0 o= Q+i0

+fdkf dk’Okk,J’dp

VoVialaw  VieVpaja,
Q—wk/-i-iO wk_Q+IO .

b'o

(B19

From Egs.(B15) and(B17),



1
( ]LV«QW«QLV]Pp’ o)
“0

Pp| 130"

1
0'.Yo
Lg+i0‘? v

= J f dkdk’Vka,Okk,

y 1 N 1 .
Q=010 4, —0-io|™
* *
Py Pk
+ — (. B20

Comparing Eq.(B20) with Eg. (B15), we conclude that
the singular part

1
]P( LV%QTOQLVPP

is zero, because it is impossible to obtain a factor propor-

tional to 5(k—k’) from the expression between curly brack-
ets in Eq.(B20). The master equation gives

(id

— P
at P

f dkdk’ Oy ajay

0

d 1
— S — P ) P
= | f dkdtpk Okk Lv()—‘lo ]LOQ v p O)

and therefore we deduce E&S):
d *
giPk (V=0

APPENDIX C: LONG TIME BEHAVIOR
OF THE DECAYING PROCESS
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) ikt i ikt K 1 ikt K
[ et = ety TS+ ey (018

i i (K.
kt K_ kt ., m
+t—3[e' Y'(K) o t3fo e"y"(k)dk,
(C3

where
y' (k)=2kF(k)+Kk?F'(Kk),

v"(K)=2F (k) +4kF’ (k) + k?F"(k), (C4)

¥"(K)=6F " (k) +BKF"(k) +Kk?F" (k).

If V is a Schwartz function iR* (a reasonable choice for
the interaction F(k) and y(k) are also Schwartz functions
in R* and y(«)=19'(«)=19"(«)=0. Therefore, replacing
Eqg. (C3) in Eg. (C2) we obtain

8miF(0) i (*
a(t)= Wt—3()— t—JO ekt (k) dk,

The integral in the last expression vanishes tfefe, as a
consequence of the Riemann-Lebesgue theorem, and we fi-
nally obtain

limt3a(t)=8#iF(0).

t—oo

As a conclusion, itV _, does not vanisha(t) behaves as
t=3 for t—oc.

APPENDIX D: ON THE APPLICABILITY
OF THE MASTER EQUATION

In Ref. [13], Antoniou and Tasaki gave a perturbative
algorithm based on the subdynamics formal[4r8,14], from
which a generalized spectral decomposition of the Liouville—

In this section we analyze the long time behavior of theVon Newmann operator can be obtained. This spectral de-

decaying term:

dkVie'
e ) _ [ EeE
(b'b)=(n)ola(t)|*, a(t) Jm(wk)n(wk)’

obtained in Eq(31) for the case of a finite number of excited
modes. As in our modeb, =k, we can use polar coordinates
to write

a(t)=4m lim

K—o

J Keik‘y<k>dk, y(K)=Kk?F(K),

Vi

FO= 0

(C2

composition is analytic in the interaction parameter. An ex-
tension of this formalism to the functional approach was
recently used by Id Betan and one of [&8] to discuss the
Friedrichs model.

The construction is based on the decomposition of the
states through projectofsﬁ (n=0,1,2 ...) onto the degrees
of correlation defined by

T )
PaPy = 8u P, LEPL=PILE,
-0 if
i

n<m

> =T,

n

PSLD"PR g (0D

n=m.

In the last expressionﬁh{g is the projector onto the invariant
part of the states under the action of the free time evolution
(LiPi=P{Li=0), 1t is the identity operatorifO=0), and

Performing three partial integrations in the previous ex-L} is the interaction part of the Liouville-Von Newmann

pression, we obtain

operator (.JO=[V,0]).
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Through a nonunitary transformation, the Liouville—Von As the eigenvectors and eigenvalues are obtained from a
Newmann operatok' is made isospectral to an intermediate perturbative expansion in powers of the interaction param-
operator®", which is block diagonal in the degrees of cor- eter, one possible approximated time evolution can be given
relation computing the eigenvectors up to zero order and the eigen-
values up to second order:
L=t 1®TQT ®T:2 ]PT®T]PT=E @T,
n T (p =2 et (pol T (IR (D4)
@T: JPTJL.TPT-F JPTC.TLTPT ’ _
T e Taking into account thatf()=[u‘?) and ¢?|=u?),
Eq. (D4) gives
af=> @l+ch, af1=> (PI+Dh(P!+cinh -1,
n n
(D2) (p| Po= E e'%na' (ol U2 (U2

The operators:’ and D! (called creation and destruction of 4O 0) .
. . . . < As (U | Pg= Sno(up,.|, we obtain
correlation$ can be obtained by iteration from the equations,
CE}PL:—ifixdte—ngt(]lbh‘C,JE)LI(CI]P%—]Pr’;)e”'gt, (P P=2 €75 (po[ U (U7 = (polexpti 5.
0

In the last expressior® () is the second order approxima-

m=n, ; t
tion for ®. It can be computed from Eq&2) and(D3) as
TS ‘ ‘ -
PIDi=—i JO dte Lot(Pf —PIDHLI(PI+ Di)e'ot, 012 = PTHOT QOL PE Ql=TT—PL.
msn, (D3) Therefore, if we admit the approximated expres<iod),

. : . . Popy| satisfies the master equation
starting W|th‘C§(°)=Dx(°)=0. To obtain the previous equa- (o g

tions, boundary conditions have been imposed in such a way

, N . i —(Prpi| = 1(2)
that the increase of correlations is future oriented. ! dt(POPt|_(P0Pt|®0 '
Once the spectral decomposition®f is obtained in the
form which is equivalent to Eq42). The master equation is valid
when expressioiD4) is a good approximation for the time
_ _ ~ evolution. If this is the case, the interaction parameter
0'=2 ®§_E 2 Zna| Una) (Undl should be small, but in addition the time cannot be too large,

i.e., \<1 and\3t<1, or equivalently
the generalized eigenvector$f,,)=(Q")"*u,,) and
(fral = (Una| QT of the Liouville—Von Newmann operator
can be computed. The time evolution of a state is given by  This result shows why the exact solutions obtained in Sec.

IV differ from the solutions of the master equation for

(pt|:z eiznat(p0|']‘c'na) nal —. Therefore, thg approximation of the master equation
na eliminates the Khalfin effect.
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