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Residence time distribution of a Brownian particle

Alexander M. Berezhkovskii,* Veaceslav Zaloj,† and Noam Agmon
The Fritz Haber Research Center, Department of Physical Chemistry, The Hebrew University, Jerusalem 91904, Israel

~Received 18 June 1997!

The residence time of a Brownian particle within a spatial domain is the total time it spends within this
domain. It is shown that the residence time distribution can be calculated from the survival probability for a
constant trapping rate inside the domain. This isomorphism is exploited to derive explicit relations for the
distribution and its moments for a three-dimensional spherical domain. Results are verified by a Brownian
dynamics simulation.@S1063-651X~98!08504-3#

PACS number~s!: 05.40.1j, 82.20.Fd, 82.20.Wt
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I. INTRODUCTION

Consider a particle which spends all of its lifetime with
a prescribed spatial domain. The particle disappears e
from the interior of the domain or from its boundary. Whe
the motion of the particle is governed by probabilistic law
such as, for example, random walk or Brownian motion, o
can speak about the particlemeanlifetime, the first moment
of its lifetime distribution@1,2#. The mean lifetime is of fun-
damental importance for diffusion influenced reactions, a
is a measure for the~reciprocal! reaction rate constant.

In more specific language, suppose thatp(rW,tuRW ) is the
probability density of finding the particle at a pointrW within
a domainv by time t, given that att50 it was located at
point RW Pv. Under the above conditions, the survival pro
ability of the particle within the domain is defined by

S~ tuRW ![E
v

p~rW,tuRW !drW. ~1.1!

From it, the lifetime distribution may be calculated as

F~ tuRW !52]S~ tuRW !/]t. ~1.2!

The average lifetime, the first moment of the lifetime dist
bution, is thus given by

t̄ ~RW !52E
0

` ]S~ tuRW !

]t
t dt5E

0

`

S~ tuRW !dt. ~1.3!

The second equality follows from integration by parts, us
the fact that under the above-mentioned conditions the
vival probability decreases from unity to zero@1,2#.

In the usual case when a lifetime distribution can be
fined,v is either an infinite or a finite domain with reflectin
or absorbing boundaries. During its lifetime, the diffusi
particle never exits from this domain. In the present work
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consider a more general case when the particle can exit f
and enter into a finite domain an unrestricted number
times. The initial location,RW , is either inside or outsidev.
The functionS(t), Eq. ~1.1!, which may be defined for an
arbitrary domainv, does not necessarily decrease to zero
infinitely long times. Moreover, it need not even be mon
tonic in t.

It is nevertheless meaningful to ask, for a given obser
tion time t, what is the timet spent by the particle withinv?
This quantity,t <t, is the ‘‘residence time’’~RT! of the
particle inv up to timet. Starting from the Green function
for diffusion, p(rW,tuRW ), the mean residence time~MRT! may
be defined in a manner analogous to Eq.~1.3!, namely,

t̄ t~RW !5E
0

t

dt8E
v
drW p~rW,t8uRW !. ~1.4!

The MRT for an infinite observation time,t5`, has found
several applications@3–7#. However, the general problem o
obtaining the RT distribution has not been discussed in
physics literature. Therefore one goal of the present pape
to survey the RT theory for the physicist.

The ‘‘residence time’’ is known in the mathematics liter
ture as the ‘‘occupation time’’@8–14#. ~We prefer the less
aggressive terminology of ‘‘residence’’ times@5#. ‘‘Occupa-
tion’’ implies that the particle takes possession of the dom
and may thus prevent other particles from entering. This
not the case for the problem at hand, in which particles m
simultaneously occupy the same domain.! The basic theory
has been worked out by Kac@8–11#, who has returned to this
problem several times during his career@12#. There are two
routes for obtaining the RT distribution~Sec. II!: The direct
route involves a multiple integral for the moments which,
known, gives the distribution in the form of a moment e
pansion.~We apply this approach in Appendix A!. The sec-
ond route involves solving a partial differential equation f
the ‘‘Kac functional’’ @11#. In the language of diffusion in-
fluenced reactions, this is just the survival probability for
diffusing particle which is scavenged insidev ~Sec. III!.

We could not find in the literature explicit expressions f
the RT distribution and its moments.~In two dimensions,
where the moments diverge, Darling and Kac have deri
the long-time asymptotics@9#!. Therefore the second goal o
our paper is to obtain explicit results for a three-dimensio
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3938 57BEREZHKOVSKII, ZALOJ, AND AGMON
sphere, possibly the only case where the theory can be
emplified analytically. We find two analytic representation
for the moments. One is in terms of finite, Euler-like poly
nomials in the starting position of the random walker~‘‘Eu-
ler representation’’!. The other is in terms of an infinite trigo-
nometrical series~‘‘Fourier representation’’!. Each of the
two routes can yield either representation, as detailed in t
text. The distribution function itself also admits several rep
resentations, all in terms of infinite series. Some series co
verge rapidly for short times and others at long times~Sec.
III !.

The third goal of our exposition is to explain how an
accurate Brownian dynamics~BD! algorithm for calculating
the RT distribution is constructed~Sec. IV!. The results in
Sec. IV C show nice agreement between the BD simulatio
and our analytic expressions for the special case of spher
domains in three-dimensional space. Clearly, for domains
more complex shapes the BD simulation might be the on
route for obtaining results.

II. GENERAL RELATIONSHIPS

Let v be a domain in three-dimensional space, as d
picted in Fig. 1. The quantity of our interest is the residenc
time t spent by a Brownian particle inv. This time is a
random quantity. It depends on the stochastic Wiener traje
tory chosen by the particle. The probability density of th
distribution overt, Ft(tuRW ), is a function of the particle
starting positionRW and the observation timet. As we will see
below, it is easy to calculate the MRTt̄ t(RW ) from the Green
function of the free Brownian motion, Eq.~1.4!. However,
calculation of higher moments or the probability density i
self is a more complicated task. Let us begin by introducin
the formal definitions of the quantities under study in term
of stochastic trajectories.

A. Residence time of Wiener trajectories

Consider a Brownian particle which moves along th
Wiener trajectoryWt which begins at the pointRW , the sub-

FIG. 1. A domainv with a Wiener trajectoryWt .
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script ‘‘t ’’ indicates the observation time~Fig. 1!. The RT
t(WtuRW ) is the time spent by this particle inside the doma
v @9–14#,

t~WtuRW !5E
0

t

xv„rWWt
~ t8!…dt8, ~2.1!

whererWWt
(t8) is the position of the particle at time instantt8,

0<t8<t, along the specified trajectory,Wt , andxv(rW) is the
indicator function ofv defined as

xv~rW !5E
v
d~rW2r 8W !dr8W5H 1 if rWPv

0 otherwise.
~2.2!

Thus in Eq.~2.1! the integrand, Eq.~2.2!, is equal to unity
when the particle is insidev and zero when the particle i
outside. This is why the integral is equal to the RT. B
inserting Eq.~2.2! into Eq. ~2.1! and changing the order o
integration, one obtains

t~WtuRW !5E
v
wWt

~rW,t !drW, ~2.3!

where the random variable

wWt
~rW,t ![E

0

t

d„rWWt
~ t8!2rW…dt8 ~2.4!

is the RT density, also known as the ‘‘local time’’@13#.
The probability density of the RT distribution is the e

semble average of the number of trajectories whose RT iv
equalst. Therefore we set

Ft~tuRW !5^d„t2t~WtuRW !…&, ~2.5!

whered(z) is the Diracd function, and̂ •••& denotes aver-
aging over realizations of Wiener trajectories which st
from the pointRW . The probability density is normalized t
unity,

E
0

t

Ft~tuRW !dt 51, ~2.6!

due to thed-function form of Eq.~2.5!.
Using the above definitions, the MRT assumes the for

t t~RW ![E
0

t

tFt~tuRW !dt 5E
0

t

t ^d„t2t~WtuRW !…&dt

5^t~WtuRW !&5E
0

t

^xv„rWWt
~ t8!…&dt8

5E
0

t

dt8E
v
drW^d„rW2rWWt

~ t8!…&. ~2.7!

These equalities admit various interpretations. The aver
time with respect toFt(tuRW ) is the ensemble average o
t(WtuRW ), Eq. ~2.1!. The ensemble average of the indicat
function, ^xv„rWWt

(t)…&, is the fraction of trajectories found

within the domainv at timet. This ‘‘residence probability’’
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generalizes the notion of ‘‘survival probability’’ to partia
domains within the diffusion space. Hence the fourth equ
ity in Eq. ~2.7! is a generalization of~the second equality in!
Eq. ~1.3!. However,Ft(tuRW ) is generally not equal to the
negative time derivative of the residence probability. Fina
the integrand̂ d„rW2rWWt

(t8)…& is the Green function of the

Brownian particle which starts from the pointRW at t50,

g~rW,t8uRW ![^d„rW2rWWt
~ t8!…&. ~2.8!

Using this fact we arrive at the relationship~1.4!, which ex-
presses the MRT in terms of the Green function of
Brownian particle, in agreement with earlier work@5#. Alter-
nately, the MRT can be expressed using the ensemble a
age of the ‘‘local time,’’ see Eqs.~2.3! and ~2.4!.

The higher moments can be expressed as repeated co
lutions of g(rW,tuRW ) with itself @14#. Consider the second RT
moment as an example,

t t
2̄~RW !5E

0

t

t2Ft~tuRW !dt 5E
0

t

t2^d„t2t~WtuRW !…&dt

5^t2~WtuRW !&

5E
0

t

dt1E
0

t

dt2^xv„rWWt
~ t1!…xv„rWWt

~ t2!…&. ~2.9a!

From the Markov property ofWt and the fact that Eq.~2.9a!
is symmetric with respect to the interchange oft1 andt2, one
obtains@14#

t t
2~RW !52!E

0

t

dt2E
0

t2
dt1^xv„rWWt

~ t1!…&^xv„rWWt
~ t2!…&

52!E
v
drW2E

v
drW1E

0

t

dt2E
0

t2
dt1g~r 1

W ,t1uRW !

3g~r 2
W ,t22t1ur 1

W !. ~2.9b!

The nth moment is thus obtained from then-fold convolu-
tion of the diffusion Green function with itself.

For an infinite observation time, change the order of in
gration to*0

t dt1* t1
t dt2 and sett285t22t1. The upper limit in

both time integrals may now be replaced by`. For three-
dimensional diffusion the Green function is

g~rW,tuRW !5~4pt !23/2exp@2urW2RW u2/4t#, ~2.10!

where, for simplicity, we set the diffusion constant to un
~thust stands forDt). Inserting into Eq.~2.9b! and perform-
ing the temporal integrals analytically, one obtains†@10#, Eq.
~IV.8.5!‡

t`
2 ~RW !5

2!

~4p!2Ev
drW2E

v
drW1urW12RW u21urW22rW1u21,

~2.11!

whereurWu denotes the norm of the vectorrW. The fact that the
Coulomb potential appears in the above integral is not a
l-
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surprising, since the MRT is the spatial integral of the de
sity, w(rWuRW )[^wWt

(rW)&, see Eq.~2.3!. The latter obeys the
Poisson equation@4,5#

D rWw~rWuRW !52d~rW2RW !, ~2.12!

which is obtained by integrating the diffusion equation f
g(rW,tuRW ) over time (D rW is the Laplace operator in three d
mensions!.

For simple geometries, one might hope to perform
‘‘Coulombic convolution’’ integral in Eq.~2.11! analytically.
Equation ~2.11! indeed simplifies for spherical domain
which can then be used to calculate the moments~see Ap-
pendix A!. This then allows a moment expansion for th
Laplace transform of the RT distribution

F̂`~kuRW ![E
0

`

F`~tuRW ! exp~2kt!dt

5 (
n50

`

~21!nt`
n ~RW !kn/n!, ~2.13a!

where thenth moment is given by

t`
n̄ ~RW !5~21!nF ]nF̂`~kuRW !

]kn G
k50

. ~2.13b!

The alternative route taken below allows a direct compu
tion of F̂`(kuRW ) by noting that it obeys a partial differentia
equation with a clear physical interpretation.

B. Relationship to the trapping problem

The alternate route to the Laplace transform of the
density begins with the ‘‘Kac functional’’@11,12#. It can be
given physical meaning as follows. The key point is the o
servation that the integral*0

t Ft(tuRW )exp(2kt)dt is the sur-

vival probability S(tukuRW ) of our particle when it may be
trapped only within the domainv, and with a constant trap
ping ratek. Thus as we argue below

S~ tukuRW !5E
0

t

Ft~tuRW ! exp~2kt!dt ~2.14a!

5^exp@2kt~WtuRW !#&.
~2.14b!

The second line follows by using the RT probability densi
Eq. ~2.5!, and interchanging the order of averaging and in
gration. Thus to findFt(tuRW ) one could first solve the diffu-
sional problem forS(tukuRW ) and then invert the integral re
lation ~2.14a!.

To derive Eq.~2.14!, note first that the survival probabil
ity of a stationary particle located at the pointrW, where the
local trapping rate coefficient isk(rW), is

S~ turW !5exp@2k~rW !t#. ~2.15!
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3940 57BEREZHKOVSKII, ZALOJ, AND AGMON
Suppose the particle moves along the trajectoryWt , given
by the set of points$t8,rWWt

%, wheret8<t. The survival prob-
ability of the particle becomes

S~ tuWt!5expS 2E
0

t

k„rWWt
~ t8!…dt8D . ~2.16!

Averaging over all trajectories which begin at pointRW , one
obtains

S~ tuRW !5K expS 2E
0

t

k„rWWt
~ t8!…dt8D L . ~2.17!

This is known in the mathematics literature as the ‘‘K
functional’’ †e.g., Eq.~5.38! in Chap. 15 of Ref.@13# ‡. In the
case of our interest,k(rW) is a nonzero constant only withi
the domainv,

k~rW !5kxv~rW !. ~2.18!

Substituting thisk(rW) into Eq.~2.17! gives the survival prob-
ability in the desired form of Eq.~2.14b!. We will solve the
trapping problem directly, for an infinite observation time,
obtainS(`ukuRW ).

III. EXPLICIT EXPRESSIONS

To illustrate the general approach presented above,
consider the case when the domainv is a three-dimensiona
sphere. In this case the survival probabilityS(tukuRW ) can be
calculated. To avoid too cumbersome expressions we ca
late the probability densityF`(tuRW ) as well as the moment
for an infinitely long observation time, when Eq.~2.14a!
takes the form

S~`ukuRW !5F̂`~kuRW ![E
0

`

F`~tuRW ! exp~2kt!dt.

~3.1!

This means that the survival probabilityS(`ukuRW ) is the
Laplace transform of the probability densityF`(tuRW ) corre-
sponding to the value of the Laplace parameter equal to
absorption rate constantk.

We calculate the survival probability in Sec. III A. Whil
a similar derivation can be found in a late work of Kac@11#,
he has not proceeded to obtain explicit expressions for
distribution function and its moments. This is done in Se
III B and III C below. To our knowledge, this is the onl
case yielding an analytical solution which, moreover, gen
ates a surprising number of identities.

A. Survival probability

In this subsection we calculate the survival probability
a Brownian particle which may be absorbed inside a sph
cal domain. We take the center of the sphere as the or
and its radius as a unit of length. We also assume that
diffusion coefficient of the Brownian particle is equal
unity. This sets the distance and time units.
e

u-

e

e
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r-

f
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he

To calculate the survival probability, one first has to fin
the Green functiong(rW,tuRW ) by solving a diffusion equation
with a sink term@11#,

]g~rW,tuRW !/]t5@D rW2kH~12urWu!#g~rW,tuRW !. ~3.2!

HereD rW is the Laplace operator acting on the variablerW and
H(z) is the Heaviside step function, i.e.,H(z)50 for z,0
and H(z)51 for z.0. The initial condition isg(rW,0uRW )
5d(rW2RW ). As a boundary condition, we use the evide
property thatg(rW,tuRW )→0 whenurWu→`.

The survival probability of the Brownian particle is give
by

S~ tukuRW !5E g~rW,tuRW !drW, ~3.3!

with integration over the whole space. The survival probab
ity of interest is obtained fromS(tukuRW ) by taking the limit
t→`.

It is convenient to use, instead of Eq.~3.2!, the Kolmog-
orov backward equation@1#

]g~rW,tuRW !/]t5@DRW 2kH~12uRW u!#g~rW,tuRW !, ~3.4!

whereDRW is the Laplace operator acting on theinitial vari-
able, RW . By integrating Eq.~3.4! over rW, one obtains an
analogous equation for the survival probability,

]S~ tukuRW !/]t5@DRW 2kH~12uRW u!#S~ tukuRW !, ~3.5!

subject to the boundary condition thatS(tukuR)→1 when
R→`. The initial condition isS(0ukuR)51.

Due to the spherical symmetry, the survival probabil
depends on a single coordinate, namely, the distancR

5uRW u from the center of the sphere. Thus we write the L
placian in spherical coordinates. In addition, whent→` the
survival probability becomes independent of time and
time derivative vanishes. As a consequence,S(`ukuR) satis-
fies the equation

F 1

R2

d

dRS R2
d

dRD2kH~12R!GS~`ukuR!50, ~3.6!

with the corresponding boundary condition.
We seek a solution of Eq.~3.6! in the form S(`ukuR)

[ f (R)/R. The functionf (R) satisfies the equation

d2f

dR2
2kH~12R! f 50, ~3.7!

with the boundary conditionsf (0)50 and R21f (R)→1
when R→`. The former condition is necessary for the
niteness ofS(`ukuR) at R50. The solution satisfying thes
boundary conditions reads

f ~R!5H Asinh~AkR!, R,1

R1B, R.1.
~3.8!
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The constantsA andB are determined from the continuity o
f (R) and its first derivative atR51. As a result, one obtain
@11#

S~`ukuR!55
sinh~AkR!

AkR cosh~Ak!
, R<1

12
1

R
1

1

AkR
tanh~Ak!, R>1.

~3.9!

We note an alternative form for this survival probabilit
obtained by a Fourier expansion of sinh(AkR), using the
basis sin@p(j11/2)R# in the interval @0,1#. For R<1 this
gives

S~`ukuR!5
2

R (
j 50

`

~21! j
sin@p~ j 1 1

2 !R#

@~ j 1 1
2 !p#21k

. ~3.10!

The last result is immediate using the ‘‘direct approach
where it is recognized as an eigenvalue expansion in
eigenfunctions of the Kac integral equation, see Appendix
In the following subsections the above solutions are use
determine the probability density of the RT distribution a
its moments.

B. Moment generation

We only need to generate the moments for random wa
starting within the sphere: forR.1, Eq. ~3.9! reads
S(`ukuR)5C1S(`uku1)/R, where C is a k-independent
constant. Equation~2.13b! thus implies that forn>1

t`
n̄ ~R!5t`

n̄ ~1!/R. ~3.11!

The moments of the RT distribution,t`
n̄ (R), follow directly

from Eqs.~3.9! and ~3.10!, yielding their Euler and Fourie
representations, respectively.

1. Euler representation

The Euler form for the moments is based on the conn
tion between the Laplace transform, Eq.~3.9!, and the gen-
erating function of the Euler polynomials,En(x),

2exy

ey11
5 (

n50

`

En~x!
yn

n!
, ~3.12!

see Eq.~23.1.1! in the handbook of Abramowitz and Stegu
@15#. Thus we rewrite Eq.~3.9! as

F̂`~kuRW !5
1

2AkR
F2e2Ak@~R11!/2#

e2Ak11
2

2e22Ak@~R11!/2#

e22Ak11
G

5
1

R (
n50

`

@12~21!n#EnS R11

2 D ~2Ak!n21

n!
,

~3.13!

where we have sety[62Ak. Comparing with the momen
expansion, Eq.~2.13a!, one obtains
’
e
.
to

s

c-

t`
n̄ ~R!5

~21!n 22n11n!

~2n11!!R
E2n11S R11

2 D . ~3.14!

Thust`
n̄ (R) are polynomials of degree 2n in R.

These polynomials can be written explicitly using the s
ries decomposition of the Euler polynomials†see Eq.
~23.1.7! in Ref. @15#‡. Denoting the ‘‘Euler numbers’’ by
En[2nEn(1/2), and taking into account the fact thatE2n11
50, one obtains

t`
n ~R!5~21!n

n!

~2n11!! (
k50

n S 2n11
2k DE2k R2~n2k!.

~3.15!

Thus all the RT moments areevenpolynomials in the start-
ing point,R.

For the first moment we get

t`
1 ~R!5

1

2
2

1

6
R2. ~3.16a!

This result, forR50, has been obtained in Eq.~2.37! of
Blumen and Zumofen@3#. Note thatR2/6 is the mean life-
time for diffusional motion starting at the origin of a sphe
of radiusR ~i.e., when an absorbing boundary condition
imposed atr 5R). Thus the MRT starting at 0,R,1 equals
the MRT starting at zero minus the mean lifetime in a sph
of radius R. The analytical form of the second and thir
moments is

t`
2 ~R!5

5

12
2

1

6
R21

1

60
R4, ~3.16b!

t`
3 ~R!5

61

120
2

5

24
R21

1

40
R42

1

840
R6. ~3.16c!

For the special cases when the initial condition is in t
center or on the surface of the sphere, the moments of the
are given by

t`
n ~0!5~21!n

n!

~2n!!
E2n , ~3.17a!

t`
n ~1!5~21!n

n!

~2n12!!
22n12~22n1221!B2n12 ,

~3.17b!

where theBn’s are the Bernoulli numbers, see Eq.~23.1.20!
in Ref. @15#. The first few values are summarized in Table

TABLE I. Moments of the residence time distribution within
unit sphere,t`

n (R), for two initial starting locations.

n 0 1 2 3

R51 1 1/3 4/15 34/105
R50 1 1/2 5/12 61/120
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2. Fourier representation

The Fourier form of the RT moments~for R<1) follows
by differentiating Eq.~3.10! according to Eq.~2.13b!. We
find that

t`
n ~R!5

2n!

R (
j 50

`

~21! j
sin@p~ j 1 1

2 !R#

@p~ j 1 1
2 !#2~n11!

. ~3.18!

The equivalence with the Euler representation in Eq.~3.14!
implies the identity

(
j 50

`

~21! j
sin@~2 j 11!px#

~2 j 11!2n
52

~21!np2n

4~2n21!!
E2n21S x1

1

2D ,

~3.19!

which can also be obtained by replacingx by x11/2 in the
Fourier expansion of the Euler polynomials, Eq.~23.1.17! of
Ref. @15#.

WhenR50, Eq. ~3.18! simplifies to

t`
n ~0!5

22~n11!n!

p2n11
b~2n11!, ~3.20!

whereb(m) is the series

b~m![(
j 50

`

~21! j~2 j 11!2m, ~3.21!

defined in Eq.~23.2.21! of Ref. @15#. Equivalence with the
representation in Eq.~3.17a! arises because 2b~2n11!
[~p/2! 2n11uE2nu/~2n!!, see Eq.~23.2.22! in Ref. @15#.

For R51, Eq. ~3.18! simplifies to

t`
n ~1!52~2/p!2~n11!n!l„2~n11!…, ~3.22!

wherel(m) is defined by Eq.~23.2.20! in Ref. @15# ,

l~m![(
j 50

`

~2 j 11!2m5~1222m!z~m!, ~3.23!

andz(m) is the Riemannz function @15#, z(m)[( j 51
` j 2m.

This result is the same as Eq.~3.17b! in view of the identity
that 2z(2n)[(2p)2nuB2nu/(2n)!, see Eq.~23.2.16! in Ref.
@15#.

C. The probability density

With the moments determined, the probability density
self is given by the moment expansion, Eq.~2.13a!. How-
ever, this expansion does not converge rapidly at long tim
We thus proceed to invert the Laplace transforms obtaine
Sec. III A. For didactic purposes, let us proceed in order
complexity. Consider first the case when the particle start
the surface of the sphere,R51, then when it is outside the
domain and finally the caseR<1. The different solutions are
demonstrated in Fig. 2 and compared with results of Brow
ian simulations using the algorithm described in Sec. IV
low. They are cast in terms of two infinite series, one wh
converges rapidly for short times and another which c
verges rapidly for long times.
-

s.
in
f
at

-
-

-

1. Initial position on the surface, R51

The simplest case involves a particle initially at the s
face of the sphere. By settingR51 in Eq. ~3.9! we obtain

S~`uku1!5
1

Ak
tanh~Ak!

5
1

Ak
S 112(

j 51

`

~21! j exp~22 jAk!D .

~3.24!

The second equality is obtained by expanding 1/@11exp
(22Ak)# in a Taylor series. Inverting the Laplace transfor
S(`uku1), we obtainF`(tu1) in the form convenient to ana
lyze the behavior at small values oft,

F`~tu1!5
1

Apt
F112(

j 51

`

~21! j expS 2
j 2

t D G ,

~3.25!

see Eq.~29.3.84! in Ref. @15#. An expression which con-
verges rapidly for larget can be derived in several ways@cf.
Eq. ~3.31! below#,

F`~tu1!52(
j 50

`

expS 2
p2

4
~2 j 11!2t D . ~3.26!

FIG. 2. The residence time probability density:~a! logarithmic
scale and~b! linear scale. Full lines are analytic solutions, Eq
~3.30! and~3.31!, or Eqs.~3.25! and~3.26! for R51. Different lines
correspond to the different starting positions, as indicated. Sym
are from Brownian dynamics simulations, see Sec. IV C. Sph
radius and diffusion constant are both unity.
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It follows that F`(tu1) tends to infinity as 1/At, when
t→0, and to zero as exp(2p2t/4), whent→`, see Fig. 2.

2. Initial position outside the sphere, R>1

When the particle starts outside the absorbing dom
R.1, the desired solution may be related to the above s
tion for R51. Let us divide the Wiener trajectories into tw
groups, depending on whether they enter into the domai
not. For a sphere of radius unity, the fractiong(R) of trajec-
tories which reach the surface of the sphere is given by

g~R!51/R. ~3.27!

This ‘‘trapping probability’’ solves Eq.~3.6! with the bound-
ary conditionsg(1)51 and g(`)50 @1#. The fraction of
trajectories which never enter into the spherical domain
@12g(R)#.

A common feature of the trajectories belonging to t
fraction g(R) is that at a certain instant they enter into t
domain for the first time. Their contribution toF`(tuR) is
thusg(R)F`(tu1). This is why, forR.1, Eq.~3.9! has the
form

S~`ukuR!5@12g~R!#1g~R!S~`uku1!. ~3.28!

Mathematically, bothS(`ukuR) andg(R) obey the same dif-
ferential equation, but with different boundary condition
Consequently, forR.1 the RT distribution is

F`~tuR!52@12g~R!#d~t!1g~R!F`~tu1!. ~3.29!

This universal 1/R scaling holds only when the particle star
outside the spherical domain.

3. Initial position inside the sphere, R<1

When the particle starts from a point located inside
domain,R,1, the dependence onR is not as simple as in the
previous cases. Inverting the Laplace transform of the s
vival probability, Eq.~3.9!, gives

F`~tuR!5
1

AptR
(

j 52`

`

~21! jexpS 2
~2 j 112R!2

4t D .

~3.30!

As before, this series converges rapidly for smallt. The
probability densityF`(tu1), Eq. ~3.25!, is recovered when
R→1.

An expression convenient to analyze the larget behavior
of F`(tuR) is obtained by inverting Eq.~3.10!, namely,

F`~tuR!5
2

R (
j 50

`

~21! j sinS p

2
~2 j 11!RD

3expS 2
p2

4
~2 j 11!2t D . ~3.31!

Alternative ways of deriving this result directly from Eq
~3.30! involve the ‘‘Poisson summation formula’’ or the pro
cedure discussed in Appendix B. Note that the moments
culated from *0

`F`(tuR)tndt using this expression ar
given, again, by Eq.~3.18!.
n,
u-

or

is

.

e

r-

l-

For R51, Eq. ~3.31! reduces to Eq.~3.26!. For R50, it
simplifies to

F`~tu0!5
1

Apt3/2 (
j 50

`

~21! j~2 j 11!expS 2
~2 j 11!2

4t D
5p(

j 50

`

~21! j~2 j 11!expS 2
p2

4
~2 j 11!2t D .

~3.32!

When t→0, F`(tuR) with R,1 tends to zero because
when the starting point is located inside the domain, the p
ticle surely spends some time there. The short-time beha
is proportional to exp@2(12R)2/4t#. While the small t
asymptotic behavior of the probability density is qualit
tively different whenR.1 andR,1, the larget asymptotic
behavior is the same in both cases. The probability den
approaches zero proportional to exp(2p2t/4) whent→`.

IV. NUMERICAL SIMULATIONS

The goal of our Brownian simulations is to validate th
analytical solution for the RT density as obtained in the p
ceding section. For domains more complicated than sph
cal, numerical simulations are the sole available route.
limit the computations to spherical domains because th
results can be compactly described as a function of the si
initial parameterR. In the following subsections, we describ
the principles, details, and results of our Brownian dynam
simulations.

A. Principles of Brownian dynamics

Our goal is to run stochastic trajectories of freely diffu
ing particles~no boundaries, no sinks!, and count directly the
time epochs spent in a predefined domain. The simplest
proach might involve running lattice random walks@14#,
where at each time step the particle moves with equal pr
ability ~1/6! in one of the six canonical directions on a pr
defined grid. In its simplest form, this approach requires~i! a
fine ~uniform! grid, on which a sphere is adequately repr
sented;~ii ! small and constant time steps; and~iii ! a large
simulation box~as compared with the radius of the spher!,
to allow accurate calculation of the long-time tail o
F`(tuRW ). These demands can make the computation t
consuming.

Brownian dynamics is an off-grid method for simulatin
diffusion processes, which allows taking large and varia
time steps and is not restricted to a finite simulation b
@16,17#. This results in enhanced computational accura
and/or reduction in computational time. The isomorphis
between the diffusion and Langevin equations implies th
in the absence of interactions~potentials, boundaries, etc.!,
the particle can be moved using Gaussian random numb
These are random numbers out of a Gaussian distribu
whose width corresponds to the predefined time step.

For the present problem, complications arise near
boundaries of the domainv, not because these are physic
boundaries of any sort, but because we wish to record
cisely the fraction of time spent by a particle withinv. Thus
for a hop which carries the particle across the boundary,
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impossible to decide how to divide the corresponding ti
epoch between the interior and exterior ofv. Hence crossing
the boundary must be done with small time steps. The ch
of time steps is one consideration in constructing the Brow
ian dynamics algorithm. Another consideration involves
correct rules for terminating trajectories which have migra
far away from the region of interest. These considerations
discussed below.

B. Technical detail

In a given run, the particle is released from the init
position, rW05RW , and moved through a sequence of poin

$rW i%, i 51,2,3, . . . . Thei th hop occurs during a predefine
time intervalDt i , so that

rW i5rW i 211A2Dt iGW . ~4.1!

HereGW is a vector of Gaussian random numbers with a st
dard deviation of unity. ThusA2Dt i is the standard deviation
of the Brownian particle during the time step. The Gauss
random numbers can be generated by inversion of the e
function @17# or the Box-Muller method@18#.

The time step is chosen so that the probability of cross
the surface of the domainv in a single hop is negligibly
small. Therefore the minimal distance of the particle,di ,
from the surface ofv is computed before making a ne
move.Dt i is then determined from

di53A2Dt i , ~4.2!

so that the root-mean-square displacement is several t
smaller thandi . Thus as the particle approaches the bou
ary its time step constantly decreases. Since the particle m
cross the surface within a finite number of time steps,
require thatDt i>Dtmin . In the present implementation, th
minimal time stepDtmin is chosen smaller thanDtmin , which
is the smallest temporal bin introduced below.

An important aspect of the algorithm is how to termina
a trajectory. The termination rules should make a trajecto
generated with a finite number of hops, equivalent to an
finite one. For problems of spherical symmetry this is ea
Suppose after thei th move the particle escaped to a pointr i

W
outside the spherical domainv, namely,r i.1. According to
Eq. ~3.27!, its probability to return to the surface isg i
51/r i , whereas its escape probability is 12g i . Therefore,
given a uniform random numberj between 0 and 1, the
trajectory is terminated ifj.g i . Otherwise, it is placed bac
on the surface of the unit sphere. For spherically symme
problems, the location on the sphere to which the part
returns is immaterial, because the exit points will also
distributed with spherical symmetry.

For a ~finite! domainv of an arbitrary shape, one may
use the algorithm of Lutyet al. @19–21#. The domain is en-
closed within a virtual ‘‘decision sphere’’ of radiusb. When-
ever r i.b, the trajectory is either terminated or returned
the surface by comparing a uniform random number w
g i5b/r i , as before. However, the return point on the sphe
rW i 11, is selected from the probability density
e
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w~u,f!5
12g i

2

4p~122g icosu1g i
2!3/2

, ~4.3!

which is uniform overf and depends on the azimuthal ang
u between the vectorsr i

W andrW i 11. Thus one random numbe
is used to determineu whereas a second, uniformly distrib
uted random number determines the polar anglef.

For each trajectory$r i
W %, the total residence timet within

the domainv is computed as follows. If thei th move oc-
curred inside the domain,rW i 21 ,rW iPv, t is incremented by
Dt i . If it occurred outside,t is not incremented. If the par
ticle crossed the surface ofv during the move,t is incre-
mented by a fraction ofDt i . This fraction can be taken a
1/2 or better, as the ratio of the distances fromrW i 21 andrW i to
the surface. The exact procedure is immaterial if we ins
that surface crossing occurs with a very small time st
Dt i'Dtmin .

The set of RTs thus generated is used to calculate
probability densityF`(tuRW ). The time axis is divided into
binning intervals,t0[tmin , . . . ,tk , . . . ,tmax. Logarithmic
binning is convenient if both the short- and long-time beha
ior of F`(tuRW ) is to be calculated. IfNk is the number of
trajectories for whichtk21<t<tk , the distribution function
is computed as

F`~t5Atktk21uRW !5Nk /~Dtk Ntotal!, ~4.4!

whereNtotal is the total number of released trajectories a
Dtk[tk2tk21.

C. Results

We have calculated the RT probability density for Brow
ian trajectories of a free particle with unit diffusion coeffi
cient, which starts at four different locations within the un
sphere,R50.00, 0.50, 0.75, and 1.00. A sample trajecto
~in two dimensions! is shown in Fig. 1. It demonstrates ho
the moves are made smaller near the spherical boundar
the present calculation, we setDtmin51023 ~or 531023 for
R50). About 18 000 trajectories were run for each value
R ~42 500 forR50) and the RTs were collected in 32 bin
starting withtmin50.01. Each of the four computations re
quired only 4 min on a 150 MHz SGI Indy R5000 workst
tion. We have also checked that the results are insensitiv
the radius,b>1, of the ‘‘decision sphere’’@19#, which can
therefore be set to unity for spherically symmetric problem
The Brownian simulations, shown by the symbols in Fig.
are in excellent agreement with our theory which is theref
exact for spherical domains.

V. CONCLUSION

The residence time distribution of a particle within a sp
tial domain is a natural extension of the lifetime~or ‘‘first
passage time’’! distribution. While the latter can be define
only in cases where the particle does not exit from the
main, the RT distribution is valid in the general case of m
tiple exits and entries. The concept of mean residence t
could find more extensive practical applications in the futu
For example, in optical imaging of tissues one monitors d



a
on
th
io

to
in
e
i-
a
s

uc
’’
nfi
e
or

o
or
d
ic
ou
in
o

nd
b
r,
in

d
-

i
h
x
r-

th
ae
R
r

,
h

e

al

ee-
ons

re-
of

ads

ce

to

a

er

57 3945RESIDENCE TIME DISTRIBUTION OF A BROWNIAN . . .
fusive photon migration in turbid media@22#. One is inter-
ested in delays to photon migration induced by abnorm
regions in the tissue such as tumors. The mean phot
residence time in such regions is directly connected to
signal delay and hence to the possibility of tumor detect
by such methods.

The calculation of the RT distribution is equivalent
solving the trapping problem for a constant sink term with
the domain. The isomorphism has been used to derive
plicit relations, in terms of infinite series, for the RT distr
bution of a spherical domain in three dimensions with
arbitrary initial location of the particle. The derivation ha
yielded a surprising number of mathematical identities, s
as between the RT moments in their ‘‘Euler’’ and ‘‘Fourier
representations. The present derivation is limited to an i
nite observation time. It might be interesting to generaliz
to a finite observation epoch, though this will generate m
cumbersome expressions.

In parallel, we have developed a Brownian dynamic alg
rithm which is capable of calculating the RT distribution f
an arbitrarily shaped domain. In the case of a spherical
main, we find excellent agreement between the numer
and analytical solutions. In more general cases, one c
rely only on the numerical technique. It could be interest
to use it for investigating the effect of the domain shape
the distribution function. It is also straightforward to exte
the algorithm to generate the RT distribution for a finite o
servation timet. In fact, the algorithm in this case is simple
since one does not have to deal with the trajectory term
tion problem.

By integrating exp(2kt) times the numerically generate
RT distribution for a givent, one obtains the survival prob
ability for the corresponding trapping problem at timet, for
an arbitrary value of the trapping rate constant,k, imposed
within the domain@cf. Eq. ~2.14a!#. This might prove rel-
evant for analyzing certain diffusion influenced reactions
solution, such as energy transfer and fluorescence quenc
@23#. It can also describe biological reactions which, for e
ample, take place only within the interior of certain o
ganelles.
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APPENDIX A: DIRECT APPROACH
TO MOMENT CALCULATION

The general formula for thenth moment of the residenc
time distribution in a three-dimensional domainv was ob-
tained by Kac in the form of a multiple Coulombic integr
@8,10#,

t`
n ~RW !5

n!

~4p!nEv
drWn•••E

v
drW1 urW12RW u21

•••urWn

2rWn21u21. ~A1!
l
ic
e
n

x-

n

h

-
it
e

-
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n
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e
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-

We now show how this integral can be evaluated for a thr
dimensional sphere. Performing the integral over orientati

1

4pE0

2pE
0

p 1

urW2RW u
sinu du df 5

1

max~R,r !
~A2!

gives the following result for thenth moment within a
spherical domain of unit radius:

t`
n ~R!5n! E

0

1

r n
2 drn•••

3E
0

1

r 1
2 dr1

1

max~R,r 1!
•••

1

max~r n21 ,r n!
.

~A3!

From here, one may continue in two routes. Applying a
cursion relation leads naturally to the Euler representation
the moments whereas use of the Kac integral equation le
to their Fourier representation.

1. Recursion relation Euler representation

The integrals~A3! can be evaluated using a recurren
relation that holds forR<1,

t`
n ~R!5nE

0

1 1

max~R,r !
t`

n21~r !r 2dr, ~A4!

and starting from the condition thatt`
0 (R)51.

Let us assume that the general form of thenth moment is

t`
n ~R!5~21!n

n!

~2n11!! (
k50

n S 2n11
2k DAk

n R2~n2k!,

~A5!

where theAk
n are coefficients to be determined. Insertion in

the recurrence relation, Eq.~A4!, gives

t`
n ~R!5

n

RE0

R

t`
n21~r !r 2dr1nE

R

1

t`
n21~r !rdr

5~21!n
n!

~2n11!! F (
k50

n21 S 2n11
2k DAk

n21R2~n2k!

2~2n11! (
k50

n21 S 2n
2kDAk

n21G . ~A6!

Comparing with Eq.~A5!, we obtain a recurrence formul
for the coefficientsAk

n ,

Ak
n5Ak

n21 ,

An
n52 (

k50

n21 S 2n
2kDAk

n21 , ~A7!

with the initial conditionA0
051. This means that theAk

n’s are
independent ofn and obey the recursion relation of the Eul
numbers
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E2n52 (
k50

n21 S 2n
2kDE2k . ~A8!

ThusAk
n[E2k and Eq.~A5! agrees with Eq.~3.15!.

2. Integral equation Fourier representation

Kac has suggested evaluating the multiple Coulombic
tegral, Eq.~A1!, using the~square-normalized! eigenfunc-
tions c j (rW) and eigenvaluesl j of an integral equation

1

4pEv
drW

c~rW !

urW2rW u
5lc~rW !, ~A9!

whose kernel is the Coulomb potential@8,10,11#. Since the
eigenvalues span the space of the square integrable f
tions, one may insert the ‘‘decomposition of unity,’’

15(
j 50

`

c j~rW !E
v
drW c j~rW !, ~A10!

into Eq. ~A1! to obtain~for RW Pv) the following expression
for the nth moment of the RT density:

t`
n ~RW !5n! (

j 50

`

l j
nc j~RW !E

v
drWc j~rW !. ~A11!

Upon substitution of Eq.~A11! in Eq. ~2.13a!, one obtains
the following representation for the Laplace transform of
RT density:

F̂`~kuRW !5(
j 50

`
1

11kl j
c j~RW !E

v
drWc j~rW !. ~A12!

It is also easy to check that differentiation, as in Eq.~2.13b!,
reproduces Eq.~A11!. This forms the Kac integral equatio
approach. We shall now show that for a three-dimensio
sphere one can find the eigenvalues and eigenfunction
Eq. ~A9!, which leads to the explicit relations already d
rived in the sequel.

Using Eq.~A2! to perform the integral over orientation
the Kac integral equation simplifies for the unit sphere to

E
0

1 c~r!

max~r ,r!
r2dr5lc~r !, ~A13!

wherer 5urWu. Breaking the integral into two parts, for 0<r<
r and r<r<1 @cf. Eq. ~A6!#, it is easy to verify that the
eigenfunctions and eigenvalues are given by

c j~r !5
1

A2p r
sin@~ j 11/2!pr #, ~A14a!

l j5@~ j 11/2!p#22. ~A14b!

The eigenfunctions are normalized so that 4p*0
1c j (r )2r 2dr

51. Additionally, one has that

4pE
0

1

c j~r !r 2dr5~21! jA8pl j . ~A15!
-

nc-

e

al
of

Inserting these results into Eq.~A11! gives the moments in
their Fourier representation, Eq.~3.18!, whereas use of Eq
~A12! gives the Laplace transformed density in its Four
representation, Eq.~3.10!.

APPENDIX B: LONG-TIME EXPANSION

To derive Eqs.~3.26! and~3.31!, which provide a conve-
nient long-time description forF`(tuR), we note that Eq.
~3.30! may be rewritten as

F`~tuR!5
2

R
r~12R,t!, ~B1!

where the probability densityr(x,t) is defined by

r~x,t![ (
j 52`

`
~21! j

A4pt
expS 2

~x2xj !
2

4t D , xj[2 j .

~B2!

This r(x,t) is just the solution for the one-dimensional pro
lem of diffusion between two absorbing traps. As is w
known, it can be written either in terms of~an infinite num-
ber of! images or an eigenfunction expansion~cf. Ref. @24#!.
The first representation converges rapidly for short tim
whereas the second converges rapidly for long times.
same relation holds between Eqs.~3.30! and ~3.31!.

In the present case,r(x,t) obeys the equation

]r~x,t!

]t
5

]2r~x,t!

]x2
, ~B3!

in the interval21<x<1, with the initial conditionr(x,0)
5d(x) and the boundary conditionsr(21,t)5r(1,t)50.
The solution in terms of images, which leads to Eq.~B2!
above, is demonstrated schematically in Fig. 3.

The alternative solution is based on the observation
an eigenfunction of the operator]2/]x2 from Eq. ~B3! is a
periodic function in@21,1# which vanishes at the end poin
and is symmetric around the initial location,x050. Thus the
eigenfunctions are cos@p(j11/2)x#, which gives

r~x,t!5(
j 50

`

cosS p

2
~2 j 11!xD expS 2

p2

4
~2 j 11!2t D .

~B4!

Using this solution atx512R in Eq. ~B1! we obtain the
expression forF`(tuR) which, after simple manipulations, i
reduced to Eq.~3.31!. The latter reduces to Eq.~3.26! when
R51.

FIG. 3. The initial location of the particle,x050, between ab-
sorbing points~dashed lines! and its images,xj52 j , giving rise to
Eq. ~A2!.
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