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Residence time distribution of a Brownian particle
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The residence time of a Brownian particle within a spatial domain is the total time it spends within this
domain. It is shown that the residence time distribution can be calculated from the survival probability for a
constant trapping rate inside the domain. This isomorphism is exploited to derive explicit relations for the
distribution and its moments for a three-dimensional spherical domain. Results are verified by a Brownian
dynamics simulation.S1063-651X98)08504-3

PACS numbg(s): 05.40:+j, 82.20.Fd, 82.20.Wt

I. INTRODUCTION consider a more general case when the particle can exit from

Consider a particle which spends all of its lifetime within qnd enter into a finite domain an unrestricted number of

a prescribed spatial domain. The particle disappears eithdimes- The initial locationR, is either inside or outside.
from the interior of the domain or from its boundary. When 1he functionS(t), Eq. (1.1), which may be defined for an
the motion of the particle is governed by probabilistic laws,arbitrary domainw, does not necessarily decrease to zero at
such as, for example, random walk or Brownian motion, ondnfinitely long times. Moreover, it need not even be mono-
can speak about the partialeeanlifetime, the first moment tonic int.

of its lifetime distribution[1,2]. The mean lifetime is of fun- It is nevertheless meaningful to ask, for a given observa-
damental importance for diffusion influenced reactions, as ifion timet, what s the timer spent by the particle within?
is a measure for th&eciproca) reaction rate constant. This quantity, 7 <t, is the “residence time”(RT) of the

particle inw up to timet. Starting from the Green function

for diffusion, p(rt|R), the mean residence tintMRT) may
be defined in a manner analogous to Elg3), namely,

In more specific language, suppose tpét,t|R) is the
probability density of finding the particle at a poiﬁ'within
a domainw by timet, given that at=0 it was located at
point Re w. Under the above conditions, the survival prob-

I t
ability of the particle within the domain is defined by Tt(ﬁ):f dt'f dr p(rt'|R). (1.4
0 ®
S(tIR)= Lp(r,t|R)dr. (D" The MRT for an infinite observation tim¢=<, has found
several applicationg3—7]. However, the general problem of
physics literature. Therefore one goal of the present paper is
F(t|F§)= —aS(tlﬁ)/at. (1.2 to survey the RT theory for the physicist.

The “residence time” is known in the mathematics litera-
ture as the “occupation timef8-14]. (We prefer the less
aggressive terminology of “residence” timgS]. “Occupa-
tion” implies that the particle takes possession of the domain

. = . and may thus prevent other particles from entering. This is
TR = _J' &S(tIR)t dt=J S¢t|Rydt. (1.3  notthe case for the problem at hand, in which particles may
0 at 0 simultaneously occupy the same dompifihe basic theory
has been worked out by Ka8—11], who has returned to this
The second equality follows from integration by parts, usingproblem several times during his carg¢&®]. There are two
the fact that under the above-mentioned conditions the suroutes for obtaining the RT distributiai®ec. 1): The direct
vival probability decreases from unity to z€lb,2]. route involves a multiple integral for the moments which, if

In the usual case when a lifetime distribution can be deknown, gives the distribution in the form of a moment ex-
fined, w is either an infinite or a finite domain with reflecting pansion.(We apply this approach in Appendix)AThe sec-
or absorbing boundaries. During its lifetime, the diffusing ond route involves solving a partial differential equation for
particle never exits from this domain. In the present work wethe “Kac functional” [11]. In the language of diffusion in-

fluenced reactions, this is just the survival probability for a

diffusing particle which is scavenged inside(Sec. IlI).
*Permanent address: Karpov Institute of Physical Chemistry, 10, We could not find in the literature explicit expressions for
Vorontsovo Pole Street, Moscow 103064, Russia. the RT distribution and its momentgln two dimensions,
TPermanent address: Department of Physics, State University afhere the moments diverge, Darling and Kac have derived
Moldova, Mateevici Street 60, MD-2009, Chisinau, Republic of the long-time asymptotid®]). Therefore the second goal of
Moldova. our paper is to obtain explicit results for a three-dimensional

The average lifetime, the first moment of the lifetime distri-
bution, is thus given by
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script “t” indicates the observation timé-ig. 1). The RT

T(Wt|§) is the time spent by this particle inside the domain
o [9-14],

- t -
(WR) = foxw(fwt(t’))dt’, 2.1)

WhereFWt(t’) is the position of the particle at time instant

0=<t'=<t, along the specified trajectory;, andxw(F) is the
indicator function ofw defined as

. S 1ifrew
xw(r)=f 5(r—r’)dr’=[ (2.2

0 otherwise.

Thus in Eqg.(2.1) the integrand, Eq(2.2), is equal to unity
when the particle is inside and zero when the particle is
outside. This is why the integral is equal to the RT. By
inserting Eq.(2.2) into Eq. (2.1) and changing the order of
integration, one obtains

FIG. 1. A domainw with a Wiener trajectoryV, .

_ AWIR) = [ u(F 0, 2.3
sphere, possibly the only case where the theory can be ex- @

emplified analytically. We find two analytic representations
for the moments. One is in terms of finite, Euler-like poly-
nomials in the starting position of the random walk&Eu- ‘
ler representation). The other is in terms of an infinite trigo- @W(F,t)zf 5(FW(t’)—F)dt’ (2.4
nometrical serieq"Fourier representation). Each of the ! 0 !

two routes can yield either representation, as detailed in the ] . ]

text. The distribution function itself also admits several rep-iS the RT density, also known as the “local tim¢13].
resentations, all in terms of infinite series. Some series con- The probability density of the RT distribution is the en-
verge rapidly for short times and others at long tini8ec. semble average of the number of trajectories whose Ri in

where the random variable

). equalsr. Therefore we set
The third goal of our exposition is to explain how an - -
accurate Brownian dynami¢8D) algorithm for calculating Fi(7|R)=(8(7— 7(W{|R))), (2.9

Sec. v C show ice agreemant between the B smulationerea(2) is the Diracs function, and| ) denotes aver-
and our analytic expressions for the special case of spherical ing over _reatl|zat|ons of V\{|§ner tra.Jec"[ones Wh_'Ch start
domains in three-dimensional space. Clearly, for domains oo™ the pointR. The probability density is normalized to
more complex shapes the BD simulation might be the onlyHNtY:
route for obtaining results.

t -
f Fu(rR)dr =1, (2.6
IIl. GENERAL RELATIONSHIPS 0

Let » be a domain in three-dimensional space, as degye to thes-function form of Eq.(2.5).
picted in Fig. 1. The quantity of our interest is the residence ysing the above definitions, the MRT assumes the forms
time 7 spent by a Brownian particle im. This time is a
random quantity. It depends on the stochastic Wiener trajec- — .
tory chosen by the particle. The probability density of the Tt(R)EJ
distribution over r, Ft(rlﬁ), is a function of the particle
starting positiorR and the observation timte As we will see — (7(WR))= Jt<Xw(FW (t')))dt’
below, it is easy to calculate the MRF(R) from the Green 0 ‘
function of the free Brownian motion, Eq1.4). However, ¢
calculation of higher moments or the probability density it- =J dt'J dr(s(r— FWt(tI))>' 2.7
self is a more complicated task. Let us begin by introducing 0 ©
the formal definitions of the quantities under study in term
of stochastic trajectories.

t7'|:t(7'| ﬁ)dr = Jtr (8(7— T(Wt|§))>dr
0 0

SThese equalities admit various interpretations. The average
time with respect toF (7] ﬁ) is the ensemble average of
A. Residence time of Wiener trajectories (W, R), Eq. (2.1). The ensemble average of the indicator
Consider a Brownian particle which moves along thefunction,<xw(FWt(t))>, is the fraction of trajectories found
Wiener trajectoryW,; which begins at the poirR, the sub-  within the domainw at timet. This “residence probability”
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generalizes the notion of “survival probability” to partial surprising, since the MRT is the spatial integral of the den-
domains within the diffusion space. Hence the fourth equalsijty, o(r|R)= <<va(r)> see Eq(2.39). The latter obeys the
ity in Eq. (2.7) is a generahzatlon ofthe second equality jn Poisson equatlob4 5]

Eq. (1.3. However, F,(7|R) is generally not equal to the
negative time derivative of the residence probability. Finally,

. S _ . Are(r|R)=~8(r—R), (2.12
the mtegrand(é(r—rwt(t’))} is the Green function of the
Brownian particle which starts from the poiﬁtattzo, which is obtained by integrating the diffusion equation for
o o g(r.t|R) over time (A; is the Laplace operator in three di-
g(r,t’|R)E<5(r—rWt(t’))). (2.8  mensiong
For simple geometries, one might hope to perform the
Using this fact we arrive at the relationship.4), which ex-  “Coulombic convolution” integral in Eq(2.11) analytically.

presses the MRT in terms of the Green function of theEquation (2.11) indeed simplifies for spherical domains,
Brownian particle, in agreement with earlier wgg. Alter- ~ Which can then be used to calculate the momésés Ap-
nately, the MRT can be expressed using the ensemble avependix A. This then allows a moment expansion for the

age of the “local time,” see Eq92.3) and(2.4). Laplace transform of the RT distribution

The higher moments can be expressed as repeated convo-
lutions of g(r,t|R) with itself [14]. Consider the second RT ﬁx(klﬁ)ff F..(7|R) exp —kr)dr
moment as an example,

—_ . t N t N *

TtZ(R)Zf ?F(7|R)d7 :f (8(7— 7(W{|R)))d 7 2 D n R)k"/n!, (2.133

0 0 n=0
=(TAW{R)) where thenth moment is given by

| "FL(KIR)
K"

t t N N
- [ at | dttrFu Gt 2.8 ; (2.13

k=0
From the Markov property dfV; and the fact that Eq2.9a

is symmetric with respect to the interchange péndt,, one  The alternative route taken below allows a direct computa-
obtains[14] tion of F..(k|R) by noting that it obeys a partial differential
equation with a clear physical interpretation.

— . t ty - -
R=2! [ dt [ a0, () (ol 1)
0 0 B. Relationship to the trapping problem

_ > - [t t2 - = The alternate route to the Laplace transform of the RT
=2! LerLdrlfodtZJ dtyg(ra,ts|R) density begins with the “Kac functionall11,17. It can be

given physical meaning as follows. The key point is the ob-
X g(rat—ty|r7). (2.9 servation that the integrdl}F(7|R)exp(—kndr is the sur-
vival probability S(t|k|R) of our particle when it may be
trapped only within the domaimw, and with a constant trap-
ping ratek. Thus as we argue below

The nth moment is thus obtained from thmefold convolu-
tion of the diffusion Green function with itself.

For an infinite observation time, change the order of inte-
gration tofodtlftldtz and set;=t,—t;. The upper limit in . t .
both time integrals may now be replaced &y For three- S(t[k|R)= fOFt(Tl R) exp(—kndr  (2.143
dimensional diffusion the Green function is
=(ex —kr(W,|R)]).

g(r.t|R)=(4mt) " *Pexd —|r—R|%4t], (2.10 (2.141

where, for simplicity, we set the diffusion constant to unity . . . .
(thust stands foDt). Inserting into Eq(2.9b and perform- The second line follows by using the RT probability density,

ing the temporal integrals analytically, one obtdifi0], Eq. Eq. €2'5)’ and mtelrchang[]g the order O,f averaging anq inte-
(IV.8.5)] gration. Thus to find=,(7|R) one could first solve the diffu-

sional problem forS(t|k|R) and then invert the integral re-

_ [ . oL lation (2.143.
2(R)= . zf drzf drqri—R| 7 Yr,—rq 71, To derive Eq.(2.14, note first that the survival probabil-
(4m)"Jo ¢ 2.1 ity of a stationary particle located at the po'rﬁtwhere the

local trapping rate coefficient Is(F), is

/—\
pen
p—

where|r| denotes the norm of the vector The fact that the A A
Coulomb potential appears in the above integral is not at all S(t|r)=exd —k(r)t]. (2.15
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Suppose the particle moves along the trajectdty; given To calculate the survival probability, one first has to find
by the set of point$t’,FWt}, wheret’ <t. The survival prob- the Green functiorg(?,t|F§) by solving a diffusion equation
ability of the particle becomes with a sink term[11],

t ag(r t|IR)/at=[A;—kH(1—|r)]g(r.t|R). (3.2
S(t|wt)=exp(—f k(rWt(t’))dt'). (2.19
° HereA; is the Laplace operator acting on the variabland
H(z) is the Heaviside step function, i.é4,(z) =0 for z<0
and H(z)=1 for z>0. The initial condition isg(r,0|R)
=5(F— ﬁ). As a boundary condition, we use the evident
. B -
= _ S property thatg(r,t|R)—0 when|r|—c.
S(t|R)= < ex;( fo k(rWt(t ))dt )> (2.17 The survival probability of the Brownian particle is given
by

This is known in the mathematics literature as the “Kac
functional” [E_)_g_, Eq.(5;32.3) in Chap. 15 of Ref[13] ]. In tr_ue_ S(K|R) = f o(F t|R)dF, 3.3
case of our interesk(r) is a nonzero constant only within
the domainw,

Averaging over all trajectories which begin at polix one
obtains

with integration over the whole space. The survival probabil-
K(F) =Ky (F). (2.19 ity of interest is obtained frons(t|k|R) by taking the limit
¢ t—oo,
It is convenient to use, instead of E®.2), the Kolmog-

Substituting thik(r) into Eq.(2.17) gives the survival prob- orov backward equatioft]

ability in the desired form of Eq2.14h. We will solve the
trapping problem directly, for an infinite observation time, to

obtain S(o|K[R). ag(r,t|R)/at=[Ag—kH(1—|R])]g(r.t|R), (3.9

whereAg is the Laplace operator acting on thrétial vari-

able, R. By integrating Eq.(3.4) over r, one obtains an
To illustrate the general approach presented above, wanalogous equation for the survival probability,

consider the case when the domairis a three-dimensional . . .

sphere. In this case the survival probabilft|k|R) can be IS(tIk[R)/ot=[Ag—KkH(1—[RDIS(tKIR), (3.5

calculated. To avoid too cumbersome expressions we calcu- | . .

late the probability densit..(7]| ﬁ) as well as the moments Subject to the boundary condition th&{t[k|R)—1 when

R e R— 0. The initial condition isS(0|k|R)=1.
Igrkeasnﬂ:r;flfrg:rer!y long observation time, when E.143 Due to the spherical symmetry, the survival probability

depends on a single coordinate, namely, the distaRce

o R © ) =|R| from the center of the sphere. Thus we write the La-
S(oo|k|R)=Fx(k|R)Ef F.(7|R) exp(—kr)dr. placian in spherical coordinates. In addition, whien the
0 survival probability becomes independent of time and its
(3.1 time derivative vanishes. As a consequers{es |k|R) satis-
fies the equation

IIl. EXPLICIT EXPRESSIONS

This means that the survival probabili§(x=|k|R) is the

Laplace transform of the probability densigy, (7] Ii) corre-
sponding to the value of the Laplace parameter equal to the
absorption rate constakt

We calculate the survival probability in Sec. lll A. While . . -
a similar derivation can be found in a late work of Kad],  With the corresponding boundary condition.
he has not proceeded to obtain explicit expressions for the We seek a solut!on of Eq3_.6). in the form ,S(°°|k|R)
distribution function and its moments. This is done in Secs— | (R)/R. The functionf(R) satisfies the equation
I B and Il C below. To our knowledge, this is the only

S([k|R)=0, (3.6)

1dR2d kH(1-R
RedR " gr| TKHETR)

. . . . h g d2f
case yleldmg an analytical sqlutlo.n. which, moreover, gener  KH(1-R)f=0, 3.7
ates a surprising number of identities. dR2
A. Survival probability with the boundary conditiong(0)=0 and R™f(R)—1

when R—oo. The former condition is necessary for the fi-

In this subsection we calculate the survival probability of ". B . e
a Brownian particle which may be absorbed inside a spheri[]Iteness ofS(<|k|R) at R=0. The solution satisfying these

cal domain. We take the center of the sphere as the origiROundary conditions reads
and its radius as a unit of length. We also assume that the .
diffusion coefficient of the Brownian particle is equal to f(R)= Asinh( VkR), R<1

3.8
unity. This sets the distance and time units. R+ B, R>1. 39
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The constanté& andB are determined from the continuity of TABLE I. Moments of the residence time distribution within a
f(R) and its first derivative aR=1. As a result, one obtains unit sphere,72(R), for two initial starting locations.

[11]

n 0 1 2 3
sinh(VkR) R<1 R=1 1 1/3 4115 34/105
JkR costyk) ' R=0 1 1/2 5/12 61/120
S(=|k|R) = (3.9
1——+itanr(\/E) R=1
R \/ER ' N (_1)n 22n+ln!

+
TSC(R):—,Ean(_)- (3.19
We note an alternative form for this survival probability, (2n+1)IR 2
obtained by a Fourier expansion of sifkR), using the —
basis sifir(j+1/2)R] in the interval[0,1]. For R<1 this  Thus7.(R) are polynomials of degreenin R.
gives These polynomials can be written explicitly using the se-

ries decomposition of the Euler polynomialsee Eg.
2~ sifw(j+ 5HR] (23.1.7 in Ref. [15]]. Denoting the “Euler numbers” by
S(»|k|R)== E (1)) —————. (.10 E,=2"E,(1/2), and taking into account the fact tHa§,, ;
R =0 [(G+2)7]°+k =0, one obtains
The last result is immediate using the “direct approach,” n
where it is recognized as an eigenvalue expansion in the M(R)=(—1)" 2
eigenfunctions of the Kac integral equation, see Appendix A. (2n+1)! <o
In the following subsections the above solutions are used to (3.19

determine the probability density of the RT distribution and o
its moments. Thus all the RT moments aevenpolynomials in the start-

ing point, R.

B. Moment generation For the first moment we get

We only need to generate the moments for random walks _ 1 1
starting within the sphere: foR>1, Eq. (3.9 reads Ti(R)=§—6R2. (3.163
S(|k|R)=C+ S(|k|1)/R, where C is a k-independent

constant. Equatiof2.13 thus implies that fon=1 This result, forR=0, has been obtained in EQR.37) of

Blumen and Zumofeti3]. Note thatR?/6 is the mean life-
time for diffusional motion starting at the origin of a sphere
— of radiusR (i.e., when an absorbing boundary condition is
The moments of the RT distribution’.(R), follow directly imposed at =R). Thus the MRT starting at@R<1 equals
from Egs.(3.9) and(3.10), yielding their Euler and Fourier the MRT starting at zero minus the mean lifetime in a sphere

(R)=7(1)/R. (3.1

representations, respectively. of radius R. The analytical form of the second and third
moments is
1. Euler representation
The Euler form for the moments is based on the connec- Zo 2 1,1,
tion between the Laplace transform, E§.9), and the gen- 7(R)= 12 6R * 60R ' (3.168
erating function of the Euler polynomialg,,(x),
26 n AR=k Spei e oo (3160
=S B L (312 = 120 24" 40 840

_ ) For the special cases when the initial condition is in the
see Eq(23.1.3 in the handbook of Abramowitz and Stegun center or on the surface of the sphere, the moments of the RT

[15]. Thus we rewrite Eq(3.9) as are given by
A A 1 [2e2K(R+D2]  9a-2\K(R+1)2] ol
P KR= R Tk e 2Fan (0= (=" T Ean, (3.173
1< R+1|(2k)"t
== > [1-(-D"E (_)—, YR n! 2042/ 52n+2
R =0 o2 n! 72(1)—(—1)"m2 27 = 1)Bon+ 2,
.13 (3.17h

where we have set= =+ 2k. Comparing with the moment where theB,’s are the Bernoulli numbers, see Hg3.1.20
expansion, Eq(2.133, one obtains in Ref.[15]. The first few values are summarized in Table I.
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2. Fourier representation e
The Fourier form of the RT momentfor R<1) follows = 05 F a)
by differentiating Eq.(3.10 according to Eq(2.13h. We Qé ' ol
find that % ook 7
<
Y 2n! - R SIr{W(J+%)R] %E 0.5 F .R—05
(R =— -1y ——— . (3.18 = o/ B0
=R JZO( [m(j+3)]5""Y R0
-1.0 B
The equivalence with the Euler representation in gl4)
implies the identity L L L
-2.0 -1.5 -1.0 -0.5 0.0
- _sin((2j +1) mx] (—1)"2n 1 logy 7
E (_1)] . 2n :_42 _ |E2n—1 X+ 5/,
= (2j+1) (2n—1)! 2
(3.19 b)
which can also be obtained by replacirdy x+ 1/2 in the GRUN ¢
Fourier expansion of the Euler polynomials, E23.1.17 of =
Ref.[15]. r 20
WhenR=0, Eq.(3.18 simplifies to - =05
— ZUREY 1.0 R=0
7(0)=———7B(2n+1), (3.20 R=075
T R=1
1 1 1 1
whereB(m) is the series 02 0.4 0.6 0.8
o T
B(m)EJZO (—D'@j+1)™", (3.2 FIG. 2. The residence time probability densit@ logarithmic

scale and(b) linear scale. Full lines are analytic solutions, Egs.
defined in Eq.(23.2.22 of Ref. [15]. Equivalence with the (3.30 and(3.31), or Egs.(3.25 and(3.26 for R=1. Different lines

representation in Eq(3.173 arises because g22n+1) correspond to the different starting positions, as indicated. Symbols
=(m2) "1 E,,l(2n)!, see Eq.(23.2.22 in Ref.[15]. are from Brownian dynamics simulations, see Sec. IV C. Sphere

For R=1, Eq.(3.18 simplifies to radius and diffusion constant are both unity.

—- 2(n+1) 1. Initial position on the surface, R=1
(1) =2(2/m)?" YnIN(@2(n+ 1)), (3.22 _ _ L
The simplest case involves a particle initially at the sur-

where(m) is defined by Eq(23.2.20 in Ref.[15], face of the sphere. By settifg=1 in Eq. (3.9 we obtain

* 1

ANm)=> (2j+1) "=(1-2"™¢(m), (3.23 S(c|K|1)= i k)

j=0
and {(m) is the Riemanry function[15], {(m)=={_,j ™ _ 1 . PN e
This result is the same as E@.17b in view of the identity ~k 1+2j21 (1)) exp(—2j k) |.
that 27(2n)=(2)2"|B,,|/(2n)!, see Eq.(23.2.16 in Ref.
[15]. (3.29

N _ The second equality is obtained by expandinfl¥/exp
C. The probability density (—2\Kk)] in a Taylor series. Inverting the Laplace transform,

With the moments determined, the probability density it-S(2K|1), we obtainF..(7|1) in the form convenient to ana-
self is given by the moment expansion, Hg8.133. How-  lyze the behavior at small values of
ever, this expansion does not converge rapidly at long times.

o0 . 2
We thus proceed to invert the Laplace transforms obtained in _ 1 j J
X : . o = + - -——1,
Sec. Il A. For didactic purposes, let us proceed in order of Fa(711) Jrr 1 21-21 (=1)7ex T
complexity. Consider first the case when the particle starts at (3.29

the surface of the spherB=1, then when it is outside the ) . .
domain and finally the case<1. The different solutions are S€€ Ed.(29.3.84 in Ref. [15]. An expression which con-
demonstrated in Fig. 2 and compared with results of Brownverges rapidly for large can be derived in several wajf.
ian simulations using the algorithm described in Sec. IV beEd- (3.31) below,

low. They are cast in terms of two infinite series, one which = 5

converges_rapldly for s_hort times and another which con- Fw(7|l)=22 exd — W—(Zj +1)27). (3.26
verges rapidly for long times. i=o0 4
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It follows that F.(7|1) tends to infinity as 1y, when For R=1, Eq.(3.3) reduces to Eq(3.26. For R=0, it
7—0, and to zero as exp(m*7/4), whenr—x, see Fig. 2.  simplifies to
2. Initial position outside the sphere, KL 1 ” . 2j+1)2
P o | R0 == > (—1>J<2j+1>ex;{—u
When the particle starts outside the absorbing domain, Ja 2 =0 47

R>1, the desired solution may be related to the above solu-
tion for R=1. Let us divide the Wiener trajectories into two
groups, depending on whether they enter into the domain or
not. For a sphere of radius unity, the fractip(R) of trajec-
tories which reach the surface of the sphere is given by (332

(3.27 When 7—0, F.(7|R) with R<1 tends to zero because,
when the starting point is located inside the domain, the par-

This “trapping probability” solves Eq(3.6) with the bound-  ficle surely spends some time there. The short-time behavior

ary conditionsy(1)=1 and y(=)=0 [1]. The fraction of IS Proportional to exp-(1-R)%47]. While the small 7

trajectories which never enter into the spherical domain i&Symptotic behavior of the probability density is qualita-

[1-y(R)]. tively c_jn‘fe_rent whenR>_ 1 andR<1, the larger asymptotic
A common feature of the trajectories belonging to thePehavior is the same in both cases. The probability density

fraction y(R) is that at a certain instant they enter into the @Pproaches zero proportional to expt*r/4) whent—.

domain for the first time. Their contribution t6..(7|R) is

thus y(R)F..(7|1). This is why, forR>1, Eq.(3.9 has the IV. NUMERICAL SIMULATIONS

form

*° 2
=73 (~1)(2] +1)exp( - 2] +1)27).
P

y(R)=1/R.

The goal of our Brownian simulations is to validate the

S(o|k|R)=[1— ¥(R)]+ ¥(R)S(|K|1). (3.2 ana_lytical sc_)lution for the RT density as ol_)tained in the pre-
ceding section. For domains more complicated than spheri-
Mathematically, botts(s|k|R) andy(R) obey the same dif- cal, numerical simulations are the sole available route. We

ferential equation, but with different boundary conditions. limit the computations to spherical domains because their
Consequently, foR>1 the RT distribution is results can be compactly described as a function of the single

initial parameteR. In the following subsections, we describe
F.(7lR)=2[1-y(R)]8(7)+ ¥(R)F..(7]1). (3.29 the principles, details, and results of our Brownian dynamics

simulations.
This universal 1R scaling holds only when the particle starts
outside the spherical domain. A. Principles of Brownian dynamics
3. Initial position inside the sphere, R1 Our goal is to run stochastic trajectories of freely diffus-

. . e ing particles(no boundaries, no sinksand count directly the
When the particle starts from a point located inside th&jme enochs spent in a predefined domain. The simplest ap-
domain,R<1, the dependence dhis not as simple as in the proach might involve running lattice random walks4],

previous cases. Inverting the Laplace transform of the surnere at each time step the particle moves with equal prob-

vival probability, Eq.(3.9), gives ability (1/6) in one of the six canonical directions on a pre-
w ) ’ defined grid. In its simplest form, this approach requii¢s

F.(7]R)= 1 2 (_1)jexp( _ (2j+1-R) ) fine (uniform) grid, on which a sphere is adequately repre-
* JamR 5= 4t ' sented;(ii) small and constant time steps; afii) a large

(3.30 simulation box(as compared with the radius of the sphere
to allow accurate calculation of the long-time tail of

As before, this series converges rapidly for smallThe F..(7] ﬁ). These demands can make the computation time
probability densityF..(7|1), Eq. (3.25), is recovered when  consuming.

R—1. . . ) Brownian dynamics is an off-grid method for simulating
An expression convenient to analyze the largaehavior  diffusion processes, which allows taking large and variable
of F..(7|R) is obtained by inverting E¢3.10, namely, time steps and is not restricted to a finite simulation box

[16,17. This results in enhanced computational accuracy
and/or reduction in computational time. The isomorphism
between the diffusion and Langevin equations implies that,
in the absence of interactior{potentials, boundaries, elc.

the particle can be moved using Gaussian random numbers.
These are random numbers out of a Gaussian distribution
whose width corresponds to the predefined time step.
Alternative ways of deriving this result directly from Eq.  For the present problem, complications arise near the
(3.30 involve the “Poisson summation formula” or the pro- boundaries of the domaiwn, not because these are physical
cedure discussed in Appendix B. Note that the moments caboundaries of any sort, but because we wish to record pre-
culated from [{F..(7|R)7"dr using this expression are cisely the fraction of time spent by a particle within Thus
given, again, by Eq(3.18. for a hop which carries the particle across the boundary, it is

(7] R)=é ;zo (—1)! sin(%(Zj +1)R

772
xexp<—7(2j+1)27). (3.31)
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impossible to decide how to divide the corresponding time 1— 2
epoch between the interior and exteriorsafHence crossing w(6,¢p)= : N 4.3
the boundary must be done with small time steps. The choice 4m(1—-2ycod+ )

of time steps is one consideration in constructing the Brown- =~ . )
ian dynamics algorithm. Another consideration involves theVhich is uniform over¢ and depends on the azimuthal angle

correct rules for terminating trajectories which have migrated? between the vectons andr;.,. Thus one random number
far away from the region of interest. These considerations aris used to determiné@ whereas a second, uniformly distrib-
discussed below. uted random number determines the polar arfjle

For each trajectoryr;}, the total residence time within
B. Technical detail the domainw is computed as follows. If théth move oc-
In a given run, the particle is released from the initial curred inside the domaim;_,,rie o, 7 is incremented by

position, F0=F§, and moved through a sequence of pointsA.ti' If it occurred outside is no_t incremented. !f the par-
1 o190 Theith h duri defined ticle crossed the surface af during the move,r is incre-
Eirmi}é ilnt_er\'/a’lii ' .s.,o thea:t Op occurs during a predelined \,qnteq by a fraction oA\t;. This fraction can be taken as
i

1/2 or better, as the ratio of the distances frqm, andr; to

Fi:Fifl"_ mé' (4.1) the surface. The exact procedure is immaterial if_we insist
that surface crossing occurs with a very small time step,
AtiNAtmin.

HereG is a vector of Gaussian random numbers with a stan- The set of RTs thus generated is used to calculate the

dard deviation of unity. Thug2At; is the standard deviation probability densityF..(7]| ﬁ)_ The time axis is divided into
of the Brownian particle during the time step. The Gaussiarbinning intervals, 7= min, - - - ,7k» - - - »Tmax. LOgarithmic

random numbers can be generated by inversion of the err@finning is convenient if both the short- and long-time behav-

function.[17] or th.e Box-Muller method18]. . __ior of F(7]| Ii) is to be calculated. IN, is the number of
The time step is chose.n S0 that Fhe probap|llty of .Cr.oss'nQrajectories for whichr,_ <7<, the distribution function
the surface of the domaim in a single hop is negligibly is computed as

small. Therefore the minimal distance of the partide,

from the surface ofw is computed before making a new Fo(r=rm JAB)=N./(Am N 4.4
move.At; is then determined from (7= V71| R) =N/ (A 7k Noow), “449

where Ny is the total number of released trajectories and
— A’TkE Tk Tk—1-
d;=3V2At;, 4.2

. . . C. Results
so that the root-mean-square displacement is several times

smaller thand, . Thus as the particle approaches the bound- We have calculated the RT probability density for Brown-
ary its time step constantly decreases. Since the particle mu§n trajectories of a free particle with unit diffusion coeffi-
cross the surface within a finite number of time steps, wesi€nt, which starts at four different locations within the unit
require thatAt;=At,,,. In the present implementation, the SPhere,R=0.00, 0.50, 0.75, and 1.00. A sample trajectory
minimal time stepAt i, is chosen smaller thaf 7, which (in two dimensiongis shown in Fig. 1. It demonstrates how
is the smallest temporal bin introduced below. the moves are made smaller near the spherical boundary. In
An important aspect of the algorithm is how to terminatethe present calculation, we sty,=10"* (or 5x 10 for
a trajectory. The termination rules should make a trajectoryR=0). About 18 000 trajectories were run for each value of
generated with a finite number of hops, equivalent to an inR (42 500 forR=0) and the RTs were collected in 32 bins,
finite one. For problems of spherical symmetry this is easyStarting with 7,,,=0.01. Each of the four computations re-
Suppose after thith move the particle escaped to a paint quwed only 4 min on a 150 MHz SGI Indy R5000 workgta—
outside the spherical domain, namely,r;>1. According to tion. We have also checked that the results are insensitive to
Eq. (3.27), its probability to return tol the surface is; the radiusb=1, of the “decision sphere’[19], which can
=i/r- 'Wh,ereas its escape probability is-; Thereforé therefore be set to unity for spherically symmetric problems.
iver; ’a uniform random numbef betweenlb and 1 th'e The Brownian simulations, shown by the symbols in Fig. 2,
?rajectory is terminated i> ; . Otherwise, it is placed back are in excellent agreement with our theory which is therefore

on the surface of the unit sphere. For spherically symmetric(:axact for spherical domains.
problems, the location on the sphere to which the particle
returns is immaterial, because the exit points will also be

distributed with spherical symmetry. The residence time distribution of a particle within a spa-
For a(finite) domainw of an arbitrary shape, one may tja| domain is a natural extension of the lifetinter “first

use the algorithm of Lutet al. [19-21. The domain is en-  passage time)’ distribution. While the latter can be defined
closed within a virtual “decision sphere” of radils When-  only in cases where the particle does not exit from the do-
everr;>b, the trajectory is either terminated or returned tomain, the RT distribution is valid in the general case of mul-
the surface by comparing a uniform random number withiiple exits and entries. The concept of mean residence time
vi=blr;, as before. However, the return point on the spheregould find more extensive practical applications in the future.
ri. 1, is selected from the probability density For example, in optical imaging of tissues one monitors dif-

V. CONCLUSION
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fusive photon migration in turbid medi®22]. One is inter- We now show how this integral can be evaluated for a three-

ested in delays to photon migration induced by abnormatiimensional sphere. Performing the integral over orientations

regions in the tissue such as tumors. The mean photonic

residence time in such regions is directly connected to the 1 (27 (= 1

signal delay and hence to the possibility of tumor detection g J’ ——=

by such methods. mJo Jo|r—R]
The calculation of the RT distribution is equivalent to , "

solving the trapping problem for a constant sink term within9ives the following result for thenth moment within a

the domain. The isomorphism has been used to derive exPherical domain of unit radius:

plicit relations, in terms of infinite series, for the RT distri-

bution of a spherical domain in three dimensions with an v ) _ flrz dr. ..

arbitrary initial location of the particle. The derivation has * “Jo M

yielded a surprising number of mathematical identities, such

sind do d¢ = (A2)

1
max R,r)

as between the RT moments in their “Euler” and “Fourier” 2 1
representations. The present derivation is limited to an infi- X fo rydr maxR,r;)) maxrp_q.My)
nite observation time. It might be interesting to generalize it

to a finite observation epoch, though this will generate more (A3)

cumbersome expressions. ) ) )

In parallel, we have developed a Brownian dynamic algoFrom here, one may continue in two routes. Applying a re-
rithm which is capable of calculating the RT distribution for CUrsion relation leads naturally to the E_uler representation of
an arbitrarily shaped domain. In the case of a spherical ddn® moments whereas use of the Kac integral equation leads
main, we find excellent agreement between the numericdP their Fourier representation.
and analytical solutions. In more general cases, one could
rely only on the numerical technique. It could be interesting 1. Recursion relation Euler representation
to use it for investigating the effect of the domain shape on  The integrals(A3) can be evaluated using a recurrence
the distribution function. It is also straightforward to extend (g|ation that holds foR<1,
the algorithm to generate the RT distribution for a finite ob-
servation timd. In fact, the algorithm in this case is simpler, —
since one does not have to deal with the trajectory termina- Tx(R):”f maxR,r)
. 0 '
tion problem.

By integrating exp{kt) times the numerically generated
RT distribution for a givert, one obtains the survival prob-
ability for the corresponding trapping problem at tityeor
an arbitrary value of the trapping rate constdgtjmposed

S = VRN
T (r)redr, (A4)

and starting from the condition tha_ﬂ(R) =1.
Let us assume that the general form of thie moment is

n

_ I
within the domain[cf. Eq. (2.143]. This might prove rel- Tg(R):(_l)nn—‘ 2 2n+1 Al R2(n—k)
evant for analyzing certain diffusion influenced reactions in (2n+1)! &o | 2Kk

solution, such as energy transfer and fluorescence quenching (A5)

[23]. It can also describe biological reactions which, for ex- N - . L
ample, take place only within the interior of certain or- where theA, are coefficients to be determined. Insertion into

ganelles. the recurrence relation, E¢A4), gives
— n(fR— j R
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APPENDIX A: DIRECT APPROACH Comparing with Eq.(A5), we obtain a recurrence formula
TO MOMENT CALCULATION for the coefficientsAE,
The general formula for theth moment of the residence A= AN-1
time distribution in a three-dimensional domainwas ob- kT
tained by Kac in the form of a multiple Coulombic integral 1,
[8110]! n_ __ n n—-1
A== 2 | kA (A7)
— . n! .. o
n = ... _ _l. .
7(R)= (47.,)nfa, T Ldrl r1=R| "o with the initial conditionAS=1. This means that th&’s are

) independent of and obey the recursion relation of the Euler
—rp_q L (A1)  numbers



3946 BEREZHKOVSKII, ZALOJ, AND AGMON 57

T_2 Zo Z9

n—-1 (Zn

Ean=— 2, Zk)EZK. (A8)

ThusAR=E,, and Eq.(A5) agrees with Eq(3.15.

2. Integral equation Fourier representation

Kac has suggested evaluating the multiple Coulombic in-
tegral, Eq.(Al), using the(square-normalizedeigenfunc-
tions zpj(F) and eigenvalues; of an integral equation

1 - ¢p)
— | dp =——=
4o |r—pl

T x

FIG. 3. The initial location of the particleso=0, between ab-
R sorbing pointsdashed lingsand its imagesx;=2j, giving rise to
=N\y(r), (A9)  Eq.(A2).

_ _ Inserting these results into EGA11) gives the moments in
whose kernel is the Coulomb potent[&,10,11. Since the their Fourier representation, E(.18), whereas use of Eq.
eigenvalues span the space of the square integrable fun@A12) gives the Laplace transformed density in its Fourier

tions, one may insert the “decomposition of unity,” representation, Eq3.10.
* R . R APPENDIX B: LONG-TIME EXPANSION
1=> wjmf dpi(p), (A10) _ _ _
j=0 ® To derive Eqs(3.26) and(3.31), which provide a conve-

. nient long-time description foF..(7|R), we note that Eq.
into Eq. (Al) to obtain(for Re w) the following expression (3.30 may be rewritten as
for the nth moment of the RT density: 5
Fw(T|R)=§p(1—R,7), (B1)

Z(R=n! 2, x;‘zpj(fe)f dryg(n.  (A1D)
j=0 ® where the probability density(x, ) is defined by

Upon substitution of Eq(A11) in Eg. (2.133, one obtains Z(—1)l (x—xj)z _
the following representation for the Laplace transform of the P(X,T)E__Zoo e exp —— | X=2j.
RT density: = T

(B2)

~ I 1 - > o This p(x, 7) is just the solution for the one-dimensional prob-
Fx(k|R):JZO 1+K\; %(R)Ldrz/z,-(r). (A12) lem of diffusion between two absorbing traps. As is well
known, it can be written either in terms @dn infinite num-
It is also easy to check that differentiation, as in E3j13b,  ber o images or an eigenfunction expansi@h Ref.[24]).
reproduces Eq(A11). This forms the Kac integral equation The first representation converges rapidly for short times
approach. We shall now show that for a three-dimensionajvhereas the second converges rapidly for long times. The
sphere one can find the eigenvalues and eigenfunctions §8me relation holds between E¢8.30 and(3.31.
Eq. (A9), which leads to the explicit relations already de- In the present casg(x, ) obeys the equation
rived in the sequel.

2
Using Eq.(A2) to perform the integral over orientations, Ip(x,7) _9"p(X,7)

; B3
the Kac integral equation simplifies for the unit sphere to aT ax? &5
Log(p) in the interval—1<x=<1, with the initial conditionp(x,0)
0 ma>(r,p)p dp=\y(r), (A13) =§(x) and the boundary conditions(—1,7)=p(1,7)=0.

The solution in terms of images, which leads to EB2)
wherer =|r|. Breaking the integral into two parts, fosp=< above, is demonstrated schematically in Fig. 3. .
r andr=<p=1 [cf. Eq. (A6)], it is easy to verify that the The alternative solution is based on the observation that

. . 2 .
eigenfunctions and eigenvalues are given b an _elg.enfunct.lon.of the oper_atd?/ax. from Eq. (B3) is a
g g g y periodic function in — 1,1] which vanishes at the end points

1 and is symmetric around the initial locatio,=0. Thus the
Pi(r)= sin (j +1/2)#r ], (Al149 eigenfunctions are cps(j+1/2)x], which gives
N2mr
. . LIPS . 2
N=[(j+12m] 2 (A14b) p(x,r)=j§0 cog 5 (2j+1)x| exp — =(2j+1)°7].
The eigenfunctions are normalized so that 4y;(r)?rdr (B4)
=1. Additionally, one has that Using this solution ak=1—R in Eq. (B1) we obtain the
L expression foF..(7|R) which, after simple manipulations, is
47Tf gy (r)r2dr=(—1)1 J8m\; . (A15)  reduced to Eq(3.31). The latter reduces to E¢3.26 when
0 R=1.
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