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Energy transport and optical line shapes in dimers: Analytical description of the influence of
colored noise
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For a dimer, i.e., the simplest molecular aggregate, the influence of local vibrations on the transport of
electronic excitation energy and on the optical absorption line shape is investigated. The vibrations give rise to
site energy fluctuations which are described by a dichotomic stochastic process with colored noise. The model
includes also the limits of static and infinitely fast fluctuations. The equations of motion for the density matrix
of the system and for the correlation functions describing the optical line shape are calculated analytically. The
coherence of transport properties, the time dependence of the memory function of the generalized master
equation, optical line shapes, and the connection between them are discussed.@S1063-651X~98!08204-4#

PACS number~s!: 02.50.Ey, 05.30.2d
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I. INTRODUCTION

The dynamics of a quantum particle, e.g., of an elect
or an exciton, in organic molecular aggregates is the sub
of many experimental and theoretical investigations in rec
years. The interest in these investigations originates b
from questions with respect to the fundamental understa
ing and with respect to potential applications, e.g., in non
ear optics, molecular electronics, photonics, etc. One of
questions is whether the transport of the quantum part
occurs coherently in a wavelike manner or incoherently vi
hopping process. The answer to this question is fundame
for the understanding of luminescence in organic mater
or for the description of energy transfer in photosynthe
light harvesting systems. With the development of femtos
ond laser spectroscopy new experimental information
available which might help to elucidate this question.

From the theoretical point of view the coherence or inc
herence of the quantum particle transport is strongly in
enced by its interaction with vibrational degrees of freedo
To describe this interaction, several models have been de
oped~for references see@1,2#!. In these models it is assume
that at low temperatures the particle moves coherently
wavelike manner according to the Schro¨dinger equation.
With increasing temperature the coherence of the wav
disturbed by the interaction with vibrational degrees of fre
dom and the transport occurs via a hopping process whic
described by a master equation or in the continuum limit
a diffusion equation. A fully quantum mechanical approa
to this transport problem was performed on the basis of
density operator equation together with projection techniq
resulting in a generalized master equation@3–5#, or based on
Green’s function techniques@6#. In another approach the vi
brational degrees of freedom were considered as clas
variables giving rise to fluctuations of the local excitati
energies and of the transfer matrix elements. The excita
energies and transfer matrix elements were treated as i
pendent Gaussian stochastic processes with white noise@7–
9#, which is a reasonable assumption at not too low temp
tures. This model was quite successful in the descrip
571063-651X/98/57~4!/3928~9!/$15.00
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of a series of experimental situations such as optical abs
tion, spin resonance, or quantum particle transport~for ref-
erences see@2#!. A straightforward generalization of thi
model, performed in recent years, is the replacement of
white noise processes by colored noise with exponenti
decaying correlation functions@10–16#. This generalization
makes the model considerably richer, because it allows
fluctuations on all time scales including the static and wh
noise limits. At the same time the equations become m
complicated and up to now also in the case of dichotom
colored noise in dimers only numerical solutions of the tra
port problem were obtained. In this paper we present an a
lytical description of energy transfer and optical absorpt
in dimers when the influence of the vibrational degrees
freedom is described by dichotomic colored noise. The pa
is organized as follows: Section II explains the model,
Sec. III the dynamics of the system is derived, Sec. IV d
rives the memory function of the generalized master eq
tion, and Sec. V presents its optical properties. In the c
clusion ~Sec. VI! the connection between transport a
optical line shape is discussed.

II. MODEL FOR EXCITONIC DYNAMICS

In our description of exciton dynamics we start from
Hamiltonian which consists of a time independent and a s
chastically time dependent part:

H5H01H1~ t !, ~1!

H05(
m

enan
†an1 (

nÞm
Jnman

†am , ~2!

H1~ t !5(
n

en~ t !an
†an1 (

nÞm
Jnm~ t !an

†am . ~3!

Herean
† andan are creation and annihilation operators for

excitation at siten, en is the local excitation energy, andJnm
is the electronic transfer matrix element between sitesm and
n. H1(t) in Eq. ~3! describes the influence of the phono
bath via fluctuations of the excitation energy@en(t)# and of
3928 © 1998 The American Physical Society
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57 3929ENERGY TRANSPORT AND OPTICAL LINE SHAPES IN . . .
the transfer matrix element@Jnm(t)#. Different types of sto-
chastic processes can be used here foren(t) andJnm(t), but
most of them introduce the need for some kind of appro
mation to compute the exciton density or the optical abso
tion spectra.

To simplify the treatment as far as possible, we allo
only fluctuations of the local excitation energiesen(t) and
describe them by independent dichotomic stochastic p
cesses with exponentially decaying correlation functions
this model the time dependent variables assume only
values,en(t)56D, with a switching ratel corresponding to
a correlation timet51/l. The process is characterized b
the following equations:

^en~ t !&50, ~4!

^em~ t !en~ t8!&5dnmD2e2lut2t8u, ~5!

^e~ t1!e~ t2!•••e~ t2m21!&50, ~6!

^e~ t1!e~ t2!•••e~ t2m!&

5^e~ t1!e~ t2!&•••^e~ t2m21!e~ t2m!&,

~7!

t1>t2>•••>t2m ,

i.e., stochastic processes at different sites are indepen
the average value of the fluctuations vanishes, two-time
relation functions decay exponentially, and multitime cor
lation functions are calculated according to Eqs.~6! and~7!.
The Fourier transform of this noise process is a Lorentz
so the bandwidth is limited. This process also contains
limiting cases of static disorder withl50, of motional nar-
rowing with D finite andl→`, and the white noise limit.
The latter is obtained withl→` and D→` but keeping
g05D2/l finite, so thatD2e2lut2t8u→g0d(t2t8), which is
the correlation function of the white noise process.

III. ENERGY TRANSPORT

In the following we discuss a symmetric dimer (e15e2)
as the simplest case of a molecular aggregate, and take
account energy fluctuations only at the two sites 1 and 2
Fig. 1, uF& is the electronic ground state andun& describes an
electronic excitation localized at siten. J is the transfer ma-
trix element. The transport of the electronic excitation b
tween the two sites can be described with the density op
tor r, which obeys the following equation (\51):

ṙ52 i @H~ t !,r#. ~8!

FIG. 1. Parameters of the model.
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In this paper we assume that the electronic excitation of
dimer does not decay. Then the density operatorr has four
matrix elements, the diagonal elementsrnn describing the
occupation probability at siten, and nondiagonal element
rnm containing phase relations between sitesn and m. The
equations of motion for these matrix elements read

ṙ115 iJr122 iJr21, ~9!

ṙ225 iJr212 iJr12, ~10!

ṙ125 iJr112 iJr222 i e1~ t !r121 i e2~ t !r12, ~11!

ṙ215 iJr222 iJr111 i e1~ t !r212 i e2~ t !r21. ~12!

Because of the presence of stochastically time depen
variables in this set of differential equations, one has to c
sider the averaged matrix elements^r i j &. But averaging Eqs.
~9!–~12! yields additional unknowns likêe1(t)r12&, so that
the set of equations is no longer closed. Additional equati
for these elements can be obtained using a theorem by
piro and Loginov@17#:

d

dt
^e~ t !Ft@e#&5 K e~ t !

d

dt
Ft@e#L 2l^e~ t !Ft@e#&, ~13!

with Ft@e# being a functional of the stochastic variablee(t).
For the stochastic average^e1(t)r12&, e.g., the differential
equation is

d

dt
^e1~ t !r12&5^e1~ t !ṙ12&2l^e1~ t !r12&, ~14!

which, using Eq.~5! and ~11!, results in

d

dt
^e1~ t !r12&52 iD2^r12&1 i ^e1~ t !e2~ t !r12&2l^e1~ t !r12&

1 iJ^e1~ t !r11&2 iJ^e1~ t !r22&. ~15!

On the right side we have the new quantity^e1(t)e2(t)r12&.
Using the theorem of Shapiro and Loginov again,

d

dt
^e i~ t !ek~ t !Ft@e#&5 K e i~ t !ek~ t !

d

dt
Ft@e#L

22l^e i~ t !ek~ t !Ft@e#&, ~16!

we get for the quantity under discussion

d

dt
^e1~ t !e2~ t !r12&5^e1~ t !e2~ t !ṙ12&22l^e1~ t !e2~ t !r12&.

~17!

For most types of stochastic processes, this expansion l
to an infinite set of equations, which can only be solved
introducing some sort of approximation. However, inserti
ṙ12 from Eq.~11! and using Eqs.~4!–~7!, for the dichotomic
process we arrive at a closed set of coupled differential eq
tions. In matrix form, these equations read

%̇5L16%, ~18!
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where% is a 16-dimensional column vector andL16 a 16-
dimensional non-Hermitian matrix, with the following vecto
notation for the components of%:

%15^r11&, %95^e1~ t !r11&,

%25^r22&, %105^e1~ t !r22&,

%35^r12&, %115^e2~ t !r11&,

%45^r21&, %125^e2~ t !r22&,
e

b

-

%55^e1~ t !r12&, %135^e1~ t !e2~ t !r12&,

%65^e1~ t !r21&, %145^e1~ t !e2~ t !r21&,

%75^e2~ t !r12&, %155^e1~ t !e2~ t !r22&,

%85^e2~ t !r21&, %165^e1~ t !e2~ t !r11&.

The matrixL16 of the system of differential equations~18!

%̇5L16% reads~vanishing matrix elements are represent
by a dot!
¨

. . iJ 2 iJ . . . . . . . . . . . .

. . 2 iJ iJ . . . . . . . . . . . .

iJ 2 iJ . . 2 i . i . . . . . . . . .

2 iJ iJ . . . i . 2 i . . . . . . . .

. . 2 iD2 . 2l . . . iJ 2 iJ . . i . . .

. . . iD2 . 2l . . 2 iJ iJ . . . 2 i . .

. . iD2 . . . 2l . . . iJ 2 iJ 2 i . . .

. . . 2 iD2 . . . 2l . . 2 iJ iJ . i . .

. . . . iJ 2 iJ . . 2l . . . . . . .

. . . . 2 iJ iJ . . . 2l . . . . . .

. . . . . . iJ 2 iJ . . 2l . . . . .

. . . . . . 2 iJ iJ . . . 2l . . . .

. . . . iD2 . 2 iD2 . . . . . 22l . 2 iJ iJ

. . . . . 2 iD2 . iD2 . . . . . 22l iJ 2 iJ

. . . . . . . . . . . . 2 iJ iJ 22l .

. . . . . . . . . . . . iJ 2 iJ . 22l

©

~The matrix for the case containing also fluctuations ofJnm
can be found in Appendix A of@15#!.

With the ansatz%(t)5veRt, the differential equations
transform to a non-Hermitian eigenvalue problem for the
genvaluesRn and eigenvectorsvn of the matrix L16. The
structure of this matrix is such that its eigensolutions can
obtained@16# using computer algebra~MAPLE @18#!. We in-
troduce the scaled model parametersls ,Ds and scaled eigen
valuesRsn by

Rsn5
Rn

2J
, ls5

l

2J
, Ds5

D

2J
. ~19!
i-

e

The eigenvalues are then given by

Rs150,

Rs2522ls ,

Rs3 , . . . ,Rs652ls ,

Rs7 ,Rs852ls6 i ,
Rs9 , . . . ,Rs1252ls6
1

A2
Als

224Ds
2216A16Ds

428ls
2Ds

218Ds
21ls

412ls
211,

Rs13, . . . ,Rs1652ls6Als
22122Ds

262ADs
42ls

2, ~20!
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FIG. 2. Real and imaginary part ofRs9 , . . . ,Rs16 for Ds50.5.
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with the following choices for the signs:Rs9 (11),

Rs10 (12), Rs11 (21), Rs10 (22), and correspondingly

for Rs13, . . . ,Rs16. Using these eigenvalues, analytical e

pressions for the eigenvectorsvn can also be obtained@19#.
Figures 2 and 3 show the real and imaginary parts of

eigenvalues forDs50.5 andDs52 as a function ofls . In
both cases the eigenvaluesRs1 , . . . ,Rs6 and Rs9, Rs10 are
e

purely real and the eigenvaluesRs7, Rs8, Rs11, Rs12 are al-
ways complex. The behavior of the eigenvalu
Rs13, . . . ,Rs16 is more complicated:~1! for Ds50.5, e.g., all
four are complex for all values ofls ; ~2! in the case of
Ds52 two of them are purely real betwee

ls5A17/(714A2) and ls5A17/(724A2); and ~3! be-

tween ls5A17/(724A2) and ls54.0 all four are real.
FIG. 3. Real and imaginary part ofRs9 , . . . ,Rs16 for Ds52.0.
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Figure 4 shows the areas in thels
21-Ds

22 plane, where
four, two, and none of the four eigenvaluesRs13, . . . ,Rs16 are
complex~indicated by the numbers in the brackets in Fig.!.
With the notationx5Ds

22 , y5ls
21 the borderlines betwee

the four areas are given by the curves

y5x, ~21!

y5
A22x12A122x

Ax14
, ~22!

y5
A22x22A122x

Ax14
. ~23!

The straight line determines the vanishing of the radicand
the inner square root, the curves of Eqs.~22! and ~23! the
vanishing of the radicand of the outer square roots. From
discussion we expect two areas of coherent motion: area
small values ofls , corresponding to the~quasi! static case,
and area IV for large values ofls , corresponding to the cas
of fast fluctuations.

The general solution for the differential equation~18! is
given by the superposition of the eigensolutions

%~ t !5(
i 51

16

civ
i exp~Rit !. ~24!

A closer inspection of the eigenvectorsv shows that only the
eigensolutionsv i exp(Rit) with i 51,3,13, . . . ,16 contribute
to the first element of %, which is the probability
^r11&5P1(t) of finding the excitation at site 1. The dynam
ics of P1(t) are therefore determined by the eigenvaluesRs1
andRs3, which are purely real, and byRs13, . . . ,Rs16 which
— as discussed above — may be real or complex depen
on the magnitudes ofls and Ds . The coefficientsci are
determined by the initial conditions for the density opera
r(t50) and are evaluated using the left eigenvectors of
non-Hermitian matrixL16. As initial conditions we have
used a density matrix withr11(0)51 and all other matrix
elements zero. The analytic expression forP1(t)5^r11(t)&
is rather involved and not presented explicitly in this pap
@19#.

The left column of Fig. 5 shows the time evolution
^r11& for Ds50.5, i.e.,Ds

2254 and various values ofls .

FIG. 4. Number of complex eigenvaluesRs13, . . . ,Rs16 in the
1/ls21/Ds plane.
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We see that for all values ofls the occupation probability
P1(t) shows an oscillatory behavior. For smallls values the
probability oscillates with two frequencies, for largels only
a single frequency survives.

In Fig. 6 for Ds52, i.e.,Ds
2250.25, the series ofls val-

ues shows the time dependence of occupation probabil
starting in region I, crossing II and III, and ending in regio
IV. The left column starts with an occupation probabili
oscillating with two frequencies~region I!. For intermediate
values ofls the probability decays exponentially, and fo
largels values it oscillates with a single frequency. A co
responding behavior is shown by the time evolution of^r12&
~center column in Figs. 5 and 6!, describing phase relation
between the two sites, whose dynamics is determined a
tionally by the eigenvaluesRs9, . . . ,Rs12.

In the static case withls50, all real parts of the eigen
values vanish, and the imaginary parts become61 and
6A4Ds

211, which corresponds to undamped oscillations
the electronic excitation between the sites 1 and 2, with
two frequencies 2J and 2AD21J2, as expected from the
solution of the Schro¨dinger equation in the four possible con
figurationse15e256D ande152e256D.

In the fast modulation case withls→`, all imaginary
parts tend to6 i , so that only one oscillation frequency su
vives, which also becomes undamped:

lim
ls→`

Rs135 i , lim
ls→`

Rs14522ls2 i ,

lim
ls→`

Rs1552 i , lim
ls→`

Rs16522ls1 i .

The white noise limit can be obtained after substituti
Ds

2 by lsg08 (g085g0 /2J) and then evaluating the asympto
ics of the eigenvalues forls→` (g08 finite!:

lim
ls→`

Rs1352g081Ag08
221 , lim

ls→`

Rs1452`,

lim
ls→`

Rs1552g082Ag08
221 , lim

ls→`

Rs1652`.

From Rs13 and Rs15 we see that the excitation transport
coherent ifg08,1 (g0,2J) and incoherent in the opposit
case@2,8#.

IV. MEMORY FUNCTIONS OF THE GENERALIZED
MASTER EQUATION

Up to now we have described the exciton transport
terms of the density operator formalism. An alternative a
proach is given by the generalized master equation~GME!
@1,2# for the site occupation probabilities, i.e., by the diag
nal elements of the density operatorPn(t)5^rnn&. The gen-
eralized master equation is given by

]Pm~ t !/]t5 (
n~Þm!

E
0

t

@wmn~ t2t!Pn~t!

2wnm~ t2t!Pm~t!#dt ~25!
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FIG. 5. Excitation transport, optical absorption, and memory function forDs50.5.
o
h
rm
and the dynamics of the system is determined by the mem
functionwmn(t). In the case of a dimer and assuming that t
excitation is initially located at site 1, the Laplace transfo
of the GME reads

sP̃1~s!2152w̃12~s!@ P̃1~s!2 P̃2~s!#, ~26!
ry
e

sP̃2~s!52w̃21~s!@ P̃2~s!2 P̃1~s!#. ~27!

From the analytical solution forP1(t) @19# obtained with
MAPLE we get for the Laplace transform
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P̃1~s!5
s515s4l1~4D216J218l2!s31~12D2l14l3114lJ2!s2

s~s2R13!~s2R14!~s2R15!~s2R16!

1
~8J4112J2D2116l2J218D2l2!s18J4l18l3J218J2D2l

s~s2R13!~s2R14!~s2R15!~s2R16!
. ~28!

Solving Eq.~26! or Eq. ~27! for w̃12(s) yields

FIG. 6. Excitation transport, optical absorption, and memory function forDs52.
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w̃12~s!5w̃21~s!5
@2s3110ls212~2D218l214J2!s18D2l18l318J2l#J2

s415ls31~4J218l214D2!s21~12D2l14l314J2l!s18D2l218D2J2
. ~29!

The time development of the memory function is obtained by performing the inverse Laplace transform

w12~ t !5w21~ t !5(
i

f i exp~r i t !5(
i

@2r i
3110lr i

21~4D2116l218J2!r i18D2l18l318J2l#J2

4r i
3115lr i

21~8J2116l218D2!r i112D2l14l314J2l
exp~r i t !, ~30!
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where ther i are the solutions of the zeros of Eq.~29!.
The time dependence of the memory function is shown

the right column of Figs. 5 and 6. As essential feature
observe damped oscillations. A more detailed investiga
shows that the oscillations are the result of the discrete
ergy fluctuations of the dichotomic process and the expon
tial decay of the memory function is responsible for the tra
sition from coherent to incoherent exciton motion. The dec
time of the memory function is related to the time const
for the loss of coherence of the exciton transport.

V. OPTICAL ABSORPTION

In the framework of linear response theory the opti
absorption line shape of the dimer is given by

I ~v!5ReE
0

`

eivt^m~ t !m~0!&dt. ~31!

m(t) is the optical dipole operator. It can be expressed by
creation and annihilation operators for a local excitation a
the transition dipole momentmn at siten in the following
way:

m~ t !5(
n

mn@an
†~ t !1an~ t !#. ~32!

We assume that only the ground stateuF& is populated in
thermal equilibrium and that themn are independent of the
site indexn and oriented parallel to thez direction. For the
normalized line shapeĨ z(v) we get

Ĩ z~v!5
1

p(
m,n

ReE
0

`

eivtUmn~ t !dt5
1

p
ReE

0

`

eivtS~ t !dt

5
1

p
ReS̃~v!. ~33!

HereU(t)5TQ exp@2*0
t dt8H(t8)# describes the time evolutio

of the system,Umn(t) are the matrix elementŝmuU(t)un&,
and S(t) is defined below. To simplify the calculation w
introduce the variables

x5U111U12, y5U211U22, ~34!

S~ t !5^x1y&,

A~ t !5^e1x&1^e2y&,

B~ t !5^e2x&1^e1y&,
n
e
n
n-
n-
-
y
t

l

e
d

C~ t !5^e1e2x&1^e1e2y&. ~35!

The equations of motion for these quantities can be deri
using again the theorem of Shapiro and Loginov and
given by

d

dtS S~ t !

A~ t !

B~ t !

C~ t !

D 5S 2 iJ 2 i 0 0

2 iD2 2l 2 iJ 0

0 2 iJ 2l 2 i

0 0 2 iD2 22l2 iJ

D S S~ t !

A~ t !

B~ t !

C~ t !

D .

~36!

The line shape is obtained by Laplace transforming the eq
tions of motion and solving forS̃(vs) (vs5v/2J). We ar-
rive at the following finite continued fraction:

S̃~vs!2J52@2 i ~vs2
1
2 !1Ds

2~2 ivs1ls1
1
4 $2 ivs1ls

1Ds
2@2 i ~vs2

1
2 !12ls#

21%21!21#21. ~37!

The optical line shape can also be calculated from the d
sity operatorr by supplementing the Hilbert space by th
ground stateuF& of the dimer, giving additional matrix ele
mentsr0n andrn0. The eigenvalue equation for the densi
operator then factorizes into a part describing the trans
and a part describing the optical absorption. Therefore, a
the case of white noise, the two phenomena are mathem
cally independent.

The line shape forDs50.5 and various values ofls is
shown in Fig. 5 in the right column. For small values ofls
we obtain a strongly structured line; the position of the pe
is determined by the random energy distributione6Ds , on
account of the quasistatic dichotomic noise, and the stren
of the transfer matrix element~compare the following para
graph!, and their widths by the lifetime of the energy sta
i.e., by ls . With increasing values ofls the lines become
broader and merge. For very large values ofls and finite
values ofDs the lines show a narrowing, because the flu
tuations are now so fast that the electronic degrees of f
dom can no longer follow. In Fig. 6 the third column repr
sents optical line shapes forDs52. For small values ofls
we have a line shape whose structure is determined by
quasistatic energy distributions. With increasingls the peaks
become broader and merge and for large values of
switching rate we have again a dynamically narrowed lin

In the static case withls50, the optical absorption ener
gies correspond to the Davydov splitting at the four possi
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energy combinationse15e256D ande152e256D, giv-
ing rise to absorption at the frequencies6D1J and 6G
(G5AD21J2):

Ĩ z~v!5
1

6Fd„v2~D1J!…1d„v2~2D1J!…

12S 11
J

G D d~v2G!12S 12
J

G D d~v1G!G .
~38!

In the fast modulation case withls→`, the line shape
becomes peaked atvs51/2, i.e.,v5J,

S̃~v!5
2

2 i ~v2J!
. ~39!

The white noise limit can be obtained again by subst
tion of Ds

2 with lsg08 (g085g0 /2J) and evaluating the limit

of S̃(vs) for ls→`,

Ĩ z~v!5
1

p

g0

g0
21~v2J!2

. ~40!

The linewidth at half maximum is given by 2g0.

VI. CONCLUSION

Figure 5 shows that for small amplitudes of the ene
fluctuationsDs50.5 the excitation energy transport in th
dimer shows damped oscillations for all values ofls and
thus this transport can be denoted as coherent in the whols
range. For the larger fluctuation amplitude in Fig. 6 we ha
two transitions between coherent and incoherent transp
The first corresponds to the transition between regions I
II in Fig. 1, the second to the transition into region IV. In th
d

d

s

d

-

y

e
rt.
d

white noise case only the second transition is present.
In the third columns in Figs. 5 and 6 the optical lin

shapes are pictured for the same values of the model pa
eter. For slow fluctuations we have the line shape co
sponding to the quasistatic distribution of energy levels, i
an inhomogeneously broadened line. For fast fluctuations
line shows dynamic narrowing and a homogeneous wid
Thus the model allows us to describe a continuous transi
between inhomogeneously and homogeneously broade
lines.

Comparing the transport and the optical line shapes,
see an oscillatory behavior of the occupation probabilit
when the optical line shape is narrow both in the inhomo
neous and homogeneous limits. When the full half-width
the line is equal to 4J ~in the scaled units we are using th
corresponds to a half-width of 2!, the occupation probability
decays without oscillations to the stationary value. Suc
situation occurs in Fig. 6, but not in Fig. 5.

As regards the memory function, its decay constant pas
through a maximum with increasing values ofls . For
Ds50.5 the largest decay constant is obtained forls50.5
and in this case the oscillations in the exciton transport de
fastest. In the case of Fig. 6 the decay constant of
memory function increases up tols51.5 and decrease
again. This fast memory loss shows in the absence of os
lations in the occupation probability forls51.5 and 3.8. We
plan to give a detailed discussion of the behavior of
memory function in the future.
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