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Energy transport and optical line shapes in dimers: Analytical description of the influence of
colored noise
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For a dimer, i.e., the simplest molecular aggregate, the influence of local vibrations on the transport of
electronic excitation energy and on the optical absorption line shape is investigated. The vibrations give rise to
site energy fluctuations which are described by a dichotomic stochastic process with colored noise. The model
includes also the limits of static and infinitely fast fluctuations. The equations of motion for the density matrix
of the system and for the correlation functions describing the optical line shape are calculated analytically. The
coherence of transport properties, the time dependence of the memory function of the generalized master
equation, optical line shapes, and the connection between them are dis¢84€68-651X98)08204-4

PACS numbds): 02.50.Ey, 05.30-d

[. INTRODUCTION of a series of experimental situations such as optical absorp-
. . tion, spin resonance, or quantum particle trans ref-

The dy_naml_cs of a quantum particle, e.g., Of an eIeCtr_OQarenceps se¢?]). A straig(?nforwardpgeneralizaticlgjﬁr:]Jtrt of this
or an exciton, in organic molecular aggregates is the subje¢h,je| nerformed in recent years, is the replacement of the
of many experimental and theoretical investigations in recenf it noise processes by colored noise with exponentially
years. The interest in these investigations originates bOtHecaying correlation functiond0—16. This generalization
from questions with respect to the fundamental understandnakes the model considerably richer, because it allows for
ing and with respect to potential applications, e.g., in nonlinjyctuations on all time scales including the static and white
ear optics, molecular electronics, photonics, etc. One of th@pise limits. At the same time the equations become more
questions is whether the transport of the quantum particlgomplicated and up to now also in the case of dichotomic
occurs coherently in a wavelike manner or incoherently via aolored noise in dimers only numerical solutions of the trans-
hopping process. The answer to this question is fundamentglort problem were obtained. In this paper we present an ana-
for the understanding of luminescence in organic materialdytical description of energy transfer and optical absorption
or for the description of energy transfer in photosyntheticin dimers when the influence of the vibrational degrees of
light harvesting systems. With the development of femtosecfreedom is described by dichotomic colored noise. The paper
ond laser spectroscopy new experimental information id¢s organized as follows: Section Il explains the model, in
available which might help to elucidate this question. Sec. Ill the dynamics of the system is derived, Sec. IV de-

From the theoretical point of view the coherence or inco-fives the memory function of the generalized master equa-
herence of the quantum particle transport is strongly influfion, and Sec. V presents its optical properties. In the con-
enced by its interaction with vibrational degrees of freedom¢lusion (Sec. V) the connection between transport and
To describe this interaction, several models have been devepPtical line shape is discussed.
oped(for references seid,2]). In these models it is assumed
that at low temperatures the particle moves coherently in a Il. MODEL FOR EXCITONIC DYNAMICS

wavelike manner according to the Sctinger equation. In our description of exciton dynamics we start from a

With increasing temperature the coherence of the wave igjamiltonian which consists of a time independent and a sto-
disturbed by the interaction with vibrational degrees of freechastically time dependent part:

dom and the transport occurs via a hopping process which is

described by a master equation or in the continuum limit by H=Hg+Hy(t), 1)
a diffusion equation. A fully quantum mechanical approach

to th|_s transport proble_m was performed on the basis qf the Ho=z enala,ﬁr 2 Jnmaﬁam, @)
density operator equation together with projection techniques m nzm

resulting in a generalized master equatfi8r5], or based on
Green’s function techniqud$]. In another approach the vi-
brational degrees of freedom were considered as classical
variables giving rise to fluctuations of the local excitation
energies and of the transfer matrix elements. The excitatiohterea! anda, are creation and annihilation operators for an
energies and transfer matrix elements were treated as indexcitation at siten, €, is the local excitation energy, adg,
pendent Gaussian stochastic processes with white hise is the electronic transfer matrix element between siteznd

9], which is a reasonable assumption at not too low temperaa. H(t) in Eq. (3) describes the influence of the phonon
tures. This model was quite successful in the descriptiofdbath via fluctuations of the excitation enerjgs,(t)] and of

Hi()=2 exData,+ > Jnn(atan. ®3)
n n#m
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[1) |2) In this paper we assume that the electronic excitation of the
+a J — *A dimer does not decay. Then the density operattyas four
G - —— - o <> - € matrix elements, the diagonal elements, describing the
-A — — -A occupation probability at site, and nondiagonal elements

Pnm CONtaining phase relations between siteandm. The
equations of motion for these matrix elements read

| @) . . .
p11=1dp12— 1 pa1, 9
FIG. 1. Parameters of the model. . . .
p22=1dp21—1Jp12, (10
the transfer matrix elemet,,(t)]. Different types of sto- i _ _ _ _
chastic processes can be used heresf¢r) andJ,(t), but p12=13p11—1dpo—i€y(t) protiex(t)paa, (1)
most of them introduce the need for some kind of approxi- _
mation to compute the exciton density or the optical absorp- po1=1dpo—idp1tie(t)prr—iexr(t)por. (12

tion spectra.
To simplify the treatment as far as possible, we allowBecause of the presence of stochastically time dependent

0n|y fluctuations of the local excitation energiegt) and variables in this set of differential equations, one has to con-
describe them by independent dichotomic stochastic prosider the averaged matrix elemefs;). But averaging Egs.
cesses with exponentially decaying correlation functions. I{9)—(12) yields additional unknowns likge(t)p1,), SO that

this model the time dependent variables assume only twihe set of equations is no longer closed. Additional equations
values,e,(t)=* A, with a switching rate\ corresponding to for these elements can be obtained using a theorem by Sha-
a correlation timer=1/\. The process is characterized by piro and Loginov{17]:

the following equations:

d d
(e(1))=0, (4) m(f(t)Ft[€]>:<E(t)aFt[€]>—Mf(t)Ft[E]% (13
(em(t) €n(t’))=SnmA2e MU, (5)  with F[ €] being a functional of the stochastic varialeig).
For the stochastic averade,(t)pio), €.9., the differential
(e(ty)e(ty)- - - €(tp,—1))=0, (6) equation is
t 1) - -e(t d .
(etelta)lton)) e ~(aOp—Mea®pd, (4
=(e(ty)e(ty)) - (e(ty, 1) e(ts,)),
(7) which, using Eq(5) and(11), results in
t,=>t,=- =ty d : ,
1 2 a<51(t)l)12>:_'A2<P12>+'<51(t)52(t)P12>_)\<51(t)P12>
i.e., stochastic processes at different sites are independent,
the average value of the fluctuations vanishes, two-time cor- +iJ(€ex(t) p12) —iI(€x(t) p2o). (15

relation functions decay exponentially, and multitime corre- _ _
lation functions are calculated according to E@.and(7).  ©On the right side we have the new quantii(t) ex(t) p12).

The Fourier transform of this noise process is a Lorentzian!sing the theorem of Shapiro and Loginov again,
so the bandwidth is limited. This process also contains the

limiting cases of static disorder with=0, of motional nar- —le(t)e(t)F.[e :<6 et —F.l e >
rowing with A finite and\ —cc, and the white noise limit. dt< (DedF el (Ded )dt del
The latter is obtained withh —o and A—o but keepin
v " * Dt keeping —2M&(DelFLe]), (16
vo=A“/\ finite, so thatA“e —yod(t—1t"), which is
the correlation function of the white noise process. we get for the quantity under discussion

d )

I ENERGY TRANSPORT S{e e =(a et~ 21 (et ext)pry).

In the following we discuss a symmetric dimes;E €,) a7
as the simplest case of a molecular aggregate, and take into , , .
account energy fluctuations only at the two sites 1 and 2. IfOF MOst types of stochastic processes, this expansion leads
Fig. 1,|®) is the electronic ground state ajrg describes an {0 @n infinite set of equations, which can only be solved by
electronic excitation localized at site J is the transfer ma- Introducing some sort of approximation. However, inserting
trix element. The transport of the electronic excitation be-p12 from Eq.(11) and using Eqsi4)—(7), for the dichotomic
tween the two sites can be described with the density operdrocess we arrive at a closed set of coupled differential equa-
tor p, which obeys the following equatiori & 1): tions. In matrix form, these equations read

p=—i[H(1),p]. (8) 0=L0, (18)
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where ¢ is a 16-dimensional column vector ahdg a 16-
dimensional non-Hermitian matrix, with the following vector
notation for the components of:

05=(€1(t)p12),

06=(€1(t)p21),

Q13=(e€1(t) ex(t)p12),

0 14=(€1(t) ex(t) p2y),

01=(p11), Co=(€1(t)p12),
07=(€2)p12), Qi15=(€1(t)€x(t)p22),
02=(p22), C1=(€1(t)p22),
Cs=(€2(t)p21), Q16=(€r(t)€x(t)p1y).
03=(p12), Cu=(e€x(t)p1y),
The matrixLg of the system of differential equatiori$8)
04=(pa), C12={ex(1)p2y), o0=L,c0 reads(vanishing matrix elements are represented
by a do}
iJ —iJ
. —iJ iJ
iJ =i —i [
—-iJ iJ . . i —i . .
-iA?2 -\ i3 —id i :
. iA2 -\ . -iJ iJ : : —i
iA2 : -\ i3 —id i :
—iA? : -\ -iJ iJ [
iJ —iJ —A
—iJ iJ . -\
iJ —iJ -\
. —iJ iJ -\ . . .
iA2 : —-iA? . —-2N . -iJ i
—iA2 iA2 ) U NN
—iJ iJ  —2x
iJ —iJ -2\
|
(The matrix for the case containing also fluctuationslgf,  The eigenvalues are then given by
can be found in Appendix A of15]).
With the ansatze(t)=veR!, the differential equations R.—0
transform to a non-Hermitian eigenvalue problem for the ei- s1—
genvaluesR, and eigenvectors"” of the matrixL,s. The
structure of this matrix is such that its eigensolutions can be R.=—2\
obtained[16] using computer algebravapLE [18]). We in- sz s
troduce the scaled model parametegsA ; and scaled eigen-
valuesRs, by Res, - - - Reg=—N\s,
R My - 19
=gy M7y AsTay 19 Rer Reg= — Ao 1,
1
Reg, - - - Re1o= —xsi—\/x§—4A§— 1+ \16A%—8N2A2+8AZ+ N4+ 20241,
2
RSl31 PR 1R516: _)\Si \/)\g—l—ZAgiZ \/Ag_)\g, (20)
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with the following choices

FIG. 2. Real and imaginary part &g, . .

for the signsRy (++),

Rsio (+—), Rei1 (—+), Ry (——), and correspondingly Ways

for Rg13, - - -

eigenvalues foA;=0.5 andAg

both cases the eigenvalugs, ...

\Rq16- Using these eigenvalues, analytical ex-

pressions for the eigenvectar§ can also be obtaingd 9].
Figures 2 and 3 show the real and imaginary parts of the s

A=2

=2 as a function ofvs. In s=

R and Ry, Rgpp are

s13s - -
four are complex for all values ofg; (2) in the case of

.,Rg16 for A;=0.5.

complex.

of

the

3931

purely real and the eigenvalu&s;, R, Rg11, Rgip are al-
The behavior

eigenvalues

. ,Rq16is more complicated:l) for A;=0.5, e.g., all

two of them

are

purely

A.=
Re(Rsy,...Rsyp) =2 Im(Rsy,...Rs¢3)
0 2 1 1 1 1 1 " 1 i 1 " 1 " 1 n
] o 4 B
_5 ] L X
4 2 L
-10 ] L 0
] [ -2 4 B
-15 4 L /’_7
[ 4 B
—20 T T T é 1 M T T T T T
0 2 1A 8 A 10 0 2 4 6 8 Al 10
Re(Rs;3,..,Rs¢6) Im(Rsy3....Rs¢6)
0 n 1 n 1 1 1 1 1 ] L
[ 4 - L
-5 L
N 2 n
10 L o - |
] [ ]
] 5 —2 4 L
-15 [
F -4 -
-20 0 é z é T T T T T T 1
8 A, 10 0 2 4 6 8 Al 10

FIG. 3. Real and imaginary part &y, . .

. !R515 fOI’ AS: 20

real

between

V17/(7+4+2) and A= V17/(7-4+/2); and (3) be-
tween )\S=\/17/(7—4\/5) and \;=4.0 all four are real.
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T ] We see that for all values ofg the occupation probability

As i L@ P.(t) shows an oscillatory behavior. For smal values the
probability oscillates with two frequencies, for laryg only
.- a single frequency survives.
; e In Fig. 6 forA,=2, i.e.,A;?=0.25, the series of, val-
@ -~ > S . I
05 ] e ues shows the time dependence of occupation probabilities

starting in region I, crossing Il and Ill, and ending in region
IV. The left column starts with an occupation probability
oscillating with two frequenciegegion |). For intermediate
IV (4) values of\g the probability decays exponentially, and for
0 - . ' ' ' ' ! 2 large \ ¢ values it oscillates with a single frequency. A cor-
0 0.2 0.4 0.6 0.8 1745 : o 4 .
responding behavior is shown by the time evolutior @f,)
FIG. 4. Number of complex eigenvalu®,s, . . . ,Rqe in the  (center column in Figs. 5 and),6describing phase relations

1 ()

1\ ¢—1/A plane. between the two sites, whose dynamics is determined addi-
tionally by the eigenvalueBgg, . .. Rg1o.
Figure 4 shows the areas in the *-A_? plane, where In the static case with =0, all real parts of the eigen-

four, two, and none of the four eigenvaluRgs, ... Rggare  values vanish, and the imaginary parts becom& and
complex(indicated by the numbers in the brackets in Fig. 4 +,/4AZ+1, which corresponds to undamped oscillations of
With the notationx=A; %, y=\, " the borderlines between the electronic excitation between the sites 1 and 2, with the
the four areas are given by the curves two frequencies 2 and 2/AZ+J?, as expected from the
solution of the Schidinger equation in the four possible con-

y=% (2D figurationse; = e,= + A ande;= — e,= * A.
In the fast modulation case withg—oo, all imaginary
V2—Xx+2vy1-2x parts tend ta*i, so that only one oscillation frequency sur-
y= a , (22 vives, which also becomes undamped:
lim Rg3=i, lim Rgs=—2\g—1i,
5 x—? ’—1—2x N s13 N s14 S
y= N - (23)
X+4 im Rgs=—i, lim Rge=—2\s+i.
Ag—® Ag—

The straight line determines the vanishing of the radicand of
the inner square root, the curves of E(@2) and (23) the . L . -
vanishing of the radicand of the outer square roots. From thi Z-Lhe)\Wh,'te E‘S‘Se /I|2n;|t ca;ﬂt:e obta||ne(tj_ aftt(;r SUbSt'th[t'?g
discussion we expect two areas of coherent motion: area | fgts PY AsYo _( Yo= 70/2J) and then ’ev'a.ua'lng € asymptot-
small values of\,, corresponding to théquasj static case, cS Of the eigenvalues fots— (1, finite):

and area IV for large values af;, corresponding to the case

of fast fluctuations. lim Rgz=— 0+ v52—1 ,  lim Ryy=—0,
The general solution for the differential equatiti8) is hg—ee hg—
given by the superposition of the eigensolutions
16 lim Rgs=— 70— Vyo°—1 ,  lim Rge=—°.
. )\S—mc )\S—mo
e(Hh=> civ' expgRit). (24)
i=1

From Ry;3 and Ry 5 we see that the excitation transport is
A closer inspection of the eigenvectarshows that only the coherent ify;<1 (yo<<2J) and incoherent in the opposite
eigensolutions' expRt) with i=1,3,13...,16contribute  case[2,8].
to the first element ofp, which is the probability
_<p11>= P4(t) of finding the excita_tion at site 1 The dynam- |\, MEMORY FUNCTIONS OF THE GENERALIZED
ics of P4(t) are therefore determined by the e|genvaIB§§ MASTER EQUATION
andRg3, which are purely real, and tyg3, . . . ,Rg16 Which
— as discussed above — may be real or complex depending Up to now we have described the exciton transport in
on the magnitudes ok, and A,. The coefficientsc; are  terms of the density operator formalism. An alternative ap-
determined by the initial conditions for the density operatorproach is given by the generalized master equat®RIE)
p(t=0) and are evaluated using the left eigenvectors of thél,2] for the site occupation probabilities, i.e., by the diago-
non-Hermitian matrixL,¢. As initial conditions we have nal elements of the density opera®(t)=(pn,). The gen-
used a density matrix witp,;(0)=1 and all other matrix eralized master equation is given by
elements zero. The analytic expression Ra(t) =(p4(t))
is rather involved and not presented explicitly in this paper t
[19]. &Pm(t)lﬁtzn;n) [Winr(t=7)Py(7)

The left column of Fig. 5 shows the time evolution of (

(p11) for A=0.5, i.e.,A;?=4 and various values of. —Wp(t—7)Pp(7)]d7 (25)



57 ENERGY TRANSPORT AND OPTICAL LINE SHAPES IN ... 3933

A.=0.5
° Wi
<pu> <pP1p> 2J1, ]2
1 | TR R | 05 PRI ST TN T T T T T N S N WY 30 n 1 L 2 PRSI BT S S R R R |
1 I 20 3 e
05 - L0 - 0 L
-~ ] [ 10 -
O
1l 1 r
v 4 L
~<
o1 0 0 l T m -2 T UL
0 5 10 15 55420 O 5 10 15 95420 -2 0 Y 2 o0 5 10 15 5420
1 1 1 1 05 PN T T N T T N T [N T T S [ T S 1 ZJ 2 1 1 1
] | 5 L
0.5 S + 0 -
Ty ] I
<
g ] I
I 1 B
w ] L
~<
0 T T T 05 0 T T T -2
0 5 10 15 20 0 5 10 15 20 -2 0 2 0 5 10 15 20
1 1 1 1 05 e by by by i " 1 2 1 1 1
05 - L0 L2 L oo L
S ] L
1l b r
w
o~
0 T T T 0.5 T T TTT 0 T -2 T T T
0 5 10 15 20 0 5 10 15 20 -2 0 2 0 5 10 15 20
1 1 1 1 05 PRI SN T S W T N W N S N N WY I " 1 2 1 1 1
05 - L O—W 2 L 0 L
[Te} 4 L
N
S l I
1l 1 r
w 4 L
~<
0 T T T 0.5 T T T 0 T -2 T T T
0 5 10 15 20 0 5 10 15 20 -2 0 2 0 5 10 15 20
1 1 1 1 05 PN YT T N T TN T [N T W [ T I L 1 2 1 1 1
0.5 N -2+ - 0+ -
i ] I
o ] I
1l 1 r
wn
~
0 T T T 0.5 T T T 0 T _2 T T T
0 5 10 15 20 0 5 10 15 20 -2 0 2 0 5 10 15 20
1 e by by by 0.5 PERFERNTRT I TR SRS T NI S S N RN R 15 " 1 " 2 1 1 1
1 T 10 -
05 - L 0 L 0 L
] ] [ 5] -
1 b B
wn | d F
~<
0 +—r—r—rrr—rr1rrrrrrr—=t05 1t 0 . : - -2
0 5 10 15 20 0 5 10 15 M -2 0 2 0 5 10 15 20
FIG. 5. Excitation transport, optical absorption, and memory functiom\fer 0.5.
and the dynamics of the system is determined by the memor B __= S S
y y y y SPy(s) = —W,y(S)[Pa(s) —Py(s)]. 27

functionw,,,(t). In the case of a dimer and assuming that the

excitation is initially located at site 1, the Laplace transform

of the GME reads ) ) ) )
From the analytical solution foP,(t) [19] obtained with

SPy(s)—1=—wW;AS)[P1(s)—P,(s)], (26) MAPLE we get for the Laplace transform
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FIG. 6. Excitation transport, optical absorption, and memory function\fe: 2.

- SO+ 55"\ + (4A2+6J2+8N\2)s3+ (12A2N + 4N 3+ 14\ J?)s?
S(s—R13)(S—R14)(S—Ry5)(S—Rye)
(8J4+12J%2A2+ 161202+ 8A%\2)s+8J*\ + 81332+ 8J2A2\
S(s—R13) (S~ R14)(S—R15)(S—Rye) '

(28)

Solving Eq.(26) or Eq. (27) for wyx(s) yields
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[2s3+ 100S?+2(2A2+8\2+4J%)s+8A2\ +8A3+8I%01J?
ST+ BAS3+ (4324 8N2+ 4A2)S2+ (12A2N + 4N3+ 402\ )s+BAAN 2+ 8A2J2

W1o(S) =Woyy(S) = (29

The time development of the memory function is obtained by performing the inverse Laplace transform

[2r3+10Nr%+ (4A%+ 1602+ 8J%)r;+ 8A%\ +8\3+8J2\1J2
Wi ) =Wai(1) = 2 f; explrit) =2 exprit), (30

T 4Ar 3+ 15012+ (8J2+ 1602+ 8A2)r; + 12A°N + 4N 3+ 402\

where ther; are the solutions of the zeros of EQ9). C(t)=(€16X)+{€1€2Y). (35)
The time dependence of the memory function is shown in

the right column of F'|gs.. 5and 6. As essgntla! featqre Werhe equations of motion for these quantities can be derived
observe damped oscillations. A more detailed mvestlgatlorlljsing again the theorem of Shapiro and Loginov and are
shows that the oscillations are the result of the discrete erbiven by

ergy fluctuations of the dichotomic process and the exponen-

tial decay of the memory function is responsible for the tran-

sition from coherent to incoherent exciton motion. The decay S(t) -y 0 0 S(t)
time of the memory function is related to the time constantd | A(t) —iAZ N -0 0 A(t)
for the loss of coherence of the exciton transport. at B() = 0 i3 =\ i B(t)
. 2 .
V. OPTICAL ABSORPTION C 0 0 —iA% —2r-iJ C(tg%)
In the framework of linear response theory the optical
absorption line shape of the dimer is given by The line shape is obtained by Laplace transforming the equa-
. tions of motion and solving foB(w.) (ws=w/2J). We ar-
(w)= Ref et u(t)w(0))dt. (31 rive at the following finite continued fraction:
0

w(t) is the optical dipole operator. It can be expressed by the S(w¢)2J=2[ —i(ws—3)+A3(—iws+ A+ F{—iws+ A
creation and annihilation operators for a local excitation and 2 N e 1q-1
the transition dipole moment, at siten in the following +A —i(ws—2)+2N] )T (37
way:
The optical line shape can also be calculated from the den-
sity operatorp by supplementing the Hilbert space by the
ground statg®) of the dimer, giving additional matrix ele-
mentsp,, and pno. The eigenvalue equation for the density
We assume that only the ground stéde) is populated in  operator then factorizes into a part describing the transport
thermal equilibrium and that thg,, are independent of the and a part describing the optical absorption. Therefore, as in
site indexn and oriented parallel to the direction. For the the case of white noise, the two phenomena are mathemati-
normalized line shapé ,(») we get cally independent.
The line shape fong=0.5 and various values of; is

~ 1 2 ot 1 2 ot shown in Fig. 5 in the right column. For small valuesxaf

I (w)= ;mzn Refo e Uni(t)dt= ;ReJ'O e S(t)dt we obtain a strongly structured line; the position of the peaks
' is determined by the random energy distributioh A, on
account of the quasistatic dichotomic noise, and the strength
of the transfer matrix elemeritompare the following para-
) graph, and their widths by the lifetime of the energy state,
HereU(t) =T exg —[gdt'H(t')] describes the time evolution i-€., by As. With increasing values ok the lines become
of the systemU,(t) are the matrix elementam|U(t)|n),  broader and merge. For very large valueshgfand finite
and S(t) is defined below. To simplify the calculation we Values ofAs the lines show a narrowing, because the fluc-

um=;udﬁm+%m1 (32

= iRe’é(w). (33
v

introduce the variables tuations are now so fast that the electronic degrees of free-
dom can no longer follow. In Fig. 6 the third column repre-
X=Uqp;+U, y=Uy+Uy,, (39 sents optical line shapes fdr,=2. For small values of
we have a line shape whose structure is determined by the
S(t)=(x+vy), quasistatic energy distributions. With increashghe peaks
become broader and merge and for large values of the
A(t)={e1x)+(ery), switching rate we have again a dynamically narrowed line.

In the static case withh;=0, the optical absorption ener-
B(t)=(exx) +(ery), gies correspond to the Davydov splitting at the four possible
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energy combinations;=e,=*+A ande;=—€,=* A, giv-  white noise case only the second transition is present.

ing rise to absorption at the frequenciesA +J and =T° In the third columns in Figs. 5 and 6 the optical line

(I'=AZ+3?): shapes are pictured for the same values of the model param-
eter. For slow fluctuations we have the line shape corre-

~ 1 sponding to the quasistatic distribution of energy levels, i.e.,
l(w)=3| o= (A+ )+ 80— (-2+J)) an inhomogeneously broadened line. For fast fluctuations the

3 3 line shows dynamic narrowing and a homogeneous width.

Thus the model allows us to describe a continuous transition
+2(1+f do=T)+2|1 r d(w+T)). between inhomogeneously and homogeneously broadened

39) lines.

Comparing the transport and the optical line shapes, we
In the fast modulation case withe—, the line shape S€€ an oscillatory behavior of the occupation probabilities
becomes peaked at;=1/2, i.e.,w=J, when the optical line shape is narrow both in the inhomoge-
neous and homogeneous limits. When the full half-width of
the line is equal to & (in the scaled units we are using this
m- (39) corresponds to a half-width of) 2the occupation probability
decays without oscillations to the stationary value. Such a
The white noise limit can be obtained again by substitu-situation occurs in Fig. 6, but not in Fig. 5.

S(w)=

tion of A2 with Ay (v5=0/2J) and evaluating the limit As regards the memory function, its decay constant passes
of S(wy) for Ag—c, through a maximum with increasing values ®f. For
A,=0.5 the largest decay constant is obtained Xgr0.5
_ 1 Yo and in this case the oscillations in the exciton transport decay
l(0)=— F5—. (40)  fastest. In the case of Fig. 6 the decay constant of the
Tyt (0=J) memory function increases up to;=1.5 and decreases

again. This fast memory loss shows in the absence of oscil-
lations in the occupation probability far,=1.5 and 3.8. We
plan to give a detailed discussion of the behavior of the
memory function in the future.

Figure 5 shows that for small amplitudes of the energy
fIgctuationsAS=O.5 the ex-cita.tion energy transport in the ACKNOWLEDGMENTS
dimer shows damped oscillations for all valuesaf and
thus this transport can be denoted as coherent in the whiole ~ The support of the Deutscher Akademischer Austausch-
range. For the larger fluctuation amplitude in Fig. 6 we havedienst(DAAD), of the Volkswagen Foundation, and of the
two transitions between coherent and incoherent transporDeutsche ForschungsgemeinscH&EB 239 are gratefully
The first corresponds to the transition between regions | andcknowledged. This work has also been fundedB.) by
Il'in Fig. 1, the second to the transition into region IV. In the Contract No. 105/95 of the Charles University.

The linewidth at half maximum is given byy2.

VI. CONCLUSION
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