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We perform a microcanonical study of classical lattig® field models in three dimensions with @)
symmetries. The Hamiltonian flows associated with these systems that undergo a second-order phase transition
in the thermodynamic limit are investigated here. The microscopic Hamiltonian dynamics neatly reveals the
presence of a phase transition through the time averages of conventional thermodynamical observables. More-
over, peculiar behaviors of the largest Lyapounov exponents at the transition point are observed. A Riemannian
geometrization of Hamiltonian dynamics is then used to introduce other relevant observables, which are
measured as functions of both energy density and temperature. On the basis of a simple and abstract geometric
model, we suggest that the apparently singular behavior of these geometric observables might probe a major
topological change of the manifolds whose geodesics are the natural m¢8d063-651X98)04104-X

PACS numbsgs): 05.20-y, 05.45:+b, 11.15.Kc

[. INTRODUCTION degrees-of-freedom systems was used by Krylov in his pio-
neering studies on the dynamical foundations of statistical
The general problem of the relevance of microscopic dy-mechanic$1]. Then, during the past two decades, there have
namics to the statistical behavior of physical systems datelseen some attempts to cope with the ergodicity of Hamil-
back to Boltzmann'’s ideas at the very beginning of statisticatonian systems through a geometric theory of dynarff¢s
mechanics and is still far from being clarified and solved.A more recent series of papd®-8|, instead of dealing with
Within this framework, one can extract a less general but stilergodicity, successfully address the problem of explaining
challenging question, i.e., whether the microscopic Hamil-and quantifying Hamiltonian chaos within a geometric
tonian dynamics displays some relevant change when framework where natural motions are seen as geodesics of a
given system undergoes a phase transition. suitable Riemannian manifoldhenceforth referred to as
Studying microscopic Hamiltonian dynamics means that,‘mechanical manifold’). Here chaotic dynamics stems from
instead of usingensemblestatistical averages, one numeri- curvature fluctuations along the geodesics, through a mecha-
cally computestime averages of the relevant observables.nism similar to the parametric destabilization of the stable
There are two main reasons for so doird: There exist orbits of a pendulum. At variance with a widespread belief,
interesting observables that are intrinsically dynamical, as imegative curvatures do not appear essential to produce chaos:
the case of Lyapounov exponents, aifii) through a Positive and fluctuating curvatures can work as well. A very
differential-geometric description of the dynamics, based orinteresting point is that the average degree of instability of
simple tools of Riemannian geometry, different concepts anthe dynamics is given in terms of curvature-related quantities
methods come to enrich the standard approaches to the stuifytegrated over the whole mechanical manifold. This estab-
of phase transitions, hinting at a possibly deeper charactetishes a link between dynamicalaspect of a given system,
ization of their very nature from the standpoint of the math-the stability or instability of its trajectories, and somlebal
ematical structures involved. geometricproperties of its associated mechanical manifold.
The geometric formulation of the dynamics of many- Now, when a model system displays a phase transition, a
natural question arises: What kind of relationship exists, if
any, between all the well-known major thermodynamic
*Deceased. changes occurring at the transition point and the mentioned
"Present address: INFM, Unittel Politecnico di Torino, Corso global geometric characteristics of the mechanical mani-
Duca degli Abruzzi 24, 1-10129 Torino, ltaly. Electronic address: folds? The present work actually shows that a second-order
lapo@polito.it phase transition appears to be associated with an abrupt
*Also at INFM, Unitadi Trieste, Trieste, Italy. Electronic address: change in the global geometry, and possibly in the topology,
clementi@sissa.it as we conjecture, of the mechanical manifolds.
8Also at INFN, Sezione di Firenze, Firenze, Italy. Electronic ad- The above problem is addressed in the present work by
dress: pettini@fi.infn.it studying the dynamics of classical field theories, discretized
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Equilibrium phase transitions are usually studied in themechanical manifolds underlying the dynamics.
framework of the Gibbsian canonical ensemble. Dynamics, The paper is organized as follows. In Sec. Il we introduce
when it is considered, is introduced ordyposteriori The the models studied, we describe the numerical techniques
most common procedure is to describe it by means of northat we adopted, and we discuss the phenomenology of the
deterministic equations, usually of the Langevin type, whosdhase transition as it emerges from the dynamics. In Sec. Il
limiting probability distribution is the Boltzmann weight the main definitions and results of the Riemannian descrip-
exp(—H/T), whereH is the Hamiltonian of the system. Here tion of H.amlltoman chaqs are given anq the behavior of thg
we are going to adopt a completely different approach, i.e. 980metric observables in our models is presented and dis-
from the very beginning we consider the deterministiccus,sed together with an mterp_retatlon involving smp[e topo-
Hamiltonian dynamics, without making explicit assumptions ogical concepts. Section IV is devoted to concluding re-
on the equilibrium properties of the system and we observ@arks.
how the phase transition is signaled by the dynamics. On
rig_orou_s grounds, one cannot be sure that_a phase transition Il. MODELS AND NUMERICAL RESULTS
exists in a system studied through its Hamiltonian dynamics
because there is no proof of the fact that the dynamics is To study the relationship between microscopic dynamics
ergodic. Moreover, even assuming that it is ergodic, the erand equilibrium phase transitions we consider Hamiltonian
godic measure will be the microcanonical rather than thesystems of the standard type
canonical one. The two ensembles are equivalent only in the
thermodynamic limit, thus the phenomenology observed in 1
finite systems, as the systems considered in numerical simu- Hle, 7= 5> 72+V({el), (1)
lations necessarily are, might be different. To give only an 29
example, let us consider the phenomenon eofodicity
breaking i.e., the fact that ergodicity is not valid for the . . .
whole phase space but only for disjoint subsets of it. Such {/1€"€¢i and m; are canonically conjugated coordinates and
phenomenon is indeed closely related to phase transitions; momenta" labels the sites of d-dimensional cubic lattice,

fact, when it occurs it entails a symmetry breaking, as inandV is an interaction potential. More precisely, we consider

usual phase transitions. However, ergodicity breaking is &"°dels that can be derived from the paradigm Hamiltonian
more general concept than symmetry breaking; in fact, it is

also at the origin of those phase transitions that do not cor- 1 1 1

respond to the breaking of an evident symmetry of the H[‘P]=J ddx{EWZ(X)JFJE[Vd(P(X)]Z—§<P2(X)
Hamiltonian (for example, in spin glassp$9—-11]. In the

canonical ensemble, ergodicity can be broken only in the

thermodynamic limit{12], while in the microcanonical en- + Z<P4(X)], 2
semble, in principle, there might be ergodicity breaking also

in finite systems. Since ergodicity is a dynamical property,

we think that a dynamical approach is particularly appropri-wheres(x) = L[ ¢, ]/ S¢(X) = ¢(X) is the canonically con-

ate to study such a phenomenon. jugated momentum density @f(x) by discretizing it on a
It is worth mentioning here that ergodicity breaking in |attice. By means of the substitutions

classical Hamiltonian systems can be related to supersymme-

try breaking[13]; this relation is estabilished within the (x+a8,)— 0(X)

framework of a path-integral formulation of classical me- p(XTag,)—eX d d

chanics, where the bosonic sector of a supersymmetric La- Tup(X)— a ' f dx—a 2‘  Q

grangian is given by a suitable function of the canonical

coordinates, obeying standard Hamilton equations, and the )

fermionic sector contains ghost fields that, rather surprisWe obtain

ingly, obey the Jacobi equation describing the stability of

classical path$14,15. In this framework the spontaneous

symmetry breaking can occur also at a finite volura]. H[ ¢, 7] = adz
Our results show that, as far as the lattig® models i

considered are concerned, the numerical phenomenology,

obtained by simulating Hamiltonian dynamics, is perfectly 1 ,, N,

consistent with the expectations based on equilibrium statis- M + R4

tical mechanics. Moreover, we investigate whether the insta-

bility of dynamical trajectories, measured by Lyapounov ex-

ponents, is sensitive to the phenomenon of the phaseherea is the lattice spacingg, is the unit vector in theuth

transition[16]. In the light of the geometrization of dynam- direction of the lattice, ang;= ¢(x;). This system show&at

ics, Lyapounov exponents are also seen as probes of theguilibrium) a continuous phase transition with nonzero criti-

hidden geometry of motion; in fact, our results suggest thatal temperature corresponding to a spontaneous breaking of

the deep origin of ergodicity breaking and of the dynamicalthe discrete QL), or Z,, symmetry.

counterpart of a phase transition could be found in a major We have also considered the vector versions of this lattice

change in the geometric, or even topologic, structure of the* model described by the Hamiltonian

d
1 J
Z2, T ) — )2
27Ti+2a2,u§=:l ((P|+eﬂ ®i)

, 4
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1 3 4 have always chosen random initial conditions at equipartition
(72 + — a )2 i i - i i
5 (m)+ — (ot e —®f) among momenta in order to consider phase-space trajectories
2ap=1 “ stemming from initial conditions that belong to the support
of an equilibrium measure.
(5) Along the phase-space trajectories, worked out numeri-
cally, the time averages of any observaBlés computed as

Hle,ml=a'> >

o I

1 2
- Emz(lpia)z

A
22 {2 (¢f)?

where the indexx runs from 1 ton. We have considered, in — 1t

addition ton=1, n=2, which is the simplest vector case, A ZTJOdTA[”(T)'QD(T)]' (10

andn=4, which is the largest value of that allowed for a

complete numerical study with our computing resources. FOBy means of such averages both dynamical and thermody-

n>1 the broken symmetry is a continuous dtiee poten-  namical properties of the system under investigation can be

tials are respectively invariant under planar rotations O(2)4etermined.

and under the action of the O(4) grdumBecause of the One of the most relevant properties of the dynamics is its

Mermin-Wagner theorem, since the interactions are of shofdegree of instability because it is related to the efficiency of

range, the O(2) and O(4) models can have a second-ordghase mixing. Let us remember that the strength of dynami-

phase transition only on three-dimensional lattices. cal instability, i.e., ofchaos is measured by the largest
The Hamiltonian dynamiCS, and thus the related dynami'l_yapounov exponeml_ If we denote by/\/l the phase space

cal, thermodynamical, and geometrical quantities, is studieg@f the system and by a vector field on it such that
by molecular-dynamics simulations performed at several val-

ues of the energy density=E/N, which is the relevant x=X(xt, ... xN) (11)
physical parameter as long as our systems are in a microca-

nonical ensemblg.The qualitative features of the results are gre the equations of motion, a complete integral of this dy-
not affected if we consider the temperataverage kinetic namical system defines a one-parameter group of diffeomor-
energy per degree of freedoras the physical parametgr. phisms of M, that is, ¢': M— M. Denote by

A. Numerical study of dynamics and thermodynamics 'gi = jL[X(t)]fk (12

The canonical equations of motion ) , . o
the tangent dynamics equation, i.e., the realization of the

) IH mappingd¢tl:TxM—>T¢t(X)M, where[jL] is the Jacobian
Pi'=—, (6)  matrix of [X'], then the largest Lyapounov exponexit is
i defined by
. JH 1 JlEll
7= 7 A= lim —In——— 13
T e @ U O] 13
yield and, by settingA[x(t),£(t)]=£TTIx(1)]&/ E=£THET
d =1(d/dt)In(£"¢), this can be formally expressed as a time
of=ml', m'=AZ (¢fie +oile)tBei—Clef|er,  average
=
8 1
A= lim = | d7 A[x(7),&(7)]. (14
with t—= 2tJo
A=Ja%" 2 In practice, as we deal with standard Hamiltonians, the tan-
gent dynamicg12) can be written in the form
B=m?a%—2Ja% 2d, 9) _
d’, [ &V g s
—\4d — , =0,
C=\a", dt2 ﬁ(Pi(?(PJ q

e(t)
and |l ¢??==.(¢"?. In order to guarantee a faithful nu-
merical representation of a Hamiltonian flow, it is necessar))’v

that the algorithm updates the canonical coordinated”

hich, integrated along any numerical trajectory of E&S.
akes possible the estimate Yof from [18]

[e'(nAt), 7 (nAL) = [¢i{(n+ L)AL}, mi{(n+ 1)At ] by 1N TN
means of a canonical, i.e., symplectic, transform. Symplectic M) = —— > |n<—“) (16)
algorithms ensure the conservation of Poinaggemetric in- NAtL &= et oDl

variants and in particular of phase-space volumes and energy _ _ _ _ _ _
conservation. We used a very efficient and precise thirdwhere {&'}=({&}.{&,}), &x(1)=[&(t+At)—&(t—ADY
order symplectic algorithm proposed recertly], keeping  2At, andt,=nAt (At is some time interval The average is
the fluctuations of relative energy AtE/E=10"°. All the  extended up to a final timey such that\,(t,) has attained
simulations have been performed using words of 64 bits. Wa bona fide asymptotic value.
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Concerning thermodynamic observables, temperature, theerved at a temperatuf€(N). This temperature, in general,
basic quantity, is determined through the time average oOfyes not coincide Witﬁ'CV(N) even if
kinetic energy per degree of freedom ¢

1 1 (1.1 lim TSYN) = lim TEN) =T . 20)
2T, df|m2 2l WZ}- a” N N

0 a,l . . .. .

In the microcanonical ensemble ergodicity breaking may oc-
. . . : cur also at finiteN, hence we can expect that a “true” criti-
whereN is the number of lattice sites ands the total time e - ) :
during which a phase-space trajectory is followed. ThisCal energy exists also at fm"ﬁl' No_ngorous theoretical
quantity shows a fast convergence in time and is expected tresult is at our disposal regarding this aspect. Nevertheless,

: ) : Sn the basis of asymptotic equivalence of statistical en-
;jigf:]er from its canonical counterpart by &(1/Nn) correc- sembles, the behavior of microcanonical thermodynamic

In addition to the bifurcation of the order parametes), functions is reasonably expected to be similar to the canoni-

" cal case, at least a¥ is sufficiently large. Indeed, this is
at some critical value of the temperature, a second-ord%hat is observed, as we shall see in the following. In par-

phase transition is.s.ignaled by a singular temperature dep.eﬂéular we expect the specific heat to exhibit a peak at a
dence of the specific heat and therefore the mlcrocanonlc%lritical’ energy density that is a function b

computation of the constant volume specific hext de- In the framework of the statistical theory of critical phe-

serves s.peual.care. Ar_1 efﬂqent numerical method to C.omhomena, by means of the finite-size scaling anaf20s21,
pute Cy, is devised by inverting a general formula relating

: X i the critical properties of the infinite system are inferred from
canonical and microcanonical averages of the squared flu

tuati of eneric observaki2g] b Ving it to the fhe values of the thermodynamic observables in finite
uations ot a generi serva Yy applying | samples of different sizes. In particular, it is possible to lo-
fluctuations of kinetic energy

cate the critical point by means of the so-calRithder cu-

0l .o\ 2 mulants[20]. The Binder cumulang that we have computed
K= 3 5_( %) (1g)  for our systems is defined as
- ’ )
Cv\dp 4
. (o) 21)
whereCy = (JE/JT); the overbar and caret stand for micro- 9 3<¢2>2’
canonical and canonical averages, respectively.
The quantitysK?2 can be easily computed along the nu- Where
merical trajectories, whereas the analytic expresslﬁﬁsK n
=N/28 andgK\2=N/(232) are readily found. By inverting <‘P2n>:<(2 <€°>i) > <4’>a22 i
' a i
the equation above one immediately finds a formula for a
microcanonical estimate of the canonical specific heat  |n the disordered phase the probability distribution of the
order parameter will be nearly Gaussian with zero mean,
Nn 1 henceg=0. At variance to this, at zero temperatyce en-
Cv=7 —— (190 ergy), wheng;= ¢, with no fluctuationsg=2/3. At differ-
1= (Nn/2)(6K“/K?) ent sizes of the systerg, will decay following different pat-

, , . ) , ternsg(N,T) from 2/3 to O at increasing temperature. The
which requires the numerical computation of time averagegemarkable fact is that the value gfat T is independenof

of kinetic energy and of its squared fluctuatiois is the N, providedN is large enough for the scaling regime to set

total number of degrees of freedom. in; hence the critical point can be located by simply looking
at the intersection of the different curvgéN,T) for differ-

B. Dynamical evidence of the phase transition ent values oN. In principle, two different sizes are sufficient
to locate the transitions; in practice, owing to the unavoid-
able numerical errors that affegt it is necessary to consider

In the canonical ensemble, a phase transition may showt least three values di. Moreover, the value of at the
up only in the thermodynamic limit. As long & is finite,  critical point, usually referred to ag*, is a universal quan-
all the thermodynamic quantities are regular functions of thaity, like the critical exponents; for a simple proof see, e.g.,
temperature, and ergodicity and symmetry are not brokerRef.[21]. The importance of the Binder cumulant method is
Nevertheless, some marks of the transition show up neatlyot only that it allows one to easily locate the critical tem-
also in a finite system. The specific heat does not diverge, bigerature, without the need of an extrapolation of the
exhibits a peak, whose height grows with the size of theasymptotic behavior of the fictitious finife- critical tem-
system, at a temperatuﬂ'%CV(N). In principle, the order pa- peratures, but also that such an estimat&_ofs independent
rameter is expected to vanish on the whole temperature rangé the other thermodynamic observables suck¢sor Cy,,
for any finite value ofN, though in practice, e.g., in a ca- and this is obviously a great advantage in determining the
nonical Monte Carlo simulation where the length of the sam-actual critical behavior, in particular the critical exponents.
pling of ¢ is necessarily finite, the system is trapped in oneMoreover, one can regard the existence of a crossing of dif-
of the two phases for a “time” that grows exponentially ferent curvesg(N,T) as a “proof” for the existence of a
with N [9] and thus a fictitious symmetry breaking is ob- phase transition in the system under investigation. This may

1. Detecting the transition: Binder cumulants
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be useful in various cases where the presence of singularites 08— 71— 1 1T

in the thermodynamic functions or the existence of a nonzero i i
order parameter is difficult to obser¢e.g., this is the case of L e _
spin glasse$22]). 06 e :\T\\\\ (a) -

The theory behind the Binder cumulant method is totally i T TN ]
internal to canonical statistical mechanics: To our knowl- i .‘,0_\§ ]
edge, no extension of this theory to thrécrocanonicalen- 00 0.4 '*~~..OT_\\ i
semble exists. Nevertheless, we will adopt the pragmatic - "“-\\\,Q__ .
point of view of assuming its validity as a numerical tool i LN 7]
also in our dynamical simulations, and our operative defini- 0.2‘_ \\\j N
tion of the critical energy density; will be the intersection - N, .
point of the curveg(N,¢) at differentN. The consistency of i ]
the method will be checked posteriori In the following, o‘ T
unless explicitly stated otherwise,, and T, will denote, 15 20 B %0 35 4
respectivelygs and Ty .

The results fog(N,¢) at different sizes for the* lattice 07— I B
models are shown in Figs.(d—1(c). The crossing of the . i
various curves at.~=31 for the O(1) model is quite evident i S 7T :1\\\ ]
and similarly ate .= 44 for the O(2) model and at,~= 56 for 0.6 RN (b)y 2
the O(4) model. [ ‘fﬁ\ ]

Such estimates of the critical energy densities are obvi- n T ]
ously far from being extremely accurate. However, we are * | \Q .
mainly interested in showing that the dynamical phenom- 051 N B

. : , d : AN
enology is actually consistent with the existence of an equi- N NN
librium phase transition at finite energy density and the val- . N s
ues of e, are needed to understand whether or not the 0.4 v ]
singular (or, more generally, peculiabehaviors of the ob- . L .:
servables,(either thermodynamical, strictly dynamical, or 20 30 40 50
geometric ongsthat we are going to study can be associated €
with the phase transition. 0.7

2. Temperature i y
L t\\\ i

The temperature of the* systems, numerically deter- 065~ o ~im. (c) 7
mined according to Eq17), is plotted in Fig. 2 as a function r Tl TSI 1
of the energy density. Note that for all the models a change o6l o\\ E
of the functionT(¢) is clearly evident at=¢. a f e 1

By plotting the Binder cumulants vs the temperatire L \\\\\o .
the critical valuesT . are obtained for all the models and are 0550 i\\\\"'o 4
found in complete agreement with the outcomes ofTfe) C N ]
curves. These values arfe,=35 for the O(1) model,T, C \\ ]
=25 for the O(2) model, andl;=16 for the O(4) model. 051 ' | | | 7

3. Specific heat 0 o0 € 00 7

The specific heat, =Cy/Nn per degree of freedom of £ 1 Binder cumulantg(N, &) vs energy density at differ-
the ¢* models here considered, computed according to Egent valuesN of the lattice sites fota) the O(1) case(b) the O(2)
(19), is plotted vs the temperature in Fig. 3. The asymptoticcase, andc) the O(4) case. Open circles referNe=4x 4% 4, full
values of the specific heat in the limits—0 andT—o are triangles refer tdtN=6Xx6X6, and full circles refer titN=8x8x8.
exactly known. In fact, at low energies the anharmonic term
in the Hamiltonian can be neglected, thus the system behav
as a collection af harmonic oscillators aog—1 asT—0.

i@ttice ¢* model are perfectly consistent with the expecta-
tions of the effects of a second-order phase transition on a
. . . ) . finite sample. As already motivated above, this first result is
In the h'gh'e”efgy limit the quadratic terms in the potentialy o yiyia). Up to now its content is that, for all practical
are negligible with respect to the quartic ones, wheage ,noses, a dynamical simulation is actually equivalent to a
—1/2+1/4= 3/4 asT—. At intermediate energy densities, microcanonical one, so that, at sufficiently lanye the re-
neat peaks show up whose positions are closk.tfor each  sults are in natural agreement with canonical statistical me-
model respectively. The heights of the peaks are found tehanics. All these results concern time averages: The time
grow with N and to decrease with. variable, even if not eliminated from the very beginning as in
the statistical approach, has been nonetheless integrated out
in the averaging procedure. However, we can also wonder
We have shown that the outcomes of the dynamical nuwhat are the properties, if any, that are peculiar to the dy-
merical simulations of the scalar and vector versions of thewamics and that can be considered relevant to the description

4. Dynamical properties
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FIG. 2. Temperaturd (twice the average kinetic energy per FIG. 4. Largest Lyapounov exponexi plotted vs temperature
particle plotted vs energy density. Results of the QL), O(2), for the O(1) model. A “nonsmooth” feature &t=T, is evident.
and O(4) models are represented by full circles, open circles, antattice sizeN=8Xx8x8.
open triangles, respectively. Temperatures and energy densities of
each model are scaled by the corresponding critical values obtaingchown as the strong stochasticity threshold and is discussed
by means of Binder cumulants. The dashed line is a guide to thtn Refs.[23,24). In particular, the following questions natu-
eye. Lattice sizédN=8x8x8 rally arise. Is there any peculiar behavior of the Lyapounov
exponent in correspondence with the phase transition? Is
of the phase tranSition |tself Moreover, we haVe already nothere a transition between Strong'y and Weak'y chaotic re-
ticed that the phenomenon of ergodicity breaking has a deegimes also in these models and, in the affirmative case, is
dynamical origin; therefore, we can try to understand whathere any relationship between these different dynamical re-
features are associated with a Hamiltonian ergodicity breakgimes and the thermodynamic phases?
Ing. We must say from the very beginning that there are not
The lattice ¢* models under investigation are noninte- yet conclusive answers to these questions. The study of a
grable dynamical systems. In the two limits>0 ande—»,  possible relation between chaos and phase transitions is a
these systems become integrable. The two integrable Iimit§ery recent issug¢25] and the results obtained so far and
are, respectively, those of a system of coupled harmonic ogeported in the literature range from the claim of the discov-
cillators and of a system of independent quartic oscillatorsery of a “universal” divergence i\, near criticality in a
The dynamics is always chaotic over the whole energy|ass of models describing clusters of partidas] to the
range. Nevertheless, in analogy to other nonlinear OSCillat%bservation that the Lyapounov exponent attains its mini-
systems, by varying the energy we expect that qualitativelynym in correspondence with the phase transition in Ising-
different dynamical I’egimeS will be found, characterized by“ke Coup|ed map |att|ce@7] and to the apparent insensitiv-
a transition betWeen diffel’ent behaViorS of the larges‘ty to the ||qu|d_so||d phase transition Of the Lyapounov
Lyapounov exponenk; as a function of energy density or, spectra of hard-sphere and Lennard-Jones sysi28is
equivalently, temperature. This phenomenon is attributed to Qur simulation results are plotted in Figs. 4 and 5. The
a dynamical transition between weak and strong chaos; it i§)(1) case has been studied more extensively than the others
because of practical reasons of computational effortex-
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FIG. 3. Specific heat per degree of freedom vs scaled tempera- /e
tureT/T.. cy=Cy/Nn andCy is computed according to E¢L9). FIG. 5. Synopsis of\,(T) obtained for the O(1) modefull
Symbols: full circles, @1); open circles, for @); andopen tri-  circles, the O(2) modelopen circleg and the O(4) modelopen
angles, @4). Lattice sizeN=8Xx8Xx8. triangles. Lattice sizeN=8x8X8.
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ample, single runs for the O(4) model usually required at lll. GEOMETRY OF THE DYNAMICS
least two weeks of CPU time on a fast Hewlett-Packard AND THE PHASE TRANSITION

9000/735 computgr Let us sketch the main points of the Riemannian theory of

The first numerical evidence is that in presence of & 54q in physical systems; details can be found in Fafs.
second-order phase transition a rather sharp and “cusphke’é]_

transition between different behaviors ®f(T) is found at
T. (where the critical value§ . are those determined by
means of Binder cumulantsMoreover, the qualitative be-
havior of A (T) appears very different in the thermodynami-  The trajectories of a dynamical system described by the
cally ordered and disordered regions, respectively. In fact, ik-agrangian function
the former regior\ ; rapidly increases witfi, whereas in the 1
latter reg|on)\1('!') displays an almost flat pattern aboVg L(q,q)= Eaik(q)qlqk_V(Q) (22)
[note that\ 1(T) is expected to change again at very lafige
because the dynamics is asymptotically integrable in the
limit T—oc; this effect has been numerically checked at veryare geodesics of the configuration space endowed with a
high temperatures and is clearly evident in Fig. 4, for theProper Riemannian manifold structure described by the met-
O(1) case, al/T.~10%]. This suggests that the phase tran-'IC tensor
sition has a dynamical counterpart in a passage from a
weakly to a strongly chaotic regime. gik(a) =2[E—V(q)]ai(q). (23

It is remarkable that the shape ®f(T) is significantly
different in the presence or absence of a second-order pha3éis metric is known as Jacobi metric and is defined in the
transition. In fact, in the case of one-dimensional latticesregion of the configuration space whete>V(q). In local
with short-range interactions, where no phase transition isoordinates, the geodesic equations on a Riemannian mani-
present),(T) has a very smooth pattetaee Ref[8]). This  fold are given by
fact has been checked more specifically for gfemodel by
computing A 1(T) for the O(2) symmetry case on a two- d?g . dd dg
dimensional lattice; as a consequence of the Mermin-Wagner a2 + ik ds EZO’ (24)
theorem, here a second-order phase transition is forbidden

a;?d tml't f?_c; t|h|s énode_l umrj]ergotes in 'rflf'r?'te'horderwheres is the proper time antﬂ‘}k are the Christoffel coef-
(Kosterlitz-Thouless-Berezinskphase transition. The s apechcients of the Levi-Civita connection associated wif ,

of A,(T) again displays a major change so that the low- an i i
° hl_E ) ag n display j ge S0 that M., Tly=(1/2W) 8™(5 Wi+ 3 Wi~ dnWW3), Where
\gh-lemperature regimes are very ditierent. However, %=E—V(q); proper time and physical time are related by
transition between these two regimes is now sm¢afj. ds2=2W2dt>. By direct computation, usingg; =[E
. ’ |

It is worth emphasizing that the average ooaal prop-  _y;(q)16,, , it can be easily verified that the geodesic equa-
erty of microscopic dynamics, the average instability measjgns yield

sured by 4, is sensitive to aollectivephenomenon such as

a second-order phase transition. d2q' oV
It could be argued that in the critical region almost any — = (25)

“honest” observable will show peculiar behavior and that t

this reflects the tendency of the statistical measure to become

singular at the transition point, regardless of the ensemblke., Newton’s equations associated with the Lagrangan

chosen. In the framework of equilibrium statistical mechan-These equations can be also derived as geodesics of a mani-

ics this is certainly true because the Gibbs measure is th@!d consisting of an enlarged conﬂ%uranon space-time

fundamental mathematical object upon which everything reM X R?,_with local coordinates ¢°.q*,... d' ... a",

N+1 i ; i
lies. In the thermodynamic limit also the microcanonicald ). For such a purpose this space is endowed with a

measure, which is the invariant measure of the microscopiE?Snednehg;ggi‘tivh%ssee”g?&i':’é?ﬁ?g'an metric, introduced by

Hamiltonian dynamics, will have to become singular. How-
ever, the microcanonical measure is not the ultimate math- o
ematical entity that can be considered, so that the Hamilds*=0,.,dg*dq"=a;;dq'dg’ —2V(q)(d¢®)?+2dg°dq" " %,
tonian dynamics approach gives meaning to the question of (26)
the possible existence ofraore fundamentgphenomenon at
the very ground of a phase transition. calledEisenhart metricThe natural motions are obtained as
Lyapounov exponents provide the necessary link to suckhe canonical projection of the geodesics bf X R,gg) on
unexplored land. The details on this point are given in thehe configuration space-time:M x R*—M X R. Within the
next section, where we recall how the geometrization ofotality of geodesics only those whose arclength is positive
Hamiltonian dynamics proceeds in the language of Riemanrdefinite and is given byds’=c$dt? correspond to natural
ian geometry and how average geometric properties of som@otions, which is equivalent to requiring the condition
suitable manifold directly influence the average dynamicag™*!=3cit+c3—[iLdr for the extra coordinateg*!
instability quantified by\ ;. [3.,4]; c; andc, are real arbitrary constants.

A. Riemannian geometrization of Newtonian dynamics
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B. Curvature and instability of geodesic motions tion space-time equipped with the Eisenhart md2@®, it is
There is an important relation between the curvature of 40und that the only nonvanishing component of the Ricci

manifold and the stability of its geodesics. It is described by€NSor iSROOZiAV; thus Ricci curvature is a function sz.the
the Jacobi—Levi-CivitdJLC) equation for thegeodesic sepa- co0rdinatesy’ only and one hakg(q) =AV/N. Using dt

ration vector field Js). =ds?, the stochastic oscillator equati¢®9) can be written
The evolution ofJ contains all the information on the 5
stability, or instability, of a given reference geodeg(s). In d%y

fact, if |[J| grows exponentially, then the geodesic will be
unstable in the Lyapounov sense; otherwise it will be stable.
It is remarkable that such an evolution is completely deterwhere the mean and variance @{t) are given by
mined by the Riemann curvature ten&, according to the
JLC equation

F'Fﬂ(t)lﬁ:O, (30

1
Qo=(kp) =1 (AV) s, (31)
vyl . dg_ dd
d52+Rjk' ds? ds O @7 N ) 5
whereV/ds is the covariant derivative.

In the largeN case, under suitable hypothes$&s], itis  The proces€)(t) is specified by, o3, and its time cor-
possible to derive a scalar effective stability equationrelation functionI'(t;,t,). We consider a stationary and
Briefly, among others, the main assumptions are thahe  5.correlated proces@(t) with T (ty,t,)= 702 8(|t,—t4]),
ambient manifold isalmost isotropi¢ which essentially \yhere 7 is a characteristic time scale of the process. At
means that, after some suitable coarse graining, the ambieptesent the evaluation of this time scale is still a rather deli-

manifold would look like a constant curvature manifold, andcate point, where some arbitrariness enters the theory. In Ref.
(i) the curvature felt along an unstable geodesic can be re%l] these two time scales are defined by

sonably modeled by a Gaussian stochastic process. The fina

result is[8] ~ < dt> - - < dt>Qé/2 -
il \ds/ 200 P \dS/ 0n
d—sf+<kR>M¢+<62kR>;’2n<s>w=o, (28) o

which are combined to give as

where ¢ denotes any of the components &fin Eq. (27) . 4 g
because now all of them obey the same effective equation of T =201t y). (34)
motion; (Kg), = (1/N){Kg), , WhereKg is the Ricci curva-
ture of the ambient manifoldkz=Ri,q'q* and Ry,=Rlj; ;
( ), stands for microcanonical average afé’kg), is
shorthand fof 1/(N— 1)]<52KR>,“ the mean-square fluctua-
tion of the Ricci curvaturey(s) is a Gaussiam-correlated
random process of zero mean and unit variance.
Equation(28) is a scalar equation thandependently of
the knowledge of dynamicprovides a measure of the aver-
age degree of instability of the dynamics through the growth
rate of#/(s). The peculiar properties of a given Hamiltonian . : : ;
system enter Eq28) through the global geometric proper- fﬁgggg;nt(’{éﬁ (Sjodlrjtgzjr(;;tf fg)r(r'iﬁglz rrng grgw(;:?qo?/n
ties(kg), and( 8%kg), of the ambient Riemannian manifold. g ' 9 yap

Moreover,(Kg),, and( &%), are functions of the energy ~ €XPonent is then given by the growth rate i¢i, ) (1) |

As we shall see below, at low temperatures this formula
seems to predict a satisfactory temperature dependence of
in fact, by adjusting a constant factor that multipligs the
theoretical prediction oh,(T) is in very good agreement
with numerical computations. At high temperatures we have
to take care of the fact th&), and o, are both increasing
functions of T, even though the system approaches an inte-
grable limit.

" Whenever()(t) in Eq. (30) has a nonvanishing stochastic

of the system, and of the energy density: E/N as well, ~according to the definition

which is the relevant quantity &— oo, so that from Eq(28) ) -

we can obtain the energy dependence of the geometric insta- N Iimiln () + (1) (35

bility exponent. b L2t y2(0)+ g2(0)

Equation(298) is of the form

d2y The ratio [ ¢2(t) + ¢2(t) /[ 4*(0)+ ?(0)] is computed
— +Q(s) =0, (29 by means of a technique developed by Van Kampen, sum-
ds’ marized in Ref[8], which yields

representing a stochastic oscillator where the squared fre- 40,

quency()(s) is a stochastic process; the derivation of this N (Qg,0q,7)= E(A_ ﬁ)

equation does not depend on a particular choice of the met-

ric. For Hamiltonian systems with a diagonal kinetic energy

matrix, i.e.,a;;= &;, by choosing as the ambient manifold 2 \/ 400)° 2 _\2 o

for the geometrization of dynamics the enlarged configura- A=|20g7t ( 3 +(2007) (36)
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The quantitie€),, o, and+ can be computed as static, i.e., L L L B
microcanonicalaverages. Therefore, E€36) gives an ana-

lytic, though approximate, formula for the largest Lyapounov
exponent independently of the numerical integration of the 0.8
dynamics and of the tangent dynamics.

—_

K
<
f=>]
o|1||||||\|||||x||||q||

C. Geometric signatures of the phase transition

As already noted above, on the one hand, the largest %4

Lyapounov exponent is sensitive to the phase transition; on

the other hand, in the Riemannian description of chagss 0.2
intimately related to the average curvature properties of the
mechanical manifolds. These quantities are computed as in- 0 i
tegrals on manifolds just like other statistical quantities of T/T,

thermodynamic kind. This means that by means of

statistical-mechanical-like computations we can obtain non- FIG. 6. Reduced average Ricci curvatura=((kg)
trivial information about dynamics. Hence the following —2Jd)/[(kr(T=0))—2Jd] vs T/T.. The Ricci curvature is so
questions arise: Is there any peculiarity in the geometriéeduced in order to faC|I!tate the comparison between the different
properties associated with the dynamics of systems that, d&0dels. Symbols: full circles, @); open circles, for @2); and
statistical systems in thermal equilibrium, exhibit a phase®Pe" riangles, G1). Lattice sizeN=8x8x8.

transition? In particular, do the curvature fluctuations show

any noticeable behavior in correspondence with the phas§SS Perturbed by the quadratic coupling term. In this limit
transition itself? the canonical partition function is factored in terms of func-

tions of the form

>
PRNERTI RSV, SNSRI (S TN R SR B

(=]
9]
p—
-
(o]
av)

Results of the computations

. o e 1
Let us now report on the results of the the computation of J dxxe ‘=T
o

the geometric properties of the mechanical manifolds 0
sampled by the numerical geodesics. For ¢flemodels, the _ _ _
Ricci curvature per degree of freedom along a geodesic otvith »=0, wherel'(x) is the Euler Gamma function. Hence

v+1

a

)a—(v-%—l)/a, (39)

(M XR2?,gg) is given by the canonical average of any even poweof the field is
1 P2V n+2 & vtl

kR:N_E > — 2=2Jd—m2+)\N—2 > (of)2. B\ ‘V/4F( 4
Na=1"T () M= - (e =7 (40

1
iH
High- and low-temperature behaviors of this quantity can be
easily derived. In the limiT—0 we can replace, at any site and vanishes for any odd power

i of the lattice,||¢?(|?== ,-1"(¢{*)? with the constant value

@3=m?/\; this value is obtained by minimizing the potential 2.5 T L
part of the Hamiltoniar{5). Hence, for a generic @ case,
we have

_ 2
lim kg=—=(Jdn+m?) (39

=(
T—0 n

and with the values we chose for the constarits {, m?
=2,d=3, and\=0.1) it is kg=10 in the O(1) caseky
=8 in the O(2) case, ankiz=7 in the O(4) case, respec- i o -
tively. These values are in agreement with our numerical Lo °‘.| L i
findings, as shown in Fig. 6, wher&(T)=[(kg):(T) 0 2 4
—2Jd]/[{kg)(T=0)—2Jd] is synoptically displayed for all the log,, T

models; the average ), is defined in Eq(10). At low tem- FIG. 7. O(1) model. The average Ricci curvatgkg) is plotted

perature(kg)(T) only slightly deviates from its limiting vs T for a wide temperature range. The dashed horizontal line rep-

zero-temperature value, as shown in Fig. 7; this fact is intU;oqants the integrable limit behavior G)(T) predicted by Eq.

itively interpreted as a sign of a weakly chaotic dynamics. (3g) and actually attained at low temperature by the average Ricci
~Also in the opposite limiff —, these systems are again cyryature computed for the O(1) model according to &§). The
integrable. In fact, for increasing temperature the variablegojig line represents the high-temperature asymptotic behavior of
@i become larger and larger so that the Hamiltoni&h  (kg)(T) predicted by Eq(41), again pertaining to the integrable
describes a collection of quartic oscillators that are less anfiimiting behavior of the model.

LI L I B B S S B B B
[ S R RS R R
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From Egs.(37) and (40) we find a canonical estimate of L B T
(kgr),, that differs from the microcanonical one I(1/N) r ]
terms 10 N s .

3 8l o 407 ]

2 - ° * 1

<kR>M"‘2Jd_m + - 1 \/f‘f’O(N) bc 6:— o - . oODO . . _:

4 - - . 5

(41) [ ]

This prediction is compared to the numerically computed 2: B
values of(k_R>t(T) in Fig. 7; at very high temperature the N T S R R B
agreement is very good. 0 0.5 1 15 2

In order to compute the average curvature fluctuations T/T,

5%kg),, we first notice that . :
{ R>” FIG. 8. Average Ricci curvature fluctuations, vs T/T.. The

“cusp-like” behavior is evident af=T.. Shown from top to bot-

2 2
(5%kg) = (k&) — (kg)2>=\? n+2 > leill? tom are the O(4), O(2), and O(Iresults. The cusp appears to
R R R NN ~ || Pi : ), Dle), al . p app
! soften at increasing dimensionof the symmetry group Q).

2
> <||goi||2>) ] (420 in correspondence with the phase transition. Moreover, cur-

i vature fluctuations display a very smooth energy density de-
pendence, or a temperature dependence as well, in those sys-
tems where no finite-order phase transition is pregseé
Ref.[8]). In Fig. 10 We4report alsarg(T) in the case of a

2l \—y2 2 aNd\_ /¢ a\2\2 two-dimensional(2D) ¢® model with O(2) symmetry; in
(k) =A"(n+2) {<((P(')) ) <(('D(')) b “3 this case a second-order phase transi(tio)n i)s/ forbid}(/jen and
where o)) denotes any representative of the now indepenactually the system undergoes a Kosterlitz-Thouless phase

dent degrees of freedom. The Gibbsian, canonical average fransition. The cusplike behavior of curvature fluctuations
the T—co limit is now easily found to be has now disappeared aig,(T) is a monotonically increas-
ing function of T; visibly, something still happens at the

2 \G '(5/4) [T'(3/4) 5 transition point .=1.5), so that this case appears to be
(0%KR) "~ T(1/4) | T(1/4) (N+2)°4NT. (449 “intermediate” between no phase transition at all and a
second-order phase transition. Similar results have been
In order to compare the predictions of E@4) with our  found for planar 2D and 3D classical Heisenberg models
numerical results and also in order to use it in the analytid29,32 and in a preliminary investigation of the dugauge
prediction of the Lyapounov exponent, we have to take into/ersion of the Ising model in three dimensiof&3]: The
account the correction that relates canonical and microcecusplike behavior of the curvature fluctuations always shows

and, as in the larg&-limit we consider all thep;" decoupled,
we find

2

nonical averagef31] which now reads up when a second-order phase transition is present and the
singular point is located at the critical temperature, within
o v o e B HkR)\? the numerical accuracy.
(6%KR) = (k) Cy\ a8 | (45) In the light of the Riemannian description of Hamiltonian
The high-temperature partition functio is obtained by 2.5 T — —
raising to theNnth power the integral dpexd — B(\4)¢*] *
~B Y4 Then, using F=—(1/NnpB)InZ and C,= 5

—T(5°F/dT?), we findc — 1/4. This is in very good agree-

ment with our numerical results for the high-temperature val-
ues ofcv; this is somehow less clear in the O(4) case be-

(=1
causec,, was computed only in the transition region. From 2

LI I B L L
L]

lov v v b by e N i

Egs.(45) and (44) we can now obtain the final result ..A.
o e
5%k L L@ +2)24\T. (46 LT
(KR~ | T(17a) 4 T(arm) [(MH27AT- (49
Bl N R R
In Fig. 8 we report the temperature dependence of the time 0 210g T 4
average of the Ricci curvature fluctuationso(T) 10
E<52kR>g- In Fig. 9 we also give a comparison of, with FIG. 9. Average Ricci curvature fluctuatioms, vs T for the
the prediction of Eq(46) for the O(1) model. O(1) model reported for a wide range of temperature. The solid line

The common feature of the three models is that a cusplikeepresents the high-temperature asymptotic value given by Eq.
(singulay behavior of the curvature fluctuations is observed(46).
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FIG. 10. Average Ricci curvature fluctuations, vs tempera- FIG. 11. Numerical largest Lyapounov exponexy (open

ture for the O(2) model on a square lattiag#=(2) of N=30x 30 circles plotted vsT for the O(1) model and compared to the ana-
sites. The cusp is now absent amg(T) is a monotonical increas- lytic prediction of Eq.(36) (full circles). The vertical solid line
ing function. AroundT=1.5, on the basis of the temperature be- marks the transition temperature. The correlation time scaile
havior of other observables, the system is supposed to undergogven by Eq.(34); 7 is rescaled by a constant factor equal to 0.65 at
Kosterlitz-Thouless phase transition and, correspondingly, we cai<T, and by a factor 1.1 at >T,.
observe a change in the shapemf(T). HereJ=1, A=4, and

2_
m-=10. tures for the O(2) model and it becomes poorer in tl{é)O

chaos given above, we understand why the temperature dgiodel- The comparison aI>T, suffers, in the cases of
pendence of the largest Lyapounov exponenis so pecu- 0O(2) and O(4), a restricted range of temperature values

liar near and at the critical temperatuigee Figs. 4 and)5 focused our attention only on the transition regioq because of
\1(T) reflects the cusplike pattern of,(T) nearT.. In Sec.  the problems already mentionedvhere subtracting from

Il D we make a conjecture about the deep meaning of thes&o(T) and oo(T) their asymptotic values is less meaning-
singular behaviors shown by;(T) and oo (T). ful.

As the invariant measure for an autonomous Hamiltonian However, it is not out of place to remind the reader that
flow is the microcanonical measure on the constant energthe theoretical computation of Lyapounov exponents is not a
surfaces of phase space, our numerical computatiotiszdf ~ routine task at all and that the approach reported here is at
and{&%kg), are good estimates of the quantit@g(T) and  present the only theoretical method available to cope with
oqo(T), i.e., microcanonical averages, that enter E§8) the computation ol ;. What is important here is that with
and (36). The analytic computation af;(T) by means of some simple and reasonable adjustment the analysis sketched
these formulas yields an unsatisfactory result that overestabove still applies and yields good results. Refinements of
mates\,(T) at low temperaturegthough the temperature the geometrical theory of chaos are beyond the aim of the
dependence is corrgand that steeply increases at high tem-present work; rather we are interested in using it as it is at
peratures instead of saturatirigefore decreasing again at present to get a hold of the deep origin of the peculiarities of

extremely highT). The high-temperature result appears parthe dynamics at a phase transition.
ticularly bad; however, this is only due to the asymptotic

growth with T of both (kg) and(5%kg), given by Eqs(41)

and (46) and confirmed numerically, which has no special !

meaning for dynamical instability. The estimate of the deco- |

rrelation time scale of curvature fluctuations along the geo- L | o -

desics is still somehow rudimentary in the Riemannian L |

framework outlined above; therefore, one expects that some <~ -1}~ |

improvement is needed on this point. As a matter of fact, itis o - i

possible to substantially improve the theoretical predictions & - !

by simply multiplying the decorrelation time scadeof Eq. - " L [

(34) by a constant factor that is model dependent and differ- s i
|
|
|
{
1

—O.5|||||r||||

(4
[ le]

ent below and abové,.. Moreover, at high temperatures, in —LeE °
computing7; and 7, given in Eq.(33), we have subtracted |
from Qo(T) and oo (T) their respective asymptotic behav- [ B R
iors given by Eqs(41) and(46). The analytic predictions for 0.8 1 12 14 16 18
\1(T) are now in very good agreement with numeric results
with the exception of the critical region, where something is  F|G. 12. Numerical largest Lyapounov exponeni (open
apparently still lacking. The results are reported in Figs. 11—ircleg plotted vsT for the O(2) model and compared to the ana-
13, where it is evident that the best agreement betweeRtic prediction of Eq.(36) (full circles). The vertical dashed line
theory and numerical experiments is obtained in the O(1)marks the transition temperature. Herés rescaled by a constant
case; very good agreement is still present at low temperdactor equal to 3 aT <T, and by a factor 0.7 aI>T,.
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I T U T FIG. 14. Some representatives of the two families of surféges
0.8 L log 11;2 L4 andg, defined in Eqs(47a and(47b), respectively. Each family is
10

divided into two subfamilies by the critical surface corresponding to
€.=0 (middle members in the pictureMembers of the same sub-
FIG. 13. Numerical largest Lyapounov exponeni (open family are diffeomorphic, whereas the two subfamilies are not dif-
circles plotted vsT for the O(4) model and compared to the ana- feomorphic between them.
lytic prediction of Eq.(36) (full circles). The vertical solid line
marks the transition temperature. Herés rescaled by a constant finds y(F,)=0 if e<0 and y(F,)=2 otherwise, while

factor equal to 5.5 af<T, and by a factor 0.6 af>T,. x(G.)= 4 or 2 whene is respectively negative or positive.
Let us now compute the dependence of the average curva-
D. A topological conjecture ture properties of these surfacessas e.. Let M belong to

We shall now try to grasp the possible significance of theé®"® of the _two_famlhes under investigation. The Gaussian
above-reported cusplike, and thus possibly singular, behavidurvatureK is given by[34]
of the curvature fluctuations at the transition point for #fe
lattice systems. As a first step toward this goal we shall try to X' (X"y' —x'y")
reproduce such a peculiar behavior of curvature fluctuations = VX Iy D2 (49
in abstract geometric models. A preliminary step in this di- y y
rection was already presented in RE29], applied to the
case of planar spin models. where the functiong(u) andy(u) represent the coefficients
The choice of a geometrimy modelstems from the fol- of the general formM (u,v)=[y(u)cow,y(u)sinv,x(u)] of
lowing considerations. Weakly and strongly chaotic geodesiparametrized surfaces of revolution and the prime denotes
flows can “live” on homologically trivial manifolds, i.e., on differentiation with respect to. Now the fluctuations oK
manifolds that are diffeomorphic to ad sphere. In other are computed as
words, nontrivial topology is not necessary to make chaos;
conversely, a sudden topological change in a family of mani-
folds can abruptly affect their geometric properties and the 02:<K2)—<K>2=Aflf KZdS—(Alf Kds
degree of chaos of geodesic flows. Therefore, let us consider, M M
for instance, the two families of surfaces of revolution im- (50
mersed inR® defined as

2

where A is the area oM and dS is the invariant surface
F.=[f.(u)cow,f (u)sinv,u], (479 element. Both families of surfaces, in spite of having very
different curvature properties on the averdfer instance,
(K)(e)=0 in the F, case ag <0, while the same average
curvature is positive and diverging as-0 for G, ], exhibit a
singular behavior in the curvature fluctuatierase — ¢, as
where shown in Fig. 15.
These results suggest, at a heuristic level, that, from the
I sy S _ point of view of the geometric description of the dynamics, a
fo(W)==Vetu'=u’, eelemn,+), (48) phase transition might correspond taapology changen
the manifold underlying the motion. The relevance of topo-
and & ,,,= — 3. Some members of the two families are de-logical concepts for the theory of phase transitions has been
picted in Fig. 14. In both cases there exists a critical value oemphasized alreadfsee Ref[35]), though in a more ab-
the parametee, £.=0, corresponding to a change in the stract context. Here we suggest that topological aspects of
topologyof the surfaces. In particular, the manifol#s are  phase transitions might also concern the manifolds that are
diffeomorphic to a toru§ for e<0 and to a sphergé® for  “just behind” dynamics and not only those deep mathemati-
£>0. In the other case, one has instead a change in theal objects that are involved in RgB5]. In our opinion this
number of connected components: The manifgidsare dif-  subject deserves further investigation to go beyond the heu-
feomorphic totwo spheres fore <O and to one sphere for ristic level. In fact, the study of dynamics and of its geomet-
£>0. Computing the Euler-Poincareharacteristicy one  ric and topologic counterparts could eventually lead to a bet-

G.=[u cow,u simw,f_(u)], (47b
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R0 o L LA sequence of the tendency of the measure to become singular
B ; ] at T=T, in the limit N—c. In the light of our results we
15 (a) X =2 4 suggest that a deeper explanation might be possible: A major
- ] topological change of the mechanical manifolds could be the
s 10 F N common root of the peculiar behaviors of both dynamic and
Ly =4 ] thermodynamic observables in presence of a phase transi-
5L ] tion. Here topology is meant in the sense of de Rham’s co-
r ] homology.
0 o il e h On a purely phenomenological ground it might be surpris-
0.01 01 1 ing that the largest Lyapounov exponent, which measures an
€+ €. averagdocal property of the dynamics, is sensitive ta@al-
lective and therefore global, phenomenon such as a phase
20 T T transition. In fluids, for example, it is evident that molecular
(b) : 3 chaos has nothing to do with the macroscopic patterns of the
] velocity field. It is even possible to have chaotic motions of

15 -
- X =2 fluid droplets(Lagrangian chagsin the presence of regular

Eulerian velocity fieldgi.e., in laboratory reference frame

10 .
° - ] However, within the Riemannian framework outlined in
5 [ ] the previous sections, Lyapounov exponents appear tightly
C ] related to the geometry of the mechanical manifolds, and
0 o R R B geometry dramatically changes in thg presence of a major
001 o1 . — change of topology. Thus our topological conjecture seems
ct € to naturally account for this, at first sight counterintuitive,

min

sensitivity of the largest Lyapounov exponent to a macro-
FIG. 15. Second moment of the Gaussian curvature of the sur§copIC collective p_henomenon.
facesF. andg, plotted vse. o is defined in Eq(50): ¢ is shifted by Itis worth. mentioning here that, to the best of our knowl-
emin="0.25 (see the tejtfor graphical reasonga) refers tog, and edge, there is only anOthe.r fra.me.Work Wher? Lyapounov ex-
(b) refers toF,. The cusps appear a=0 where the topological poﬂe.”ts can be, at I(-?‘ast in principle, analytlcally computed.
transition takes place. This is a'fleld-theoretlc framework, alregdy mentioned in the
Introduction[13—15, based on a path-integral formulation
d)f classical mechanics, where Lyapounov exponents are seen
as expectation values of suitable operators. There are many
interesting points in this framework that could probably re-
veal a fertile relationship with the Riemannian geometric ap-
IV. CONCLUDING REMARKS proach that is behind our present work. Let us mention some
Let us now summarize the main points of the presen f them. _Ergodicity breaking, which, as we discussed in the
work and comment on their meaning. By studying some ntrodgcthn, IS a more ge.neral concept than symmetry
classical latticee* models that undergo second-order or breaking, in the f|eld-the0(et|c context appears to be related
Kosterlitz-Thouless phase transitions, it has been found th pa s_upersymmetry breakmg_; maoreover, this supersymmetry
the natural microscopic dynamics, derived from the Hamil- reaking can occur aiso at finifé [13]. L.yapou.nov EXpo-
tonian functions of these systems, clearly reveals the pre&p_ents turn outto b? reIatgd_ to mathematical objects that ha}’e
ence of the phase transition. The invariant measure of Hamif'any analogies with defmlt!ons qnd concepts of_de Rham’s
tonian dynamics is the microcanonical measure, equivaIenF,Ohon.wlo.gy theory{15], wh|ch might be useful in future
in the thermodynamic limit, to the canonical measure that idnvestigations about the relation bet\_/v_een Lyapounov expo-
sampled by usual Monte Carlo algorithms. Therefore, on&'€Nts and topology at a phase transition.

could argue that it is not surprising that Hamiltonian dynam- d(ljn.conclusr:on, we be||e\|/e that the dyngmlc(:japbproach, Ir:d

ics yields the same results of a Monte Carlo stochastic dy‘:" |t!on to the conceptual aspects mentioned above, cou

namics. As a matter of fact, using Hamiltonian dynamicsjustc.OntrIbUte to.complement the §tandard approache_s of statls—
- : 'tlcal mechanics to the description of phase transitions and it

esting, whereas the important point raised by the preseﬂ hoped that it be particularly helpful in those cases where

work is that Hamiltonian dynamics brings about different [N€S€ standar(_:l methads may encounter some difiiculty, as .is
observables and a different framework to tackle phase trar{—he case .Of disordered anq frustrated SYSteT“S' polymers in
sitions. Mainly Lyapounov exponents are the different ob—the contlnuum,_ and Ia}t.tlce gauge theories where no
servables intrinsic to the dynamics and the differential-SYMMmetry-breaking transition occurs.

geometric treatment of dynamical instability is the different

fram_ework. In addit_ion to thermodynamic o_b_servables, dy- ACKNOWLEDGMENTS
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