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Confined harmonically interacting spin-polarized fermions
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The thermodynamical properties are calculated for a three-dimensional model ofN harmonically interacting
spin-polarized fermions in a parabolic potential well. The obtained dependences of the chemical potential and
of the internal energy on the complete range of the temperature and of the number of particles turn out to obey
a scaling law, similar to the scaling from the continuum approximation for the density of states. The calcula-
tional technique is based on our path-integral approach of symmetrized density matrices for identical particles
in a parabolic confining well.@S1063-651X~98!03504-1#

PACS number~s!: 05.30.2d, 03.75.Fi, 32.80.Pj
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I. INTRODUCTION

In two previous papers the present authors extended
method of symmetrized density matrices to systems confi
in a parabolic well@1# and used this method to obtain e
pressions for the density and the pair-correlation funct
@2#. The evaluation of the internal energy, the specific he
the moment of inertia@3,4#, the density, and the static re
sponse functions was performed for bosons, inspired by
recently observed Bose-Einstein condensation@5–7# and the
theoretical work around this phenomenon using other m
ods@8–14#. In both Refs.@1# and@2# the general expression
for most of the quantities mentioned above are also given
Fermi-Dirac statistics. In the present paper a method is
sented to explicitly evaluate the thermodynamic quanti
for spin-polarized fermions. The model is a parabolic w
containingN fermions, all in the same spin state and inte
acting through a harmonic two-body potential that may
either attractive or repulsive.

A quantum dot would be a physical system that could
described by such a model if also a magnetic field were ta
into account to freeze away the opposite spin states. W
no magnetic field is taken into account two spin states~spin
up and spin down! should be present in the model. Recen
@15#, the investigation of confined fermions in the same e
perimental configuration used for the Bose alkali metals w
proposed. The Thomas-Fermi approximation@16# was used
to study the spatial distribution of these trapped fermion s
tems. In order to analyze these more physically relev
models in the future, we first develop in the present paper
basic techniques required for spin-polarized fermions. T
model also has some importance in itself because it can
used to test new approaches to Monte Carlo simulation
interacting fermions such as many-body diffusion@17–19#.

*Also at Rijksuniversitair Centrum te Antwerpen, Universite
Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belg
and Technische Universiteit Eindhoven, NL 5600MB Eindhov
The Netherlands.
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The paper is organized as follows. In Sec. II we colle
the expressions from@1# and@2# for the fermion case. In Sec
III we show how the chemical potential, the free energy, a
the internal energy can be obtained for a given numbe
fermions as a function of the temperature. Subsequently
low-temperature limit is considered and the ground-state
ergy is evaluated in Sec. IV. In Sec. V a discussion and the
conclusions are given.

II. FERMION OSCILLATORS

In this section the basic formulas that have been deri
in the path-integral treatment of@1# and @2# are summarized
and rewritten in such a way that they are more appropr
for dealing with fermions, in particular for the numeric
treatment. Before doing so, it is instructive to point o
where the numerical accuracy problems are coming fro
Having pinpointed their origin, a method is proposed to a
curately evaluate the relevant thermodynamic quantities.

A. Summary of previous results

We consider a model ofN fermions with parallel spin in
a harmonic confinement potential and with a quadratic in
particle interaction. The one-body potential energyV1 and
the two-body potential energyV2 of the model system are
given by

V5V11V2 , V15
mV2

2 (
j 51

N

r j
2 ,

V252
mv2

4 (
j ,l 51

N

~r j2r l !
2. ~2.1!

The two-body interaction is assumed to be repulsive; rep
ing 2v2 by v2 in V2 gives the case of attraction. Ineach
dimensionwe found one degree of freedom~the center of
mass! with frequencyV andN21 degrees of freedom with
frequencyw given by

,
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TABLE I. Reduced partition functionzN for N52,3,. . . ,10.

z25b(31b2)
z35b2(3110b16b216b317b413b51b7)
z45b3@1115b127b2162b3163b4187b5180b6187b71O(b8)#

z55b5@6137b1105b21231b31413b41669b51921b611197b71O(b8)#

z65b7@15175b1290b21687b311590b412994b515304b618388b71O(b8)#

z75b9@201135b1543b211645b314206b419381b5119131b6135802b71O(b8)#

z85b11@151173b1780b212871b318296b4121453b5149110b61104723b71O(b8)#

z95b13@61135b1847b213612b3112348b4136166b5193972b61223572b71O(b8)#

z105b15@1157b1615b213261b3113503b4145345b51134610b61357933b71O(b8)#
n

r-

m
at

e

on

re-
t

w5AV22Nv2, ~2.2!

which means that the frequencyV of the center of mass is
larger than the frequenciesw of the degrees of freedom i
the relative coordinate system. Changing the sign ofv2 al-
lows us to obtain the case withw larger thanV.

In our path-integral treatment presented in@1#, a recur-
rence relation was obtained for the partition functionZI(N)
corresponding to the degrees of freedom with frequencyw in
the relative-coordinate system. Introducing

b5e2b\w ~2.3!

for brevity in the notation, we found that

ZI~N!5
1

N (
m50

N21

jN2m21S b~N2m!/2

12bN2mD 3

ZI~m!. ~2.4!

This recurrence relation applies for bosons (j511) and for
fermions (j521). The subscriptI refers to identical par-
ticles, which can be specified to be fermions~subscriptF! or
bosons~subscriptB!. The total partition functionZI(N) dif-
fers fromZI(N) only by a factor that accounts for the cente
of-mass contribution
ZI~N!5S sinh
1

2
bw

sinh
1

2
bV

D 3

ZI~N!. ~2.5!

B. The ‘‘sign’’ problem and the canonical ensemble

For three-dimensional fermions, the contribution~2.4! to
the partition function from the relative degrees of freedo
clearly illustrates the kind of numerical inaccuracies th
originate for the fermion casej521. If the partition func-
tions for 1,2, . . . ,(N21) particles are known, Cramer’s rul
can be used to calculate the partition function forN fermi-
ons. Factorizing the denominators in the partition functi
~2.4! by introducing the quantities

zN5b23N/2ZF~N!)
j 51

N

~12bj !3, ~2.6!

a careful analysis shows thatzN are polynomials inb. Typi-
cal terms of the expansion in powers ofb are summarized in
Table I. In Table II the polynomialz10 is given in full detail.

These expressions clearly illustrate that the recurrence
lation ~2.4! with its alternating signs is numerically no
TABLE II. Reduced partition functionz10.

z10/b1551157b1615b213261b3113503b4145345b51134610b61357933b71879054b812010684b914345128b10

18918028b11117522121b12133074766b13160269475b141106291845b151182005221b161303159450b17

1492298273b181780509769b1911210116969b2011836796808b2112732828889b2213989023158b23

15717909554b2418054427489b25111158011888b26115210615846b27120416394163b28126995546500b29

135180518626b30145204591771b31157294327336b32171652967164b33188450188705b341107801980392b35

1129760468767b361154293502560b371181278676665b381210486919309b391241585183659b40

1274128160656b411307573138975b421341282238438b431374550513570b441406618287529b45

1436710170877b461464053823241b471487924429070b481507663537606b491522721627332b50

1532669844520b511537233278185b521536289729798b531529888599492b541518233866459b55

1501687264528b561480736747215b571455986553010b581428116140777b591397862850832b60

1365978330982b611333210742599b621300265798386b631267794502825b641236364132672b65

1206455118098b661178444248222b671152611340019b681129133921739b691108101637948b70

189519477403b71173326342790b72159402845476b73147590266765b74137699218057b75129525967669b76

122859393796b77117493002580b78113228933857b7919885384267b8017297628572b8115321514726b82

13832246167b8312725103340b8411912972224b8511325507922b861906297026b871611414355b88

1406837455b891266998784b901172746528b911110189817b92169257169b93142900069b94126170152b95

115728664b9619303894b9715421180b9813106746b9911753755b1001972819b1011531755b102

1285204b1031150903b104178197b105140038b106120010b10719928b10814758b10912298b110

11056b1111492b1121213b113199b114139b115118b11617b11713b1181b120
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57 3873CONFINED HARMONICALLY INTERACTING SPIN- . . .
stable: The leading terms are of orderbM, where M in-
creases drastically if the number of fermions increases. N
ertheless, the expression forz10, e.g., is useful to check ex
pressions for the partition function or derived quantities
their accuracy. Because for the fermions, unlike the bo
case, solving the recurrence relations thus runs into se
numerical problems, we will use the generating functi
technique for the actual calculation of the free energy and
internal energy. To convince ourselves that numerical in
curacies have been avoided, the internal energy of the m
for up to ten fermions has been calculated both ways,
from the recurrence relations and with the generating fu
tion technique, and the results of both methods coinc
How the chemical potential and the internal energy are
culated will be elaborated in the next section.

III. THERMODYNAMIC PROPERTIES

The generating functionJF(u) corresponding to the par
tition functionsZF(N) is defined in the standard way as

JF~u!5 (
N50

`

uNZF~N!. ~3.1!

As shown in@1#, it is given by

JF~u!5expS 2(
j 51

`
1

j

~2ub3/2! j

~12bj !3 D . ~3.2!

This means that in our model the internal degrees of freed
are represented by a system of noninteracting oscillators
frequencyw. JF(u) is then formally the grand-canonica
partition function of that subsystem. However, it isnot the
grand-canonical partition function of thefull model system
with interaction for two reasons: First, one has to take
center-of-mass correction into account and, second,
eigenfrequencyw in the relative coordinate system depen
on the number of particles. However,given w, the full
mechanism of the generating functions is applicable in
relative coordinate system provided afterward the neces
center-of-mass corrections are taken into account.

The partition functionZF(N) from the internal degrees o
freedom can be obtained by inverting the defining Tay
series~3.1!,

ZF~N!5
1

2p i R
C

JF~z!

zN11 dz, ~3.3!

whereC is a closed contour in the complexz plane around
the origin. The generating functionJF(z) is inaccessible for
numerical purposes. However, considering a circular con
with radiusu, one obtains
v-

r
n
re

e
c-
el
.,

c-
e.
l-

m
ith

e
e

e
ry

r

ur

ZF~N!5
1

2p E
0

2p JF~ueiu!

uN e2 iNudu

5
1

2p E
0

2p

exp@ ln JF~ueiu!2N ln u#e2 iNudu.

~3.4!

The extremum of@ ln JF(ueiu)2N ln u# on the real axis sat-
isfies the conditionN5u(d/du)ln JF(u). Using Eq. ~3.2!,
this requirement becomes

N5 (
n50

`

nn , nn5
1

2

~n11!~n12!

11e2b~m2en! , en5\wS n1
3

2D ,

~3.5!

which is precisely the result that one would obtain from t
grand-canonical treatment withu5ebm, taking into account
the degeneracy12 (n11)(n12) of thenth energy level. Fac-
torizing out the steepest-descent contributionJF(u)/uN ob-
tained this way, one finds

ZF~N!5
JF~u!

uN E
0

p

C~u!du, ~3.6!

C~u!5
1

p

JF~ueiu!

JF~u!
e2 iNu, ~3.7!

whereC~u! is a real function, suitable for numerical integr
tion if u5ebm is determined. The advantage of a procedu
based on the generating function is that all contributions
JF(u) turn out to be positive, in contrast to the direct dete
mination of the partition function~2.4!, which numerically
involves severe sign problems, as argued in Sec. II.

A. The chemical potential

The chemical potential has to be determined from the
quirement~3.5!. There are clearly two cases to be cons
ered. For sufficiently low temperature,m will be larger than
3
2 \w, but at high temperaturem might be smaller than32 \w.

For the casem. 3
2 \w, the behavior of the denominator i

fundamentally different for the energy levelsen,m as com-
pared to those satisfyingen.m. Assume thatm will be
found in the interval ]eL21 ,eL] between two consecutive
levels

m5eL2\wa, aP@0,1@ , ~3.8!

and treat the levelsen<m separately from those withen

.m. We start the discussion under the assumptionL>1 and
rewrite N as

N5 (
n51

L
1

2

~L2n11!~L2n12!

11b2a1n 1
1

2

~L11!~L12!ba

11ba

1 (
n51

`
1

2

~L1n11!~L1n12!ba1n

11ba1n .

Let NL denote the~not necessarily integer! value that the
right-hand side of this equation would take fora50, i.e., if
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the chemical potential would be located exactly ateL . One
finds after some algebra~providedL.0!

NL5
1

6 S L1
3

2D ~L12!~L11!1~2L13! (
n51

L
nbn

11bn

1 (
n5L11

`
1

2

~L1n11!~L1n12!bn

11bn .
1

6
L3.

The resultL,(6NL)1/3 is important for developing a sure
fire algorithm to find the chemical potential. If one sta
from a value L that is the largest integer smaller tha
(6N)1/3, it implies thatm,eL . One can then decrease th
value ofL step by step, until a value ofL is found for which
NL>N but NL21,N.

Fortunately, this procedure can also be used ifm is
smaller than the lowest energy of the model. It then result
a negative value ofL, which is related to the chemical po
tential in Eq.~3.8! by formally filling out eL with L negative.

A fresh refining routine is then started to findaP@0,1@ ,
which is bracketed as required for sure-fire root-finding p
grams. The actual determination ofa ~for both casesm
. 3

2 \w and m, 3
2 \w! is straightforward from the equatio

for N if written in the appropriate form for numerical trea
ment:

N5 (
n50

`
1

2

~n11!~n12!

11bL2n2a 5 (
n50

`
1

2
~n11!~n12!

3H 1

11bL2n2a for n<L2a

b2L1n1a

b2L1n1a11
otherwise .

~3.9!

The determination of the chemical potential along the
lines presents no numerical difficulties. Because the Fe
energy is of order\w(6N)1/3, it seems natural to expresskT
in units of \wN1/3. This scaling factor turns out to be su
prisingly good, as is shown in Fig. 1, where the temperat
dependence of the chemical potentialm(T) in units of m(0)

FIG. 1. Scaled chemical potentialm(T)/m(T50) as a function
of the scaled temperaturet5kT/\wN1/3 for 10, 100, 1000, and
10 000 fermions. For reference, this quantity is also plotted for
particle.
in

-

e
i

e

is plotted againstt5kT/\wN1/3. Introducing a density of
states and making the continuum approximation (kBT
!\w), the corresponding scaling law@15,16# with the Fermi
energy is implicit.

B. The free energy

Having determined the chemical potential, the free ene
FF(N)52(1/b) ln ZF(N) can be evaluated from Eq.~3.6!,

FF~N!5FF
~0!~N!2

1

b
lnS E

0

p

C~u!du D , ~3.10!

FF
~0!~N!52

1

b
ln

JF~u!

uN , ~3.11!

where FF
(0)(N) is the zeroth-order steepest-descent res

which would be obtained from the grand-canonical tre
ment. The correction factor involvingC~u! accounts for the
finite number of particles. For reference,C~u! is shown for
N510 in Fig. 2 as a function ofu for various values of the
temperature. IfN increases,C~u! becomes increasingly con
centrated near the originu50 for nonzero temperatures.

The resulting free energy per particle as a function
temperature is shown in Figs. 3, 4, and 5 forN51, N510,
and N5100, respectively, in units of\w(6N)1/3 propor-
tional to the Fermi energy. For comparison, the contribut
FF

(0)(N) is also plotted~dashed lines!. As expected, this
steepest-descent contribution becomes increasingly acc
if the number of fermions increases.

C. The internal energy

The contribution of the relative degrees of freedom to
internal energy

UF5
d

db
~bFF!5FF2T

d

dT
FF ~3.12!

can be obtained from the free energy obtained above by
merical differentiation. The internal energy per particle
plotted in Fig. 6 in units of\w(6N)1/3 proportional to the
Fermi energy. A scaling law similar to that for the chemic
potential is observed.

FIG. 2. IntegrandC~u! of Eq. ~3.7! for ten fermions as a func-
tion of u for various values of the temperature, expressed in unit
Tref5\wN1/3/k.

e



a
ve

a
ca
n

ee
nc

er
la
e

d
s

ig.

-
the
be

-

n

for

57 3875CONFINED HARMONICALLY INTERACTING SPIN- . . .
In one dimension the thermodynamical properties of h
monically interacting bosons and fermions can be deri
from each other. This case has been studied in@1#. In higher
dimensions, the fermion internal energy is smoothly decre
ing with decreasing temperature, whereas for the boson
it shows sudden changes in slope, related to the conde
tion.

To within the numerical accuracy, the results are in agr
ment with the standard description from the generating fu
tion treatment using

(
n50

`

ennn5\w(
n50

`
1

2

~n11!~n12!~n13/2!

11e2b~m2en! .

~3.13!

These results can also be compared with the internal en
UF,rec(N), which one would obtain from the recurrence re
tion. In terms of the expressions forzN discussed above, on
then obtains

UF,rec~N!5\wS b

zN

]zN

]b
1

3

2
N13(

j 51

N
jb j

12bj D .

~3.14!

FIG. 3. Scaled free energy per particlef 5(FF /N)/\w(6N)1/3

as a function of the scaled temperaturet5kT/\wN1/3 for 1 particle.
For comparison, the zeroth-order steepest-descent contributio
also plotted~dashed line!.

FIG. 4. Same as Fig. 3, but for ten fermions.
r-
d

s-
se

sa-

-
-

gy
-

This calculation is in practice only feasible for a limite
number of particlesN<10 and for these cases it coincide
within the numerical accuracy with the results plotted in F
6.

IV. GROUND-STATE ENERGY

In this section the low-temperature limit will be consid
ered. By counting the number of occupied energy levels,
dominant contribution to the partition function can then
calculated easily, taking into account the degeneracy1

2 (n
11)(n12) of the levels with energyen5\w(n1 3

2 ). The
calculation is done first with the Fermi levelL fully occu-
pied. The number of particlesNF required for this assump
tion to hold is

NF5 (
n50

L
1

2
~n11!~n12!5

1

6
~L13!~L12!~L11!.

~4.1!

Consequently, the Fermi energy is of order (6N)1/3\w. The
total energyUF associated with the case with theLth level
fully occupied is

is

FIG. 5. Same as Figs. 3 and 4, but for 100 fermions.

FIG. 6. Scaled internal energy per particleu
5(UF /N)/\w(6N)1/3 as a function of the scaled temperaturet
5kT/\wN1/3 for 10 and 100 fermions. For reference, the result
one particle is also plotted.
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TABLE III. Number of particlesNF and total energyUF with the energy levelnF fully occupied.

nF NF UF /\w nF NF UF /\w nF NF UF /\w

1 4 9 10 286 2574 60 39711 3693123
2

2 10 30 15 816 10404 70 62196 3358584
3 20 75 20 1771 58443

2 80 91881 11301363
2

4 35 315
2 25 3276 66339 90 129766 8953854

5 56 294 30 5456 130944 100 176851 27058203
2

6 84 504 35 8436 234099 150 585276 6672146
7 120 810 40 12341 777483

2 200 1373701 416231403
2

8 165 2475
2 45 17296 609684 250 2667126 504086814

9 220 1815 50 23426 913614 300 4590551 2079519603
2

10 286 2574 55 30856 1319094 400 10827401 6528922803
2
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UF5 (
n50

L
1

2
~n11!~n12!\wS n1

3

2D
5

1

8
\w~L13!~L11!~L12!2. ~4.2!

For a limited number of particles, the number of partic
and the energyUF are shown in Table III.

For an arbitrary numberN of fermions not filling the
Fermi level completely, the determination of the groun
state energy is slightly more involved. We first determine
number of particlesNF<N that fill the levelL. From Eq.
~4.1! it follows that the highest fully occupied levelL is
given by

L5 intF S 3N1
1

9
A36N223D 1/3

1
1

3 S 3N1
1

9
A36N223D 21/3

22G . ~4.3!

From this levelL, one can determine the correspondingNF
andUF .

The resulting formula for the leading term in the partitio
function for N particles in the zero-temperature limit
b3N/2bMN, which defines the powerMN as

MN5~L11!S N2
1

24
~L12!~L13!~L14! D . ~4.4!

The ground-state energyE0 with N particles is E05UF
1(N2NF)\w(L111 3

2 ) because the remaining particle
are in the levelL11 and consequently

E052
1

24
\w~L14!~L13!~L12!~L11!

1N\wS L111
3

2D . ~4.5!

V. CONCLUSION AND DISCUSSION

In this paper we have given a short review of the cal
lation techniques for fermions, described in@1# and @2# for
s

-
e

-

identical particles in general. Next a numerical analysis
the chemical potential and of the free energy is made fo
given expectation value of the number of particles as a fu
tion of temperature. In this analysis, we could easily illu
trate what the consequences are of the minus sign com
from the antisymmetric representation of the permutat
group in the expression for the partition function. Even wh
the expressions are known analytically, the plot of a re
tively smooth function such as the free energy requires s
cial techniques as a consequence of numerical instabil
due to a sign problem in the recurrence relation for the p
tition function. The necessity of such techniques can
checked by attempting a calculation of a few limits, whi
lead to the application of l’Hoˆpital’s rule many times, even
proportional to the square of the number of particles in
system.

It should be noted that the model contains only sp
polarized fermions. In quantum dots, its production wou
require a magnetic field. In our model this field is not i
cluded. However, as we have shown in@1#, the expressions
for the partition function for fermions in the presence of
external magnetic field can be obtained with the same ca
lational technique. The influence of the magnetic field on
chemical potential and the specific heat of our model has
been studied yet for fermions. In alkali-metal vapors the s
polarization of the fermions would be inherent to the expe
mental technique@20#.

The chemical potential and the internal energy exhibi
scaling law in the sense that it is an almost universal funct
of the temperature when plotted in the indicated scaled un
Although we strongly suspect that the scaling comes via
Fermi level of the confined system, as is the case in
continuum limit, we have no mathematical proof of this o
servation in the low-temperature casekBT!\w.

We did not compare the present approach with other th
ries using the same or an analogous model. It should
stressed, however, that we presented here results obta
with a different scheme for the evaluation of path integr
for fermions.
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