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Confined harmonically interacting spin-polarized fermions
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The thermodynamical properties are calculated for a three-dimensional mdddiarmonically interacting
spin-polarized fermions in a parabolic potential well. The obtained dependences of the chemical potential and
of the internal energy on the complete range of the temperature and of the number of particles turn out to obey
a scaling law, similar to the scaling from the continuum approximation for the density of states. The calcula-
tional technique is based on our path-integral approach of symmetrized density matrices for identical particles
in a parabolic confining well.S1063-651X98)03504-]

PACS numbg(s): 05.30—d, 03.75.Fi, 32.80.Pj

[. INTRODUCTION The paper is organized as follows. In Sec. Il we collect
the expressions frofl] and[ 2] for the fermion case. In Sec.

In two previous papers the present authors extended thidl we show how the chemical potential, the free energy, and
method of symmetrized density matrices to systems confinethe internal energy can be obtained for a given number of
in a parabolic well[1] and used this method to obtain ex- fermions as a function of the temperature. Subsequently the
pressions for the density and the pair-correlation functiorlow-temperature limit is considered and the ground-state en-
[2]. The evaluation of the internal energy, the specific heat€rgy is evaluated in Sec. IV. In Se¥ a discussion and the
the moment of inertig3,4], the density, and the static re- conclusions are given.
sponse functions was performed for bosons, inspired by the
recently observed Bose-Einstein condensajt®r7] and the Il. FERMION OSCILLATORS
theoretical work around this phenomenon using other meth-
ods[8—14]. In both Refs[1] and[2] the general expressions In this section the basic formulas that have been derived
for most of the quantities mentioned above are also given foin the path-integral treatment ¢1] and[2] are summarized
Fermi-Dirac statistics. In the present paper a method is preand rewritten in such a way that they are more appropriate
sented to explicitly evaluate the thermodynamic quantitie§or dealing with fermions, in particular for the numerical
for spin-polarized fermions. The model is a parabolic welltreatment. Before doing so, it is instructive to point out
containingN fermions, all in the same spin state and inter-where the numerical accuracy problems are coming from.
acting through a harmonic two-body potential that may beHaving pinpointed their origin, a method is proposed to ac-

either attractive or repulsive. curately evaluate the relevant thermodynamic quantities.
A guantum dot would be a physical system that could be
described by such a model if also a magnetic field were taken A. Summary of previous results

into account to freeze away the opposite spin states. When ) , . o

no magnetic field is taken into account two spin stafgsn We consider a model dfl fermions with parallel spin in
up and spin downshould be present in the model. Recently & harmonic confinement potential and with a quadratic inter-
[15], the investigation of confined fermions in the same ex-Particle interaction. The one-body potential enetgy and

perimental configuration used for the Bose alkali metals wad® two-body potential energy, of the model system are
proposed. The Thomas-Fermi approximat[d6] was used 9iven by

to study the spatial distribution of these trapped fermion sys- gz N
tems. In order to analyze these more physically relevant V=V, +V,, V1=m > r2,
models in the future, we first develop in the present paper the 2 =

basic techniques required for spin-polarized fermions. The

model also has some importance in itself because it can be me? N
used to test new approaches to Monte Carlo simulations of Vo=— —— 2 (r,»—r.)z. (2.2
interacting fermions such as many-body diffus{d7-19. 4 =1

The two-body interaction is assumed to be repulsive; replac-
*Also at Rijksuniversitair Centrum te Antwerpen, Universiteit ing —w? by »? in V, gives the case of attraction. Each
Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgiundimensionwe found one degree of freedofthe center of
and Technische Universiteit Eindhoven, NL 5600MB Eindhoven,mass$ with frequency() andN—1 degrees of freedom with
The Netherlands. frequencyw given by
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TABLE |. Reduced partition
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functiomy for N=2,3,...,10.

z,=b(3+b?)
23=b?(3+ 10b+ 6b2+6b3+ 7b*+3b5+b7)

2,=b3[1+ 150+ 27b%+ 6203+ 630*+ 87b%+ 800+ 87b” + O(b®) ]

25=b%[6+ 370+ 105%+ 231b%+ 41D*+ 66%D°+ 92108+ 11977+ O(b8) ]

2e=b[ 15+ 75b+ 29+ 68703+ 159+ 2994°+ 5304°+ 838"+ O(b?)]
2,=b%[20+ 135+ 5432+ 16453+ 4208* + 938105+ 19131b°+ 35807 + O(b8) |
Zg=0b'[ 15+ 173+ 78h%+ 28713+ 8296h* + 2145D°+ 4911 M+ 104727 + O(b®) ]
29=0'{ 6+ 1350+ 8470%+ 361D0°+ 1234&*+ 36166°+ 93978+ 2235727+ O(b®) ]
210=b' 1+ 570+ 6152+ 3261b%+ 1350%* + 453455+ 1346 1®° + 357937 + O(b®)]

W= PN,

which means that the frequen€y of the center of mass is
larger than the frequencieg of the degrees of freedom in
the relative coordinate system. Changing the sigmfal-
lows us to obtain the case with larger than().

In our path-integral treatment presented[i], a recur-
rence relation was obtained for the partition functiGfiN)
corresponding to the degrees of freedom with frequemay
the relative-coordinate system. Introducing

(2.2

b=e AW (2.3
for brevity in the notation, we found that
1 N-1 p(N-m)/2\ 3
BN)=5 2 &MY | A(m). (24
N m=0 1_b

This recurrence relation applies for bosogs=(+ 1) and for
fermions ¢=—1). The subscript refers to identical par-
ticles, which can be specified to be fermidsabscriptF) or
bosons(subscriptB). The total partition functiorZ,(N) dif-
fers fromZ,;(N) only by a factor that accounts for the center-
of-mass contribution

1 3
smhiﬁw

Z(N)= Z(N). (2.5

smhzﬂﬂ

B. The “sign” problem and the canonical ensemble

For three-dimensional fermions, the contributi@4) to
the partition function from the relative degrees of freedom
clearly illustrates the kind of numerical inaccuracies that
originate for the fermion casé= —1. If the partition func-
tions for 1,2 ... ,(N—1) particles are known, Cramer’s rule
can be used to calculate the partition function forfermi-
ons. Factorizing the denominators in the partition function
(2.4) by introducing the quantities

N

zN=b-3N/ZZF(N)]"[l (1—-bh3, (2.6)
&

a careful analysis shows tha} are polynomials irb. Typi-

cal terms of the expansion in powerskoaire summarized in

Table I. In Table 1l the polynomiat, is given in full detail.
These expressions clearly illustrate that the recurrence re-

lation (2.4) with its alternating signs is numerically not

TABLE Il. Reduced partition functiorz,q.

2,0/bP=1+57+ 6152+ 32613+ 1350D* + 453455+ 13461M°+ 35793D7 + 8790542+ 2010684°+ 434512810
+891802&11+ 17522120+ 33074766+ 602694754+ 106291846°+ 18200522h 6+ 3031594567
+492298278'8+ 780509768°+ 12101169682°+ 183679680821+ 273282888022+ 39890231582
+ 571790955824+ 805442748075+ 111580118886+ 15210615846%+ 2041639416828+ 269955465007°
+ 35180518626+ 452045917713+ 5729432733632+ 7165296716833+ 88450188706%*+ 1078019803942°°
+12976046876F°0+ 154293502560°7+ 1812786766658+ 210486919308°°+ 241585183659*°
+ 274128160656+ 3075731389752+ 3412822384383+ 374550513570*+ 406618287529
+ 436710170873+ 4640538232417+ 4879244290768+ 507663537606+ 522721627333°
+ 532669844520+ 5372332781852+ 536289729798°°+ 529888599492°*+ 518233866458°°
+501687264528°5+ 480736747215°" + 4559865530167+ 4281161407 76°°+ 397862850832
+365978330982°1+ 333210742599+ 300265798386°+ 267794502825°+ 2363641326 70%°
+ 206455118098+ 1784442482257+ 152611340018+ 129133921738°°+ 108101637948"°
+895194774087 -+ 7332634279672+ 5940284547673+ 475902667654+ 37699218056 °+ 2952596766876
+ 2285939379677+ 1749300258078+ 1322893385[F"°+ 988538426650+ 729762857851+ 5321514725%
+383224616B%3+ 272510334684+ 1912972221%+ 13255079208+ 906297026%7+ 61141435558
+406837456%°+26699878#°°+ 172746528°1+ 1101898162+ 69257169 %+ 42900069 %4+ 26170151 %°
+15728664%+ 9303894°"+ 542118®°8+ 3106746 °°°+ 175375510+ 97281H 9+ 531755102
+ 28520419+ 150903 1%+ 7819DH1%+ 40038 1%+ 20010197+ 9928108+ 4758109+ 2298110
+ 10561+ 4920112+ 2131134 9gh 1144 390115+ 180116+ 7h 17+ 3p 118+ 120
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stable: The leading terms are of orde!, whereM in- 1 (2« EF(ue‘Q) )
. . . . Y/ (N):— e—INGde
creases drastically if the number of fermions increases. Nev- ZF 27 Jo UV
ertheless, the expression fpy,, €.9., is useful to check ex-
pressions for the partition function or derived quantities for 1 (2= _ " _iNg
their accuracy. Because for the fermions, unlike the boson =25 |, ©HINEx(uehH=Nin ule"Tdo.
case, solving the recurrence relations thus runs into severe
numerical problems, we will use the generating function (3.4
Fechnlque for the actual cglculanon of the free energy an.d thq.he extremum of In Z(ud)—N In u] on the real axis sat-
internal energy. To convince ourselves that numerical inac-_. . " — .
. : . isfies the conditionN=u(d/du)In Eg(u). Using Eq. (3.2,
curacies have been avoided, the internal energy of the modgl. :
. _this requirement becomes
for up to ten fermions has been calculated both ways, i.e.,

from the recurrence relations and with the generating func- i 1 (v+1)(v+2) 3
tion technique, and the results of both methods coincide. N= >, n,, =5 T o) & =W vts],
How the chemical potential and the internal energy are cal- v=0 21+e ’ 2
culated will be elaborated in the next section. 39

which is precisely the result that one would obtain from the

grand-canonical treatment with=e®#, taking into account
lll. THERMODYNAMIC PROPERTIES the degeneracy(v+ 1)(v+2) of the1th energy level. Fac-
torizing out the steepest-descent contribut®p(u)/uN ob-

The generating functio® (u) corresponding to the par- tained this way, one finds

tition functionsZg(N) is defined in the standard way as

Ee(u) (=

Zg(N)= N w(0)do, (3.6)
o 0
Er(u)= 2, uMZe(N). (3.0 o

o (-2 EED oo @7

=——=, € ) .
7 Er(U)
As shown in[1], it is given by whereW () is a real function, suitable for numerical integra-

tion if u=eP* is determined. The advantage of a procedure
_ based on the generating function is that all contributions to
— o 1(—ub¥?) Ee(u) turn out to be positive, in contrast to the direct deter-
Er(u)=ex _j:1 i (1-pH)3 ) (32 mination of the partition functior{2.4), which numerically
involves severe sign problems, as argued in Sec. Il.

This means that in our model the internal degrees of freedom A. The chemical potential

are represented by a system of noninteracting oscillators with The chemical potential has to be determined from the re-
frequencyw. Zg(u) is thenformally the grand-canonical qguirement(3.5). There are clearly two cases to be consid-
partition function of that subsystem. However, itristthe  ered. For sufficiently low temperaturg, will be larger than
grand-canonical partition function of tHell modelsystem 37\ put at high temperature might be smaller thag#w.
with interaction for two reasons: First, one has to take the  For the casg.> 2w, the behavior of the denominator is
center-of-mass correction into account and, second, thgndamentally different for the energy levals<u as com-
eigenfrequencyv in the relative coordinate system dependspared to those satisfying,>u. Assume thatu will be

on the number of particles. Howevegiven w the full  foynd in the interval ¥,_,,e.] between two consecutive
mechanism of the generating functions is applicable in thggye|s

relative coordinate system provided afterward the necessary

center-of-mass corrections are taken into account. mn=e —hwea, ac[01, (3.8
The partition functiorZg(N) from the internal degrees of

freedom can be obtained by inverting the defining Taylorand treat the levels,<u separately from those witle,

series(3.1), > u. We start the discussion under the assumptisrl and
rewrite N as
L
1 Er(2) B 1(L-v+1)(L-—»+2) 1(L+1)(L+2)b”
N=o0 o 7T 4z 63 N=2 5 g t2  1rp0

2”: 1(L+v+1)(L+v+2)b*"?

+ = .

whereC is a closed contour in the complexplane around =1 2 1+b**?

the origin. The generating functidg(z) is inaccessible for

numerical purposes. However, considering a circular contoutet N, denote the(not necessarily integewvalue that the

with radiusu, one obtains right-hand side of this equation would take fer=0, i.e., if
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1.0 ' ' ' is plotted against=kT/AwNY3. Introducing a density of
| i states and making the continuum approximatiokyT(
05 <hw), the corresponding scaling lddi5,16 with the Fermi
0.0 N energy is implicit.
& AN
'I:,:IL'O'E’_ _—— :::0 \\ K B. The free energy
= | ------ N=100 ) ) 3 A
%-1-0- ----------- N=1000 N i Having determined the chemical potential, the free energy
9 Bl N=10000 i Fe(N)=—(1/8) In Zg(N) can be evaluated from E¢8.6),
4 \\ |- 1 77
20 N FF(N)ZF(FO)(N)—EIn( fo \If(&)dﬁ), (3.10
-2.5 T T T
0.0 0.5 1.0 15 2.0 1 - (u)
=EF
t FON)=— Em N (3.11)

FIG. 1. Scaled chemical potential(T)/«(T=0) as a function
of the scaled temperature=kT/AwNY® for 10, 100, 1000, and where F)(N) is the zeroth-order steepest-descent result,
10 000 fermions. For reference, this quantity is also plotted for ongvhich would be obtained from the grand-canonical treat-
particle. ment. The correction factor involving’(6) accounts for the
finite number of particles. For referenc#(6) is shown for
N=10 in Fig. 2 as a function of for various values of the
temperature. IN increasesW(#) becomes increasingly con-
centrated near the origid=0 for nonzero temperatures.

the chemical potential would be located exactlyeat One
finds after some algebr@rovidedL >0)

1 3 o b The resulting free energy per particle as a function of
Ni=gl|Lt*3 (L+2)(L+l)+(2|‘+3)z‘1 1+b” temperature is shown in Figs. 3, 4, and 5 fo=1, N=10,
and N=100, respectively, in units ofiw(6N)'® propor-
” 1(L+v+1)(L+v+2)b” 1 3 tional to the Fermi energy. For comparison, the contribution
+V§+1 2 1+b” ~gL™ FO(N) is also plotted(dashed lines As expected, this

steepest-descent contribution becomes increasingly accurate
The resultL<(6N,)® is important for developing a sure- if the number of fermions increases.
fire algorithm to find the chemical potential. If one starts
from a valuelL that is the largest integer smaller than
(6N)Y3 it implies thatu<e_. One can then decrease the
value ofL step by step, until a value &f is found for which
N_ =N butN, _;<N.

Fortunately, this procedure can also be useduifis

smaller than the lowest energy of the model. It then results in
a negative value of, which is related to the chemical po-

tential in Eq.(3.8) by formally filling oute, with L negative.  can pe obtained from the free energy obtained above by nu-
A fresh refining routine is then started to find=[0,1,  merical differentiation. The internal energy per particle is
which is bracketed as required for sure-fire root-finding Pro-plotted in Fig. 6 in units ofiw(6N)*2 proportional to the

grams. The actual determination af (for both casesu  Fermi energy. A scaling law similar to that for the chemical
>3hw and u<3hw) is straightforward from the equation potential is observed.

for N if written in the appropriate form for numerical treat-

C. The internal energy

The contribution of the relative degrees of freedom to the
internal energy

d d
UF:_(ﬁFF):FF_Tﬁ Fe (3.12

dg

ment: - - - -
NS 1 (v+1)(v+2) i 1 (2 °""\\\\ N=10 [
2 3 iypla & (T D(r+2) 1\ T !
\ ———— TM,=05
0.2 N e T =1 -
1 ‘ <L > \\ ------------ TT =15
W or v=sL—« ] 1\\\ _—— T/‘I'M=
X b—L+v+a (39) 0.1 '}Q\\ B
b TFag ] otherwise. | \\\\
\\w;\\
H H H H 0.0 T = T T T
The determination of the chemical potential along these 00 02 04 06 08 0

lines presents no numerical difficulties. Because the Fermi
energy is of ordefiw(6N) Y3, it seems natural to exprek§

in units of AwN"3. This scaling factor turns out to be sur-  FIG. 2. Integrand¥(6) of Eq. (3.7) for ten fermions as a func-
prisingly good, as is shown in Fig. 1, where the temperaturgion of 6 for various values of the temperature, expressed in units of
dependence of the chemical potenidlT) in units of w(0)  T,.=AWNYIk.

on



57 CONFINED HARMONICALLY INTERACTING SPIN-. .. 3875

N=100 |

Exact Exact

———— Zero order steepest descent AN ———— Zero order steepest descent
2 AN - -2 - -
~N
AN
N
\\
3 SO 3 -
T T T T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
t t
FIG. 3. Scaled free energy per partidle: (Fr /N)/Aw(6N)Y3 FIG. 5. Same as Figs. 3 and 4, but for 100 fermions.

as a function of the scaled temperattirek T/ZWN* for 1 particle.

For comparison, the zeroth-order steepest-descent contribution ighis calculation is in practice only feasible for a limited
also plotted(dashed ling number of particleN<10 and for these cases it coincides

) ) . ) within the numerical accuracy with the results plotted in Fig.
In one dimension the thermodynamical properties of harg.

monically interacting bosons and fermions can be derived

from each other. This case has been studigd jnin higher

dimensions, the fermion internal energy is smoothly decreas- IV. GROUND-STATE ENERGY

ing with decreasing temperature, whereas for the boson case In this section the low-temperature limit will be consid-

it shows sudden changes in slope, related to the condensa- ) .

tion. ered'. By counting t'he number of Qgcupled energy levels, the
To within the numerical accuracy, the results are in agreegiomlnant contribution to the partition function can then be

ment with the standard description from the generating funchLallcul"’IJtre;j ee]\csglﬁl ’ }a\'j'r;g \;\:tg aﬁcrount_tf;ﬁ,vdegineriﬁy
tion treatment using )(v+2) of the levels energg,=Aw(v+3). The

calculation is done first with the Fermi level fully occu-
" " pied. The number of particle; required for this assump-
S en—iwS 1w+ 1)(v+2)(v+312) tion to hold is
v=0 v =0 2 1+e—ﬁ(,u—€,,) '

(3.13 L

1 1
Ne= >, S (r+2)= g (L+3)(L+2)(L+1).
These results can also be compared with the internal energy v=0
Uk red N), which one would obtain from the recurrence rela- (4.1
tion. In terms of the expressions fagy discussed above, one
then obtains Consequently, the Fermi energy is of ordeN)&*w. The
total energylUr associated with the case with theh level
. - b Jzy . 3N+3% ibJ fully occupied is
Fored N)=Aiw zy db 2 = 1-b .5 , , ,
(3.19 |
3.0
1 1 1 1
2.5
0 N=10 | 2.0
=
1.5 1
e M i 1.0 1
Exact
———— Zero order steepest descent 0.5 -
-2 -
0.0 T T T
0.0 0.5 1.0 1.5 2.0
-3 -
~ t
0.0 015 110 115 2.0 FIG. 6. Scaled internal energy per particleu

=(Ug/N)/Aw(6N)Y® as a function of the scaled temperature
=kT/ZwNY? for 10 and 100 fermions. For reference, the result for
FIG. 4. Same as Fig. 3, but for ten fermions. one patrticle is also plotted.

t
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TABLE Ill. Number of particlesNg and total energyJg with the energy levebg fully occupied.

VE NEg Ug/hw VE NEg Ug/hw Vg Ng Ug/hw

1 4 9 10 286 2574 60 39711 3693123

2 10 30 15 816 10404 70 62196 3358584

3 20 75 20 1771 843 80 91881 11301363

4 35 2 25 3276 66339 90 129766 8953854

5 56 294 30 5456 130944 100 176851 27058208

6 84 504 35 8436 234099 150 585276 66721464

7 120 810 40 12341 1ires 200 1373701 416231408

8 165 urn 45 17296 609684 250 2667126 504086814

9 220 1815 50 23426 913614 300 4590551 2751008
10 286 2574 55 30856 1319094 400 10827401 952822803

Lo 3 identical particles in general. Next a numerical analysis of

U= 20 §(v+ L)(v+2)hw| v+ > the chemical potential and of the free energy is made for a

=

given expectation value of the number of particles as a func-
1 tion of temperature. In this analysis, we could easily illus-
= gﬁW(L+3)(L+1)(L+2)2- (4.2 trate what the consequences are of the minus sign coming
from the antisymmetric representation of the permutation
For a limited number of particles, the number of particlesgroup in the expression for the partition function. Even when
and the energy/r are shown in Table IIl. the expressions are known analytically, the plot of a rela-
For an arbitrary numbeN of fermions not filling the tively smooth function such as the free energy requires spe-
Fermi level completely, the determination of the ground-cial techniques as a consequence of numerical instabilities
state energy is slightly more involved. We first determine thedue to a sign problem in the recurrence relation for the par-
number of particledN.<N that fill the levelL. From Eg. tition function. The necessity of such techniques can be
(4.7) it follows that the highest fully occupied levél is  checked by attempting a calculation of a few limits, which

given by lead to the application of I'Hpital’s rule many times, even
1 s proportional to the square of the number of particles in the

L=int | 3N+ 2 \/36N2—3) system. j .
( 9 It should be noted that the model contains only spin-

1 _13 polarized fermions. In quantum dots, its production would
3N+ = /36N2_3) _2} (4.3  require a magnetic field. In our model this field is not in-
9 cluded. However, as we have shown[i, the expressions

. . for the partition function for fermions in the presence of an
From this levelL, one can determine the correspondivg | ic field be obtained with th |
and ;. external magnetic field can be obtained with the same calcu-

The resulting formula for the leading term in the partition Iation_al techniqqe. The inﬂuencg _of the magnetic field on the
function for N particles in the zero-temperature limit is chemical potenual and thg specific he_at of our model has not
b3N2pM which defines the powely as been.stu_dled yet for fer_mlons. In alkall_—metal vapors the spin
’ N polarization of the fermions would be inherent to the experi-
mental techniqué¢20].
1 The chemical potential and the internal energy exhibit a
My=(L+1)|N— —=(L+2)(L+3)(L+4)|. (4.4 scalinglawinthe sense thatitis an almost universal function
24 of the temperature when plotted in the indicated scaled units.
Although we strongly suspect that the scaling comes via the
Fermi level of the confined system, as is the case in the
continuum limit, we have no mathematical proof of this ob-
servation in the low-temperature caggl <Aw.
1 We did not compare the present approach with other theo-
Eo=— —Aw(L+4)(L+3)(L+2)(L+1) ries using the same or an analogous model. It should be
24 stressed, however, that we presented here results obtained
with a different scheme for the evaluation of path integrals

3 .
L+1+ 5 (4.5  for fermions.

"3

The ground-state energl, with N particles isEy=Ug
+(N=Ng)Aw(L+1+3) because the remaining particles
are in the leveL +1 and consequently

+NAw
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