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Interaction effects in the spectrum of the three-dimensional Ising model
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The two-point correlation functions of statistical models show, in general, both poles and cuts in momentum
space. The former correspond to the spectrum of massive excitations of the model, while the latter originate
from interaction effects, namely, the creation and annihilation of virtual pairs of excitations. We discuss the
effect of such interactions on the long-distance behavior of correlation functions in configuration space, fo-
cusing on certain time-slice operators that are commonly used to extract the spectrum. For the three-
dimensional Ising model in the scaling region of the broken-symmetry phase, a one-loop calculation shows that
the interaction effects on time-slice correlations is non-negligible for distances up to a few times the correlation
length and should therefore be taken into account when analyzing Monte Carlo data.
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PACS numbeps): 05.50+q

I. INTRODUCTION their Fourier transforms, it is interesting to study the effect of
such interactions on the long-distance behavior of

When studying a statistical model, one is often interestegonfiguration-space correlators. The purpose of this work is
in determining the spectrum of massive excitations, i.e., théo compute this effect in the scaling region of the broken-
eigenvalues of the transfer matrix. For many interestingsymmetry phase of the 3D Ising model, where actual calcu-
models this cannot be done exactly and one has to rely olations can be performed in the framework of renormalized
numerical methods, falling into two main classes: direct di-Euclidean quantum field theory.
agonalization of the transfer matrix and Monte Carlo simu- A strong motivation for this analysis is provided by the
lations [for studies of the three-dimension&BD) Ising  continuous improvements in the accuracy of Monte Carlo
model in these frameworks see, respectively, Rgffand  simulations: Recent advances in both computer perfor-
[2,3] and references therdinThe Monte Carlo method has mances and simulation algorithms allow us to obtain numeri-
been shown to provide greater accuracy in the evaluation afal data of unprecedented precision. Their analysis requires
the eigenvalues; however, a careful analysis of the rawnore sophisticated theoretical tools as finer effects become
Monte Carlo data is required to extract the spectrum. Thebservable. We will find that the effects that are the object of
purpose of the present work is to study some physical effectthis study typically account for about 1% of the correlators in
that are relevant to this analysis. the region of physical interest: This is actually an order of

The observables that are most suitable to investigate theagnitude larger than the statistical uncertainties typical of
spectrum of a model through a Monte Carlo simulation arerecent Monte Carlo studies of the 3D Ising model.
the two-point correlation functions of operators: Their long- The paper is organized as follows. In Sec. Il we introduce
distance behavior is directly related to the spectrum. This isime-slice operators, which are particularly suitable for the
especially evident in momentum space, where each pole dflonte Carlo study of the spectrum of a statistical model. In
the correlation function corresponds to a massive excitatio®ec. |1l we compute the correlators of such operators in the
and therefore to an eigenvalue of the transfer matrix. Ising model usings* field theory at one loop in three Eu-

In general, however, the momentum space correlators wiltlidean dimensions. In particular, the interaction effects can
have not only poles but also cuts, signaling the possibility obe evaluated and expressed in terms of exponential integral
creating and annihilating virtual pairs of excitations. For ex-functions. In Sec. IV we comment on the relevance of these
ample, if the effective Hamiltonian for the order parameper effects to certain universal amplitude ratios, while Sec. V is
includes a¢® interaction, the Feynman diagram devoted to the discussion of the results and their implications

for the analysis of Monte Carlo data.

Q Il. TIME-SLICE CORRELATORS

The spectrum of massive excitations of a statistical model
, . : can be obtained by studying the long-distance behavior of
will generate a cut in the¢4) correlator in momentum two-point correlation functions. Consider, for example, the

space. : . . . Gaussian model, with the Hamiltonian
Since, in general, Monte Carlo simulations give direct ac-

cess to configuration-space correlation functions rather than d 1 m?2 )
HZJdXE(?M(ﬁé"U_(ﬁ'F?Q’) . D

*Electronic address: provero@to.infn.it The two-point correlation function is
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ddp elP(x=y) However, since a nontrivial model certainly involves inter-
<¢(X)¢(Y)>=J’ (2m)8 pPrm? actions, Eq.(6) must be modified to take into account their
P contribution: in the next section we will compute the time-

1 [x—y|| 1972 slice correlator(S(0)S(t)) for the 3D Ising model in the

= 2m (T) Ki—arp(m|x=yl), broken-symmetry phase, wherepd interaction is present in

the effective Hamiltonian so that cuts appear in the two-point
(2)  function already at one loop. The calculation will teach us
how to modify Eq.(6) to take into account the effect of the

whereK; g, is a modified Bessel function. Therefore, as- production and annihilation of virtual pairs of excitations.

ymptotically for|x—y|—oe,
(H(X)(y))~constm(d~3/2x—y|~(d-Di2g=mix=y] ll. THE CASE OF THE 3D ISING MODEL

®) It is a widely accepted conjecture that the 3D Ising model

We see that the long-distance behavior of correlators can bg in the same universality class @' field theory. This
used to extract the value of the masswhich in this case is  allows us to use renormalized 3D quantum field theory to

obviously the only state in the spectrum. study the Ising model in the scaling region, where lattice
The standard practice in Monte Carlo studies is to defin@ffects become negligible and universality holds. This pro-
time-slice operators gram was initiated by Paridi4] and has been vigorously

pursued to study several aspects of the Ising m@gel].
1 The agreement between field-theoretical calculations and
S()= {71 f dxy-dxg-16(X1, - Xa-1.) (4 Monte Carlo results is satisfactory.
Therefore, from now on we will consider the 3D Euclid-
to obtain a purely exponential behavior of correlations. Forean field theory defined by the acti¢effective Hamiltonian,

example, in the Gaussian model it is easy to see that in the language of statistical mechanics
(S(DS(0)) =y & ™ (5 S= J x5 0,00, + o (#2707 )
Le-t ' 2 TR 24 '

When considering a nontrivial model, it is customary to gen-We are interested in the two-point connected function
eralize Eq.(5) to
G(Xx=Y)=((X)B(y)) = (D (X)) S(Y)). )

(S(1)S(0))= Ek: ce” ™, (6)  The perturbative expansion must be performed around one of
the stable classical solutions say=v. Defining a fluctua-

By fitting the values of the time-slice correlations with Eq. tion field ¢=¢—v, a ¢° term appears in the Lagrangian,
(6) one can extract the values of a certain number of lowwith a coupling proportional to/g (for details about the
lying states, depending on the precision of the available datgerturbative expansion in the broken-symmetry phase see,

Each exponential on the right-hand side of Eg).corre- e.g., Ref.[6]). The correlation functior{8) is then given at
sponds to a pole in the Fourier transform (@(x) ¢(y)). one loop by the sum of the Feynman diagrams

i
-t - —

J
G(x—y)= + O + Q

(a) (b) (¢) ()

Using dimensional regularization we find 3m’g  F4(p)
—v)= G ip(x=y)
Gy(x—y) f 2 Gy(p)e : €)
and
with

d [(2—-d/r2) (1
G e e ] i FoP)= e g

CdP) =zt e\ 4] (prrmee (19

dx{ m?+x(1—x)p?]92-2,
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The first term on the right-hand side of EQ.0) is the 1 dp . ~
tree-level contribution with a pole ip?= —m?. The remain- (S(HS(0)c=12 f 5. €"GRr(0,0p). (15
ing diagrams are interaction effects: The second term, corre-

sponding to diagraméh) +(c), produces shift in the location  after a simple calculation we obtain far>0
of the pole, i.e., a quantum correction to the physical mass.

The third term is the interesting one for our purpose: In ad- 1 - Ug
dition to providing another quantum correction to the physi-  (S(t)S(0))= a2 € M1t 135, (24In3-27)
cal mass, it has a cut ip?=—4m?. Indeed, this term cor- R
responds to diagranid) in the expansion ofG(x—vy), 3ug o e M
namely, to the production and annihilation of a virtual pair of + 167L2m- w——— =z (18
. R J2mg M
particles. pmll——
( mR)

The theory must be renormalized to be compared with
experimental or Monte Carlo results. Notice that analytic
continuation tad=3 gives a finite expression f&(p) with-
out need for any subtraction. This is a peculiarity of dimen-
sional regularization for oddd, which disappears when
higher-loop effects are taken into account. It implies that the m§h= mﬁ
renormalized parameters in the minimal subtracti)
scheme coincide at one loop with the bare parameters.

However, the MS scheme is not particularly suited for
direct comparison of field-theoretic calculations with experi-
mental or Monte Carlo data. A more convenient scheme, 1
where the renormalized parameters of the field theory have a(S(t)S(O))czm e Mprt
direct lattice interpretation, was introduced in Rgf]. The R

wherem,, is the physical mass, defined as the location of the
zero of the inverse correlator in momentum sp&ce'(p),

Ur
1+ —(13-12In 3

64w ' (a7

The integral appearing in E¢16) can be expressed in terms
of exponential integral functions to give

Ur

ST

(24 1n 3—27)}

renormalized parameterég,mg,gr in this scheme were 3ug e~ 2Mpit Mt +2
computed at three-loop order [i7], to which we refer the + 167L2m 6 + 4 Mot
reader for the definitions and expressions of the renormalized R

parameters. In particular, the renormalized mmﬁesis de- 2—myt

: . . i(— 2 amot i —

fined as the momentum space correlatiopat0 and coin- XEi(=mpt) + — eor Ei( —3mpt)
cides with the inverse second-moment correlation length.
Here we just need the expression of the connected two-point

function of renormalized fields: _Ei(_zmpht)

. (18

d’p ~ o [The appearance of an exponential tee®™ in Eq. (18)
GR(X_Y):<¢R(X)¢R(Y)>c:J 2 Gr(p)eP*™Y) could be misleading: Due to a cancellation between this term
(12) and the Ei functions the asymptotic behavior of the sum in
square brackets is actually >MYt.] Equation (18) is our
main result: It gives the contribution of interaction effects to
the correlation function of time-slice operators as a modifi-
cation of the simple exponential behavi@).

with, denoting withug= gg/mg the dimensionless renormal-
ized coupling,

éR(p): ( 1+ GUTR) ! IV. THE UNIVERSAL AMPLITUDE RATIO  &/&5n4
w R
p*+ mZR 1- %) Universal amplitude ratios are certain dimensionless com-
binations of observables that are predicted to be universal at
M3Ug 1 criticality (for a comprehensive review see Ri&f]). Among

these, of particular relevance to us is the ratlg,, of the
second-moment correlation length and the “true” correla-
3miug 1 1 ’6 \/F) tion length(i.e., the inverse of the physical masghis ratio

PP

> ——; arcta defines two universal amplitude ratiés, (F_) when the
8m (p°+mg)” \p? critical limit is taken from the symmetrigbroken-symmetry
phase. It can be show8] that the presence of higher masses
(13 in the spectrum implie§ .. >1. However, the corresponding
analysis in¢* theory shows that the converse is not true: A
value of F_ greater than one does not necessarily indicate
the presence of higher mass states, but can simply be a signal
1 of nontrivial interaction effects such as the ones studied in
_ this work.
=12 f Padxzdrxa Xz, L), (14 In fact, since the renormalized mass; is defined as
1/£,,4 (s€€[8]), from Eq.(17) we see that at one loop i*
we have theory[10]

2mg

Defining the time-slice operators as
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* S T T T T T =

i (13—-12In 3)=1.006 683), (19

F=1" 128

in good agreement with the Monte Carlo requt

1.02

F_=1.0095). (20)

Moreover, it is easy to see that the nontrivial contribution to g
F _ comes exclusively from diagrafd) in the expression of
G(x—y), namely, the diagram that produces the cut.

It would be interesting to study similar effects in the sym-
metric phase, however, we expect them to appear with the
diagram -

1.01
T
:

/\ [ 1 2 3 4 s

FIG. 1. RatioR(t) defined in Eq(23) as predicted by Eq18)

) ) for my;=1. A purely exponential behavior would give(t)=1
and therefore only at the two-loop level. This provides ajgentically.

qualitative explanation for the fact that in the symmetric _ . _
phase the corresponding amplitude réfio is known to be length. For example, at=1 the Interaction E;ffect is-0.8%
much smaller tharF_: A strong coupling expansion gives Of R. State-of-the-art Monte Carlo simulations give statisti-

[11] cal uncertainties about ten times smaller for the same quan-
tity [3]. The magnitude of the effect becomes comparable to
F,.=1.000 235), (21)  the statistical uncertainties &t 2.5.
_ _ ) The specific form of Eq(18) suggests one more reason
while Monte Carlo calculations give an upper bousd why the correction must be taken into account when analyz-
F., <1.0006. 22) ing nur_nerlcal_data. In fact_, the behe_lwor of the_cqrrelators
when interaction contributions are included mimics very
closely the contribution of a higher mass in the spectrum.
V. DISCUSSION Consider the ratig23) when the contribution of two poles is
The relevance of the effect we have just computed can b@CIUdEd and the cut is neglected:
best appreciated by considering the ratios _ e-M(t+1) 4 [ o—m'(t+1)
R(t)=—1In ; 25
() _in (S0 DSO), 3 ® e "rae (25
(S()S(0))c -

We have verified that by adjusting the parametersind
For a purely exponential behavidR(t) is identically equal m’/m one can makdR(t) look very similar to the cut con-
to myy,, while R(t) as given by Eq(18) is plotted in Fig. 1, tribution: Relative uncertainties in the data of less than one

where we have used the Monte Carlo estinj8le part in 1¢d would be needed to resolve the difference. The
. “best-fit” value is aboutm’/m=2.4. Therefore, the effect of
ug=14.31) (24 interaction can easily be mistaken for a higher mass state

i i i .. with m’'~2.4m. A more complete investigation of these is-
for the value of the dimensionless renormalized coupling inges; including a high-precision Monte Carlo analysis, is cur-

the continuum limit and we have sety,=1 (i.e., we are renily heing pursued and will be presented elsewhzd
measuring distances in units of the correlation lepgffhe

variation of ug is anyway very slow in the whole scaling
region, being governed by corrections to scaling.

The figure shows tha(t) is appreciably different from 1 | would like to thank M. Caselle and F. Gliozzi for many
for distances of the order of a few times the correlationhelpful discussions.
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