
PHYSICAL REVIEW E APRIL 1998VOLUME 57, NUMBER 4
Interaction effects in the spectrum of the three-dimensional Ising model

P. Provero*
Dipartimento di Fisica Teorica, Universita` di Torino, Istituto Nazionale di Fisica Nucleare, Sezione di Torino,

via P. Giuria 1, I-10125 Torino, Italy
~Received 14 October 1997!

The two-point correlation functions of statistical models show, in general, both poles and cuts in momentum
space. The former correspond to the spectrum of massive excitations of the model, while the latter originate
from interaction effects, namely, the creation and annihilation of virtual pairs of excitations. We discuss the
effect of such interactions on the long-distance behavior of correlation functions in configuration space, fo-
cusing on certain time-slice operators that are commonly used to extract the spectrum. For the three-
dimensional Ising model in the scaling region of the broken-symmetry phase, a one-loop calculation shows that
the interaction effects on time-slice correlations is non-negligible for distances up to a few times the correlation
length and should therefore be taken into account when analyzing Monte Carlo data.
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I. INTRODUCTION

When studying a statistical model, one is often interes
in determining the spectrum of massive excitations, i.e.,
eigenvalues of the transfer matrix. For many interest
models this cannot be done exactly and one has to rely
numerical methods, falling into two main classes: direct
agonalization of the transfer matrix and Monte Carlo sim
lations @for studies of the three-dimensional~3D! Ising
model in these frameworks see, respectively, Refs.@1# and
@2,3# and references therein#. The Monte Carlo method ha
been shown to provide greater accuracy in the evaluatio
the eigenvalues; however, a careful analysis of the
Monte Carlo data is required to extract the spectrum. T
purpose of the present work is to study some physical eff
that are relevant to this analysis.

The observables that are most suitable to investigate
spectrum of a model through a Monte Carlo simulation
the two-point correlation functions of operators: Their lon
distance behavior is directly related to the spectrum. Thi
especially evident in momentum space, where each pol
the correlation function corresponds to a massive excita
and therefore to an eigenvalue of the transfer matrix.

In general, however, the momentum space correlators
have not only poles but also cuts, signaling the possibility
creating and annihilating virtual pairs of excitations. For e
ample, if the effective Hamiltonian for the order parametef
includes af3 interaction, the Feynman diagram

will generate a cut in thêff& correlator in momentum
space.

Since, in general, Monte Carlo simulations give direct
cess to configuration-space correlation functions rather t
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their Fourier transforms, it is interesting to study the effect
such interactions on the long-distance behavior
configuration-space correlators. The purpose of this wor
to compute this effect in the scaling region of the broke
symmetry phase of the 3D Ising model, where actual cal
lations can be performed in the framework of renormaliz
Euclidean quantum field theory.

A strong motivation for this analysis is provided by th
continuous improvements in the accuracy of Monte Ca
simulations: Recent advances in both computer per
mances and simulation algorithms allow us to obtain num
cal data of unprecedented precision. Their analysis requ
more sophisticated theoretical tools as finer effects beco
observable. We will find that the effects that are the objec
this study typically account for about 1% of the correlators
the region of physical interest: This is actually an order
magnitude larger than the statistical uncertainties typica
recent Monte Carlo studies of the 3D Ising model.

The paper is organized as follows. In Sec. II we introdu
time-slice operators, which are particularly suitable for t
Monte Carlo study of the spectrum of a statistical model.
Sec. III we compute the correlators of such operators in
Ising model usingf4 field theory at one loop in three Eu
clidean dimensions. In particular, the interaction effects c
be evaluated and expressed in terms of exponential inte
functions. In Sec. IV we comment on the relevance of th
effects to certain universal amplitude ratios, while Sec. V
devoted to the discussion of the results and their implicati
for the analysis of Monte Carlo data.

II. TIME-SLICE CORRELATORS

The spectrum of massive excitations of a statistical mo
can be obtained by studying the long-distance behavio
two-point correlation functions. Consider, for example, t
Gaussian model, with the Hamiltonian

H5E ddxS 1

2
]mf]mf1

m2

2
f2D . ~1!

The two-point correlation function is
3861 © 1998 The American Physical Society
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^f~x!f~y!&5E ddp

~2p!d

eip~x2y!

p21m2

5
1

~2p!d/2 S ux2yu
m D 12d/2

K12d/2~mux2yu!,

~2!

whereK12d/2 is a modified Bessel function. Therefore, a
ymptotically for ux2yu→`,

^f~x!f~y!&;constm~d23!/2ux2yu2~d21!/2e2mux2yu.
~3!

We see that the long-distance behavior of correlators ca
used to extract the value of the massm, which in this case is
obviously the only state in the spectrum.

The standard practice in Monte Carlo studies is to de
time-slice operators

S~ t !5
1

Ld21 E dx1¯dxd21f~x1 ,...,xd21 ,t ! ~4!

to obtain a purely exponential behavior of correlations. F
example, in the Gaussian model it is easy to see that

^S~ t !S~0!&5
1

Ld21 e2mutu. ~5!

When considering a nontrivial model, it is customary to ge
eralize Eq.~5! to

^S~ t !S~0!&5(
k

cke
2mkutu. ~6!

By fitting the values of the time-slice correlations with E
~6! one can extract the values of a certain number of lo
lying states, depending on the precision of the available d

Each exponential on the right-hand side of Eq.~6! corre-
sponds to a pole in the Fourier transform of^f(x)f(y)&.
be

e

r

-

-
ta.

However, since a nontrivial model certainly involves inte
actions, Eq.~6! must be modified to take into account the
contribution: in the next section we will compute the tim
slice correlator^S(0)S(t)& for the 3D Ising model in the
broken-symmetry phase, where af3 interaction is present in
the effective Hamiltonian so that cuts appear in the two-po
function already at one loop. The calculation will teach
how to modify Eq.~6! to take into account the effect of th
production and annihilation of virtual pairs of excitations.

III. THE CASE OF THE 3D ISING MODEL

It is a widely accepted conjecture that the 3D Ising mo
is in the same universality class asf4 field theory. This
allows us to use renormalized 3D quantum field theory
study the Ising model in the scaling region, where latt
effects become negligible and universality holds. This p
gram was initiated by Parisi@4# and has been vigorousl
pursued to study several aspects of the Ising model@5–7#.
The agreement between field-theoretical calculations
Monte Carlo results is satisfactory.

Therefore, from now on we will consider the 3D Euclid
ean field theory defined by the action~effective Hamiltonian,
in the language of statistical mechanics!

S5E d3xF1

2
]mf]mf1

g

24
~f22v2!2G . ~7!

We are interested in the two-point connected function

G~x2y!5^f~x!f~y!&2^f~x!&^f~y!&. ~8!

The perturbative expansion must be performed around on
the stable classical solutions say,f5v. Defining a fluctua-
tion field w5f2v, a w3 term appears in the Lagrangian

with a coupling proportional toAg ~for details about the
perturbative expansion in the broken-symmetry phase
e.g., Ref.@6#!. The correlation function~8! is then given at
one loop by the sum of the Feynman diagrams
G~x2y!5
Using dimensional regularization we find

Gd~x2y!5E ddp

~2p!d G̃d~p!eip~x2y!, ~9!

with

G̃d~p!5
1

p21m2 1
g

m2 S m2

4p D d/2 GS 12
d

2D
~p21m2!2
1
3m2g

2

Fd~p!

~p21m2!2 ~10!

and

Fd~p!5
G~22d/2!

~4p!d/2 E
0

1

dx@m21x~12x!p2#d/222.

~11!
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The first term on the right-hand side of Eq.~10! is the
tree-level contribution with a pole inp252m2. The remain-
ing diagrams are interaction effects: The second term, co
sponding to diagrams~b!1~c!, produces shift in the location
of the pole, i.e., a quantum correction to the physical ma
The third term is the interesting one for our purpose: In
dition to providing another quantum correction to the phy
cal mass, it has a cut inp2524m2. Indeed, this term cor-
responds to diagram~d! in the expansion ofG(x2y),
namely, to the production and annihilation of a virtual pair
particles.

The theory must be renormalized to be compared w
experimental or Monte Carlo results. Notice that analy
continuation tod53 gives a finite expression forG̃(p) with-
out need for any subtraction. This is a peculiarity of dime
sional regularization for oddd, which disappears when
higher-loop effects are taken into account. It implies that
renormalized parameters in the minimal subtraction~MS!
scheme coincide at one loop with the bare parameters.

However, the MS scheme is not particularly suited
direct comparison of field-theoretic calculations with expe
mental or Monte Carlo data. A more convenient schem
where the renormalized parameters of the field theory ha
direct lattice interpretation, was introduced in Ref.@8#. The
renormalized parametersfR ,mR ,gR in this scheme were
computed at three-loop order in@7#, to which we refer the
reader for the definitions and expressions of the renormal
parameters. In particular, the renormalized massmR

2 is de-
fined as the momentum space correlation atp50 and coin-
cides with the inverse second-moment correlation leng
Here we just need the expression of the connected two-p
function of renormalized fields:

GR~x2y!5^fR~x!fR~y!&c5E d3p

~2p!3 G̃R~p!eip~x2y!

~12!

with, denoting withuR5gR /mR the dimensionless renorma
ized coupling,

G̃R~p!5S 11
uR

64p D H 1

p21mR
2 S 12

3uR

64p D
2

mR
2uR

4p

1

~p21mR
2 !2

1
3mR

3uR

8p

1

~p21mR
2 !2

1

Ap2
arctanS Ap2

2mR
D J .

~13!

Defining the time-slice operators as

S~ t !5
1

L2 E dx1dx2fR~x1 ,x2 ,t !, ~14!

we have
e-

s.
-
-

f

h
c

-

e

r
-
,
a

ed

h.
int

^S~ t !S~0!&c5
1

L2 E dp

2p
eiptG̃R~0,0,p!. ~15!

After a simple calculation we obtain fort.0

^S~ t !S~0!&5
1

2mRL2 e2mphtF11
uR

128p
~24 ln 3227!G

1
3uR

16pL2mR
E

2mR

`

dm
e2mt

mS 12
m2

mR
2 D 2 , ~16!

wheremph is the physical mass, defined as the location of
zero of the inverse correlator in momentum spaceG21(p),

mph
2 5mR

2F11
uR

64p
~13212 ln 3!G . ~17!

The integral appearing in Eq.~16! can be expressed in term
of exponential integral functions to give

^S~ t !S~0!&c5
1

2mRL2 e2mphtF11
uR

128p
~24 ln 3227!G

1
3uR

16pL2mR
Fe22mpht

6
1

mpht12

4
e2mpht

3Ei~2mpht !1
22mpht

4
empht Ei~23mpht !

2Ei~22mpht !G . ~18!

@The appearance of an exponential terme22mt in Eq. ~18!
could be misleading: Due to a cancellation between this te
and the Ei functions the asymptotic behavior of the sum
square brackets is actuallye22mt/t.# Equation ~18! is our
main result: It gives the contribution of interaction effects
the correlation function of time-slice operators as a mod
cation of the simple exponential behavior~6!.

IV. THE UNIVERSAL AMPLITUDE RATIO j/j2nd

Universal amplitude ratios are certain dimensionless co
binations of observables that are predicted to be universa
criticality ~for a comprehensive review see Ref.@9#!. Among
these, of particular relevance to us is the ratioj/j2nd of the
second-moment correlation length and the ‘‘true’’ corre
tion length~i.e., the inverse of the physical mass!. This ratio
defines two universal amplitude ratiosF1 (F2) when the
critical limit is taken from the symmetric~broken-symmetry!
phase. It can be shown@3# that the presence of higher mass
in the spectrum impliesF6.1. However, the correspondin
analysis inf4 theory shows that the converse is not true:
value of F2 greater than one does not necessarily indic
the presence of higher mass states, but can simply be a s
of nontrivial interaction effects such as the ones studied
this work.

In fact, since the renormalized massmR is defined as
1/j2nd ~see@8#!, from Eq.~17! we see that at one loop inf4

theory @10#
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F2512
uR*

128p
~13212 ln 3!51.006 68~3!, ~19!

in good agreement with the Monte Carlo result@3#

F251.009~5!. ~20!

Moreover, it is easy to see that the nontrivial contribution
F2 comes exclusively from diagram~d! in the expression of
G(x2y), namely, the diagram that produces the cut.

It would be interesting to study similar effects in the sym
metric phase, however, we expect them to appear with
diagram

and therefore only at the two-loop level. This provides
qualitative explanation for the fact that in the symmet
phase the corresponding amplitude ratioF1 is known to be
much smaller thanF2 : A strong coupling expansion give
@11#

F151.000 23~5!, ~21!

while Monte Carlo calculations give an upper bound@3#

F1,1.0006. ~22!

V. DISCUSSION

The relevance of the effect we have just computed can
best appreciated by considering the ratios

R~ t !52 ln
^S~ t11!S~0!&c

^S~ t !S~0!&c
. ~23!

For a purely exponential behavior,R(t) is identically equal
to mph, while R(t) as given by Eq.~18! is plotted in Fig. 1,
where we have used the Monte Carlo estimate@3#

uR* 514.3~1! ~24!

for the value of the dimensionless renormalized coupling
the continuum limit and we have setmph51 ~i.e., we are
measuring distances in units of the correlation length!. ~The
variation of uR is anyway very slow in the whole scalin
region, being governed by corrections to scaling.!

The figure shows thatR(t) is appreciably different from 1
for distances of the order of a few times the correlat
-

e

e

n

length. For example, att51 the interaction effect is;0.8%
of R. State-of-the-art Monte Carlo simulations give statis
cal uncertainties about ten times smaller for the same qu
tity @3#. The magnitude of the effect becomes comparable
the statistical uncertainties att;2.5.

The specific form of Eq.~18! suggests one more reaso
why the correction must be taken into account when ana
ing numerical data. In fact, the behavior of the correlat
when interaction contributions are included mimics ve
closely the contribution of a higher mass in the spectru
Consider the ratio~23! when the contribution of two poles i
included and the cut is neglected:

R̃~ t !52 ln
e2m~ t11!1ae2m8~ t11!

e2mt1ae2m8t
~25!

We have verified that by adjusting the parametersa and
m8/m one can makeR̃(t) look very similar to the cut con-
tribution: Relative uncertainties in the data of less than o
part in 104 would be needed to resolve the difference. T
‘‘best-fit’’ value is aboutm8/m52.4. Therefore, the effect o
interaction can easily be mistaken for a higher mass s
with m8;2.4m. A more complete investigation of these i
sues, including a high-precision Monte Carlo analysis, is c
rently being pursued and will be presented elsewhere@12#.
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FIG. 1. RatioR(t) defined in Eq.~23! as predicted by Eq.~18!
for mph51. A purely exponential behavior would giveR(t)51
identically.
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