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Genetic algorithm dynamics on a rugged landscape
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The genetic algorithm is an optimization procedure motivated by biological evolution and is successfully
applied to optimization problems in different areas. A statistical mechanics model for its dynamics is proposed
based on the parent-child fitness correlation of the genetic operators, making it applicable to general fitness
landscapes. It is compared to a recent model based on a maximum entropy ansatz. Finally it is applied to
modeling the dynamics of a genetic algorithm on the rugged fitness landscape of the NK model.
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I. INTRODUCTION

The idea of utilizing biological evolution@1# as a meta-
phor for an optimization algorithm is not recent@2#—
practical implementations, however, had to wait until co
puters of adequate speed were available@3#. Finally, recent
advances in this technology jump-started a surge of ev
tionary approaches to optimization problems in real wo
applications@4#. Applications to theoretical problems includ
the ground state search in some spin glasses@5#. Despite this
renewed activity, the dynamics of these algorithms is
nearly as well understood as that of other common opti
zation techniques, e.g., simulated annealing@6#. As one
widely used representative of the biologically motivated o
timization algorithms, the ‘‘genetic algorithm’’ bases i
search on a set of search points~a ‘‘population’’ in the bio-
logical picture!. A dynamical rule constructs a new popul
tion of search points from it, in a way that on average
energy decreases~or ‘‘fitness’’ increases! with respect to the
given optimization function. The dynamical operators
clude selection and reproduction of the fittest members
well as mutation and recombination of members to gene
new search points. One reason for the difficulty in model
this algorithm is the nongradient nature of the search sp
exploration allowing for nonlocal moves which complicat
the treatment of its dynamics as a Markov chain@7#.

A common approach to modeling physical systems wit
large number of degrees of freedom is to find a few mac
scopic variables that describe the average behavior of a
tem ~e.g., temperature for a gas of a large number of atom!.
In equilibrium systems, there are canonical procedures
describe these variables. In systems far from equilibrium
are genetic algorithms, one can sometimes identify distri
tions that tend to become stationary under the dynamics.
cently, a theoretical approach to the dynamics of the evo
ing, finite size population of a genetic algorithm has be
proposed that uses the fitness distribution of the popula
as the characteristic evolving quantity@8#. While this is suc-
cessfully applied to selected, simple optimization proble
@9#, the method becomes difficult for problems that are m
complex, since it depends on an intricate maximum like
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hood estimation. This is used to describe the dynamics of
genetic operators in terms of a fitness distribution, wh
structural effects have to be averaged over and reexpre
in terms of fitnesses. In this study we will go back one s
and look at the lowest-order observables that determine
dynamics. In particular, we construct a simplified mod
based on the observation that genetic algorithm performa
often correlates strongly with the parent-child fitness cor
lation. While using the selection scheme of@8#, the correla-
tion is used to construct a dynamical model which is appl
to a simple additive fitness function as well as the spin gl
motivated NK model. This will show how well the concep
of the correlation determining the dynamics actually holds
modeling the dynamics of a genetic algorithm, and where
limits are.

The motivation for our model stems from the observati
that, although the time evolution of a genetic algorithm
difficult to understand, practitioners often have a quite d
tinct intuition about when a genetic algorithm will wor
well. One common statement in this respect is that the a
rithm performs best when the fitnesses of parents and t
children are strongly correlated. It was found empirically th
the performance of a genetic algorithm follows the fitne
correlation of the genetic operators as well as the correla
length of the optimization landscape@10#. In fact, designing
suitable genetic representation schemes often means inc
ing the parent-child fitness correlation. Finally, in biologic
systems the correlation between parents and children is
ally very large. What does this intuition mean in the light
existing models for genetic algorithm dynamics? To wh
extent are correlation measures able to predict the algori
dynamics? These are exactly the questions that we will st
in the following.

We will now first describe the simple version of a gene
algorithm, then review the correlation model and proce
with modeling the genetic operations on the basis of fitn
correlations, first for mutation algorithms and finally for fu
genetic algorithms, including recombination. The study co
cludes with a comparison of the model to numerical stud
of the corresponding algorithms.

II. A DYNAMICAL MODEL
OF THE BASIC GENETIC ALGORITHM

A genetic algorithm performs population based optimiz
tion in a discrete search space. For our purposes we defi
3853 © 1998 The American Physical Society
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3854 57STEFAN BORNHOLDT
simple version of this algorithm. Let the function which is
be optimized be a real valued functionf (S) on a binary
search space representationSP$61%N of dimensionN. Its
value is the ‘‘fitness’’ of the test pointS which is to be
maximized@alternatively one could view2 f (S) as an en-
ergy to be minimized#. In the biological picture,S is the
analog to the genome. The algorithm starts from a rand
‘‘population’’ of search pointsSa with a51, . . . ,P forming
a population ofP strings with fitnessesf a5 f (Sa). Subse-
quently, new search points are tested by means of three
erations, called selection, mutation, and recombination
the selection step, a new population is created: members
selected according to probabilities defined on the basis
their fitness values. Those with a higher fitness are m
likely to ‘‘survive’’ than those with smaller fitness and th
new population most likely has a higher average fitness t
the old one. New search points are then created by flipp
single spins with a small fixed probabilityg in all of the
population, called the mutation step. Then pairs of strings
allowed to exchange a subset of their sites in a recomb
tion step, analogous to the biological process of cross
over genomes. This procedure is iterated, resulting in an e
lution towards higher fitness values. It can be used to so
optimization problems where the problem is defined
means of a scalar fitness functionf (S). The choice of the
structure of the search space and the encoding off (S) often
determine the convergence properties and performance o
algorithm and is one major motivation for the modeling
genetic algorithm dynamics.

In the following, the dynamics of the genetic operato
will be studied in more detail. We will do this for two mod
els, an additive fitness function on the one hand, and a m
rugged function on the other. The first problem is the si
plest additive function, a random field paramagnet

f a5(
i 51

N

JiSi
a1k1

0 , ~1!

with random couplingsJi taken from a Gaussian distributio
with mean 0 and variance 1. TheN sites Si

a with i
51, . . . ,N andSi

a561 form the genetic string of the mem
ber a of the population. The second function will be th
NK-model fitness function@11#

f a5(
i 51

N

Ei~Si
a ;Si 1

a , . . . ,Si K
a !, ~2!

with 2K11 random energy valuesEi(S
a) drawn from a uni-

form distribution over the interval@0,1# and a randomly cho-
sen permutation of sitesi 1 to i K , both for eachi . Originally,
this function has been formulated for the study of evolut
on tunably rugged fitness landscapes with application to
evolution of the immune response@12#. For these two func-
tions, let us derive the dynamics under mutation and rec
bination.

The dynamics of the model is described in terms of
fitness distributionr( f ) of the population which is expresse
as an expansion in cumulants as proposed in@8#. The cumu-
lantskn of r( f ) are defined through
m
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kn5
]n

]bnE2`

`

exp~b f !r~ f !d fU
b50

, ~3!

representing the mean, variance, skew (k3 /k2
3/2), curtosis

(k4 /k2
2), and higher moments of the fitness distribution.

give an intuitive picture, the first two cumulants roughly ca
ture the infinite population size limit of the model. Th
higher cumulants, skew and curtosis, are important to
scribe the dynamics of a finite population where, e.g., se
tion causes the fitness distribution to quickly become skew
and thus deviate from a Gaussian. An evolving populat
can, at each time step, be approximated by a set of th
variables. Its dynamics can then be viewed in terms of
evolution of the cumulants. In the following, the dynamics
an evolving population will be modeled using a truncat
expansion in the first four cumulants. The different ope
tions of a genetic algorithm, selection, mutation, and reco
bination, interact in different ways with this representatio

First consider selection. We will follow the formalism o
@9# for modeling the selection operation on a fitness distrib
tion in terms of cumulants. Boltzmann selection is cons
ered where a member with fitnessf a is chosen from the
population with the probability

pa5
eb f a

Z
, Z5 (

a51

P

eb f a, ~4!

whereb parametrizes selection strength. After selection,
cumulants are given by

kn
s5

]n

]bn
^ lnZ&r , ~5!

where the average is taken over all possible populations w
individual fitnesses satisfying the givenr( f ). This expres-
sion can be solved similarly to the random energy mo
@13#, as shown in@9#. One obtains the cumulants after sele
tion as functions of the cumulants before selection, either
means of numerical integrals or, in the limit of small sele
tion ~small b), as an expansion. The cumulants after sel
tion have been derived under the assumption that the
population is drawn from a continuous fitness distributio
Only the dominant finite-population effect is kept whic
originates from the stochastic sampling of the new popu
tion in the selection step.

While selection is solely determined by the fitness dis
bution of the population, the other two operators act on
representationS instead. The average effect of the mutati
operator for the random field paramagnet has been wor
out in @9# by averaging over all possible mutation even
yielding to lowest order

k1
i [^ f a

m&mut5m fa1~12m!k1
0 , ~6!

with

m5122g. ~7!

Similarly, we derive for the NK model the fitness of a m
tated string by writing down Eq.~2! with each siteSi

a mul-
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57 3855GENETIC ALGORITHM DYNAMICS ON A RUGGED LANDSCAPE
tiplied by a randoms i
a561. The energy of a singleEi

changes to another~randomly chosen! value if at least one of
the sites is changed and remains unchanged otherwise.
average fitness of a string after mutation is then obtaine
an annealed approximation as Eq.~6! with

m5~12g!K11. ~8!

For both functions we can write the mean fitnessk1
i of the

potential children of a parent with fitnessf a as Eq.~6! with
some function dependent constantm. In general terms,m is
the fitness correlation of a genetic operator~here: mutation!
with respect to a specific fitness landscape~here: f ). The
above observation motivates us to usem as a measure of th
lowest-order genetic algorithm dynamics on general la
scapes. Defined in terms of an average over the popula
and possible mutation events,m can also be expressed as

m5
^ f a f a

m&a,mut2^ f a&a^ f a
m&a,mut

^ f a
2&a2^ f a&a

2
. ~9!

It can thus be measured from a given fitness function. H
it parametrizes the average fitness of a member after m
tion ~given the fitness before! and will be used below to give
a lowest-order approximation of the population dynamics

Let us check how the next order relates to this pictu
The fitness variance of mutated membersf a

m derived from a
single parent with fitnessf a has been calculated for the ra
dom field paramagnet in@9# as

k2
i 5^~ f a

m!2&mut2^ f a
m&mut

2

5~12m2!(
i 51

N

Ji
2 . ~10!

For comparison we obtain for the NK model by a simil
calculation

k2
i 5~12m2!k2

01m~12m!F(
i 51

N

Ei
2~Sa!2S k2

01
~k1

0!2

N D
2

2

N
k1

0~ f a2k1
0!G . ~11!

Other than the first-order terms, these expressions are
exactly of an equal type. However, looking for a lowe
order rule to approximate the variance after mutation, let
consider the average over the class of allowed functio
Averaging overJ, respectively,E for the two problems,
properties of a particular realization drop out and one obta

^k2
i &5~12m2!k2

0 . ~12!

This is again a function of the fitness correlationm, motivat-
ing a model of the genetic algorithm dynamics. This cor
sponds to modeling the distribution of fitness values a
mutation from a parent of fitnessf a by the ansatz

r~ f mu f !5
1

A2pk2
i

expS 2
~ f 2k1

i !2

2k2
i D , ~13!
he
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with

k1
i 5m fa1~12m!k1

0 ,

k2
i 5~12m2!k2

0 , ~14!

where k1
0 and k2

0 are the cumulants of the initial, random
distribution. It reflects the empirical observations about g
netic algorithm performance on correlated landscapes@10#.
With this ansatz, the fitness distribution after mutation
predicted as

k1
m5mk11~12m!k1

0 ,

k2
m5m2k21~12m2!k2

0 ,

k3
m5m3k3 ,

k4
m5m4k4 . ~15!

This is a lowest-order model for mutation dynamics based
a given parent-child fitness correlationm. To compare this
prediction with a direct calculation from the fitness fun
tions, the distribution of the population after mutation is o
tained by an additional average over the parents in all p
sible populations. Neglecting finite-population effects in t
mutation step which are much smaller than those in se
tion, the first cumulant of the distribution of the populatio
after mutation is then

k1
m5mk11~12m!k1

0 ~16!

for the random field paramagnet as derived in@9#. We obtain
the same expression for the NK model. The second orde
the random field paramagnet has been derived as

k2
m5m2k21~12m2!(

i 51

N

Ji
2 . ~17!

In comparison we obtain for the NK model

k2
m5m2k21~12m2!k2

01m~12m!F(
i 51

N

^Ei
2~Sa!&a

2S k2
01

~k1
0!2

N D 2
2

N
k1

0~k12k1
0!G . ~18!

The full second-order expression cannot be derived from
knowledge ofm alone, due to fluctuations in the third term
of Eq. ~18!.

In general, one finds that the cumulants after mutation
not always depend on the pure cumulants before selec
The dynamics also depends on properties of the genetic
ing since it directly acts on the underlying representation
the fitness distribution is all one knows about a populati
one has to make additional assumptions when modeling
dynamics in order to describe the underlying dynamics of
genetic variables correctly. The model developed in@9# uti-
lizes a maximum entropy estimation for this purpose. Sin
this is a complicated method for general hard optimizat
problems, we here use a different approach by concentra
on a lowest-order dynamical model of the basis of the c
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3856 57STEFAN BORNHOLDT
relationm. This method is more accessible for complicat
fitness landscapes. In the example of the rugged NK la
scape we find that the first two cumulants after mutation
well reproduced in terms ofm with the fluctuations in Eq.
~18! being small. Therefore we approximate the second
mulants of both above examples by an expression as don
Eq. ~15!. This set of equations derives the mutation cum
lants from a model for a ‘‘microscopic’’ mutation event, E
~13!, on the basis of the fitness correlation of mutation a
plied to the landscape. Applying mutation to a membera of
the population with initial fitnessf a , the resulting membe
will in general have a different fitness valuef a

m . The case of
maximum correlationf a

m5 f a occurs where mutation doe
not affect the fitness of the child at all. In the other extre
of violent mutation, it involves a random change in fitne
leaving traces of the fitness distribution of arandompopula-
tion r0( f a

m). We parametrized the possible correlations in
range between these two extremes by approximating the
ness distribution of the child as Eq.~14!. In this way, the
degree of correlation between parent and child under m
tion is parametrized bym. The choice of the two distribu
tions is natural since, in general,r0 is the fixed point distri-
bution of the mutation operator. On this basis, Eq.~15!
defines a closed expression for the fitness distribution of
population after mutation as a function of the distributi
prior to mutation. It will serve as an iteration step in descr
ing the complete dynamics.

A similar approach as for mutation can be adopted
recombining genetic strings. In the simple genetic algorit
modeled here, the recombination operation is defined s
metrically in the two children produced.

~1! Group the individuals of a population into pairs
two.

~2! Recombine each pair, i.e., at each bit position, sw
the adjacent spins with a given probabilitya.

~3! For each pair, replace the parents by the two child
thus produced.

For the random field paramagnet model, according to@9#
the fitness of one child produced by recombination avera
over all possible recombination events is then

^ f ab
c &cross5a fb1~12a! f a . ~19!

Along similar lines, for the NK model, let us write the fitne
of a child averaged over all possible recombination event

^ f ab
c &cross5(

i 51

N

(
n50

K11 S K11

n D an~12a!K112nH 1

2
@Ei~SW a!

1Ei~SW b!#qK111Ei~SW a!qn~12qK112n!

1Ei~SW b!qK112n~12qn!

1
1

2
~12qn!~12qK112n!J . ~20!

Here, n denotes the number of sites swapped between
arguments of one corresponding energy termEi of the par-
ents. The sum overn is followed by the probability of ex-
actly n swapped sites in a set ofK11 sites relevant for each
energy term. The last term is the annealed average
d-
e

-
in

-

-

e
,

e
t-

a-

e

-

r

-

p

n

d

as

e

a

child’s energy termEi , whereq is the average probability
that two random sitesSi

a andSi
b are equal in the population

For both fitness functions, the postrecombination fitness
be cast into the unified expression

^ f ab
c &cross5cab f a1cba f b1~12cab2cba!k1

0 , ~21!

with cab5a, cba512a for the random field paramagne
and

cab5@12a1aq#K112
1

2
qK11,

cba5@a1~12a!q#K112
1

2
qK11, ~22!

with k1
05N/2 for the NK model. The parameterscab and

cba correspond to the average fitness correlations of a c
f ab

c with either one of its parents,f a or f b , after recombi-
nation:

cab5
^ f a f ab

c &a5” b,cross2^ f a&a^ f ab
c &a5” b,cross

@121/~P21!#k2
,

cba5
^ f b f ab

c &a5” b,cross2^ f b&b^ f ab
c &a5” b,cross

@121/~P21!#k2
. ~23!

Here, the averaging is done over all members in the pop
tion and, after recombination, over all possible pairings a
all possible recombination events. From the postrecomb
tion fitness~21! we can again derive the average fitness
the population after recombination by averaging over all p
tential parents, yielding

k1
c5ck11~12c!k1

0 , ~24!

with c5cab1cba . For the first-order cumulants we find tha
both functions, the random paramagnet and the NK mo
fall into the same model class. This will motivate us below
use the correlationc for a lowest-order dynamical model o
recombination. The higher moments can be derived in
similar fashion. We define the fitness variance of the po
lation after recombination as

k2
c5^~ f ab

c !2&aÞb,cross2^ f ab
c &aÞb,cross

2 ~25!

as the variance of an infinite size population of children d
rived from a finite parent population and averaged over
allowed recombination events and parental pairs. This
been calculated in@9# for the random field paramagnet as

k2
c5k2 . ~26!

In this case, recombination leaves mean and variance o
ness untouched. The third moment is defined as

k3
c5^ f ab

c3 &aÞb,cross23k1
ck2

c2k1
c3 ~27!

and, dropping spatial correlations, is given in@9# as

k3
c5@a31~12a!3#k326a~12a!(

i 51

N

Ji
3$^Si

a&a
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2^Si
aSi

bSi
g&a,b,g%. ~28!

One now obtains also terms containing spin correlations
the model of@9# these are estimated in a maximum entro
estimation, summing over search space regions corresp
ing to a given fitness distribution of the population. As th
approach becomes again impractical for real optimizat
problems with hard or unknown fitness functions, we h
study the simpler approach to describe recombination
namics on the basis of the fitness correlationc. We will see
below that this works well in cases where the fluctuatio
from spin correlations remain small as in the case of
random field paramagnet. For comparison let us also c
sider recombination of the more difficult landscape of t
NK model. For the variance we obtain

k2
c5~cab1cba!k21~12cab2cba!k2

0

1~cab1cba!~12cab2cba!

3H k1
21

1

N
@~k1

0!222k1k1
0#J

1(
i 51

N

(
j 5” i

$~cab
2 1cba

2 2cab2cba!^Ei
aEj

a&a

12cabcba^Ei
aEj

b&aÞb%. ~29!

This is now a different situation than before: The third te
contains large fluctuations from correlations between ene
terms within strings and within the population. In this ca
there is no strong limit of vanishing spatial correlations,
stead ^Ei

aEj
a&a2^Ei

a&a^Ej
a&aÞ0 for iÞ j , such that

^Ei
aEj

a&a'^Ei
aEj

b&aÞb is only weakly fulfilled. This is due
to each energy termEi being coupled to neighboring spins
the string. When running a real genetic algorithm witha
51/2 ~as often used! one can observe the fluctuations wi
magnitudes comparable to the leading terms and of ei
sign. The very last term contributes also in the limit of lar
correlationscab and cba where the preceding term is sup
pressed. Here, any simple approximation breaks down
does our intuition about a correlation governing the evo
tion. In fact, one is led to consider that it might not be
question of a working description, rather than the issue
whether recombination helps at all in this limit. It clearly
disruptive here resulting in low correlation, a limit nev
encountered in biological evolution. For the NK model w
will therefore consider here the less disruptive case of as
metric recombination, resulting in better genetic algorith
performance, let us choosea51/2N. In this limit cab@cba
and the variance can now be written in the simple form

k2
c5ck21~12c!k2

01c~12c!H S 12
1

NDk1
2

2(
i 51

N

(
j Þ i

^Ei
aEj

a&a1
1

N
~k12k1

0!2J , ~30!

with c5cab1cba . The remaining correlation is now ba
anced with (121/N)k1

2 and the difference suppressed
(12c). In this case, the lowest-order model is
In
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-

k2
c5ck21~12c!k2

0 . ~31!

Now having the next-to-lowest-order behavior of the tw
functions at hand, with the identical lowest-order term~24!,
let us again use this as a motivation for a dynamical mo
based onc, as done before in the case of mutation. For t
purpose we approximate the distribution after recombinat
by the conditional probability density

r~ f ab
c u f a , f b!5

1

A2pk2
ci

expS 2
~ f 2k1

ci!2

2k2
ci D , ~32!

with suitable momentsk1
ci andk2

ci . The mean fitness of the
children of a given pair of parents is

k1
ci5cab f a1cba f b1~12c!k1

0 ~33!

as motivated by Eq.~21! and matches the fitness correlatio
picture as for mutation. Dealing with two parents with
general different fitness values, the recombination event
troduces also a variance. Let us first consider the rand
field paramagnet. Here one finds

^ f ab
c2 &cross2^ f ab

c &cross
2 5(

i 51

N

Ji
2~12Si

aSi
b!. ~34!

Therefore, and since spatial correlations vanish here,
variance of the distribution of potential children can be mo
eled by

k2
ci5~cab f a2cba f b!21~12c2!k2

0 . ~35!

With this assumption, and withcab5cba for the random
field paramagnet, the fitness distribution after recombinat
r( f ab

c ) is predicted as

k1
c5ck11~12c!k1

0 ,

k2
c5c2k21~12c2!k2

0 ,

k3
c5c3k3 . ~36!

The mean and variance of the population after recombina
are therefore correctly predicted for the random field pa
magnet. The higher orders are off by a constant factor, t
cannot be matched exactly within the second-order corr
tion model, which would require higher momentsk3

ci and
k4

ci . The fixed point distribution for recombination~which
does not equal that of a random population as for mutati!
is small enough here to allow for neglecting the fluctuatio
in Eq. ~28! and higher moments. We will use this set
cumulants for the numerical model below.

What happens in the case of the NK model? Here,
exchange of spins between the genomes has rather the e
of mutations than the sharing of knowledge between the
Using the same arguments as in the mutation model~14! we
choose

k1
ci5cab f a1cba f b1~12c!k1

0 ,

k2
ci5~12c2!k2

0 . ~37!
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The model then predicts in the asymmetric case ofc'cab a
postrecombination population distributed according to E
~15!, while the direct calculation suggests

kn
c5ckn1~12c!kn

0 . ~38!

The correlation model, therefore, correctly predicts
mean fitness of the population after recombination, howe
deviates in the higher orders. It still is numerically close
the direct calculation model which will be simulated up
n54 below. An alternative microscopic model of recomb
nation that predicts all leading orders to be linear inc was
proposed in@14#, however, does not improve the case und
consideration here. The sets of cumulants from selectionkn

s ,
mutationkn

m , and recombinationkn
c now define the iteration

step of one ‘‘generation’’ of the dynamical model, with th
operations being applied in this order.

III. NUMERICAL COMPARISON OF THE MODEL
TO A GENETIC ALGORITHM

In numerical simulations the correlation model is no
compared to the evolution of a real genetic algorithm. T
fitness distribution of the initial, random population for th
random field paramagnet function is given by

k1
05^ f a&a,S,J50,

k2
05Š^ f a

2&a2^ f a&a
2
‹S,J5~121/P!N,

k3
050, k4

0526N2~1/P!~121/P!~122/P!

26N~121/P!~124/P12/P2!. ~39!

Since the average dynamics of a whole class of function
considered here, the last value differs from the pure
semble averagê &S through the additional average over a
possible functionŝ &J . The corresponding results for th
NK model are

k1
05^ f a&a,S,E5

N

2
,

k2
05Š^ f a

2&a2^ f a&a
2
‹S,E5~121/P!~121/2K11!~N/12!,

~40!

and, omitting terms of orders 22K,

k3
050, k4

052~121/P!~126/P16/P2!~N/120!

2~1/P!~121/P!~N2/24!. ~41!

The simulation results are averaged over 10 000 runs
genetic algorithm with population sizeP550 and selection
strengthbs50.01~with a newly chosen random fitness fun
tion for each run!. The size of the genetic string isN5128
sites and the mutation probability for each site isg51/2N. In
Fig. 1, the iterated cumulant expansion is compared to
dynamics of a genetic algorithm for the random field pa
magnet with selection and mutation. The solid curves sh
mean and variance of the genetic algorithm fitness distr
tion and are well described by the theoretical appro
shown by the dashed curves. The theoretical model is ba
.

e
r,
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is
-
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-
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-
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on the constant correlation valuem. Although the correlation
among genotypes in the population considerably chan
over time, the fitness correlationm remains in fact constan
when measured in the population over time. Here, the co
lation m appears to contain the basic information about
dynamics. In Fig. 2, the evolution of the NK-model fitne
distribution for selection and mutation is shown for a mod
with P550, N5128, andK58. Again, the solid curves
show the mean and variance of the measured genetic a
rithm fitness distribution. The correlationm is taken as de-
rived above for the NK function. All other parameters a
chosen as in the previous case. For the plot,k1 is depicted as

FIG. 1. Measured evolution~solid lines! and predicted evolution
~dashed lines! of k1 andk2 for a random field paramagnet fitnes
under selection and mutation.

FIG. 2. Measured and predicted evolution ofk12k1
0 andk2 for

the NK-model fitness under selection and mutation.
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k12k1
0. As the figure shows, the evolution of the gene

algorithm is predicted correctly also on the rugged fitn
landscape of the NK model. The model yields a satisfact
prediction, especially when comparing the very simple c
relation model to the maximum entropy model of@9#.

Adding the recombination step to the simulation of t
random field paramagnet, the modeling based on par
child fitness correlations is shown in Fig. 3. Crossover
been defined to be ‘‘uniform,’’ where each site is swapp
with probability a50.5 between the parents and both resu
ing children are taken. Here, the model uses the theore
value ofc51 while the remaining parameters of the simu
tions and the model are chosen as above. In the real ge
algorithm applied here to the random field paramagnet pr
lem, recombination improves the performance as compa
to Fig. 1. This is correctly predicted by the correlatio
model.

While for the random field paramagnet we saw thac
remains constant over the course of evolution, for the
model c depends on the probabilityq of two equal spins
meeting in a recombination event. This is a quantity t
cannot be expressed in terms of the fitness distribution al
For the purpose of the numerical comparison we will e
mate this probability from the average pair correlation in
population^qab&aÞb with

qab5
1

N(
i 51

N

Si
aSi

b ~42!

such that

q5
11qab

2
. ~43!

The average pair correlation is measured from the gen
algorithm runs and used to correct for the runningq in the

FIG. 3. Measured and predicted evolution ofk1 andk2 for the
random field paramagnet fitness under selection, mutation, an
combination.
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numerical model. On the other hand, a closed model co
easily be obtained by includingqab as a dynamical variable
into the models as proposed in@15#. The result is shown in
Fig. 4 where the evolution of the NK-model fitness distrib
tion for selection and recombination is shown using a se
tion strengthbs50.01 and asymmetric crossover witha
51/2N ~again,k12k1

0 is plotted and all other parameters a
chosen as above!. While the main dynamics is captured b
the model, neglecting the spatial correlations shows her
smaller accuracy after a few tens of iterations of the mod
as compared to the previous cases. This points at the li
of the present correlation model when compared with
model in@9# explicitly calculating fluctuations from spin cor
relations. However, the simplicity of the correlation mod
makes it applicable to fitness landscapes where maxim
entropy calculations are not feasible. Finally, the genetic
gorithm run demonstrates that recombination is no guara
for improved optimization as long as the encoding does
reward with improved correlation.

IV. CONCLUSIONS

A dynamical model for the mutation and recombinati
operators of genetic algorithms has been developed, base
a simple correlation measure. The motivation was the co
mon intuition that the fitness correlation between parents
children is a measure for the convergence properties of
netic algorithms. The correlation determines the model fo
microscopic mutation and recombination event, which
used as an input for a dynamical formalism of genetic al
rithms. For two test functions, an additive, random fie
paramagnet and the spin glass motivated NK model, the
namics of a genetic algorithm has been modeled and c
pared to the average dynamics of an ensemble of real ge
algorithm runs.

Three main results can be summarized from this stu
First, the correlation model helped us in understanding
improved genetic algorithm performance on correlated la

re-

FIG. 4. Measured and predicted evolution ofk12k1
0 andk2 for

the NK-model fitness under selection, mutation, and recombinat
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scapes. Second, we obtained a simple model for geneti
gorithm dynamics on the basis of fitness correlations.
comparison to a more involved maximum entropy model@9#
demonstrated that for the cases considered main feature
the dynamics are already contained in the fitness correlat
of the genetic operators. This gives a simple model at h
for fitness landscapes where maximum entropy calculat
are not feasible as in many practical applications. Third,
demonstrated a working model of genetic algorithm dyna
ics on a hard optimization problem, the rugged fitness la
scape of the NK model.

A further goal of this study was to link fitness correlatio
t.

ce

er

n
i

al-

of
ns
d
s

e
-
-

measures, which are often used as empirical measures
genetic algorithm performance, to dynamical models of
netic algorithms. This touches the issue of choosing the r
algorithm for a given problem and the question which prob
might help in this decision@16#. Fitness correlation measure
are among the candidates for such probes.
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