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Genetic algorithm dynamics on a rugged landscape
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The genetic algorithm is an optimization procedure motivated by biological evolution and is successfully
applied to optimization problems in different areas. A statistical mechanics model for its dynamics is proposed
based on the parent-child fithess correlation of the genetic operators, making it applicable to general fitness
landscapes. It is compared to a recent model based on a maximum entropy ansatz. Finally it is applied to
modeling the dynamics of a genetic algorithm on the rugged fitness landscape of the NK model.
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I. INTRODUCTION hood estimation. This is used to describe the dynamics of the
genetic operators in terms of a fithess distribution, where
The idea of utilizing biological evolutiofil] as a meta- Structural effects have to be averaged over and reexpressed
phor for an optimization algorithm is not recefig]—  in terms of fitnesses. In this study we will go back one step
practical implementations, however, had to wait until com-2nd 100k at the lowest-order observables that determine the
puters of adequate speed were availdBle Finally, recent dynamics. In partlcular, we construct a s.|mpI|f|ed model
advances in this technology jump-started a surge of evolut—)"’lsed on the observation that genetic algor!thm_ performance
tionary approaches to optimization problems in real worl doften correlates strongly with the parent-child fitness corre-

applicationd4]. Applications to theoretical problems include lation. While using the selection scheme[8}, the correla-

X : - ) tion is used to construct a dynamical model which is applied
the ground state search in some spin glagspDespite this 1,5 simple additive fitness function as well as the spin glass

renewed activity, the dynamics of these algorithms is nof,qtiyated NK model. This will show how well the concept
nearly as well understood as that of other common optimiuf the correlation determining the dynamics actually holds in
zation techniques, e.g., simulated anneall63 As one  modeling the dynamics of a genetic algorithm, and where its
widely used representative of the biologically motivated op-imits are.

timization algorithms, the “genetic algorithm” bases its  The motivation for our model stems from the observation
search on a set of search poifigs“population” in the bio-  that, although the time evolution of a genetic algorithm is
logical picturg. A dynamical rule constructs a new popula- difficult to understand, practitioners often have a quite dis-
tion of search points from it, in a way that on average itstinct intuition about when a genetic algorithm will work
energy decreasdsr “fitness” increaseswith respect to the well. One common statement in this respect is that the algo-
given optimization function. The dynamical operators in-rithm performs best when the fitnesses of parents and their
clude selection and reproduction of the fittest members, aghildren are strongly correlated. It was found empirically that
well as mutation and recombination of members to generatthe performance of a genetic algorithm follows the fitness
new search points. One reason for the difficulty in modelingcorrelation of the genetic operators as well as the correlation
this algorithm is the nongradient nature of the search spacéngth of the optimization landscap0]. In fact, designing
exploration allowing for nonlocal moves which complicates Suitable genetic representation schemes often means increas-
the treatment of its dynamics as a Markov chith ing the parent-child fitness correlation. Finally, in biological

A common approach to modeling physical systems with Systems the correlation between parents and children is usu-
large number of degrees of freedom is to find a few macrofi”Y very large. What does_th|s Intuition mean in the light of
xisting models for genetic algorithm dynamics? To what

scopic variables that describe the average behavior of a syg . . ;
tem (e.g., temperature for a gas of a large number of alomseXtent are correlation measures able to predict the algorithm

In equilibrium systems, there are canonical procedures tgynamics? These are exactly the questions that we will study

describe these variables. In systems far from equilibrium, ad! tvr\'/e foI_Ili)wmg;c_ q ibe the simpl . f .
are genetic algorithms, one can sometimes identify distribu- /& Wil now first describe the simple version of a genetic

tions that tend to become stationary under the dynamics. R&/90rithm, then review the correlation model and proceed

cently, a theoretical approach to the dynamics of the evolvy"ith modeling the genetic operations on the basis of fithess
’ orrelations, first for mutation algorithms and finally for full

ing, finite size population of a genetic algorithm has beert . . : ) N
proposed that uses the fitness distribution of the populatio€Netic algorithms, including recombination. The study con-
as the characteristic evolving quantig]. While this is suc- cludes with a comparison of the model to numerical studies
cessfully applied to selected, simple optimization problemf thé corresponding algorithms.

[9], the method becomes difficult for problems that are more Il A DYNAMICAL MODEL

complex, since it depends on an intricate maximum likeli- OF THE BASIC GENETIC ALGORITHM

A genetic algorithm performs population based optimiza-
*Electronic address: bornholdt@theo-physik.uni-kiel.de tion in a discrete search space. For our purposes we define a
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simple version of this algorithm. Let the function which is to N (o
be optimized be a real valued functidifS) on a binary Kn= an exp Bf)p(f)df , 3
search space representatie { + 1}N of dimensionN. Its B = £=0

value is the “fitness” of the test poin§ which is to be

maximized[alternatively one could view-f(S) as an en- representing the mean, variance, skewms/k3?), curtosis
ergy to be minimizedl In the biological pictureS is the (x4/k3), and higher moments of the fitness distribution. To
analog to the genome. The algorithm starts from a randongive an intuitive picture, the first two cumulants roughly cap-
“population” of search pointsS, with a=1,... P forming ture the infinite population size limit of the model. The
a population ofP strings with fitnesse$,=f(S,). Subse- higher cumulants, skew and curtosis, are important to de-
quently, new search points are tested by means of three operibe the dynamics of a finite population where, e.g., selec-
erations, called selection, mutation, and recombination. Ifion causes the fithess distribution to quickly become skewed
the selection step, a new population is created: members agad thus deviate from a Gaussian. An evolving population
selected according to probabilities defined on the basis ofan, at each time step, be approximated by a set of these
their fitness values. Those with a higher fitness are morgariables. Its dynamics can then be viewed in terms of the
likely to “survive” than those with smaller fitness and the evolution of the cumulants. In the following, the dynamics of
new population most likely has a higher average fitness thaan evolving population will be modeled using a truncated
the old one. New search points are then created by flippingxpansion in the first four cumulants. The different opera-
single spins with a small fixed probability in all of the tions of a genetic algorithm, selection, mutation, and recom-
population, called the mutation step. Then pairs of strings arbination, interact in different ways with this representation.
allowed to exchange a subset of their sites in a recombina- First consider selection. We will follow the formalism of
tion step, analogous to the biological process of crossing9] for modeling the selection operation on a fitness distribu-
over genomes. This procedure is iterated, resulting in an evdion in terms of cumulants. Boltzmann selection is consid-
lution towards higher fitness values. It can be used to solvered where a member with fitnesgg is chosen from the
optimization problems where the problem is defined bypopulation with the probability

means of a scalar fithess functid(S). The choice of the

structure of the search space and the encodind $f often effa ° Bf

determine the convergence properties and performance of the Pa= Z Z:;l e S
algorithm and is one major motivation for the modeling of

genetic algorithm dynamics. where 3 parametrizes selection strength. After selection, the

In the following, the dynamics of the genetic operatorscumulants are given by
will be studied in more detail. We will do this for two mod-

els, an additive fitness function on the one hand, and a more "
rugged function on the other. The first problem is the sim- kn=—-(InZ),,, 5
plest additive function, a random field paramagnet Ip

where the average is taken over all possible populations with
individual fithesses satisfying the giver(f). This expres-
sion can be solved similarly to the random energy model
[13], as shown if9]. One obtains the cumulants after selec-
tion as functions of the cumulants before selection, either by
means of numerical integrals or, in the limit of small selec-
tion (small B), as an expansion. The cumulants after selec-
tion have been derived under the assumption that the new
population is drawn from a continuous fitness distribution.
Only the dominant finite-population effect is kept which
N originates from the stochastic sampling of the new popula-
_— o tion in the selection step.
f"‘:Z‘l Ei(S:S. .- .S, ) While selection is solely determined by the fitness distri-
bution of the population, the other two operators act on the
representatiors instead. The average effect of the mutation
operator for the random field paramagnet has been worked
out in [9] by averaging over all possible mutation events
yielding to lowest order

N
fa=21 JiS*+ kY, D

with random couplingg; taken from a Gaussian distribution
with mean 0 and variance 1. ThN sites §* with i
=1,...N andS§*=£1 form the genetic string of the mem-
ber « of the population. The second function will be the
NK-model fithess functiofl1]

with 2%*1 random energy values;(S*) drawn from a uni-
form distribution over the interval0,1] and a randomly cho-
sen permutation of sitdg to i, both for each. Originally,
this function has been formulated for the study of evolution
on tun_ably rugge_zd fithess landscapes with application to the k=™ = mf,+ (1— m)K?, (6)
evolution of the immune respon$&2]. For these two func-
tions, let us derive the dynamics under mutation and recomyjith
bination.

The dynamics of the model is described in terms of the m=1-2y. @
fitness distributiorp(f) of the population which is expressed
as an expansion in cumulants as proposed@jnThe cumu-  Similarly, we derive for the NK model the fitness of a mu-
lants «,, of p(f) are defined through tated string by writing down Eq2) with each siteSj* mul-
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tiplied by a randomo{==*1. The energy of a singl&;  with
changes to anothérandomly choservalue if at least one of

i _ 0
the sites is changed and remains unchanged otherwise. The wy=mf,+(1-m)ky,
average fitness of a string after mutation is then obtained in i o 0
an annealed approximation as K@) with ky=(1=m%) k3, (14
m=(1—y)<*1, @  Wherex{ and «3 are the cumulants of the initial, random

. distribution. It reflects the empirical observations about ge-
For both functions we can write the mean fitnagsof the  netic algorithm performance on correlated landscdp€
potential children of a parent with fitne$s as Eq.(6) with ~ With this ansatz, the fitness distribution after mutation is
some function dependent constamt In general termsn is predicted as
the fitness correlation of a genetic operatioere: mutatioh

m__ _ 0
with respect to a specific fitness landscdpere: f). The Ky =My +(1=m)xy,
above observation motivates us to uses a measure of the m_ 2 2 0
lowest-order genetic algorithm dynamics on general land- Ko =Mk +(1—=m9) Kz,
scapes. Defined in terms of an average over the population m_ 3
and possible mutation events, can also be expressed as K3 =M"Ks,
r=mts,. 15
_ (fafr;])a,mut_<fa>a<frc?>a,mut (9) K4 Ka ( )
(f2) o= (f )2 ' This is a lowest-order model for mutation dynamics based on

a given parent-child fitness correlatiom To compare this

It can thus be measured from a given fitness function. Hereprediction with a direct calculation from the fitness func-
it parametrizes the average fitness of a member after mutaions, the distribution of the population after mutation is ob-
tion (given the fitness befoyand will be used below to give tained by an additional average over the parents in all pos-
a lowest-order approximation of the population dynamics. sible populations. Neglecting finite-population effects in the

Let us check how the next order relates to this picturemutation step which are much smaller than those in selec-
The fitness variance of mutated membgfsderived from a tion, the first cumulant of the distribution of the population
single parent with fitnest, has been calculated for the ran- after mutation is then
dom field paramagnet if8] as

_ K= mK1+(1—m)K2 (16)
KI2:<(fz])2>mut_<f2>ﬁ1ut

for the random field paramagnet as deriveidh We obtain

5 N ) the same expression for the NK model. The second order of
=(1-m );1 Ji. (10 the random field paramagnet has been derived as

N

For comparison we obtain for the NK model by a similar ngzmszJr(l_mz)z 3. 17)

calculation =1

. (k7) In comparison we obtain for the NK model
K'2=(1—m2)Kg+m(1—m){2 E2(S%)— | k9+ —— )
=1

2
- NKg(fa_Kg)

KT=mPkp+(1—m?) K5+ m(1—m){i21 (EZ(S™),

0\2
_(Kg+(K§) )

: (11)

. (18

- K2k 1)

Other than the first-order terms, these expressions are not
exactly of an equal type. However, looking for a lowest-
order rule to approximate the variance after mutation, let ughe full second-order expression cannot be derived from a
consider the average over the class of allowed functiongnowledge ofm alone, due to fluctuations in the third term
Averaging overJ, respectively,E for the two problems, ©f Eq.(18).
properties of a particular realization drop out and one obtains In general, one finds that the cumulants after mutation do
_ not always depend on the pure cumulants before selection.
(kh)=(1- mz)Kg. (12 The dynamics also depends on properties of the genetic cod-
ing since it directly acts on the underlying representation. If
This is again a function of the fithess correlatimpnmotivat-  the fitness distribution is all one knows about a population,
ing a model of the genetic algorithm dynamics. This corre-one has to make additional assumptions when modeling the
sponds to modeling the distribution of fithess values afterdynamics in order to describe the underlying dynamics of the

mutation from a parent of fitneds, by the ansatz genetic variables correctly. The model develope@9huti-
. lizes a maximum entropy estimation for this purpose. Since
1 (f—«k})? this is a complicated method for general hard optimization
p(fMf)= —exp — ———— |, (13 problems, we here use a different approach by concentrating
V27K, 23 on a lowest-order dynamical model of the basis of the cor-
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relationm. This method is more accessible for complicatedchild’s energy ternk;, whereq is the average probability
fitness landscapes. In the example of the rugged NK landthat two random siteS® andS? are equal in the population.
scape we find that the first two cumulants after mutation arg=or both fitness functions, the postrecombination fitness can
well reproduced in terms af with the fluctuations in Eq. be cast into the unified expression

(18) being small. Therefore we approximate the second cu-

mulants of both above examples by an expression as done in  {fSg)cross™ Capfat Coal gt (1= Cop—Cpa) k),  (21)

Eq. (15). This set of equations derives the mutation cumu- i

lants from a model for a “microscopic” mutation event, Eq. With Cog=a, Cp,=1—a for the random field paramagnet,
(13), on the basis of the fitness correlation of mutation ap—and

plied to the landscape. Applying mutation to a meméesf 1

the population with initial fitnes$,, the resulting member Cop=[1—a+ aq]ftt—-gk*?,

will in general have a different fitness vali. The case of 2

maximum correlationf])=f, occurs where mutation does 1

not affect the fitness of the child at all. In the other extreme Cpo=[a+(1—a)q] t—5q" T, (22)

of violent mutation, it involves a random change in fitness, 2

leaving traces of the fithess distribution ofamdompopula- . 0
tion p°(fT). We parametrized the possible correlations in theWlth xy=N/2 for the NK model._ The paramet-etgzﬁ and .
range between these two extremes by approximating the ﬁ%é;a cqrres_pond to the average fithess correlations of a_ch|ld
ness distribution of the child as E€L4). In this way, the ! «p With either one of its parents,, or f,, after recombi-
degree of correlation between parent and child under mutd?ation:

tion is parametrized byn. The choice of the two distribu-
P m <faf(¢:y,8>a¥-,8,cross_<fa>a<fZB>a$B,cross

tions is natural since, in general® is the fixed point distri- C. .=

bution of the mutation operator. On this basis, Efj5) op [1-U(P-1)]k, '
defines a closed expression for the fitness distribution of the . .

population after mutation as a function of the distribution . (T pfapatpoross™(F ) p(Fap)at pcross 23
prior to mutation. It will serve as an iteration step in describ- pa— [1-1(P—1)]«,

ing the complete dynamics.

A similar approach as for mutation can be adopted forHere, the averaging is done over all members in the popula-
recombining genetic strings. In the simple genetic algorithntion and, after recombination, over all possible pairings and
modeled here, the recombination operation is defined symgll possible recombination events. From the postrecombina-

metrically in the two children produced. tion fitness(21) we can again derive the average fitness of
(1) Group the individuals of a population into pairs of the population after recombination by averaging over all po-
two. tential parents, yielding
(2) Recombine each pair, i.e., at each bit position, swap . o
the adjacent spins with a given probabiliy K1=Cr1t(1-C)ky, (24)

3) For each pair, replace the parents by the two children . . )
thu(s )produced. P P P y with c=c,g+Cg, . For the first-order cumulants we find that

For the random field paramagnet model, accordinfgio both functions, the random paramagnet and the NK model,

the fitness of one child produced by recombination averageH’1II into the same model class. This wil motwgte us below to
over all possible recombination events is then use the correlation for a lowest-order dynamical model of

recombination. The higher moments can be derived in a
fc —af.t+(l—alf. . 1 similar fashion. We define the fitness variance of the popu-
(faplooss=afpt (1-a)fs 19 lation after recombination as

Along similar lines, for the NK model, let us write the fitness

— C \2 __/f§C \2
of a child averaged over all possible recombination events as K2 <(faﬂ) )a# Bcross <fa,8>a¢,8,cross (25

as the variance of an infinite size population of children de-
a”(l—a)K“”[E[Ei(éa) rived from a fini_te parent population and averaged over all
2 allowed recombination events and parental pairs. This has

been calculated ifi9] for the random field paramagnet as

N K+1
K+1
<f(c:z/3>cross:,z E (
i=1 n=0 n

+E(S)]Q (SN (1-g
C__
R K3=Kj. (26)
+E(SHg 1t (1-qg")
In this case, recombination leaves mean and variance of fit-
ness untouched. The third moment is defined as

1
+ §<1—q“)<1—qK“">]. (20
Kg:“?ﬂ)a#ﬂ,cross_gki'(g_Kgs (27)

Here, n denotes the number of sites swapped between the ) ) ) o
arguments of one corresponding energy téof the par- and, dropping spatial correlations, is given[®] as
ents. The sum oven is followed by the probability of ex- N
actly n swapped sites in a set _Kf+ 1 sites relevant for each kS=[a%+(1-a)%] K3—6a(1—a)2 Ji3{<sia>a
energy term. The last term is the annealed average of a i=1
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_<Sia3ﬂ3y>a,ﬁ,y}' (28 KSZCK2+(1_C)K2. (31

One now obtains also terms containing spin correlations. IlNow having the next-to-lowest-order behavior of the two
the model of[9] these are estimated in a maximum entropyfunctions at hand, with the identical lowest-order te(24),
estimation, summing over search space regions correspont$t us again use this as a motivation for a dynamical model
ing to a given fitness distribution of the population. As thisbased orc, as done before in the case of mutation. For this
approach becomes again impractical for real optimizatiorpurpose we approximate the distribution after recombination
problems with hard or unknown fitness functions, we herddy the conditional probability density
study the simpler approach to describe recombination dy- ,
namics on the basis of the fitness correlatiorwWe will see c 1 (f—«i)?
below that this works well in cases where the fluctuations p(feplfafp)= 2 ao® T T,

. . . . MKy K3
from spin correlations remain small as in the case of the
random field paramagnet. For comparison let us also cong;ith syitable momentsS' and «S'. The mean fitness of the
sider recombination of_ the more dlfflcult landscape of theghiidren of a given pair of parents is
NK model. For the variance we obtain

) . (32

S=CosfutChaf gt (1—C)kJ
K(Z::(Caﬁ+cﬁa)K2+(1_Caﬁ_cﬁa)Kg “ Caﬁ ‘ CBD‘ g ( C)Kl (33)
(Gt Cp) (1—Cog—Ci) as motivated by Eq(.2_l) and m_atche_s the fitness corre!atlc_m
af ' pa af  “pa picture as for mutation. Dealing with two parents with in
1 general different fitness values, the recombination event in-
X Kf+ N[(K?)Z_ZK]_K?] troduces also a variance. Let us first consider the random

field paramagnet. Here one finds

N
N
+ 2 2 {(ChptCha Cap Cpa)(EE)a .
=1 j#i pop pop < I J> <fzzﬁ>cross_<f2ﬂ>gross:i21 ‘Jiz(l_S SB) (34)
+2CopCaal EFES) oz g} (29

Therefore, and since spatial correlations vanish here, the
This is now a different situation than before: The third termVvariance of the distribution of potential children can be mod-
contains large fluctuations from correlations between energgled by

terms within strings and within the population. In this case ci ) 2 0

there is no strong limit of vanishing spatial correlations, in- K2 =(Capfa™Cpalp) "+ (1=C) k3. (39

stead (E/Ej)a—(E)o(Ej)a#0 for i#j, such that .4 s assumption, and witke,z=cg, for the random

apFa\  __ ar=B H . [P
(E{E}")a=(E{'E})axp Is only weakly fulfilled. This is due e|q paramagnet, the fitness distribution after recombination
to each energy termg; being coupled to neighboring spins in p(ch) is predicted as

the string. When running a real genetic algorithm wéh “
=1/2 (as often usedone can observe the fluctuations with kS=cry+(1-¢)x?,
magnitudes comparable to the leading terms and of either
sign. The very last term contributes also in the limit of large
correlationsc,z and cg, where the preceding term is sup-
pressed. Here, any simple approximation breaks down, as KC= 3k (36)
does our intuition about a correlation governing the evolu- 3 3

tion. In fact, one is led to consider that it might not be aTthe mean and variance of the population after recombination
question of a working description, rather than the issue ofye therefore correctly predicted for the random field para-
whether recombination helps at all in this limit. It clearly is magnet. The higher orders are off by a constant factor, they
disruptive here resulting in low correlation, a limit never cannot be matched exactly within the second-order correla-

encountered in biological evolution. For the NK model We s model. which would require higher momem_gi and
will therefore consider here the less disruptive case of asym-ci ’

: N Lo : 7"k, . The fixed point distribution for recombinatiofvhich
metric recombination, resulting in better ger_1et|c algorlthmdoes not equal that of a random population as for mutation
performance, let us choose=1/2N. In this limit c,z>Cg,

d th ) b itten in the simole f is small enough here to allow for neglecting the fluctuations
and the variance can now be written In the simple form Eqg. (28) and higher moments. We will use this set of

1 cumulants for the numerical model below.
K§=CK2+(1—C)KS+C(1—C) (1_ _) K% What happe_ns in the case of the NK model? Here, the
N exchange of spins between the genomes has rather the effect
of mutations than the sharing of knowledge between them.

K§=02K2+(1—C2)Kg,

N
_ 2 2 <E?Efy>a+ _(Kl_Kg)z ' (30 Using the same arguments as in the mutation m@®lwe
“~ < N choose
: . L i_ 0
with c=c,g+Cg,. The remaining correlation is now bal- Kgl_caﬁfa+cﬁafﬁ+(l_C)K1'

anced with (- 1/N)Kf and the difference suppressed by o ” 0
(1—c). In this case, the lowest-order model is Ky =(1=C%)K3. 37
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The model then predicts in the asymmetric case-et,; a ool ' ' ' ]
postrecombination population distributed according to Eq.*:
(15), while the direct calculation suggests

KS=Ckp+(1—C)k?. (38)

The correlation model, therefore, correctly predicts the
mean fitness of the population after recombination, however,
deviates in the higher orders. It still is numerically close to
the direct calculation model which will be simulated up to
n=4 below. An alternative microscopic model of recombi-
nation that predicts all leading orders to be lineaciwas
proposed ir{14], however, does not improve the case underk,
consideration here. The sets of cumulants from seleetfan
mutationx)', and recombinatior’ now define the iteration
step of one “generation” of the dynamical model, with the
operations being applied in this order.

0 50 100 150 200
t

Ill. NUMERICAL COMPARISON OF THE MODEL !
TO A GENETIC ALGORITHM

In nurgencaﬂ Slmullat.lons fthe colrrelatlon mlode_l hls ”?‘év FIG. 1. Measured evolutiofsolid lineg and predicted evolution
compare t? t € evo Ut'or_‘ orarea genetic agert m. e(dashed linesof k; and «, for a random field paramagnet fitness
fitness distribution of the initial, random population for the ,qer selection and mutation.

random field paramagnet function is given by

K°=<f ) -0 on the constant correlation valae Although the correlation
! alwSI among genotypes in the population considerably changes
0 2 2 over time, the fitness correlation remains in fact constant
=((fo) ,—(f =(1-1/P)N, ' ) - .
2= {(Ta e (Ta)adss=( ) when measured in the population over time. Here, the corre-
ngo, Kg: —6N2(1/P)(1— 1/P)(1-2/P) lation m appears to contain the basic information about the

dynamics. In Fig. 2, the evolution of the NK-model fitness
—6N(1—1/P)(1—-4/P+2/P?). (39 distribution for selection and mutation is shown for a model

with P=50, N=128, andK=8. Again, the solid curves
Since the average dynamics of a whole class of functions ishow the mean and variance of the measured genetic algo-
considered here, the last value differs from the pure enrithm fitness distribution. The correlatian is taken as de-
semble average )s through the additional average over all rived above for the NK function. All other parameters are
possible functiong );. The corresponding results for the chosen as in the previous case. For the pletis depicted as
NK model are

Kg:<fa>a,S,E:§l

Kz 10 \ b
k9= ((F2) e (f)2)se=(1—1P)(1- L2+ 1) (N/12),
(40)
and, omitting terms of orders ¥,
k3=0, Kk3=—(1—1/P)(1—6/P+6/P?)(N/120)
—(1/P)(1—1/P)(N?/24). (41) L .

The simulation results are averaged over 10 000 runs of a
genetic algorithm with population sizé=50 and selection K
strengthB,=0.01 (with a newly chosen random fitness func- ™!
tion for each ruin The size of the genetic string =128
sites and the mutation probability for each site/is 1/2N. In
Fig. 1, the iterated cumulant expansion is compared to the
dynamics of a genetic algorithm for the random field para- !/ ' ) )

. . . . 50 100 150 200
magnet with selection and mutation. The solid curves show

A X ) : > i

mean and variance of the genetic algorithm fitness distribu-
tion and are well described by the theoretical approach FIG. 2. Measured and predicted evolution«gf- «$ and «, for
shown by the dashed curves. The theoretical model is basebe NK-model fitness under selection and mutation.
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0.1 1 ! 1

1 : ! ! 0 50 100 150 200
0 50 100 150 200 .

t

FIG. 4. Measured and predicted evolution«gf— K(l’ andk, for

FIG. 3 Measured and predlcted evolutlon;gf and«, fpr the the NK-model fitness under selection, mutation, and recombination.
random field paramagnet fithess under selection, mutation, and re-

combination. numerical model. On the other hand, a closed model could

0 . . .__easily be obtained by including,; as a dynamical variable
x1~ k1. As the figure shows, the evolution of the genetic; . o models as proposed [ih5]. The result is shown in

algorithm is predicted correctly also on Fhe ruggeq fitnes§:ig. 4 where the evolution of the NK-model fitness distribu-
landscape of the NK model. The model yields a S‘""'['Sfa(:t()r)fion for selection and recombination is shown using a selec-

prediction, especially when comparing the very simple CO4ion strength 3,=0.01 and asymmetric crossover with

relation model to the maximum entropy model[6f. =1/2N (again,x;,— K?_ is plotted and all other parameters are

Adding the recombination step to the simulation of the : ) Lt
random field paramagnet, the modeling based on paren hosen as aboyeWhile the main dynamics is captured by

child fitness correlations is shown in Fig. 3. Crossover hashe model, neglecting the spatial correlations shows here in

been defined to be “uniform.” where each site is swappeosma”er accuracy after a few tens of iterations of the model,

with probabilitya=0.5 between the parents and both result-2S compared to the previous cases. This points at the limits

ing children are taken. Here, the model uses the theoreticacﬂf the present correlation model when compared with the

value ofc=1 while the remaining parameters of the simula_model in[9] explicitly calculating fluctuations from spin cor-

! {.elations. However, the simplicity of the correlation model
tions and the model are chosen as above. In the real genetic . . . .
makes it applicable to fithess landscapes where maximum

algorithm applied here to the random field paramagnet prOb'ntropy calculations are not feasible. Finally, the genetic al-

lem, recombination improves the performance as compare% ith d h bination i
to Fig. 1. This is correctly predicted by the correlation gorithm run demonstrates that recombination is no guarantee

model for improved optimization as long as the encoding does not

While for the random field paramagnet we saw that reward with improved correfation,
remains constant over the course of evolution, for the NK
model ¢ depends on the probability of two equal spins IV. CONCLUSIONS
meeting in a recombination event. This is a quantity that A dynamical model for the mutation and recombination
cannot be expressed in terms of the fitness distribution alongnerators of genetic algorithms has been developed, based on
For the purpose of the numerical comparison we will esti-3 simple correlation measure. The motivation was the com-
mate this probability from the average pair correlation in themon intuition that the fitness correlation between parents and

population(dsg) .« g With children is a measure for the convergence properties of ge-
N netic algorithms. The correlation determines the model for a

=£E agp (42) microscopic mutation and recombination event, which is

ap Ni<1 S'S used as an input for a dynamical formalism of genetic algo-

rithms. For two test functions, an additive, random field

such that paramagnet and the spin glass motivated NK model, the dy-
namics of a genetic algorithm has been modeled and com-
pared to the average dynamics of an ensemble of real genetic
algorithm runs.

Three main results can be summarized from this study.
The average pair correlation is measured from the genetiBirst, the correlation model helped us in understanding the
algorithm runs and used to correct for the runnign the  improved genetic algorithm performance on correlated land-

1+q,
a=——""%.

5 (43
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scapes. Second, we obtained a simple model for genetic alreasures, which are often used as empirical measures for
gorithm dynamics on the basis of fitness correlations. Agenetic algorithm performance, to dynamical models of ge-

comparison to a more involved maximum entropy md@g|

netic algorithms. This touches the issue of choosing the right

demonstrated that for the cases considered main features @lyorithm for a given problem and the question which probes
the dynamics are already contained in the fitness correlationsight help in this decisiofil6]. Fitness correlation measures

of the genetic operators. This gives a simple model at hangre among the candidates for such probes.
for fitness landscapes where maximum entropy calculations

are not feasible as in many practical applications. Third, we
demonstrated a working model of genetic algorithm dynam-
ics on a hard optimization problem, the rugged fitness land-
scape of the NK model.

A further goal of this study was to link fitness correlation for funding this study.
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