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Isothermal Maxwell demon as a quantum *“sewing machine”
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A model of an open microscopic quantum system interacting with an isothermal bath and able to bind
actively particles from a reservoir to their even excited bound states at the cost of the bath energy is presented.
The binding(potentially important in, e.g., chain reactions—hence “sewinig’due to dynamic processes in
a central part of the system accompanying the particle transfer. The outcome thus challenges the second law of
thermodynamicsS1063-651X98)00304-3

PACS numbes): 05.30—d, 82.20.Mj, 82.40-g

[. INTRODUCTION the reason is that there is perhaps no doubt that the inelastic
scattering on the central system can bring the particles down
In an attempt to model some vital processes in biologicain energy, i.e., to their bound state\at<0, even at very low
cells, we have found a model exhibiting a strange behaviotemperaturgs As for the interaction Hamiltonian between
Before mentioning the physical motivation in more detail, letthe central system and reservoir of particles, we assume it to
us start with introducing the model formally. As is usual in consist of two terms, i.e.,
the nonequilibrium statistical mechanics, the quantum

. . . H — H ! + HH ,
Hamiltonian can be split as ¢s part™"lcs part” Tics part (5)

Heés par= €ld){d] = |u){ullcicogigo-

In connection with that, one should mention that we assume
Here we choose the Hamiltoniddg of the system under our model to contain also the third sitebeled 0, with cre-

H:HS+HB+HS*B' (1)

consideration as a sum ation operators of particles] and gf), which we do not
ascribe, however, to the particle reservoir but assume it to be
Hs=Hcen syst Hpart+ Hes part- (2)  tightly connected with the central system. The faffy .

) , is chosen in such a way that whenever the site 0 accepts both
Hecen sysdescribes a central systeimoleculd, which we as-  gnec and oneg particle, the central system with the Hamil-
sume to have just two eigenstajes and|d) with energies  y5pjan Hcen syst Hes part DECOMeS unstable in the sense that
+el2. Thus the stategu) and|d) having originally eigenenergies /2
. acquire energies €/2. (We shall always assume below that
_- _ €>0.) In reality, this may easily happen as a change of a
Heen sys 2 [lu){ul=|d){d[]. @ stable moleculér configu?/ation gponpffccepting a pairgof par-
. o ticles. As for theH¢ ., term in Eq.(5) (part of the inter-
As for the particle Hamiltonian, we assume two types ofaction between the central system and particle reservoir
particles with creationannihilation operatorsc!, andg!,  transferring the particles between therit will be specified
(¢, andgy,). The ¢ operators commute with operators as  below.
usual. As for thelanticommutationak vs c or g vs g rela- At this point, we should not only explain our motivation
tions, however, these will be unimportant as we shall assumand physical ideas but we could also say something about
only onec and oneg particle for the sake of simplicity here; possible applications of the systems of the above type in
assuming the above creation and annihilation operators dfature. The first point is the above instability of the central
both types to be of the Fermi or Bose type makes no differSystem upon accepting ticeg pair to our site 0. In the world
ence. Though generalization to greater particle reservairs ©f macromolecules, we know such examples when the mol-
well as a greater number of particlés straightforward, we €cules change their topology upon acceptigetting bound
shall for simplicity deal here just with a particle reservoir With) additional ions, molecular groups, etc. In the language

consisting of only two sitedabeled 1 and 2 So we have  ©°f €.9., biology, site 0 would in such a case designate a
g y 4 2 receptofs) for the species in question. Our idea hidden be-

Hoarn=J(91g,+93g: +clco+cley) yond our Hamiltonian is twofold.
part™ 191927 Gt T 1B €261 (i) The change in the topology could bring theg pair
+V(cIclgIgl+ c}czgzgz). (4 together, forcing the particles to form a bound state by over-

coming the contingent potential barrier or even the potential
We shall always assume tleeg interactionV>0 (though  step due to, e.g., repulsive forces between the particles. For
practically all the formulas apply also to the opposite caseinstance, the central molecule, being originally, e.g., rodlike,
could bend or screw upon accepting the pair. For this to
happen irrespective of, e.g., the repulsive forces between the
*FAX: (00-420-2296-764. Electronic address: g andc particles, the central molecule must be sufficiently
capek@karlov.mff.cuni.cz stiff in its (tendency to thenew topology. In other wordsg
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should exceed the potential step as well as the barrier abovdhange with the bath. As also argued below, however, no
[compare, e.g., Eq22) below]. This is the reasoning that activation energy is needed for this closing and opening the
formed the original motivation of the present work. reaction channels as these des reorganization processes
(i) Such a process seems to require, however, a corr@wing to the central system instabilitynostly spontaneous
sponding portion of energy. Though one could postpone thédown-in-energy processes with respect to the bath.
discussion of this point, it is preferable to discuss this impor- These two points mentioned immediately suggest the kind
tant point here so as not to lose the trust of the reader. If wef processes to which our system may lead: Our system,
simply take the lacking energy from the bath, the processvorking as a real molecular machine, could serve as an ac-
would become energy activated as a bath-assisted procese catalyst of reactions that would otherwise be completely
This would make it ineffective except at very high tempera-impossible. By the word “active” we mean a catalytic prop-
tures when all the states of the system would become, at lorgrty that is not reducible to just lowering the potential barri-
times, more or less equally populated. This would make the&rs. We mean an active collecting of the thermal engiigy
problem uninteresting. However, in the microworld gov-needed or at least borrowing it for a while for virtual pro-
erned by laws of strict quantum dynamics, processes are a¢essesfrom the bath in order to make some specified, e.g.,
lowed that seemingly contradict the energy conservation lanendothermic reactiongbinding particles in our cagesven
Tunneling is one such example, but this is not our situatiorpossible. In order to convince the reader that such systems
here. We rather have in mind the fact that localization of anycould really exist and work, we should continue with the
particle may increase, due to the quantum uncertainty relasonstruction of our Hamiltonian.
tions, its kinetic energy, i.e., also the total energg=T For simplicity, we shall always assume the-2 symme-
+U. As a textbook example, one can take the zero-pointry of our Hamiltonian. That is why we can limit our consid-
energy in, e.g., the quantum oscillator. The latter energy lie€rations to just symmetric states. The symmetric eigenstates
above the minimum of the potential and the wave functionof our particle Hamiltonian and the corresponding eigenen-
has a Gaussian form around the potential-energy minimunergies read
This is so because further localization of the particle at the 1
potential-energy minimum would still lower the mean poten-|¢,)=
tial energy, but it would also appreciably increase the mean \/[V+ VV2+163%)%+ 1672
kinetic, i.e., also the total energy, which should on the other 1
hand, be minimal in the ground state of the system. Hence, RZ1r1a127 = (~TaT L ~tet
as long as there are terms in the Hamiltonkag allowing XV 18] ) (c201°+¢z02)vag
delocalization(these terms will in our case be provided by
H{s part to be specified belowthe eigenstates ¢is (in any
finite system as in our capwill certainly, also according to
the variational principle of the quantum mechanics, be at
least partially delocalized. Thus, if we compile the eigen- 1
states into a time-dependent solution of the Sdhmger E'{a”=§[v+ JV2+1637],
equation for the particles in the isolated system

1
+4J — (clgl+clgh|vad |,
‘/2( 192+ ¢€307)|vag

i7id|W(t))/dt=HgW¥(t)) and if we initially put our par- 1

ticles outside site 0, we get from the solution that with a|¢,)=

nonzero probability, they will definitely appear latésepa- VIV+ W2+ 168072+ 16
rately as well as simultaneoughat site 0 too. This is a 1

purely quantum process that may bring both ¢hand theg x| —43 — (clgl+clgh)|vao
particles to site 0, irrespective of how much site energy it V2

costs. Notice that for this process, no energy from the reser-

voir (bath is needed as the bath was completely split off in 1 o 4

the above Schdinger equation. The bath energy and the HVHVIH 18 ]5 (c19;+c397)|vag |,
very interaction with the bath enters the process only at the

moment of turning it from the virtual-type to the real-type Epart_ 8J2

process as discussed below. This change of the character of 2 V+ m

the process after bringing both particles to site 0 without

requiring the bath energy will be connected with the above

instability of the central system upon accepting both the |ps)=
and theg particle[see the form oH ¢, ,,;and the discussion

following Eq. (5)] and the form ofH{ 4, to be introduced £ 4t
below. We have in mind the dynamic closing of back- |$a)=—[91+93]co|vao,
reaction channelgforbidding the particles to leave site 0
individually in the same way as they arrived theoaice the
central system reorganizes on account of the above instabil-
ity. So, not the above bringing the particles to site O but the 4y
ensuing “closing the gate behind them” and opening of a | #5)=CoGolvag,

new reaction channel for the particles to proceed in their part

bound state requires the interacti¢e., the energy ex- Es™ =0. (6)

[ci+c]lgglvao),

Sle sl

Egartz Egartz J,
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Thus, ignoring the antisymmetric statés,,; can be rewrit-  way submitted by the weak-couplirigecond order itls_g)
ten as theories yielding a transition to the canonical state. That
means relaxation to practically the ground state at low

5
H =E |6 YEPAY ] 7) enough temperatures. The ground statHgf however, is
part= & 1/ e not the desired asymptotic state here. It contains components
_ _ with our particles outside site 0 as well as at this site, with

With that, we can now rewritél g . as definite phase relations among these components. These re-

lations are due téi} in Eqg. (9), which must be taken, in

’ _ _ cs part ’ g
Hes part™ el|d)(d—|u)(ul]® | bs)( 45| (8) the weak couplindto the bath theories, as dominating over

Hs g in Eq. (11). In our model, however, we assume the

and specifyH; as ) )
PeciHcs par opposite relation between the roles téf; ., and Hs 5.

HYg part= P([| o) + | ds)[{ sl + (sl 1+ H.c)®|d){d| This mgans that higher or.d_ers kths_p a!go become effec-
tive, which causes, in addition to transitions, also the trans-
+Q(|#s)( 1| +H.c)® u)(ul. (9 versal relaxation. Physically, the meaning of the sufficiently

strong transversal relaxatiqgdephasingconsists in destroy-

(Here H.c. means the Hermitian conjugate words, we ing the above tough phase relations among individual com-
assume that the central system allows different types of parl- 9 gnp 9

ticle transitions(channels of the particle scatteririg differ-  PONeNts of the eigenstatesidg, i.e., turmning the above tran-
ent physical configurations. The detailed form of B9 is  Sitions to those that are between the two eigenstateand
chosen in our model in the simplest version yielding theld) Of Eq.(3) (instead of those among eigenstatesdef as
desired effect. already suggested by the form of the first term in ELl)
With that, we have already specified the Hamiltonian ofProportional toGy . As already mentioned, such a dephasing
our system in the form required above. As for the thermodyould be provided already by higher-order termsdp, in
namic bath, its detailed form igexcept that it cannot be Particular when these coupling constarte., the whole
dispersionlesgsin fact unimportant. We only need that, in H_s—_B) are sufficiently strong. In order to see thls_ effect ex-
connection with the system-bath coupling, it yields the de-Plicitly, one would need, however, a detailed higher-order
sired and sufficiently fast transitions among different statesheory, while the term proportional gy in Eq. (11) yields
of the central system. The simplest version is that of noninsuch dephasing processes immediately. Technically, the im-

teracting bosonge.g., phonons portance of such terms iHg_g in Eg. (11) proportional to
gy becomes clear, realizing that with such a dephasing, the

memory functions to be invoked below become more
strongly decaying functions of time, i.e., their time integrals
become better convergent. From the point of the energy con-

Here# w, are energies of the bath excitations dnid(bk) is  servation law, the importance of these terms becomes clear
the corresponding creatidannihilation) operator, which we from the observation that our asymptotic state of the system
assume to be bosonlike. The same applies to the system-bdiR be obtained belowlies in energy well above the ground
interaction. Its simplest form causing relaxation betweerstate ofHs. Thus, in order to make our process of the active

Hg= >, hobiby. (10)
k

states of the central system can be chosen as binding of our particles really effective, we need an intense
energy exchange with the batihich is the only source of
1 energy at our disposal for our endothermic process investi-
He g=—= >, fiwg(btbl ){G|ud(d|+]|d)(ul] gated. This means a strong absorption as well as emission of
VN & boson excitations in our bath. These processes are effectively
+ 0yl ) (b} (12) provided by, in particular, the second termhty_g in Eq.
(12) proportional tog, .
HereN andG, are the number of bath modésumerated by Before going to the solution of the dynamic problem con-

index k taken as a wave vector herand set of interaction nected with the above Hamiltonian, let us briefly mention the
constants. In the thermodynamic limit of the bathtends to ~ problem of the order of energies of the Hamiltonian of the
infinity and the sums (N)3,--- turn to the usual integrals. SystemHs. This is a very important question in connection
As Eq.(11) allows |u)« |d) relaxation, our problem can be With the weak-couplingin Hs_g) kinetic theories. In such
viewed also as a slow combined particle scattering on a cer@pproaches, the relaxation certainly goes mo&thd at low

tral system with relaxation between itand special type of temperatures exclusivelyto the ground state oHg. Our
instability of the intermediate states. Special attentiontheory here, however, is definitely not the weak-coupling
should also be devoted to the term in Etyl) that is propor-  theory of such a type. Rather than the strength of the system-
tional togy . This term is the simplest one causifig reality ~ bath coupling, the parametePsandQ in H¢g .4 in EQ. (9)

very strong transversal relaxatiofdephasingprocesses. In play the role of the small parameters, though no real expan-
order to understand the important role of the dephasing, ongion in powers o andQ is used.(As for the real regime
should realize that with Eq6), one can easily diagonalize assumed see belowAnyway, it is worth mentioning, as we
the whole Hamiltonian of the systeidg [Eq. (2)]. If the  will argue below, that¢,)®|d) is actually the asymptotic
dephasing(transversal relaxationwere fully omitted, one state of the systerti.e., the particle bound state, ) is prac-
would get transitions among the corresponding eigenstates tifally the asymptotic state of the particle$his state is one

Hg as the only effect of the coupling to the bath. This is theof the eigenstates dfis at P=Q=0 and remains approxi-
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mately so at low(but still finite) values ofP andQ. In this  for that at, e.g., low and intermediate temperaturese/kg
connection, one should realize that the corresponding pacan be provided by the inequality

ticle energyE; is appreciably above all other particle ener-

giesk;, i=2,...,5 in Eq.6) wheneveW>|J|>0. In con- Gl 0/(e—V)T12<1 16
nection with the solution presented below, this is what we IGITQ/(e=V)] (16

contend makes our model so challenging.
(hereG is a typical value ofG,). Let us add only that omis-

II. SOLUTION sion of the above memory functions that disappear in the
second order is in principle not necessary and can be
We assume the notation for states of our systemm) avoided. Here we proceed in this way just for technical sim-
=|¢i)®|m), i=1,...,5m=u ord. Then for probabilities plicity of the solution and final formulas.
Pim(1) of finding, at timet, our systen(central system plus Assume that we workas indicategito the above lowest
particles in state|im), one can write Nakajima-Zwanzig order but include in a proper way partially higher-order
generalized master equatiof,2] with the Peier type of terms up to infinity in order to get the decay of memories and

projectorP [3] as convergent memory integralg; “w...(t)dt (see, e.g.[4]).
q . The necessity of at least a partial summation to infinity to
— Pim()= z f [Wim,jn(7)Pjn(t—7) obtalrj a decay of the memory funcﬂons to zero was stressed
dt in Fim) Jo by Silbey [5]. One should also mention that our above

dephasing processes appearingde# 0 are, in addition to
higher-order processes, the main reason for a proper decay of
the memory functions. With that, taking the long-time limit

of Eq. (12) and designating

_an,im(T)Pim(t_T)]dT- (12
We have already omitted the initial condition term as a con
sequence of special initial conditions assurf@], namely,

Prof(0)=|2m)(2m| X pB, m=u or d, (13 +oo +oo
f W2d,3d(t)dt:A,, f W3d12d(t)dt=A,

provided the initial density matrix of the bathp® 0

=exp(—BHg)/Trgexp(—BHg) is used in the projectdP [3].
This introduces the initial bath temperatufe= 1/kgB into o oo
J Waq sq(t)dt=B’, f

the memory functions Wsq 39(t)dt=B,

0
Wim,jn(T):_ E [ﬁeii(lfp)ﬁf
MV, N eroc 4o
Wy s (t)dt=C’, f Ws, 14(t)dt=C,
X(1_,P)ﬁ]im,u,im,u,jnv,jn)\ps)\ (14 0 0

(se€[3]). (Here the summation over greek indices is that one . o 1

over states of the batl is the Liouville superoperator and °°W dt=T.= cm Gul2(%.w.)2
the algebra of four-index matrices is introduced as ufzsal tud(t) " # N ; G (e
4].) For other initial conditions, one may argue that the initial

condition(inhomogeneoyserm in Eq.(12) decays fast with X 8(e—fwng(fiw)+O(|G[*),
increasing time.

We shall not try to calculate our memory functiotis} o om 1
exactly. Going even beyond the lowest order of the pertur- fo Wigu(D)dt=I"= N EK |G 2 (hwy)?8(e—hwy)

bation theory provides here a difficult task. Instead, we shall
only argue thatfas seen from a comparison of different X[1+ng(hw)]+0O(G, @7
memory functions and corresponding matrix elements of, in Bk '
particular,H. in Eq. (9)]
os part we obtain from Eq(12)

Woq 3d(1) =Woq aq(t),  Wag 2q(t) =Wag 24(1),

— — Plu(+°o)

W3g5d(t) =249,50(1),  Wsg3q(t) =Wsg 49(1), PL(+20)

Wig,ju(t) =Wsy s4(t), j=1,...,4 Pay(+)

Pag(+)

Wju,jd(t):WSd,Eu(t)! j:].,...,4. (15) A B P3u(+oo)

. “\¢ D)| Pa(+=) =0 (18

Except forw,, 5,(t) andws, 5,(t), other memory functions PLu(+)
turn to zero in the lowest order iHg_ g+ H{s par (part of P‘“‘

the total Hamiltonian causing transitiorend for simplicity ad(+22)

shall be fully disregarded as unimportant here. A detailed Psu(+)

analysis of nonzero higher-order memory functions that are Psg(+)

zero in the second order shows that a sufficient justification
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[In the explicit formulas fol’; andI’ |, we have for a while 0 C' 0
setg,=0. With g, nonzero, thed functions é(e*+ i wy) en- 00 0 0 0O
suring the energy conservation would become simply broad-
ened] The 5x5 blocksA, B, C, andD are given as B=| 0 0 0 O Of,
A" 0 AN 0 O
rr o o o0 o0
-r-c r, o 0 0 0 00AT,
ry - o 0 0 0 000 O
A= 0 o -T Iy o |, c=| 0 0 0 A 0],
0 0 rA, -r,-2A 0 C 00 0 O
0 o 0 0 -I 0 00 0 O
|
-I''-A"-B O 0 B’
0 0 0 -r-C’ r,
B 0 B I, —-I'|—2B'

Clearly, the lowest(in |G|?) order terms inl*; and I’ (In the case that the time integrals of the memory functions
represent the standard golden-rule results for the down- artdrn to zero, the ratios of the corresponding integrals
up-relaxation rates of the central system. T <e, itis  should be understood here as, e.g.C'/C
easy to see that =lim,_o+ /g Wiyse °'dt/[§ “Ws, 1,8 °'dt.)

Now let us assume that we deal in general with transitions
ry e between states that are not eigenstatesi gf That means
T .~e’". (20 that there are nonzero transfer integrals connecting these
I . nster integrai 9
states inHg. Then proper inclusion of higher-order terms
All that makes it easy to find and interpret the solution to(@gain summed up partially to the infinite orglés under

Eq. (18) as well as the long-time limit of normalizing condi- SOMe approximations able to reintroduce the standard de-
tion = Pjm(t) = 1. The solution reads tailed balance condition®BCy) for ratios of back and forth

transition rates. For at least site-local coupling to the bath

T C r.\2c B’ where sufficiently reliable higher-order formulas exist, these
Pig(+)=|1+ I‘_T 1+ a) + (F—T) c (1+2E approximations mean, however, neglecting transfer integrals
l ! as compared to typical differencés: of site energies and
A'B’ T \3B'C A\ ]2 assuming a high-temperature domain vk§T> A€ [6]. Let
+ ﬁ) + F_) BC ( + X” , us recall that DBCs also provide a cornerstone of the lowest-
! order Pauli mastefPME) theory. One should mention, how-

ever, the following.

(i) The standard derivation of DBCs as in the PME is
based on the analysis of bath-assisted transfer (atgag to
site nonlocal coupling to the batlbetween true eigenstates
ABC BC’ BC’ of the Hamiltonian of the system. This is the case of rates
ABC Pog(+)= BC Pay(+)= BC Pag(+ ) andT"| provided we car(upon their calculation, as we also

did above neglect coupling of the relevant sites to other sites
C I, 2 not involved in the transition§.e., to set theree=Q=0).
= Psa(+)= (F_L) P1g(+), No wonder then that also EO) represent nothing but the
DBCs.

(ii) This, however, is not our situation here with the trans-
fer ratesA, A’, B, B’, C, andC’; these transfer rates as
defined in Eq(17) are nonzero just foP+ 0+ Q. The point
3 is that they represent transfer rates between states that are not
) Pia(+). (22) eigenstates of the Hamiltonian of the systéhey become so

just in the limit P,Q—0 when, on the other hand, these

!

c r,
Ppu(+o)= < Poy(+2)= F_l P1g(+),

!

A
7 Pau(+59) = Pay(+0) = Pyy(+2)

_B'C
 BC’

Iy
I
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transfer rates turn to zexorhen the corresponding DBCs are  (More details about the above types of activity of the
at most very approximate and definitely break down in thecentral part of the system can be found &), where a less
low-temperature domain. In the high-temperature domain, omdvanced model of this type was discussed. As for a simple
the other hand, even DBCs lead to an almost-temperaturérersion of the model transferring single particles only, see
insensitive ratio of the back and forth transition rates. also[9,10].) All that is why the present system in particular
The |nVaI|d|ty of DBCs for transfer rates between StateSCOL"d p|ay the role of a quantum microscopic “Sewing ma-
that are not eigenstates bfs may be most easily seen on, chine” in especially chain process@®actions. Let us keep
e.g., a dimer with a nonzero transfer integral. The mixinGin mind that our asymptotic state does not differ from the
property of the latter means that even in the ground stalggq equilibrium state due to some lacking transitions from

(i.e., equilibrium at zero temperatyrehe particle is distrib- ¢ qjteq states to the equilibrium one. This may be verified by

uFed on both sites involved. Simple balance equgtion_s theEomplementing the model by any transitions possible. Nor
give that as long as any transfer rate between sites is nory.

; an any type of energy renormalizati@hifting contingently
it e onzers e 5t 5 51r@10 our asymptoc stte suffienty down n snrgy and s
such wave functions in a ’sim.pl.e model. With that. we Canreconciling the result with the standard statistical thermody-
now easily discuss our solutid@1) ' ' namicg be found. The difference is really because of the

Let us for concreteness specify our reasoning to, e.g., thactivé role of the central system, which is because of a
regime proper comblngtlon of its two propertie€) The instability
of the intermediate state of the central sysi{seattererdur-
kgT<e, O<P,QsV<e. (22)  ing the transition(scattering of the pajrand (i) the strong
dependence, owing to the matrix elements involved, of the
Thus, for the transfer ratesd3-5d and 4d«5d as well as  scattering channels on the state of the central system. Our
5u«1u, we definitely have the low-temperature regime for simple result contradicting the usuaf course macroscopic
the ratiosB’/B and C/C’. Hence both of them should be thermodynamics means an up-in-energy transition at the cost
taken as temperature insensitive. As for thE€A ratio, its  of the thermal energy of the thermodynamic bath. Thus the
temperature dependence should only be weak as the corrmodel and process described reminds us of the Maxwell de-
sponding transitions are not induced by the bath. Consemon [11,12 working here, however, in isothermal condi-
guently, taking[together with Eq(20)] tions. Splitting the central system from the bath immediately
interrupts the process.

A’ B’ C
X~const, E—const, F—const (23
Ill. CONCLUSION
(instead ofB’/B~ef¢ and C/C’'~ef(c™V) as it would fol- _ S _
low from the naive and unjustified application of DBC&e Let us define the intelligent systefimaching as a system
get from Eq.(21) that with an exponential err@proportional  thatis able to check, at any moment, whether previous steps
to e Ae), (particle transfers, etchave really been performed and to
decide, on grounds of this check, about the next steps to be
Pig(+o)~1 (24  performed. Then we can see that our system is a model of

such an intelligent molecular open system working on the
with all other asymptotic probabilities being practically zero. particles from the particle reservoir and goverrigahether
Thus the particles become, owing to the action of our centralvith the bath by the linear Liouville equation. The resulting
system, coupledin a bound stafewith the latter system particle binding(self-organizationat the cost of the thermal
prepared to start the action on another géiany; this is of  energy of the reservoir and going thus against the standard
course beyond our model here working with just amand  second law of thermodynamics is then a result of the check
one g particle. Combined with the above explanations in whether both the- and theg-type particle appeared simul-
connection with the Hamiltoniahis [see Eqs(2)—(5) and  taneously at site 0 and of an immediate response of the cen-
the ensuing text thefeit yields the following picture of the g system to the positive result of the check. This type of
process investigated. self-organization has nothing to do with persistent external

(i) By the mechanism mentioned above, the unboand flows as in standard self-organization theories.
and g particles can appear simultaneously at site 0 joined
with the central system.

(i) This leads to the instability of the central system lead-
ing to, e.g., the change of topology of the latiglready this
may bring the particles together, i.e., may lead to a formation Support of the present research by Kornmer8anka,
of their bound statg. Praha, is gratefully acknowledged. The author would also

(iii ) Because of the new topologgnd as assumed in our like to thank Professor M. Wagner, University of Stuttgart,
Hamiltonian, the particles can then leave site 0 just as aand Max-Planck Institute in Stuttgart for their kind invitation
bound pair. and hospitality during the author’s stay in Germany. Finally,

(iv) Once it happens, the central system again becomgwiceless discussions with Dr. L. Pivec, Czech Academy of
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