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Solving the generalized Langevin equation with the algebraically correlated noise

T. Srokowski1 and M. Płoszajczak2
1Institute of Nuclear Physics, ulica Radzikowskiego 152, PL 31-342 Krako´w, Poland

2Grand Acce´lérateur National d’Ions Lourds (GANIL), CEA/DSM, CNRS/IN2P3, Boıˆte Postale 5027, F-14021 Caen Cedex, France
~Received 26 September 1997!

We solve the Langevin equation with the memory kernel. The stochastic force possesses algebraic correla-
tions, proportional to 1/t. The velocity autocorrelation function and related quantities characterizing transport
properties are calculated with the assumption that the system is in thermal equilibrium. Stochastic trajectories
are simulated numerically, using the kangaroo process as a noise generator. Results of this simulation resemble
Lévy walks with divergent moments of the velocity distribution. We consider motion of a Brownian particle,
both without any external potential and in the harmonic oscillator field, in particular the escape from a potential
well. The results are compared with memory-free calculations for the Brownian particle.
@S1063-651X~98!12103-7#
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I. INTRODUCTION

Stochastic equations are often regarded as an effec
description of a complicated high-dimensional system. F
varying variables are substituted by a fluctuating force a
the stochastic equation possesses only few degrees of
dom. However, such a procedure destroys in general
Markovian property of the original system@1#. Conse-
quently, the stochastic force put into the effective equat
must have a finite correlation time. The non-Markovian b
havior is especially prominent in nonlinear dynamical s
tems possessing a complex structure of the phase sp
where chaotic regions coexist with regular, stable structu
Trajectories stick to islands of stability and only slowly pe
etrate cantori. They consist then of long segments co
sponding to free paths, interrupted by intervals of frequ
and rapid changes of direction. This kind of motion is know
as Lévy flights ~walks!. Processes exhibiting Le´vy flights are
scale invariant and have fractal properties: they are usu
characterized by divergent moments@2#. Specific transport
properties like anomalously enhanced diffusion can be
counted for by the existence of long jumps. The veloc
autocorrelation function~VAF!, C(t)5^v(0)v(t)&, depends
algebraically on time and the mean squared displacem
rises faster then linearly with time@3#. Those quantities are
strictly connected to the statistics of free paths@4#.

Slowly decaying correlations are known in various ph
nomena including the chemical reactions in solutions@5#,
ligand migration in biomolecules@6#, atomic diffusion
through a periodic lattice@7#, Stark broadening@8#, and
many others. The power-law autocorrelation functions h
been also found in molecular dynamics@9# devised to de-
scribe nuclear collisions. From the point of view of transp
phenomena, models of this kind can be traced back to a
simple system: the Lorentz gas of periodically distribut
scatterers. A particle can move freely in such a lattice
very long time intervals giving rise to long tails of VAF
proportional to 1/t. The autocorrelation of force in the mo
lecular dynamics has the same form. The mean squared
placement̂ r2& is proportional tot ln t, then the diffusion
coefficient diverges logarithmically. If one passes on
571063-651X/98/57~4!/3829~10!/$15.00
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quantum mechanics and takes into account the antisym
trization effects@10#, all above observations still hold.

To study transport phenomena of a system with kno
fluctuation properties, it is appropriate to apply the Lange
formalism, avoiding intricacies of many-body dynamics. R
cently, we have addressed the Langevin problem for a
braic correlations@11# solving the two-dimensional stochas
tic equation

dr

dt
5v,

m
dv~ t !

dt
52bv~ t !2

]V~r !

]r
1F~ t !, ~1!

where the potentialV generates a conservative force,b is the
friction constant, and the external noise~stochastic force!
F(t) has algebraically decaying correlations:

^F~0!F~ t !&;1/t,
~2!

^F~ t !&50.

The stochastic forceF(t) has been assumed as a time ser
generated by a deterministic, but chaotic, dynamical syst
namely, as proportional to the velocity of particle in the tw
dimensional periodic Lorentz gas~the generalized Sinai bil-
liard!. In that approach, the friction force is an intrinsic pro
erty of the system, unrelated to the properties of the driv
noise. Hence, the fluctuation-dissipation theorem is not
filled. Nevertheless, for any initial condition in the Langev
equations, the system drives towards an asymptotic st
state with the constant̂v2&. It has been found that in the
absence of external potential, the mean squared displace
^r2&(t) grows ast ln t, thus the diffusion coefficient is infi-
nite. A study of the particle escape from a parabolic poten
well has revealed important differences, compared to
case of fast decaying correlations. The energy distributi
have a pronounced peak corresponding to the particles
are associated with long trajectories in the adjoined billia
and leave the potential well without any change of chao
3829 © 1998 The American Physical Society
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3830 57T. SROKOWSKI AND M. PŁOSZAJCZAK
force value. This peak is superimposed on the Gaussian
tribution. The Gaussian shape of the energy distribution
contrast to the Maxwellian exponential shape, is connec
with particles dwelling inside the potential well for a lon
time, never reaching the equilibrium state. In turn, the pr
ability that the particle remains inside the well~the survival
probability! depends on time as 1/t, in the larget limit.

The above approach is an approximation because it
glects memory effects. In fact, a properly formulated Lan
vin problem emerging as a coarse graining over a se
hidden variables must contain a velocity dependent frict
term @12#. For that purpose, Kubo@13# postulated, instead o
Eq. ~1!, a phenomenological integrodifferential equation:

m
dv~ t !

dt
52mE

0

t

K~ t2t!v~t!dt2
]V~r !

]r
1F~ t !, ~3!

whereK(t) represents the retarded friction kernel. This ge
eralized Langevin equation~GLE! implies the dissipation-
fluctuation theorem, linking properties of the stochastic fo
~amplitude, correlation time! and characteristics of a hea
bath with which the system remains in equilibrium.

Memory effects have important physical consequenc
The meaning and significance of history-dependent frictio
resistance for fluid dynamics has been realized already a
beginning of the century by Boussinesq@14#. In the frame-
work of the reaction-rate theory@15#, memory effects modify
substantially the Kramers result@16# for the escape rate from
metastable states. In turn, the kinetic equation, which is n
Markovian, does not conserve energy due to memory eff
~the collision broadening! @17#. As a result, the influence o
collisions on the time evolution of the distribution function
diminished@18# and the initial distribution survives longe
The similar change of the relaxation time has been obtai
from the quantum kinetic equation@19#. One can then expec
important consequences on problems formulated in term
the Boltzmann-Langevin equation@20#. In nuclear dynamics
taking into account memory effects is crucial because s
tems considered are small@21#.

Molecular dynamics can serve as a simple model of
ids, the molecules being represented as hard spheres.
one can also expect algebraic correlations, similarly as
the Lorentz gas. Indeed, Alder and Wainwright@22# have
shown by a direct numerical integration of the Navier-Stok
equation that the diffusion coefficient diverges and the V
has the algebraic tail. In the two-dimensional case it
proachest21, whereas in three dimensionst23/2. Solving the
Langevin equation with the retarded frictional resistance,
rived by Boussinesq@14#, Mazo @23# has found that the au
tocorrelation function of the random force is proportional
t23/2 for large t. Exponents determining autocorrelatio
functions in hydrodynamics depend mainly on the dime
sionality of the system and are insensitive to both the in
action and the shape or size of the Brownian particle.
cently, the long-time Brownian motion has been studied
the framework of linearized hydrodynamics@24#. It has been
found that in two dimensions the VAF approaches asym
totically 1/t for translational Brownian motion and 1/t2 for
rotational motion.

In this paper we present solutions of Eq.~3! for noise with
the algebraic autocorrelation function. Some averaged qu
is-
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tities, like the VAF, can be easily derived from Eq.~3! with-
out defining details of the stochastic force, providing the s
chastic system is in thermal equilibrium. We do that in S
II, starting from usual assumptions, originally stated
Kubo @13#. The main purpose of this work is, however,
solve the GLE directly by simulating trajectories nume
cally. The possibility of such simulation is important fo
modeling physical processes. In Sec. III we present a met
of generation of the stochastic force with given, e.g., al
braic, correlations. For this purpose we utilize a specific g
eralization of the random walk, a Markov process known
the kangaroo process. Inserting a time series generate
that way into Eq.~3! and solving the equation, we get
trajectory. Averaging over a statistical ensemble allows o
to determine statistical properties of the system~Sec. IV!. In
Sec. V we consider the Brownian motion in the harmon
oscillator field and in Sec. VI we summarize the most imp
tant results of this work.

II. THE VELOCITY AUTOCORRELATION FUNCTION
FOR THE EQUILIBRIUM STATE

We start with Eq.~3! providingV(r )50. Let the stochas-
tic force F(t) satisfy the conditions

^F~ t !&50 ~4!

and

^v~0!F~ t !&50. ~5!

The condition~5! can be interpreted as a manifestation of t
causality@25#. We assume that the system is in equilibriu
with the heat bath of temperatureT. Multiplying Eq. ~3! by
v~0! and averaging over the equilibrium ensemble we ge

m
d

dt
^v~0!v~ t !&52mE

0

t

K~ t2t!^v~0!v~t!&dt

1^v~0!F~ t !&. ~6!

From Eq.~5!, the last term vanishes. The above equation
be solved to obtain the velocity autocorrelation functi
C(t). Using Laplace transforms, one gets@26#

C̃~s!5
^v2&

s1K̃~s!
, ~7!

where the tilde denotes, from now on, the Laplace transfo
f̃ (s)[L@ f (t)#. Similarly, multiplying the generalized
Langevin equation byF~0! and using Eq.~7! one obtains
@26# the fluctuation-dissipation theorem:

K̃~s!5^F~0!F~s!&/@m2^v2~0!&#, ~8!

where ^F(0)F(s)&5L@^F(0)F(t)&#. Since the system is
supposed to be in the equilibrium state, characterized by
temperatureT, hence ^v2(0)&5T/m where we put the
Boltzmann constant equal to one. Then inverting~8! allows
one to express the friction kernel by the noise autocorrela
function CF(t)5^F(0)F(t)&:
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57 3831SOLVING THE GENERALIZED LANGEVIN EQUATION . . .
K~ t !5^F~0!F~ t !&/mT. ~9!

The generalized Langevin equation with the stocha
force correlated algebraically has been extensively studie
connection with the motion of Brownian particles in a vi
cous fluid. Chow and Hermans@27# have solved Eq.~6! for
noise correlations, i.e., memory kernels, proportional
t23/2, t.0. They foundC(t);t23/2 asymptotically, for large
times.

Let us consider the following noise autocorrelation fun
tion:

CF5H a/e, t<e

a/t, t.e,
~10!

wheree is a small number. Without loss of generality, th
constanta will be assumed equal to one in the numeric
calculations.

Using Eq.~9!, we calculate the Laplace transform of th
kernel. Formula~7! takes the form

C̃~s!5
T/m

s1a@12Ei~2es!#/mT
, ~11!

where Ei(z) denotes the integral exponential function d
fined by

Ei~z!5E
2`

z

ex/xdx ~12!

and the integral is calculated on an arbitrary path on
planex, cut along the positive real half axis. To determi
the VAF, we have to invert the Laplace transform, perfor
ing the integral:

C~ t !5L21@C̃~s!#5
1

2p i E2 i`1s

1 i`1s

C̃~z!etzdz. ~13!

Details of the derivation are explained in the Appendix. T
final result reads

C~ t !5
T

m
x~ t ! ~ t.0!, ~14!

where

x~ t !5e2at~c1 sin bt1c2 cosbt!

2mT/aE
0

` e2txdx

@mTx/a1Ei1~ex!21#21p2 .

~15!

In the above expression the constantsa, b, c1 , andc2 de-
pend on bothe and T. The modified integral exponentia
function Ei1(x) is defined by the following expansion:

Ei1~x!5g1 ln x1 (
n51

`

xn/n!n, x.0, ~16!

whereg50.577 2157 . . . is the Euler constant.
The Laplace transform in the expression~15! can be eas-

ily evaluated numerically. Figure 1 showsC(t) for tempera-
ic
in

o

-

l

-

e

-

e

turesT51,2 ande5531023,1022. For all presented cases
the curves initially fall rapidly to negative values and th
approach zero from below. For larget, the tail is algebraic
with a numerically estimated exponent equal to21.18. This
kind of asymptotic behavior is called ‘‘the Lorentz tail’’ an
is typical in molecular dynamics@28#. It can be observed a
all densities of random scatterers and for all sorts of th
types and arrangements. For example, the same shap
VAF has been found by Rahman@29# in molecular dynami-
cal simulation of interacting particles motion in the liqu
argon.

This shape of the VAF cannot be achieved for the f
decaying noise correlations. For comparison, let us cons
CF(t)5a exp(22ḡt). Then Eq. ~7! becomes C̃(s)
5T/m(s12ḡ)/@s(s12ḡ)1a/mT#. Inverting this Laplace
transform, we get for the VAF the following expression:

C~ t !5T/m

3H 1/2A2D~Be2At2Ae2Bt!, D,0

e2ḡt~ ḡt11!, D50

e2ḡt/AD~ḡ sin ADt1AD cosADt !, D.0,

where A5ḡ2A2D, B5ḡ1A2D, and D5a/(mT)2ḡ2.
Thus the exponential tail of the VAF found in this case
quite different from the tail found for the algebraic nois
correlations. For smallḡ, the tail may become negative bu
then it oscillates around zero with the exponentially dim
ishing amplitude.

Knowing the VAF, one can calculate the mean squ
displacement by applying the identity

^r2&~ t !52E
0

t

~ t2t!C~t!dt. ~17!

Hence, the diffusion coefficient

FIG. 1. The velocity autocorrelation function calculated fro
Eq. ~14! for e51022 with T51 ~the solid line! and T52 ~the
long-dashed line!. The short-dashed line corresponds
e5531023 andT51. The particle mass ism51. The negative tail
is algebraic with an universal exponent equal21.18. The units are
determined by taking the Boltzmann constant equal one.
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D5
1

2
lim
t→`

d

dt
^r2&~ t !

is given by

D5E
0

`

C~ t !dt. ~18!

The diffusion coefficient assumes a finite value for the al
braic correlations. This can be checked by inserting Eqs.~14!
and~15! into Eq. ~18!, changing the order of integration an
expanding the Ei1 function. Thus with the assumptions mad
in this section, the GLE does not imply any kind of anom
lous diffusion for the noise correlated as 1/t. However, it is
not obvious that the GLE with algebraic correlations giv
the velocity distribution with the convergent second mome
i.e., the system is always able to reach thermal equilibriu
We will address this general problem in a separate pape
the following, we solve directly the GLE with a concret
specifically prescribed stochastic force and show that in
case the velocity variance can diverge.

III. GENERATION OF THE STOCHASTIC FORCE

For that purpose we apply a stochastic process called ‘
kangaroo process’’~KP!. It is defined @30# as a stepwise
random function m(t): m(t)5mi in the time interval
t i<t,t i 11 . The length of intervals of constantm, i.e., the
frequency of jumping timesn(m), is a function of the value
of the process itself. The KP is a stationary Markov proce
The probability that the KP at timeDt is betweenm and
m1dm, knowing that it was equalm8 at timet50, is given
for infinitesimal time intervalsDt by

PKP~m,Dtum8,0!5$12n~m8!Dt%d~m2m8!

1Q~m!n~m8!Dt. ~19!

The first term on the rhs of Eq.~19! is the probability that no
jump occurred in the time interval (0,Dt). The term
n(m8)Dt is the probability that one jump occurred. Immed
ately after such a jump, the probability density ofm becomes
Q(m). The Focker-Planck equation for the KP reads@30,31#

]

]t
P̂~m,t !5 lim

Dt→0
Dt>0

H E PKP~m,Dtum8,0!P̂~m8,t !dm8

2 P̂~m,t !J ~Dt !21

52n~m!P̂~m,t !1Q~m!

3E n~m8!P̂~m8,t !dm8. ~20!

The stationary probability densityP(m) of m(t) is related to
Q(m) by

Q~m!5
n~m!P~m!

*n~m8!P~m8!dm8
5

n~m!P~m!

^n&
. ~21!
-

-

s
t,
.

In

at

e

s.

One can prove that for even functionsP(m) and n(m),

the covariance of the KP,G̃(ut2t8u)5^m(t)m(t8)&, is of the
form @30#

G̃~ t !;E
n~0!

1`

m2P~m!
dm

dn
exp~2nutu!dn. ~22!

Calculation of the frequencyn(m) requires then the inver
sion of the Laplace transform and the solution of a sim

differential equation. In particular, forG̃(t)51/t one obtains

n~m!;E
0

umu
m82P~m8!dm8. ~23!

An important quantity is the ‘‘free path’’ length define
ass51/n. Knowing P(m), we can determine the free pat

distributionS(s) @32#. For the covarianceG̃(t)51/t, this dis-
tribution can be expressed as

S~s!5
1

s2m2~s!
, ~24!

wherem(s) is obtained from Eq.~23!. The distributionS(s)
decays very slowly with increasings and the fastest rate on
can obtain isS(s);s22, in the limit of long paths.

The KP can be formulated also for higher dimension
systems. In two dimensions we havem5@mx ,my#. Assum-
ing in addition that the norm of the process is constant a
equal one,umu51, the coordinatesmx5cosf andmy5sinf
and the frequencyn are expressed in terms of a single ra
dom angle. Denoting the probability distribution of this pr
cess byPF(f), one obtains for the covariance of the KP:

G̃~ t !5E
n~0!

`

PF~f!
df

dn
exp~2nutu!dn. ~25!

The probability distributionPF(f) must be an even func

tion. For G̃(t)51/t the frequency becomes

n~f!5E
0

f

PF~f8!df8 ~26!

and the free path distributionS(s) appears to be independe
of PF(f) and takes the simple form

S~s!;s22. ~27!

According to Eq.~26!, the free path becomes infinite fo
f50.

The KP can be also applied to generate a stochastic
cess with another kind of autocorrelation function, in partic

lar an arbitrary algebraic covarianceG̃(t);utu21/k(k.0). In
two dimensions, the frequencyn of that process becomes

n5S E
0

f

PF~f8!df8D k

, ~28!

implying the free path distributionS(s);s2(111/k). Techni-
cally, one can then generate the stochastic process with
variance~10! in the following way: ~i! Choose a random
number f, uniformly distributed in the interval~0,1!; ~ii !
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57 3833SOLVING THE GENERALIZED LANGEVIN EQUATION . . .
calculate mx5Aa cosf/Ae and my5Aa sinf/Ae; ~iii !
choose signs ofmx and my , independently and with equa
probability; ~iv! Determine the time intervalDt5e/f within
which the process keeps the value (mx ,my). The described
procedure assumes a uniform probabilityPF(f) and does
not care about the angular distributions. In fact, this parti
lar process is nonisotropic. If a physical problem impos
specific requirements concerning angular symmetry, the
gorithm can easily be modified@32#.

The covariance does not determine a stochastic pro
completely and some properties of GLE solutions, with
KP as the stochastic force, must be sensitive to higher-o
autocorrelations. However, the VAF and the transport pr
erties implied by it, depend only on the covarianceCF .

IV. THE NUMERICAL RESULTS FOR V„r …50

The two-dimensional KP described in Sec. III will serv
to realize the stochastic force in the generalized Lange
problem. Thus we have

F~ t !5m~ t !. ~29!

The autocorrelation function of this force is given by E
~10!. The average is taken over a statistical ensemble, w
is defined by the uniform probability density distributio
PF(f). The parametere has a simple interpretation, namel
it is equal to the shortest time step within which the force
constant.

The force ~29! is an integrable function. Obviously,
fulfills the condition~4!. The most distinctive feature ofF(t)
is the presence of long periods of time when its value
mains constant. Those intervals are interwoven with regi
of rapid change as can be seen in Fig. 2, which shows
running sum of one component of the stochastic force a
function of time. Due to the scale invariance of the free p
distributionS(s), the plot is self-similar, i.e., a magnificatio
of any of its part including rapid variations, gives statistica

FIG. 2. The running sumSF(t)[( iFi , whereFi5F(t8) in the
time intervalt8 i<t8,t8 i 11 , are subsequent constant values of o
component of the stochastic force generated by the two-dimens
KP ande50.01. Since a term is added to the sum only when
force assumes a new value,SF remains constant between subs
quent changes of the force change. The sum comprises 300 t
for t520.
-
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the same sequence of long and short intervals. This ma
fication procedure has its limit at the interval scalee.

We solve now Eq.~3! with V(r )50 and the initial con-
ditions:

v~0!5r ~0!50. ~30!

Since the kernelK(t2t) depends only on time differences
the equation can be solved using the Laplace transform t
nique @33#. We have found the following solution, valid un
der the assumption thatv(t) does not change substantial
within the interval of sizee :

v~ t !5g~ t !1E
0

t

R~ t2t!g~t!dt ~31!

and

r ~ t !5h~ t !1E
0

t

R~ t2t!h~t!dt, ~32!

where

g~ t !5m21E
0

t

F~t!dt,

~33!

h~ t !5E
0

t

g~t!dt.

The resolventR(t) is given as the inverted Laplace tran
form of the following function:

R̃~s!5
a@Ei~2es!21#

mTs1a@12Ei~2es!#
. ~34!

One can easily check thatR(t) is related to the time deriva
tive of the functionx ~15!:

R~ t !5
d

dt
x~ t ! ~ t.0!. ~35!

The functionsg(t) andh(t) are continuous and single value
for all t>0. Thus the integrals in Eqs.~31! and ~32! can be
understood in a standard Riemannian sense. Figure 3 sh
an exemplary trajectory in both the velocity space and
configuration space. The intermittent structure of long a

al
e

ms

FIG. 3. A particle trajectory in the velocity~left side! and in the
configuration~right side! spaces fore51022 andT51. The particle
mass is m51. Both pictures correspond to the time interv
tP~0,20!. The initial conditions are given by Eq.~30!.



ib

.
tiv
r

on

o-

II
r

-

re

en
o

it
th

e
rm
ight
ture
n.
ri-

u-
s to
ent
p-
s

by
e

l-
ct

nce
ter

s-
ted

s:

3834 57T. SROKOWSKI AND M. PŁOSZAJCZAK
short intervals of noise variations is visible here also, exh
iting a picture typical for Le´vy walks @34#. The plotted tra-
jectories, especiallyr (t), are relatively smooth functions
Despite the fact that the driving force assumes both posi
and negative values with equal probability, the trajecto
r (t) departs continuously from the origin and the reflecti
symmetry is apparently broken.

Using Eq.~31!, we can calculate directly the second m
ment of the velocity distribution,̂v2&(t). The averaging is
performed according to the procedure explained in Sec.
i.e., over a statistical ensemble constructed by a unifo
sampling of the noise directionf. We have calculated tra
jectories in the velocity space up to a given timet, according
to Eq. ~31! and with the initial conditions~30!. Then the
average of̂ v2&(t) has been taken. Figure 4 presents the
sults for e51022 and T51. Clearly, the velocity variance
does not reach equilibrium. It stabilizes for a while but th
grows again. The second moment is thus divergent as
could expect for Le´vy flights @2# and the parameterT can no
longer be identified with the temperature. The entire veloc
distribution does expand with time. Figure 5 presents

FIG. 4. The variance of the velocity distribution^v2& as a func-
tion of time for e51022 andT51.

FIG. 5. The time evolution of the distributionP(v2) for
e51022 andT51. The curves correspond to the following time
t55 ~solid line!, t520 ~dots!, and t550 ~triangles!. All distribu-
tions are normalized to unity.
-

e
y

I,
m

-

ne

y
e

distribution ofv2. It broadens with time and the shape of th
distribution indicates the presence of long flights in the fo
of a peak that becomes diffused at longer times. On the r
hand side of the peak, at high energies, another struc
develops, which results from the gradual equilibrizatio
This structure tends asymptotically to the Maxwellian dist
bution.

Similarly, one can obtain from Eq.~31! the VAF
^v(t0)v(t)&. Figure 6 presents the result of numerical calc
lation for t053. The chosen set of parameters correspond
the case that is shown in Fig. 1 by the solid line. The pres
result does not exhibit any negative tail. The VAF falls ra
idly for t close tot0 , similarly as in Fig. 1, but then oscillate
around a stabilized valueC`50.33. Knowing the asymptotic
behavior of C(t) one can assess the rate of diffusion
means of Eq.~17!. In contrast to the results of Sec. II, th
diffusion appears strongly enhanced:^r2&5C`t2, and the
diffusion coefficient grows linearly with time, as for the ba
listic motion. This outcome can be confirmed by dire
evaluation of the mean squared displacement^r2&, using Eq.
~32!. We have indeed found the quadratic time depende
for ^r2&, as Fig. 7 shows. Moreover, the parabola parame
approximately equalsC` .

The rapid, ballistic diffusion rate results from the exi
tence of long periods of constant noise values and is rela

FIG. 6. The velocity autocorrelation functionC(t)5^v(t0)v(t)&
wheret053, for e51022 andT51.

FIG. 7. The mean square displacement^r2& as a function of time
for e51022 andT51.
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to statistics of the free paths. Zumofen and Klafter@4# have
shown, studying a simple map, that the free path distribu
~27! implies a slightly slower growth of the mean squa
displacement:̂ r2&;t2/ln t. However, such time dependenc
cannot be excluded also in our case because the logarit
modification is weak and may easily be overlooked in n
merical calculations.

A similar observation has been made in the recent st
of diffusion in the Knudsen gas@35#, where for a large vari-
ety of the algebraic chord length distributions running
large distances, the Knudsen diffusion is a Le´vy walk that is
dominated by the ballistic dynamics.

V. THE BROWNIAN OSCILLATOR—THE ESCAPE
FROM THE POTENTIAL WELL

So far we have discussed the motion of a particle s
jected only to the stochastic force and retarded friction. N
we add the harmonic oscillator potential:

V~r !5vr2/2 ~36!

and solve the GLE~3! with the noise correlations~10! and
the initial conditions~30!. Applying the same procedure as
Sec. IV, we find the solution also in the form~31! and~32!.
The Laplace transform of the resolvent is now given by

R̃~s!5
a@Ei~2es!21#/mT2v/s

s1a@12Ei~2es!#/mT1v/s
. ~37!

The resolvent itself,R(t)5L21@R̃(s)#, becomes

R~ t !5e2at~c1 sin bt1c2 cosbt!1mT/a

3E
0

` xe2txdx

@mTx/a1Ei1~ex!211mTv/ax#21p2 .

~38!

An important application of the above formalism is
study of the particle escape from a spherically symme

FIG. 8. The energy distribution of particles escaping from
harmonic oscillator potential well~36!, which is cut atur u5r B . The
parameter values areT5100, e51022, m51, r B550, and
v50.032. The statistical ensemble consist of 50 000 trajector
The distribution is normalized to unity.
n

ic
-

y

t

-

c

potential well. Let us assume that the particle rests initially
the bottom of the well~36! and its motion is governed by Eq
~3!. The stochastic forceF(t) accelerates the particle, whic
may eventually reach the top of the well atur u5r B . At this
time, all interactions, the potential, the stochastic force, a
the friction, are switched off and the particle escapes fre
Thus we shall study the generalized Langevin problem w
an absorbing barrier. Physically, one can model in this w
the evaporation process. A quantity of interest, access
experimentally, is the distribution of total energy of escapi
particles,P(E). In order to derive this distribution from the
GLE, one should know the velocity atur u5r B . Technically,
the particle positionr (t) has been calculated from Eq.~32!.
The inverse of this function atur u5r B determines the time
when the barrier is reached. In turn, Eq.~31! for t5t(r B)
gives the velocityvB at the barrier. The final, asymptoti
energy isE5vr B

2/21mvB
2/2.

The energy distribution of escaping particles is shown
Fig. 8. The parameters,T5100, e51022, m51, r B550,
and v50.032, have been chosen to allow comparison w
solutions of the ordinary Langevin equation~1! @11,32#.
Those results, obtained from Eq.~1!, have two characteristic
features:~i! the peak at relatively low energies and~ii ! the
Gaussian tail. The peak may be interpreted as a manife
tion of long free paths and attributed to particles escap
due to long-time action of a constant stochastic force, i
without any randomization. The Gaussian tail, in turn, resu
from particles subjected to only a limited number of noi
variations, which is not enough to attain the equilibriu
state. The GLE produces a similar peak~shown in Fig. 8! but
its form is more diffused and dominates the entire spectru
The right flank falls very slowly, like a power law, and the
bends down, reflecting the similar trend for the potential-fr
case~see Fig. 5!.

Figure 9 shows the survival probability for particles insi
the wall, defined as a number of particles that yet have
left the well at a timet. This probability is exponential, in
sharp contrast with the standard Langevin equation, alw
predicting the tail 1/t @36#.

One could argue that the outcome concerning energy
tributions must be of minor physical significance if the sy

s.

FIG. 9. The number of trajectories that do not escape from
potential well~36! up to the timet ~the survival probability!. The
parameters are the same as in Fig. 8.
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tem does not possess a stable velocity distribution and
average energy diverges with the time. However, it is not
case in the high-T limit. For large values ofT, Fig. 10 pre-
sents the time dependence of the velocity variance o
Brownian particle subjected to the harmonic oscillator for
without absorbing barrier. Noŵv2&(t) reaches a stationar
value. Moreover, this stationary value is proportional to
parameterT, which, in turn, can now be identified with th
temperature of the equilibrium state. Thus in the highT
limit, the dissipation-fluctuation theorem~8! holds.

VI. SUMMARY AND CONCLUSIONS

The Langevin equation with strongly correlated stocha
force reveals phenomena unknown to the standard Brow
motion theory, which assumes either white or colored~expo-
nential! noise. Proper handling of the friction force leads
the generalized, integro-differential equation, including
memory kernel. In the present paper we have solved
equation assuming the noise autocorrelation function w
the tail, which is proportional to 1/t. Usually, one postulate
that the Brownian particle, described by the GLE, is in eq
librium with a heat bath of given temperature. Then its v
locity and position probability distributions are stationa
and stable with finite moments and the velocity autocorre
tion function can be easily derived. In the case of thet
noise correlations, the VAF has the algebraic tail and i
negative value for larget. Nevertheless, the integral of th
VAP, i.e., the diffusion coefficient, is finite and the GL
does not predict any kind of anomalous diffusion. Thus
transport properties of the system, as determined by
VAF, do not differ substantially from those for rapidly fal
ing noise correlations.

On the other hand, one can directly calculate the VAF a
the diffusion rate by simulating the stochastic force nume
cally. For that purpose, the kangaroo process has been
plied. The tail of the VAF oscillates now around a consta
finite value, rendering the diffusion rate ballistic, i.e
^r2&;t2. This system is unable to reach any equilibriu
state because the second moment of the velocity distribu

FIG. 10. The variance of the velocity distribution̂v2& as a
function of time for a particle in the harmonic oscillator potent
~36!. The solid line corresponds toT5100 and the dashed line t
T550. The other parameters are the same as in Fig. 8. The a
ages were taken over 5000 trajectories for each point.
he
e

a
,

e
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e
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^v2& diverges with time. Also the energy distribution broa
ens constantly. It consists of two parts: a peak, connec
with long paths of Brownian particle subjected to a const
acceleration, and the Maxwellian tail. The divergent m
ments are characteristic of Le´vy flights. Numerically simu-
lated trajectories, both in the velocity space and in the c
figurational space, are typical for the intermittent structure
Lévy flights: long regular segments are separated by po
of rapid direction change and outbursts of irregular motio
In this way, solutions of the GLE reflect properties of the K
that can go through very long paths: the free path’s distri
tion for KP falls off like 1/s2. Despite irregularities, trajec
tories in the configurational space are relatively smooth, h
ing a continuous first derivative.

It is probably useful at this moment to mention that t
Knudsen diffusion in three-dimensions for the algebraic p

chord distributionz(r );1/r m* and 1,m* ,2 is the Lévy
walk dominated by the ballistic dynamics, similarly as fou
in this work. This is an important analogy in view of th
significance of the Knudsen gas concept for a phenome
logical description of the nuclear one-body dissipation@37#,
which is a dominant dissipation mechanism at low excitat
energies. Hence, the GLE with the correlated stochastic fo
could be a microscopic generalization of the phenomenolo
cally successful nuclear one-body dissipation mechanism

Usually, the memory kernel is taken as proportional to
noise autocorrelation function in order to satisfy t
dissipation-fluctuation theorem. In general, this assump
is not sufficient for that purpose because the equilibri
state is not reached and, hence, the temperature is not d
mined. However, as we have shown in the case of the
monic oscillator potential, the equilibrium state is restored
the high-T limit. This conclusion has important conse
quences for possible applications because the divergent
ments are usually nonphysical. Indeed, it is so, e.g., for
evaporation process. We have modeled this process as
ing the potential well in the form of the harmonic oscillat
and looking for the solution of a problem with the absorbi
barrier. The shape of the energy distribution of the escap
particles is dominated by a wide peak with slowly fallin
right flank. A more rapid fall shows up only at very hig
energies and corresponds to a very small probability.

The comparison of results of the present paper with R
@11# allows one to assess the influence of memory effects
calculated quantities. There are some similarities, e.g.,
velocity ~energy! spectra for both approaches possess
peak attributed to long intervals of constant value of t
stochastic force. However, its shape is different: the tail
the energy distribution of particles escaping from the pot
tial well for the Markovian, memory-free case is Gaussia
independently of the noise generator used@32#. The survival
probability also changes. Introducing the retarded fricti
changes its shape from the algebraic one, proportional tot,
into the exponential one. This modification of the surviv
probability tail brings about a qualitative change: the avera
time the particle spends inside the well,t̄;*0

`tN(t)dt, be-
comes finite. Last but not least, in contrast to the res
obtained using the GLE, the memory-free Langevin equat
always implies the full equilibration though not in accor
dance with the fluctuation-dissipation theorem.
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The regularization of the force autocorrelation functi
1/t near t50, in the form~10!, is necessary to avoid a sin
gularity that would result in a trivial solutionv(t)[0 if e
→0. What is then the meaning and importance of the par
etere? Numerical results are not very sensitive on it since
enters formulas only logarithmically. Figure 1 can serve
an illustration. The parametere influences the rate of chang
of the noise, namely, the smallest time step of the no
variation is juste. As we have mentioned in the Introductio
the stochastic force with the covariance proportional tot
can be generated also by means of a non-Markovian, de
ministic system—the periodic Lorentz gas, equivalent to
generalized Sinai billiard. The Lorentz gas applies as a u
ful model of physical processes, e.g., in hydrodynamics.
cording to that picture,e corresponds to the smallest path t
particle can experience between subsequent collisions
scatterers and depends on the geometry of billiard. Co
quently, the practical choice of a value ofe for a particular
physical problem should stem from origin and interpretat
of the stochastic force.
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APPENDIX

This appendix is devoted to the derivation of integral~13!.
We choose the contourC comprising a straight line paralle
ns

ki
d

-

s

e

/
er-
e
e-
-

ith
e-

n

-

to the imaginary axis, positioned at any positives, and the
large half-circle in the left half plane. The plane is cut alo
the negative real axis. The integral over the half circle va
ishes from the Jordan lemma fort.0. Thus
we have (1/2p i )*C5 (1/2p i )*2`1s

`1s 1 (1/2p i )(*2`1 i0
01 i0

2*2`2 i0
02 i0 )[C(t)2I 5S whereS denotes the sum over res

dues. The integrand possesses two conjugate simple pol
z1,252a6bi (a.0). The singular points can easily b
found numerically using the following expansion:

Ei~z!5g1 ln~2z!1 (
n51

`

zn/n!n. ~A1!

After some algebra, we obtain

S5T2/aS exp~z1t !

mT/a1e21/z11O~e2!
1c.c.D

5e2at~c1 sin bt1c2 cosbt!, ~A2!

where c.c. means the complex conjugate. The constants
given byc15bA, c25@(mT/a1e)(a21b2)1a#A and

A5
2mT/a

~mT/a1e!2~a21b2!12a~mT/a1e!11
.

To calculate the sum of integralsI we utilize the following
property of the integral exponent: Ei(x6 i0)5Ei1(x)7p i
(x.0). Combining the results forS and I , we get Eq.~14!.
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