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Solving the generalized Langevin equation with the algebraically correlated noise
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We solve the Langevin equation with the memory kernel. The stochastic force possesses algebraic correla-
tions, proportional to 1/ The velocity autocorrelation function and related quantities characterizing transport
properties are calculated with the assumption that the system is in thermal equilibrium. Stochastic trajectories
are simulated numerically, using the kangaroo process as a noise generator. Results of this simulation resemble
Lévy walks with divergent moments of the velocity distribution. We consider motion of a Brownian particle,
both without any external potential and in the harmonic oscillator field, in particular the escape from a potential
well. The results are compared with memory-free calculations for the Brownian particle.
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[. INTRODUCTION quantum mechanics and takes into account the antisymme-
trization effectq 10], all above observations still hold.

Stochastic equations are often regarded as an effective To study transport phenomena of a system with known
description of a complicated high-dimensional system. Fagluctuation properties, it is appropriate to apply the Langevin
varying variables are substituted by a fluctuating force andormalism, avoiding intricacies of many-body dynamics. Re-
the stochastic equation possesses only few degrees of freeently, we have addressed the Langevin problem for alge-
dom. However, such a procedure destroys in general theraic correlationg11] solving the two-dimensional stochas-
Markovian property of the original systerfil]. Conse- tic equation
quently, the stochastic force put into the effective equation

must have a finite correlation time. The non-Markovian be- ﬂzv

havior is especially prominent in nonlinear dynamical sys- dt

tems possessing a complex structure of the phase space,

where chaotic regions coexist with regular, stable structures. dv(t) aV(r)

Trajectories stick to islands of stability and only slowly pen- M=t = —Bv(t) - o F(), @)

etrate cantori. They consist then of long segments corre-
sponding to free paths, interrupted by intervals of frequenivhere the potentia¥ generates a conservative forgsis the
and rapid changes of direction. This kind of motion is knownfriction constant, and the external noigstochastic force

as L'evy flights (walks). Processes exhibiting'w flights are F(t) has algebraically decaying correlations:
scale invariant and have fractal properties: they are usually

characterized by divergent momen®]. Specific transport (F(O)F(t))~1k,
properties like anomalously enhanced diffusion can be ac- @
counted for by the existence of long jumps. The velocity (F(t))=0.

autocorrelation functiofVAF), C(t)=(v(0)v(t)), depends
algebraically on time and the mean squared displacemenithe stochastic forcE(t) has been assumed as a time series
rises faster then linearly with tim8]. Those quantities are generated by a deterministic, but chaotic, dynamical system,

strictly connected to the statistics of free pafhé namely, as proportional to the velocity of particle in the two-
Slowly decaying correlations are known in various phe-dimensional periodic Lorentz gdthe generalized Sinai bil-
nomena including the chemical reactions in solutip&§ liard). In that approach, the friction force is an intrinsic prop-

ligand migration in biomoleculed 6], atomic diffusion erty of the system, unrelated to the properties of the driving
through a periodic latticd 7], Stark broadenind8], and noise. Hence, the fluctuation-dissipation theorem is not ful-
many others. The power-law autocorrelation functions havdilled. Nevertheless, for any initial condition in the Langevin
been also found in molecular dynamif®| devised to de- equations, the system drives towards an asymptotic stable
scribe nuclear collisions. From the point of view of transportstate with the constanv?). It has been found that in the
phenomena, models of this kind can be traced back to a vegbsence of external potential, the mean squared displacement
simple system: the Lorentz gas of periodically distributed(r?)(t) grows ast Int, thus the diffusion coefficient is infi-
scatterers. A particle can move freely in such a lattice fomite. A study of the particle escape from a parabolic potential
very long time intervals giving rise to long tails of VAF, well has revealed important differences, compared to the
proportional to 1. The autocorrelation of force in the mo- case of fast decaying correlations. The energy distributions
lecular dynamics has the same form. The mean squared dibave a pronounced peak corresponding to the particles that
placement(r?) is proportional tot Int, then the diffusion are associated with long trajectories in the adjoined billiard
coefficient diverges logarithmically. If one passes on toand leave the potential well without any change of chaotic
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force value. This peak is superimposed on the Gaussian disties, like the VAF, can be easily derived from E) with-
tribution. The Gaussian shape of the energy distribution, irout defining details of the stochastic force, providing the sto-
contrast to the Maxwellian exponential shape, is connectedhastic system is in thermal equilibrium. We do that in Sec.
with particles dwelling inside the potential well for a long I, starting from usual assumptions, originally stated by
time, never reaching the equilibrium state. In turn, the probKubo [13]. The main purpose of this work is, however, to
ability that the particle remains inside the wéhe survival  solve the GLE directly by simulating trajectories numeri-
probability) depends on time astl/in the larget limit. cally. The possibility of such simulation is important for
The above approach is an approximation because it nanodeling physical processes. In Sec. Ill we present a method
glects memory effects. In fact, a properly formulated Lange-of generation of the stochastic force with given, e.g., alge-
vin problem emerging as a coarse graining over a set dlfraic, correlations. For this purpose we utilize a specific gen-
hidden variables must contain a velocity dependent frictioreralization of the random walk, a Markov process known as
term[12]. For that purpose, Kubd 3] postulated, instead of the kangaroo process. Inserting a time series generated in
Eg. (1), a phenomenological integrodifferential equation:  that way into Eq.(3) and solving the equation, we get a
trajectory. Averaging over a statistical ensemble allows one
dv(t) t oV(r) to determine statistical properties of the syst@ac. IV). In
m T:_mfoK(t_T)V( 7)d7— or +F(1, (3  sec. V we consider the Brownian motion in the harmonic
oscillator field and in Sec. VI we summarize the most impor-

whereK () represents the retarded friction kernel. This gen-{@nt results of this work.

eralized Langevin equatiofGLE) implies the dissipation-

fluctuation theorem, linking properties of the stochastic force !l THE VELOCITY AUTOCORRELATION FUNCTION

(amplitude, correlation timeand characteristics of a heat FOR THE EQUILIBRIUM STATE

bath with which the system remains in equilibrium. We start with Eq(3) providing V(r)=0. Let the stochas-
Memory effects have important physical consequence ic force F(t) satisfy the conditions

The meaning and significance of history-dependent frictiona

resistance for fluid dynamics has been realized already at the (F(1))=0 (4)

beginning of the century by Boussinegtd]. In the frame-

work of the reaction-rate theof{5], memory effects modify gnq

substantially the Kramers resiilt6] for the escape rate from

metastable states. In turn, the kinetic equation, which is non- (V(0)F(t))=0. (5

Markovian, does not conserve energy due to memory effects

(the collision broadening17]. As a result, the influence of The condition(5) can be interpreted as a manifestation of the

collisions on the time evolution of the distribution function is causality[25]. We assume that the system is in equilibrium

diminished[18] and the initial distribution survives longer. with the heat bath of temperatufe Multiplying Eq. (3) by

The similar change of the relaxation time has been obtained(0) and averaging over the equilibrium ensemble we get

from the quantum kinetic equati¢fi9]. One can then expect

important consequences on problems formulated in terms of d t

the Boltzmann-Langevin equati¢@0]. In nuclear dynamics, m a(v(O)v(t)>= - meK(t— TV(0)v(7))dT
taking into account memory effects is crucial because sys-

tems considered are smaH1]. +(v(0)F(t)). (6)

Molecular dynamics can serve as a simple model of flu-
ids, the molecules being represented as hard spheres. ThErom Eq.(5), the last term vanishes. The above equation can
one can also expect algebraic correlations, similarly as fobe solved to obtain the velocity autocorrelation function
the Lorentz gas. Indeed, Alder and Wainwrid2] have  C(t). Using Laplace transforms, one gég6]
shown by a direct numerical integration of the Navier-Stokes

equation that the diffusion coefficient diverges and the VAF _ (v?)
has the algebraic tail. In the two-dimensional case it ap- C(s)=———, (7)
proaches !, whereas in three dimensionis®2. Solving the s+K(s)

Langevin equation with the retarded frictional resistance, de- .
rived by Boussines§il4], Mazo[23] has found that the au- yvvhere the tilde denotes, from now on, the Laplace transform:
tocorrelation function of the random force is proportional to f (s)=L[f(t)]. Similarly, multiplying the generalized
t~32 for large t. Exponents determining autocorrelation Langevin equation byF(0) and using Eq.7) one obtains
functions in hydrodynamics depend mainly on the dimen{26] the fluctuation-dissipation theorem:
sionality of the system and are insensitive to both the inter-
action and the shape or size of the Brownian particle. Re- K(s)=(F(0)F(s))/[m?(v?(0))], 8
cently, the long-time Brownian motion has been studied in
the framework of linearized hydrodynami4]. It has been where (F(0)F(s))=L[{F(0)F(t))]. Since the system is
found that in two dimensions the VAF approaches asympsupposed to be in the equilibrium state, characterized by the
totically 14 for translational Brownian motion andtf/for ~ temperatureT, hence (v3(0))=T/m where we put the
rotational motion. Boltzmann constant equal to one. Then invertiBgallows

In this paper we present solutions of E8) for noise with  one to express the friction kernel by the noise autocorrelation
the algebraic autocorrelation function. Some averaged quarienction Cr(t) =(F(0)F(t)):
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K(t)=(F(0)F(t)}/mT. 9)

The generalized Langevin equation with the stochastic
force correlated algebraically has been extensively studied in
connection with the motion of Brownian particles in a vis-
cous fluid. Chow and Hermarj27] have solved Eq(6) for
noise correlations, i.e., memory kernels, proportional to
t~32 t>0. They foundC(t) ~t 32 asymptotically, for large
times.

Let us consider the following noise autocorrelation func-
tion:

Com ale, t<e 10 —0-50 1 2 3 !
alt, t>e,

wheree is a_ﬁrgall numberd Wltholm loss O.f ginera“ty’ Fhel FIG. 1. The velocity autocorrelation function calculated from
constanta will be assumed equal to one in the numerica Eq. (14) for e=10"2 with T=1 (the solid ling and T=2 (the

calculations. long-dashed line The short-dashed line corresponds to
Using Eq.(9), we calculate the Laplace transform of the .—5% 102 andT=1. The particle mass im= 1. The negative tail

kernel. Formula(7) takes the form is algebraic with an universal exponent equal.18. The units are
T/m determined by taking the Boltzmann constant equal one.
(11)

st+a[1-Ei(—es))/mT’ turesT=1,2 ande=5x10 3,10 2. For all presented cases,
the curves initially fall rapidly to negative values and then
approach zero from below. For largethe tail is algebraic
with a numerically estimated exponent equaktd.18. This
z kind of asymptotic behavior is called “the Lorentz tail” and
Ei(Z)=j e”/xdx (12) s typical in molecular dynamicg28]. It can be observed at
o all densities of random scatterers and for all sorts of their
and the integral is calculated on an arbitrary path on thdyP€S and arrangements. For example, the same shape of
planex, cut along the positive real half axis. To determine YAF has been found by Rahm4@9] in molecular dynami-
the VAF, we have to invert the Laplace transform, perform-cal simulation of interacting particles motion in the liquid

ing the integral: argon.
'ng 'ned This shape of the VAF cannot be achieved for the fast

e 1 tioto decaying noise correlations. For comparison, let us consider
CH)=L [C(S)]:ﬁ f_ioc+UC(z)e dz. (13 Ce(t)=« exp(-2y). Then Eq. (7) becomes C(s)
=TIm(s+2vy)/[s(s+2y)+a/mT]. Inverting this Laplace

Details of the derivation are explained in the Appendix. Thetransform, we get for the VAF the following expression:
final result reads

C(s)

where Eif) denotes the integral exponential function de-
fined by

T C(H)=T/m
C(t)=—x(t t>0), 14 _ _

(=t (=0 (19 1/2J=A(Be A—AeBY, A<0

where x{ e M(yt+1), A=0
Y(H)=e~2(c, sin bt+c, cosbt) e "/JA(y sin JAt+ VA cosyAt), A>0,

© e Ydx — — —
—mT/af _ —. where A=y—+—A, B=y++—A, andA=a/(MmT)—y~.

o [MTXa+Ei(ex)=1]"+m Thus the exponential tail of the VAF found in this case is

(15) quite different from the tail found for the algebraic noise

) correlations. For smaﬁ the tail may become negative but
In the above expression the constaaish, c;, andc; de-  then it oscillates around zero with the exponentially dimin-
pend on bothe and T. The modified integral exponential jshing amplitude.

function Ei(X) is defined by the following expansion: Knowing the VAF, one can calculate the mean square
- displacement by applying the identity
Eiy(X)=y+In x+ >, x"nin, x>0, (16)
n=1 t
<r2>(t)=2f (t—7)C(7)dT. 17
0

wherey=0.577 2157 . .. is the Euler constant.
The Laplace transform in the expressidrb) can be eas-
ily evaluated numerically. Figure 1 showgqt) for tempera- Hence, the diffusion coefficient
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1 d One can prove that for even functioR{m) and »(m),
D= = lim —t<r2>(t)

2,..,d the covariance of the Kﬁ,(|t—t’|)=<m(t)m(t’)), is of the
form [30]
is given by _ too dm
F(t)~f m2P(m) —exp( — v|t|)dw. (22)
»(0) dV

D=J C(t)dt. (18 . . .
0 Calculation of the frequency(m) requires then the inver-

sion of the Laplace transform and the solution of a simple

The diffusion coefficient assumes a finite value for the algey;ttarential equation. In particular, f(f(t)= 1k one obtains

braic correlations. This can be checked by inserting Eifb.

and(15) into Eq.(18), changing the order of integration and [m|

expanding the Eifunction. Thus with the assumptions made V(m)”J m’2P(m’)dm'. (23

in this section, the GLE does not imply any kind of anoma- 0

lous diffusion for the noise correlated as.1However, it is An important quantity is the “free path” length defined

not obvious that the GLE with algebraic correlations givesass=1/,. Knowing P(m), we can determine the free path

the velocity distribution with the convergent second moment, . . . L= .
i.e., the system is always able to reach thermal equiIibriumd'.smbunons(s) [32]. For the covarianc (t) =14, this dis-
Wbutmn can be expressed as

We will address this general problem in a separate paper. |
the following, we solve directly the GLE with a concrete,
specifically prescribed stochastic force and show that in that S(s)=
case the velocity variance can diverge.

ni(s)” 9
wherem(s) is obtained from Eq(23). The distributionS(s)
[ll. GENERATION OF THE STOCHASTIC FORCE decays very slowly with increasirggand the fastest rate one

For that | tochasti led “thcan obtain isS(s)~s~?, in the limit of long paths.
or that purpose we apply a stochastic process calle € The KP can be formulated also for higher dimensional

kangaroo process’(KP). It is defined[30] as a stepwise systems. In two dimensions we h [m,.m,]. Assum-

random functionm(t): m(t)=m; in the time interval ing in addition that the norm of the process is constant and

:iSKt”l' ]:I'.he Igngt?_ of intervals OI cor;stamf, tlﬁe” tr|1e equal one|m| =1, the coordinates,= cos ¢ andm,=sin ¢
requency of jumping times(m), is a function of the value and the frequency are expressed in terms of a single ran-

of the process itself. The KP is a stationary Markov ProCeSSyom angle. Denoting the probability distribution of this pro-

The probability that the KP at timat is betweenm and ins for th ; f the KP:
m+dm, knowing that it was equah’ at timet=0, is given cess byPq(4), one obtains for the covariance of the KP:

for infinitesimal time intervalg\t by

14

~ o d

F(t)=f P¢(¢)d—¢exp(—v|t|)dv. (25

Pyp(m,Atlm’,0)={1— »(m’)At}S(m—m’) © v
+Q(m)p(m’)At. (19) The prot’)flbility distributionP4(¢) must be an even func-

tion. ForI'(t) =14 the frequency becomes

The first term on the rhs of E@19) is the probability that no s

jump occurred in the time interval (Qt). The term V(¢>)=J Po(¢')do’ (26)

v(m’)At is the probability that one jump occurred. Immedi- 0

ately after such a jump, the probability densitynabecomes

Q(m). The Focker-Planck equation for the KP re§8g,3]  and the free path distributid®(s) appears to be independent
of Pg(¢#) and takes the simple form

J . A _
- P(m)= lim U Pkp(m,Atjm’,0)P(m’,t)dm’ S(s)~s™ 2. 27
At—0
At=0 According to Eq.(26), the free path becomes infinite for
. ¢$=0.
- P(m,t)](At)‘l The KP can be also applied to generate a stochastic pro-
cess with another kind of autocorrelation function, in particu-
=—v(m)P(m,t)+Q(m) lar an arbitrary algebraic covarianEét) ~ [t| ~Y*(x>0). In
two dimensions, the frequenayof that process becomes
xf p(m")P(m’,tydm’. (20) .

: (28)

¢
v=( fo Pop(¢')de’
The stationary probability densi®(m) of m(t) is related to
Q(m) by implying the free path distributio(s)~s~ ("), Techni-
cally, one can then generate the stochastic process with co-
variance(10) in the following way: (i) Choose a random
number ¢, uniformly distributed in the interva(0,1); (ii)

y(mP(M)  w(m)P(m)
Tv(m)PmOdm’ ~ — (»)

Q(m)= (21)
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FIG. 3. A particle trajectory in the velocitffeft side and in the
—400 5 1'0 1'5 20 configuration(right side spaces foe=10"2 andT=1. The particle
t mass ism=1. Both pictures correspond to the time interval

te(0,20. The initial conditions are given by E¢30).
FIG. 2. The running suns:(t)==;F;, whereF;=F(t’) in the
time intervalt’,<t’<t’;, ,, are subsequent constant values of onethe same sequence of long and short intervals. This magni-
component of the stochastic force generated by the two-dimensionéication procedure has its limit at the interval scale
KP ande=0.01. Since a term is added to the sum only when the We solve now Eq(3) with V(r)=0 and the initial con-
force assumes a new valu§; remains constant between subse- ditions:

quent changes of the force change. The sum comprises 300 terms
for t=20. v(0)=r(0)=0. (30

_ _ . . Since the kerneK(t— 7) depends only on time differences,
calculate m,=a cos¢/e and m, = Ja sin ¢l\e (i) the equation can be solved using the Laplace transform tech-

choose signs ofn, andm,, independently and with equal jqe[33]. We have found the following solution, valid un-

probability; (iv) Determine the time intervalt= e/ ¢» within der the assumption thatt) does not chanae substantiall
which the process keeps the valug,(m,). The described | i the inter\F/)aI of Siidé:) 9 y

procedure assumes a uniform probabilRy(¢) and does
not care about the angular distributions. In fact, this particu- t
lar process is nonisotropic. If a physical problem imposes v(t):g(t)+f R(t—7)g(7)d7 (3D
specific requirements concerning angular symmetry, the al- 0
gorithm can easily be modifig82]. and
The covariance does not determine a stochastic process
completely and some properties of GLE solutions, with the t
KP as the stochastic force, must be sensitive to higher-order r(t)=h(t)+ fo R(t—7)h(7)dr, (32
autocorrelations. However, the VAF and the transport prop-
erties implied by it, depend only on the covariar@e. where

IV. THE NUMERICAL RESULTS FOR  V(r)=0 g(t)=m‘1ft|:(r)dr,
0

The two-dimensional KP described in Sec. Il will serve (33
to realize the stochastic force in the generalized Langevin t
problem. Thus we have h(t)=f g(7)dr.
0

F(t)=m(t). (29 The resolventR(t) is given as the inverted Laplace trans-

. ) . o form of the following function:
The autocorrelation function of this force is given by Eq.

(10). The average is taken over a statistical ensemble, which ~ a[Ei(—es)—1]

is defined by the uniform probability density distribution R(S)= Tt a[1=Ei(—es)]" (34)
Ps(¢). The parametet has a simple interpretation, namely,

it is equal to the shortest time step within which the force isOne can easily check th&(t) is related to the time deriva-

constant. tive of the functiony (15):

The force (29) is an integrable function. Obviously, it
fulfills the condition(4). The most distinctive feature &¥(t)
is the presence of long periods of time when its value re- R(t)= &X(t) (t>0). (35
mains constant. Those intervals are interwoven with regions
of rapid change as can be seen in Fig. 2, which shows th&he functiongy(t) andh(t) are continuous and single valued
running sum of one component of the stochastic force as #or all t=0. Thus the integrals in Eq$31) and (32) can be
function of time. Due to the scale invariance of the free pathunderstood in a standard Riemannian sense. Figure 3 shows
distributionS(s), the plot is self-similar, i.e., a magnification an exemplary trajectory in both the velocity space and the
of any of its part including rapid variations, gives statistically configuration space. The intermittent structure of long and
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FIG. 6. The velocity autocorrelation functid®(t) = {v(to)v(t))
FIG. 4. The variance of the velocity distributigu?) as a func-  Whereto=3, for e=10"? and T=1.

tion of time fore=10"2 andT=1.

distribution ofv2. It broadens with time and the shape of the
short intervals of noise variations is visible here also, exhipdistribution indicates the presence of long flights in the form
iting a picture typical for Ley walks [34]. The plotted tra- ofa per_alk that becomes dn‘fusgd at Iong_er times. On the right
jectories, especially (t), are relatively smooth functions, Nand side of the peak, at high energies, another structure
Despite the fact that the driving force assumes both positivd®Velops, which results from the gradual equilibrization.
and negative values with equal probability, the trajectoryTh'S structure tends asymptotically to the Maxwellian distri-

r(t) departs continuously from the origin and the reflectionPution- _
symmetry is apparently broken. Similarly, one can obtain from EQq(31) the VAF

Using Eq.(31), we can calculate directly the second mo- (v(to)v(t)>. Figure 6 presents the result of numerical calcu-
ment of the velocity distribution(v2)(t). The averaging is lation fort0=3_. The cho_sen. set of parameters corresponds to
performed according to the procedure explained in Sec. I11the case thatis shown in Fig. 1 by the solid line. The present
i.e., over a statistical ensemble constructed by a unifornieSult does not exhibit any negative tail. The VAF falls rap-
sampling of the noise directions. We have calculated tra- idly for t close. t'oto, similarly as in Fig. 1,_ but then oscnlatfas
jectories in the velocity space up to a given tipaccording ~ &round a stabilized valu@., = 0.33. Knowing the asymptotic
to Eq. (31) and with the initial conditiong30). Then the Pehavior of C(t) one can assess the rate of diffusion by
average of(vz)(t) has been taken. Figure 4 presents the reMeans of Eq(17). In contrast to the rg\sults o;‘ Sec. Il, the
sults for e=10"2 and T=1. Clearly, the velocity variance diffusion appears strongly enhance@”)=_C.t", and the
does not reach equilibrium. It stabilizes for a while but thendiffusion coefficient grows linearly with time, as for the bal-
grows again. The second moment is thus divergent as orliStic motion. This outcome can be confirmed by direct
could expect for Ley flights[2] and the parametdf can no ~ €valuation of the mean squared displacengefy, using Eq.
longer be identified with the temperature. The entire velocity(32): We have indeed found the quadratic time dependence

2 .
distribution does expand with time. Figure 5 presents thdo" (r*), as Fig. 7 shows. Moreover, the parabola parameter
approximately equal€., .

The rapid, ballistic diffusion rate results from the exis-

10-t 5 tence of long periods of constant noise values and is related
20 T T T T
10-2 ¢ :
~~ L ]
o 15
z —_
A N
A
10-3¢ . @ 10
3 v
5
10-4 ‘ —
0 5 10 15

2
v 0

FIG. 5. The time evolution of the distributio®(v?) for
€=10"2 andT=1. The curves correspond to the following times:
t=5 (solid line), t=20 (dotg, andt=50 (triangles. All distribu- FIG. 7. The mean square displacemg@n} as a function of time
tions are normalized to unity. for e=10 2 andT=1.
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0 300 600 900 0 10 20 30 40 50
E t
FIG. 8. The energy distribution of particles escaping from the ~FIG. 9. The number of trajectories that do not escape from the
harmonic oscillator potential welB6), which is cut ajr|=rg. The  Potential well(36) up to the timet (the survival probability. The

parameter values ard =100, e=102 m=1, rg=50, and Parameters are the same as in Fig. 8.
w=0.032. The statistical ensemble consist of 50 000 trajectories.

The distribution is normalized to unity. potential well. Let us assume that the particle rests initially at
the bottom of the wel(36) and its motion is governed by Eq.
(3). The stochastic force(t) accelerates the particle, which
r?nay eventually reach the top of the well|at=rg. At this

. SN ; time, all interactions, the potential, the stochastic force, and
displacement(r®)~t/In t._However, such time dependence the friction, are switched off and the particle escapes freely.
cannot b.e ex_cluded also in our case because the IOg‘fmth”’*'lcnus we shall study the generalized Langevin problem with
moq|f|cat|on IS yveak and may easily be overlooked in NU-an absorbing barrier. Physically, one can model in this way
merical calculations. the evaporation process. A quantity of interest, accessible

A similar observation has been made in the recent stud)é : . tping -
e i xperimentally, is the distribution of total energy of escaping
of diffusion in the Knudsen g485], where for a large vari- particles,P(E). In order to derive this distribution from the

ety of _the algebraic chord Ien_gth _dist_rik)utions running atGLE, one should know the velocity ft|=rg. Technically,
?(;?neinitségngeih;hga'ﬁgl:igsgnng':gs'on is aryevalk that Is the particle positiorr(t) has been calculated from ER2).

y ynamics. The inverse of this function dt|=rg determines the time
when the barrier is reached. In turn, E§L) for t=t(rg)
gives the velocityvg at the barrier. The final, asymptotic
energy isE= wr3/2+ mvg?/2.

So far we have discussed the motion of a particle sub- The energy distribution of escaping particles is shown in
jected only to the stochastic force and retarded friction. NowFig. 8. The parameter§ =100, e=10"2, m=1, rg=>50,

to statistics of the free paths. Zumofen and Klafiér have
shown, studying a simple map, that the free path distributio
(27) implies a slightly slower growth of the mean square

V. THE BROWNIAN OSCILLATOR—THE ESCAPE
FROM THE POTENTIAL WELL

we add the harmonic oscillator potential: and »=0.032, have been chosen to allow comparison with
solutions of the ordinary Langevin equatidd) [11,32.
V(r)=wr?/2 (36)  Those results, obtained from E@.), have two characteristic

) ) _ features:(i) the peak at relatively low energies afid) the
and solve the GLE3) with the noise correlationél0) and  Gaussian tail. The peak may be interpreted as a manifesta-
the initial conditiong(30). Applying the same procedure as in tion of long free paths and attributed to particles escaping
Sec. IV, we find the solution also in the forf81) and(32.  due to long-time action of a constant stochastic force, i.e.,
The Laplace transform of the resolvent is now given by  wjthout any randomization. The Gaussian tail, in turn, results
N o[ Ei( — es)— 1]/mT— /s from particles subjected to only a limited number of noise

R(s)= : _ (37)  Variations, which is not enough to attain the equilibrium
sta[l1-Ei(—es)]/mT+w/s state. The GLE produces a similar pgakown in Fig. 8 but

- its form is more diffused and dominates the entire spectrum.

The resolvent itselfR(t)= L '[R(s)], becomes The right flank falls very slowly, like a power law, and then
. bends down, reflecting the similar trend for the potential-free

R(t)=e"?(c, sinbt+c, cosbt)+mT/ « case(see Fig. 5

w0 xe dx Figure 9 s_hows the survival probabi!ity for particles inside

jo [Tt Eir(ex) — 1+ mTalax2T 72 the wall, defined as a number of particles that yet have not
1

left the well at a timet. This probability is exponential, in
(38)  sharp contrast with the standard Langevin equation, always
predicting the tail 1/ [36].
An important application of the above formalism is a  One could argue that the outcome concerning energy dis-
study of the particle escape from a spherically symmetridributions must be of minor physical significance if the sys-
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1500 ' ' ' (v?) diverges with time. Also the energy distribution broad-
ens constantly. It consists of two parts: a peak, connected
with long paths of Brownian particle subjected to a constant
acceleration, and the Maxwellian tail. The divergent mo-
ments are characteristic of \g flights. Numerically simu-
lated trajectories, both in the velocity space and in the con-
figurational space, are typical for the intermittent structure of
Levy flights: long regular segments are separated by points
of rapid direction change and outbursts of irregular motion.
In this way, solutions of the GLE reflect properties of the KP
that can go through very long paths: the free path’s distribu-
0 . . . tion for KP falls off like 162, Despite irregularities, trajec-
0 50 100 150 200 tories in the configurational space are relatively smooth, hav-
t ing a continuous first derivative.
FIG. 10. The variance of the velocity distributigiv?) as a Itis p“’?ab'y us_eful at th_is moment to mention th_at the
function of time for a particle in the harmonic oscillator potential Knudsen diffusion in three-dimensions for the algebraic pore

(36). The solid line corresponds f6=100 and the dashed line to chord distributiong(r)~1/r“* and 1I<u*<2 is the Lay
T=50. The other parameters are the same as in Fig. 8. The avewalk dominated by the ballistic dynamics, similarly as found
ages were taken over 5000 trajectories for each point. in this work. This is an important analogy in view of the
significance of the Knudsen gas concept for a phenomeno-
tem does not possess a stable velocity distribution and thiegical description of the nuclear one-body dissipafigd],
average energy diverges with the time. However, it is not thavhich is a dominant dissipation mechanism at low excitation
case in the highF limit. For large values off, Fig. 10 pre- energies. Hence, the GLE with the correlated stochastic force
sents the time dependence of the velocity variance of gould be a microscopic generalization of the phenomenologi-
Brownian particle subjected to the harmonic oscillator force cally successful nuclear one-body dissipation mechanism.
without absorbing barrier. Nov?)(t) reaches a stationary Usually, the memory kernel is taken as proportional to the
value. Moreover, this stationary value is proportional to thenoise autocorrelation function in order to satisfy the
parameteiT, which, in turn, can now be identified with the dissipation-fluctuation theorem. In general, this assumption
temperature of the equilibrium state. Thus in the high- is not sufficient for that purpose because the equilibrium
limit, the dissipation-fluctuation theore(8) holds. state is not reached and, hence, the temperature is not deter-
mined. However, as we have shown in the case of the har-
monic oscillator potential, the equilibrium state is restored in
VI. SUMMARY AND CONCLUSIONS the highT limit. This conclusion has important conse-

The Langevin equation with strongly correlated stochasti¢luences for possible applications because the divergent mo-
force reveals phenomena unknown to the standard Browniafents are usually nonphysical. Indeed, it is so, e.g., for the
motion theory, which assumes either white or colofexpo- evaporation process. We have modeled this process assum-
nentia) noise. Proper handling of the friction force leads toing the potential well in the form of the harmonic oscillator
the generalized, integro-differential equation, including theand looking for the solution of a problem with the absorbing
memory kernel. In the present paper we have solved thigarrier. The shape of the energy distribution of the escaping
equation assuming the noise autocorrelation function wittParticles is dominated by a wide peak with slowly falling
the tail, which is proportional to 1/ Usually, one postulates fight flank. A more rapid fall shows up only at very high
that the Brownian particle, described by the GLE, is in equi-€nergies and corresponds to a very small probability.
librium with a heat bath of given temperature. Then its ve- The comparison of results of the present paper with Ref.
locity and position probability distributions are stationary [11] allows one to assess the influence of memory effects on
and stable with finite moments and the velocity autocorrelacalculated quantities. There are some similarities, e.g., the
tion function can be easily derived. In the case of the 1/Velocity (energy spectra for both approaches possess the
noise correlations, the VAF has the algebraic tail and is #€ak attributed to long intervals of constant value of the
negative value for largé. Nevertheless, the integral of the stochastic force. However, its shape is different: the tail of
VAP, i.e., the diffusion coefficient, is finite and the GLE the energy distribution of particles escaping from the poten-
does not predict any kind of anomalous diffusion. Thus thdial well for the Markovian, memory-free case is Gaussian,
transport properties of the system, as determined by thidependently of the noise generator uf&d|. The survival
VAF, do not differ substantially from those for rapidly fall- Probability also changes. Introducing the retarded friction
ing noise correlations. changes its shape from the algebraic one, proportionatto 1/

On the other hand, one can directly calculate the VAF andnto the exponential one. This modification of the survival
the diffusion rate by simulating the stochastic force numeri-Probability tail brings about a qualitative change: the average
cally. For that purpose, the kangaroo process has been afmme the particle spends inside the welk- [jtN(t)dt, be-
plied. The tail of the VAF oscillates now around a constant,comes finite. Last but not least, in contrast to the results
finite value, rendering the diffusion rate ballistic, i.e., obtained using the GLE, the memory-free Langevin equation
(r?y~t2. This system is unable to reach any equilibriumalways implies the full equilibration though not in accor-
state because the second moment of the velocity distributiodance with the fluctuation-dissipation theorem.

1000 ]

<v2>(t)

50O 7T 1
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The regularization of the force autocorrelation functionto the imaginary axis, positioned at any positireand the

1k neart=0, in the form(10), is necessary to avoid a sin- large half-circle in the left half plane. The plane is cut along

gularity that would result in a trivial solutiom(t)=0 if ¢ = the negative real axis. The integral over the half circle van-

—0. What is then the meaning and importance of the paramishes from the Jordan lemma fort>0. Thus

eter e? Numerical results are not very sensitive on it siace we have (1/27i)f.= (1/2mi) [259 + (1127i)(J°10,
enters formulas only logarithmically. Figure 1 can serve as- [0, y=C(t)— =S whereS denotes the sum over resi-

an illustration. The parameterinfluences the rate of change dues. The integrand possesses two conjugate simple poles at
of the noise, namely, the smallest time step of the nOiSQLZ:—ai bi (a>0). The singular points can easily be
variation is juste. As we have mentioned in the Introduction, found numerically using the following expansion:

the stochastic force with the covariance proportional to 1/

can be generated also by means of a non-Markovian, deter- o

ministic system—the periodic Lorentz gas, equivalent to the Ei(z)=y+In(—2)+ >, z"/n!n. (A1)
generalized Sinai billiard. The Lorentz gas applies as a use- n=1

ful model of physical processes, e.g., in hydrodynamics. Ac-

cording to that pictures corresponds to the smallest path the After some algebra, we obtain

particle can experience between subsequent collisions with

scatterers and depends on the geometry of billiard. Conse- exp(zyt)
guently, the practical choice of a value efor a particular S=T%« ! +c.c.
_ g : . T/ a+e—1/z,+O(€?)
physical problem should stem from origin and interpretation mila-e 1 €
of the stochastic force. =e (¢, sinbt+c, cosbt), (A2)
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APPENDIX . - .
To calculate the sum of integralswe utilize the following

This appendix is devoted to the derivation of intedf). property of the integral exponent: Eifi0)=Ei;(X) =+ i
We choose the contout comprising a straight line parallel (x>0). Combining the results f&8 andl, we get Eq.(14).
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