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Stochastic model for a vortex depinning in random media
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We present a self-organized stochastic model for the dynamics of a single flux line in random media. The
dynamics of the flux line in the longitudinal and the transverse direction to average velocity direction are
coupled to each other. The roughness exponents of the flux line are measured for each direction, which are
«~0.63 for the longitudinal and, ~0.5 for the transverse direction, respectively. The dynamic exponents
are obtained ag~1 for both directions. We also examine the avalanche size distribution, which exhibits a
power-law behavior with the exponent consistent with the one for the Sneppen modellidlithensions.
[S1063-651%98)11703-9

PACS numbe(s): 05.40:+j, 68.35.Fx, 64.60.Ht

In the past few years, there has been an explosion of The continuum equation for the dynamics of interfaces in
studies in the field of dynamics of fluctuating interfaces duerandom media may be written simply B4
to theoretical interests in the classification of universality for
stochastic models and also due to applications to various ah(x,t)
physical phenomena such as crystal growth, vapor deposi- ot
tion, electroplating, biological growth, etc. A number of dis-
crete models and continuum equations for interface dynamwhere h(x,t) is the height of the interface at positionat
ics have been introduced and stud{dd-3]. An interesting time t. The first term on the right-hand side is from the
feature of nonequilibrium interface dynamics is the non-smoothening effect of surface tension, the second term the
trivial dynamic scaling behavidd] of the interface fluctua- uniform driving force, and the third a random force with
tion width, i.e., short range correlations, satisfyingn(x,h))=0 and
(mp(x,h) p(x',h"))=2DS(x—x")8(h—h’)  with  noise
1 1/2 strength D. The above equation, called the quenched
_| = _hiv12) g a z Edwards-Wilkinson(QEW) equation, would be relevant to
WIL.1) <Ld'2 [h(x.)—h(D)] LEFULY, @) the dynamics of the domain wall in random magnetic sys-
tems. More generally, recently a new continuum equation
) ) ) ) was introduced[11], which includes a nonlinear term
whereh(x,t) is the height of sitex on the substrate at tinte (M2)(Vh)? induced from the anisotropic property of the

h, L, andd’ denote the mean height, system size, and subpinning strength. Thus the equation is replaced by
strate dimension, respectively. The angular brackets stand for

=vV2h+F+ 5(x,h), 2

statistical average. The scaling function behavesf @9 dh(x,t) o A )

—const forx>1, andf(x)~x? for x<1 with z=a/8. The YVt S (V) +F+5(x.h), 3
exponentsy, B8, andz are called the roughness, the growth,

and the dynamic exponents, respectively. which is called the quenched Kardar-Parisi-ZhakP2)

Recently the problem of the pinning-depinni®D) tran-  equation. The QKPZ equation leads to a different universal-
sition of interfaces in random media has also attracted intefity class from the QEW equation. Recently several stochastic
est in association with the dynamics of fluctuating interfacesnodels in the QKPZ universality class have been introduced
in random media. Examples include the dynamiCS of doma”l]lo,la From the models, it has been natura”y concluded
boundaries of random Ising spin systems after beinghat the surface at the threshold of the PD transifigrcan
quenched below the critical temperatiifd, wetting immis-  pe described by the directed percolati@P) cluster spanned
cible displacement of one fluid by another in a porous meperpendicularly to the surface growth direction in-1 di-
dium [6,7], pinning flux lines in type-Il superconductors mensions. The roughness exponentof the interface is
[8,9], fluid imbibition in paper{10], etc. In the problem of  given as the ratio of the correlation length exponentsand
the PD transition, the interface is pinned when external driv-,,| of the DP cluster in the transverse and the longitudinal
ing forceF is weaker than pinning strength induced by ran-gjrection that isa= v, lv=0.63.
dom media, while it moves with a certain velocitywhen The dynamics of a single flux line in a type-Il supercon-
the forceF is greater than the pinning strength. Thus theregyctor with random impurities can also be understood in a
exists a threshold of external applied forfég across which  similar manner used in the dynamics of surface growth. The
the PD transition occurs. The role of the order parameter ignain difference between them lies in that the flux line is a
played by the mean velocityg:<2Xah(x,t)/&t>/Ld'. Ac-  one-dimensional chain embedded in three dimensions rather
cordingly, the velocity is zero foF <F., and increases for than in two dimensions. Thus the roughness of the flux line
F>F. asv~(F—F.)’ where the exponent is called the is quantified in two different directions, the longitudinal and
velocity exponent. the transverse to average velocity direction. Recently the
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X successively to next neighboring beads to conserve the sepa-
ration between nearest neighboring beads. Finally, the ran-
dom numbers at the newly updated sites are replaced by new
ones in bothy and z directions. Thus it is possible that a
random number at a certain site in one direction can be re-
placed without changing its position when the position in the

D) other direction is updated. The dynamic rule we used is simi-
lar to the Sneppen dynamic rUl&3] but the updating occurs
in two different directions. Accordingly, we call our model

) the vector Sneppen model hereafter.

Z It would be interesting to derive the continuum equation
for the vector Sneppen model. The derivation of the con-
tinuum equation is based on the coarse-grained description

y rather than through the stochastic approach using the master
equation. In fact, our derivation follows that used by Ertas

FIG. 1. The initial flat configuration of the discrete version of and Kardar in Ref[9] but the external driving force is not
elastic string. Each bead has two-component noises representiggven via external current. The equation of motion is ob-
random pinning forces in thg andz directions. tained by balancing the conservative and dynamical forces

affected on the flux line. The conservative force consists of

continuum equations for the flux line dynamics in each di-the elastic force, driving force, and random force due to im-

rections were derived by Ertas and Kard&r9], which are  purities. The dynamical force is proportional to the local ve-

coupled to each other and look very complicated in generalocity of the flux line in the normal direction. Let the position

They obtained the roughness and the dynamic exponents fof flux line at substrate positiox and timet in three-

various cases of the coupled equations; however, there stilimensional space be denoted Bgx,t). In order to specify

remain several cases where the roughness and dynamic ele normal velocity for the flux line, one first defines local
ponents are not determined yet. In this paper, we will introtangent vector,

duce a simple self-organized stochastic model, which might

be relevant to the dynamics of the flux line. The numerical 1

results we obtain from the stochastic model might make up t=—=0R, (4)
for the list of the roughness and the dynamic exponents in \/6

Ref. [9].

The stochastic model we introduce in this paper is defined?hereg is the metric. Then one defines a projection opera-

as follows. First, we consider a body centered cuticy O

lattice, in which an elastic string runs along thdirection as .

shown in Fig. 1. The discrete version of the elastic string is Pij= 6 —tit;. 6)
composed of -massless beadblack dotg, which locate at ) . ) o
nearest neighboring sites of one another and are connect&ting the above two quantities, one can write the velocity in
through strings. The zigzag-type configuration as shown ithe normal direction as

Fig. 1 is regarded as an initial flat configuration. The total . . o

length of the string is equal t§3aL/2, wherea is the unit va=P-R=R—(R-1)t, (6)
lattice constant of the bcc lattice ahds the total number of

beads in the system. The elastic string does not run backwattthere P={7P;;} is the projector operator. The conservative
to thex direction, so thaty,z) positions of the bead for each force acting in the normal direction is given as

x are specified by single values. Each bead is allowed to R o

update only in either the positive or positive z direction Fo=P-{02R+F+f}, @)
according to the following rule. First, two random numbers

are assigned on each bead, one of which is for the positive where the first term on the right-hand side is from the elastic
direction and the other is for the positizedirection. The force of the flux line, the second term is the uniform driving
random numbers for the direction are uniformly distributed force, and the third is a random force with short range cor-
between[0,p] wherep=<1 and the ones for the direction  relation. Then the equation of motion can be obtained by
are in[0,1]. Next, a minimum random number is selectedbalancing Eq(6) and Eq.(7) as

among the 2 random numbers of the entire system, through

which we determine the position and the direction of bead to 7P-0R=F,, (8)
move. Then the bead having the minimum random number is

updated by shifting its position by the lattice constant \here 7 is viscosity. Next{X,e;,€,} is taken as the basis
along_the direction choser_l. Next, the avalanche process Q/fector of the coordinate system, Whér‘pis selected as the
u_pdatmg may occur on ne|ghbor|ng beads when the SePa action of average velocity that is parallel to applying
tion between the nearest neighboring beads along the strlnt% . . - o7
becomes larger thag3a/2. In that case, the nearest neigh- 10'c&- Then the flux line is represented &x,t)=xx
boring bead is also shifted by a lattice constant along thef |(X,t)gj+r (x,t)e,, and the metric is given ag=1
direction already selected. The avalanche rule is then appliee}(axru)zwt(axu)z. Obviously F=Feg, and the random
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eforce is represented &s- f,x+ fg+f, e, . Then the equa- 17 - . - - - -
tions of motion for the flux line ir andr, directions be- 16
come 5k
J A A "t
noir 1 11 -~ ~
—”26X2I’||+—HS”2+—SJ_2+F+fH, 9 U_| B
2 2 2 Z
\/1+SH - 12 |
O
= 1" F
NI | _ - 10|
——=02r, +1,, (10
Vi1+s,?2 or
8§ ki |
wheres=d,r, s, =d,r, , and the random forces are 7 ' ' ' ' ' '
0 1 2 3 4 5 6 7
~ (=5t ,
7= [ HZ’ (11) In x
V1+s FIG. 2. Plot ofC (C,) vs x for p=1 in double logarithmic
scales. The simulations were performed for system kiz€2048.
(f,—s,fy) The lines obtained from the least square fits have the slopes 1.26
fl=——. (12)  (top) and 1.00.
Vi1+s,?
— 1 _
The remaining parameters are given by=—F and Ay, C.(ta—ty)= [2 (ri(X,tz) = ro(ta) —r (Xty)
X

=2F, which are nonzero foF#0. Note that Eq.(10) is

invariant under , — —r, . According to the presence of the _ 1z

nonlinear term, X;/2)sf in Eq. (9), the dynamics of the + rJ_(tl))2> : (19
longitudinal direction is expected to belong to the quenched

KPZ universality class, while for the transverse direction, thgeret, is taken as a time in steady state. The correlation
dynamics would be in a new universality class. This is be—]c . beh B (ot Bl and®. — (ta— )5 Nu-
cause Eq(10) does not include external force, but is affected unctions behave &5 (tz—ty)" andC, ~(t,—t,)™. Nu
by the longitudinal dynamics through the random noise, Sd'nencal simulations were performed for the casegpefl
that the quenched Edwards-Wilkinson universality is ex_andp=1/2.

cluded. Equationg9) and(10) would be a special case of the For p=d1, tEe roughnehss exponents arﬁ measurr]eduas
equations presented by Ertas and Kardar in F8f. ~0.63 anda, ~0.50 as shown in Fig. 2. The growth expo-

nents are measured @~0.64 andB, ~0.53 as shown in
Fig. 3. From the numerical results, the dynamic exponents
— 2
N = RapF pT Kapdu g+ Kapdi T are obtained ag~0.99 andz, ~0.95, which suggest that
XN IxT g 4t T, (13 the true dynamic exponents azg=z, =1. This result may
be attributed to the fact that the coherent effect propagates
along the string and the chemical distance between any two

a,By

wherea and 8 denote eithef| or L.
In order to obtain the roughness exponents for each direc-

tion, we consider the spatial correlation functid®sandC

after saturation,

1 1/2
C(X,t)=<EE [r(x+x1,t)—r(x1,t)]2> : —_Zr 1
X1 ld
1 12 &) °l ]
CJ_(X1t):<EX2 [rL(X+X11t)_rL(Xlut)]2> , (14 £ 2 -

which behave a€(x) ~x“l andC, (x) ~x“-. Next, in order
to obtain the growth exponents, we consider the temporal 6 . ! .

correlation function€; andC, , 0 8 10 1 2
Int
~ 1 — — o~
Cita—ty)= E; [r(X,t2) = ry(ta) = ry(x,ty) FIG. 3. Plot ofC; (C,) vs time forp=1 in double logarithmic
scales. The simulations were performed for system kiz€2048.

_ 12 The lines obtained from the least square fits have the slopes 1.27
+r(t)1?) (top) and 1.05.
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FIG. 4. Plot ofC; (C,) vs x for p=1/2 in double logarithmic
scales. The simulations were performed for system kiz&2048.
The lines obtained from the least square fits have the slopes 1'2(9

(top) and 1.08.

FIG. 6. Snapshots of a flux line for different timés in they
rection and(b) in the z direction forp=1.0. The thicker curves
are for 5 Monte Carlo steps later.

oints on the string remains invariant under the restricted .
golid—on—solid condition14]. Next, for p=1/2, the spatial confirmed by the fact that Eq¢9) and (10) do not include

correlation functions for each direction are less distinctive®"Y factor depending on the angle between average velocity

than the case op=1 as shown in Fig. 4. The roughness direction and they direction. The numerical values of the

exponents were obtained ag~0.60 and.a .~O 54. Eor the roughness and dynamic exponents for the longitudinal direc-
Sl . LN . . . - ~ .

growth exponents, it is likely that the time correlation func- tion aUNO'GS andy, 1.sugges'g th?‘t the d_ynam|.cs belongs to

= o o . the directed percolation depinning universality cladse

tion C in the longitudinal direction exhibits a power-law

KPZ universality clagsin 1+1 directions. On the other
behavior against time wit|g~0.64. However, for the trans- Q y class

direct he data d hibi ol : hand, for the transverse direction, the numerical values
verse direction, the data do not exhibit a simple power-law_ g andz, ~1 leads to a new universality.

type behavior, rather they show a crossover behavior from Next, let us consider the properties of self-organized criti-

B.~0.50 108, <0.50 in Fig. 5. One may see the crossoverca"ty [16] for the vector Sneppen model. As the case of the

as a long transient behavior. From the numerical results, it Briginal Sneppen model, the dynamics of the vector Sneppen
suggested that the roughness exponentsagre0.63 and 1 oqe| evolves through the process of the coherent activity
@, =0.5, and the dynamic exponents @je-z, =1 for the  afier 5 transient period. The coherent activity means newly
values of 6<p=1. Note that wherp=0, the dynamics in \5qatings are much more likely to occur among the sites

the transverse direction does not occur, and the model rgjngated their random numbers. Through the avalanche pro-
duces to the ordinary Sneppen model. Accordingly, the nu-

merical results indicate that the roughness and dynamic ex-

ponents are independent @f. This point can also be (a) (b)
2000 2000
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FIG. 5. Plot of’(f” (C,) vs time forp=1/2 in double logarith- FIG. 7. Snapshots of a flux line for different timés in they

mic scales. The simulations were performed for system kize direction and(b) in the z direction forp=0.5. The thicker data are
=2048. The lines have the slopes 128p) and 1.00. for 5 Monte Carlo steps later.
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FIG. 10. Plot of the avalanche size distribution for 1.0. The

FIG. 8. Snapshots of a flux line for different timés) in the  symbol[J means the data of the direction, x of thez direction,
longitudinal direction and(b) in the transverse direction fop and + of the total. The data are accumulated over 150 configura-
=1.0. The thicker data are for 5 Monte Carlo steps later. tions. The dotted line with the slope 1.26 was drawn to guide the

eyes.

cess, the active zones extend the boundary with increasing i .
time. Figures 6 and 7, the snapshots of the flux lines, illusdirection are aimost the same. We plot the snapshots in the
trate this feature. The areas of the active zones irytardz longitudinal and transverse directions in Figs. 8 and 9. In the
directions are almost the same for= 1, while the area in the longitudinal direction, the active zone is localized, and the
y direction is much larger than the one of thelirection for ~ dynamics through the associated prodess18 can be ob-
p=0.5. That is because minimum random numbers are mor¥iously seen, while for the transverse direction, it is not ob-
likely to be selected in thg direction, and updating occurs ViOUS that the dyn.amlcs evqlves through the assocu'_:lted pro-
much more frequently in thg direction. However, the linear C€SS: and _the active zone is not localized. From this sense,
sizes of the active zones in tiyeandz directions are almost e dynamics of the vector Sneppen model in the transverse
same, which implies that the self-organized critical phenomgwectlon is different from the one for the anisotropic model
enon occurs coherently in both directions. Note that the ranProposed by Maslov and Zhafg5] where the active zone is
dom number at a certain site in one direction can changtPc@lized and propagates anisotropically, but the values of
without its position when the position in the other direction '€ roughness and dynamic exponents are the same by acci-
is updated. In other words, the activity of updating or ava-dent for the two cases, the vector Sneppen model and the

lanches in one direction affects the activity in the other gj-anisotropic KPZ rr]nodel.l he size distribution for th
rection, which is the characteristics of the vector Sneppen We examine the avalanche size distribution for the vector

model. Therefore the linear sizes of the active zone in eacit"€PPeN model. The avalanche size is defined as the number

0 T T T T T T T

(@)
2000 2000 2 g 4
1800 1800
—~  4r 7
1600 1600 W
e’
1400 1400 A 5L J
1200 1200 E
> rys i
1000 1000
800 800 1ol i
600 600
_12 1 1 1 1 1 1 1
400 400 0 1 2 3 4 5 6 7 8
200 200
0 0 Ins
I'||(X) Ij_(X) FIG. 11. Plot of the avalanche size distribution for0.5. The

symbol 0 means the data of the direction, x of thez direction,
FIG. 9. Snapshots of a flux line for different timés in the and + of the total. The data are accumulated over 200 configura-
longitudinal direction and(b) in the transverse direction fop tions. The dotted line with the slope 1.26 was drawn to guide the
=0.5. The thicker data are for 5 Monte Carlo steps later. eyes.
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of sites that update their positions through the so-called asare close to 1.26, which is the value of the exponefar the
sociated processl6—18. Since updatings occur ip andz  avalanche size distribution for the ordinary Sneppen model
directions, the associated process is counted in three differeit 1+1 dimensions.

ways, the processes in each directions separately and the oneln summary, we have introduced the vector Sneppen
in both the directions together. Minimum random numbersmodel associated with the dynamics of the flux line in
are also traced in three different ways. Accordingly, the avaguenched media at the depinning threshold. The roughness
lanche size, which is the number of sites that update theigng dynamic exponents are obtained in the longitudinal and
pqs@tions during the interva_l of two succes_sive incr?asmglransverse directions, which arg~0.63 a, ~0.5, andz
minimum random numbers, is also counted in three different_ z,~1. We have also investigated the avalanche size dis-

ways. All the avalanche size distributions exhibit IOOV\":Jr'lawtributions where the avalanche sizes are counted in three dif-

behavior P(s)~s" " with the three exponents=ry, 7 o ont\wavs such that theandz directions update separately
=r71,, andr= 7, in they direction, thez direction, and in .
L . . and together. It was obtained that the exponentsr the
both directions, respectively. The power-law behavior ap- ) Lo .
X avalanche size distribution for the three cases are consistent
pears much more clearly for the region of small avalanche . . )
) S . . with the one for thg1+1)-dimensional Sneppen model.
sizes in Figs. 10 and 11. For large size region, the data are
scattered, which reflects that large sized avalanches occur This work was supported in part by the Non-Directional
frequently. The occurrence of large sized avalanches implieResearch Fund, Korea Research Foundation, in part by the
the dynamic exponers=1. We measured the numerical val- KOSEF through the SRC program of SNU-CTP, and in part
ues for the three exponents, 7,, and 7y, for the cases of by the Ministry of Education(Grant No. BSRI 97-2409

p=0.5 andp=1. All values of the exponents for each caseKorea.
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