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Monte Carlo method to calculate the central charge and critical exponents
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We present a finite size scaling technique to calculate the central charge and some critical exponents of
two-dimensional critical models with a Monte Carlo simulation. We use systems with dimemhsiokls and
focus on the scaling behavior M/L. The finite size scaling relation that we use is the universal expression for
the stress tensor on the torus. The stress tensor is the operator that governs the anisotropy of the system, and
stems for the theory of conformal invariance. We show that a lattice representation of the stress tensor can
easily be constructed, such that its expectation value on the torus can be calculated in a Monte Carlo simula-
tion. In doing so, we observe that the stress tensor turns out to be remarkably insensitive to critical slowing
down. We show that the typical simulation time scales with the linear system dimensamrghly asL*, and
that this scaling holds for the ordinary Metropolis algorithm as well as for more sophisticated cluster algo-
rithms, such that it is fruitless to invoke the latter. We test the method for the Ising rfwaittelcentral charge
c= %), the Ashkin-Teller modeld=1), and the F modelalsoc=1). [S1063-651X98)09103-X

PACS numbse(s): 64.60.Ht, 05.70.Jk, 02.70.Fj, 02.70.Lq

I. INTRODUCTION study the transfer matrix for discrete spin systems for large
is density matrix renormalizatigriQ]. Recently, this method
There exist basically two methods to obtain numericalwas shown to be able to calculate central chafdés
information on two-dimensional critical systems. In the The second method that was extensively used to obtain
transfer matrix method one calculates the largest eigenvalugumerical information on two-dimensional critical systems is
of the transfer matrix and thus one finds the free energy othe standard12] Monte Carlo(MC) method. It can be used
the system on & X cylinder. From the theory of confor- for fairly large (LXL) system sizes, both for discrete and
mal invariancg 1], one knows that this free energy is related continuous spin systems. Critical exponents can be extracted

to the central charge as from the finite size scaling behavior of the fluctuations in
critical quantities like energy and order parameter.

f_t _7c 1) However, a direct evaluation of the free energy is not

* L2 possible in MC simulations. Therefore, to obtain the central

charge from Eq(1), one has to use a more elaborate MC
By introducing appropriate seams on the cylinder, that altemethod. Recently, Krech and LandflB] proposed such a
the cyclic boundary conditions, one also obtains some of thenethod, based on the work of Mdi4]. They tested their
leading critical dimensions. Here one uses the result from method on theg-state Potts model fog=2, 3, and 4, and

conformal invariance that the central chaigérom a system find an accurate agreement with the known results of the

with a seam is given by central charge of this model. Their method is based on the
evaluation of an expectation value on a torus geometry
CT=c—12x. 2 LXM of the form
After the first papef2] that used this technique, this method (e Hsean), (©)

has become very popul§s,4].

The advantage of the method is the high numerical accuHere Hg.,mis an Hamiltonian that introduces a seam in the
racy (in fact, machine precisigrwith which the free energy direction of M over the torus. Hence this Hamiltonian is of
of aL X« system can be determined. A distinct disadvantagehe order ofM, which has to be quite large. Such averages
is that it is limited to rather small values &f, since the are notoriously hard to obtain in MC simulations.
required storage capacity and computer time increase expo- Wang and Bakef15] used a method to evaluate the cen-
nentially with L. In some cases—depending on the systentral charge that is not based on E#). Instead, they used an
under scrutiny—the practical upper bound lbrrenders an expression for the central charge due to Cafdig], that
accurate determination of the central charge imposs$tile involves the Fourier transform of the energy-energy correla-
Notably, it implies that the method is limited to discrete spintion function. This expression contains the specific heat ex-
systems. ponenta, which has to be determined as well.

These limitations are lifted but exchanged for a loss in In this paper we want to extend this palette of existing
numerical accuracy of the free energy in the Monte Carlonumerical techniques by presenting a direct MC method to
transfer matrix method6,7]. A promising[8,9] method to  evaluate the central charge, which is based on the expecta-

tion value of a simple operator that can be defined for any
model. This operator represents, in the scaling limit, the
*Electronic address: paulb@tvs.kun.nl stress tensof. The stress tensor is an operator that is con-
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where the summation is over all configuratidnsin a row.
The state$j) make up the Hilbert space on which the trans-
fer matrix (or operator exp(—H) acts.P is the momentum
operator, the generator of translations in the horizontal direc-
tion. The Hamilton operataf of the model is the generator
of translations in the vertical direction, and commutes with
P. When the transfer matrix is suitably defined, there exists
an orthonormal basis of the Hilbert space, consisting of
eigenstates of the Hamiltonian and of the momentum opera-
tor. From the theory of conformal invariance it follows that
FIG. 1. The torus geometry on which the conformal field theorythese eigenstates with their eigenvalues are closely related to
is defined. The dimensions of the torus ar& M, the boundary the critical dimensions of the model.
conditions are such that the indicated points are identified: they are There turns out to be a set of fundamental operators

cyclic in the horizontal direction, and cyclic with a shift ovdr, in present in the theory, that are indicatedL{;\sandf for n
. . . ) n
the vertical direction. eZ. They satisfy the celebratetirasoro algebra The

nected with the anisotropy of the system: when one allowdia@miltonianH and the momentum operatér can be ex-

for anisotropy in critical models, critical points in the phasepressed in terms df, and L, as follows:

diagram become critical lines. The whole of such a critical

line falls into the same universality class, and movements H=E.L+ Z_W(L + 1)

along the line are governed by a marginal operator, having

its critical dimensionx=2. This anisotropy operator is the

stress tensof, and can be defined for any critical model. It —

is, in the language of conformal invariance, the second de- P= T(LO_ Lo). (6)

scendant of the identity operator. The expectation value of

on aL XM torus is known from conformal theory, and con- Here c is the central charge of the model, ah&, is the

tains in particular the central charge By comparing our bulk ground state energy of the Hamiltonian, which we will

MC results, as a function ofM/L, with this formula we not need and from now on consider subtracted from it. The

obtain the central charge and the leading critical dimensiongigenstates of the Hamiltonian and of the momentum opera-
A difference between simulations on the stress tensor angr are labeled abAer,KJrF]), with the relations

on quantities like the energy is that the former are almost

mc
el (5

insensitive to critical slowing down. We explain this obser- LolA+m,A+my=(A+m)|A+m,A+m), 7
vation by showing how the typical simulation time scales
with the system size in terms of the dynamic exporerdur LolA+m,A+m)=(A+m)|A+m,A+m. (8)

conclusion is that it is fruitless to invoke sophisticated MC
algorithms like that of Swendsen and WdHg] that have a Hence, with the bulk energyE, subtracted from the Hamil-
lower value ofz than the standard Metropolis algorithm, be- tonian,
cause this would not influence the typical simulation time. o
H|A+m,A+m)
Il. CONFORMAL INVARIANCE
OF CRITICAL FIELD THEORIES A+A+m+m— |A+m A+m} (9)

L
Besides being invariant against a rescaling of the length

parameters, critical models are believed to be conformaly N . - o
invariant as well: their large scale behavior is invariant P|A+m,A+m}=T(A—A+m—m)|A+m,A+m).
against transformations that correspond locally to a rotation 0
and a rescaling. Such transformations are called conformal (10
transformations. From this symmetry, present at criticality, — . — .
largely follows the structure g/f the H)|/Ib5rt space, at least ?/nThe stategA,4) with m=m=0 are calledprimary states
the case of two-dimensional models. We will summarizeand the states witim and/or m unequal to zero are their
some results that we need in the sequel; more details can lsenformal followersThe values ofA andA are related to the
found in the review by Cardj1]. critical dimensionsx and spin indices of the operators of
In this section, we will be concerned with a system de-the theory according to
fined on a “skew” torus; its dimensions arexXM, and

boundary conditions are cyclic in the horizontal direction X=A+A+m+m (11
and cyclic after a shift ove¥, in the vertical direction, as in
Fig. 1. Denoting the transfer matrix of the system with [=A—A+m-m (12)
exp(—H), whereH is the Hamilton operator, its partition
function on such a geometry is The critical dimensiong are the complements with respect
to the dimensiord =2 of the scaling indiceg=d—x. These
Z=Z <j|e—MHeiMxP|j>’ (4) scaling indices are the eigenvalues of the renormalization

flow equations in ordinary renormalization theory, and yield
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expressions for the critical exponents. For example, in thepin variablesthat actuallyis accessible in MC simulations,
Ising model there are two relevant fields: the thermal fieldin contrast to the free energy. We will show this in the se-
which hasy,=1, and the magnetic field witly,,=%. The  quel. . _ S _

critical exponents are expressed in these indices as, e.%., Conformal invariance in critical fl_eld theories states t_hat
a=(2y,—2)ly,=0 for the specific heat exponent, _he actl_on(c_)r,_ln st_atlstlcal _mechanlcs terms, the cla§5|cal
B=(2=y)/y,=1 for the exponent of the order parameter, interaction is invariant against conformal transformat_lons._
andv=1/y,=1 for the exponent governing the divergence of The chgnge in the action for nonconformal transformations is
the correlation length. determined by the stress tensiyr),

The appearing values df andA from the primary states,
together with their multiplicity (the level of their degen-
eracy as well as the multiplicities of their conformal follow-
ers, determine the full structure of the Hilbert space. The
val_ues of the_ c_ritica_ll dimensions an_d their mult_ip_licities are\yhere T(r)
universal. This implies that the partition functi¢divided by T, (1) =
its bulk value that results fror,) considered as a function .
of M/L, is universal in the scaling limit of andM large.
From Egs.(9) and(10) follows that the diagonal element

T(r

)_(Txx(r) Txy(r)), 18)

A Tydr) Ty(r)

is a symmetric, traceless tensor. Hence
_ —Tyy(r) and T, (r)=Ty,(r). Usually, one defines
the independent components bfas

of exp(—MH)exp(M,P) for the statg A +m,A +m) is T(u,v)= E[Txx(U,U)—iTxy(U,U)], (193
Q*C/246*C/24QA+m6A7+n7 (13)
— 1
with T(Uav):E[Txx(uiv)"_iTxy(qu)]- (19b
27M  27@iM
Q=exp - AL (14 Hereu andv are the position coordinates on the torus. The

dimension A,A) of T and T are (2,0 and (0,2), respec-
andathe Comp|ex Conjugate . Summing over all diag_ tively. Hence their critical dimensiom=2 and their spin
onal elements yields the partition function of the model. Letindices ard = +2. So the stress tensor is a marginal opera-
us label the critical dimensions with then tor. Its component¥ andT can be expressed in terms of the

fundamental Virasoro operatots, andL_n as follows:
Z/Zbulk:Q_C/246_C/242 NjQAi+mj6Aj+mi. (15)
]

2mw\% ¢ ” .
- - . - - T(up)=|— = 2 ef(27-r|/L)une(Zv-r/L)unLn ,
This expression is called theniversal expression for the L 24 o

partition function and contains the central chargeand the (209

values of the critical dimensions; +m; andA; +m; as well

as their multiplicitiesN; . Therefore, it contains the critical 2:\2( ¢ i . B

dimensionsx; and hence the critical exponents g, etc., T(U'U)Z(T) (ﬁ_ E e+(2m/L)une(2w/L)unLn)_

although it does not give an interpretation of the dimensions n=-e

X; as belonging to thermal or magnetic fields. (20b)
In the limit M/L—o, the universal expression for the

partition function yields the well known finite size scaling This expression is valid on the torus geometry(v) is the

relation for the central charge, used in transfer matrix calcuhorizontal(vertica) position on the torus. The Virasoro op-

lations, eratorsL, and L, with n#0 play the role of raising and

lowering operators for the statéA+m,A+rF). Because

f(L)="f()— 67-r_ch (16)  these states are orthonormal, omly andL, have nonvan-
ishing contributions in the expression for the expectation
value of T. From expressioi20b) and the eigenvalue equa-
where tions (8), the expression for the expectation value of the
1 stress tensor can easily be calculated. The expectation value
f(L)=— lim ——In(Z). 1 IS
(L=~ lIm Frin(2) (17

The free energy, however, is not directly accessible in MC ~ (T)= % 2 (Aj+m Aj+my|T|A;+m; A+ my).
simulations. Consequently, apart from those mentioned in !

the introduction, there exist no MC results that yield the (21
central charge of critical models. The stress tensor, however,

is an operator that is closely related to the Hamilton operatorSubstituting Eq.(20b) and the expression for the partition
and it is this operatofor, rather its expression in terms of function (15) yields
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A~ A — If one now expresser) in terms of scaling operators it
ENj(Aj+m)Q 4 mQ A pressesr) g op
j

2+\2 ¢ is clear that the operators that occur should all be tensors that
(Ty=| — — = , change sign under rotations ovet/2, i.e., they have
L 24 IN;QTHTMQ AT |I=A—A=+2,+6,... . SinceA and A are always non-

! negative, it follows that the scaling dimensianof the ap-

pearing scaling operators all haxe=2. The marginal case,
o _ havingx=2 andl= =2, is in fact the stress tensor; all other

( 5o\ 2 SNj(A+m)Q™4~MQ 4 ™M operators in the expansion are irrelevant. To be more precise,
- 17) c i

(229

in this general case, the operat¢r) couples to both inde-
24 EN_QfAjfm@ijf pendent componentg,,(r) andT,,(r) of the stress tensor.
C As will become clear below, howevet(r) can easily be
] ’
(22b defined such that it couples Tg,(r) only. In that case, one
has
We will be mostly concerned with the diagonal elements
T,x=—Tyy Of the stress tensor. The expression Toy is tr)=aTu(r)+-, (25

31

27\ 2 where the dots represent irrelevant operators. Requirement
<TXX>—(—> (i) guarantees thdi(r) and T,,(r) share the same interac-
L tion symmetry, so that the coefficientdoes not vanish by
_ _ - symmetry. Constructing operatar@) can, as we shall see,
SN(Aj+mj+A+m)Q 4 mQ 4™ be done in several ways, but all choices yield expan€&26n
X £ ] albeit with different values of.
12 zNjQ*AJ*m@*Krﬁ Having constructed the operatdr) one can evaluate its
i average in a MC simulation on a geometry lok M, for
(23) several values of/L andL large. The result should follow
the universal expression fdr,,(r) as

This expectation value can be written as the derivative of the

free energy with respect to the aspect ratloL, as 1
oy ISP P () = a(To(1) +0 p), 26
Ty)=—2 of ith M =et 24
(Two=—2m gx Wit =en (24) where the expression fdiT,,(r)) given in Eq.(23) is pro-

portional to 1L.?, and dominates the second term that has
Upon taking the derivative, the volunML of the system is «>2. Hence we can fit th®1/L dependence of the left hand
kept constant. Like magnetization and magnetic field, theside against Eq(23), obtaining, in particular, the central
“field” N=In(M/L) is the external field conjugate to the op- chargec.
erator that is the stress tensor. Theref¢fg,) couples to the
anisotropy\ of the system, where the isotropic system has

N=0 B. Stress tensor for the Ising model

We will illustrate the construction of the discrete stress
tensort(r) in the case of the Ising model. The starting point
is the close connection between stress tensor and anisotropy.
Let us therefore start with the anisotropic actignof the

In conformal field theory, the stress tensor is an operatoPrdinary, square lattice Ising model,
that is quite abstract. It is defined only after the lattice model
has reached its continuum limit. For lattice models, however, A= _Z (3S,Si+1;+3,S S+ 1) (27)
the stress tensor can easily be defined as well. This lattice ij
representation of the stress tensor must thus have the scaling
behavior predicted by expressi¢l3). Below we will illus-  where the couplingsJ;,J,) allow for anisotropy. The iso-
trate the construction of the lattice representation of theropic critical point is J=3,=J.=3% In(1+v2), but this

stress tensor for the Ising model, but first we give a more-poim becomes a critical line when unequal values,pand
general way to proceed. Jy are allowed for.

The central notion here is that, in the scaling limit, anisot-
A. Constructing the stress tensor ropy amounts to a rescaling of the length parameteasdy
with a different scaling factor. Hence, in the scaling limit, the
anisotropic model with J,,J,) behaves as the isotropic
model with rescaled length parameterandy,

Ill. A LATTICE REPRESENTATION
OF THE STRESS TENSOR

Construct, for a lattice model, an operat¢r) as an ex-
pression in the local, fluctuating figkl, such that(i) t(r)
transforms as a second rank tengarparticular,t(r) picks
up a minus sign under a rotation over §08nd(ii) t(r) has
the same symmetry as the interaction energy of the model X
under study. In general, this means th@j is invariant un-
der global spin flips or spin rotations. y'=etty. (29

X, (28
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The value of\ in this equation determines the valuesJpf  with a certain prefactod,,, which will be different from
and J,. In this way, Eq.(29) fixes the parametrization J;(0), because it couples next-nearest-neighbor spins in-
[Jx(N),Jy(N)] of the critical line with\. The isotropic point  stead of nearest neighbors. The off-diagonal elements of the
hasA=0 with J,(0)=J,(0)=J., and the parametrization discrete stress tensor couple to the anisotropy in the diagonal

obeysJ,(N)=Jy(—N\). directions.

On a finite geometnlL XM, this anisotropic rescaling It is this operatott,,5(r) that appeared in Sec. Il A. It is
means that the volun L of the system remains untouched, constructed such that it behaves as a second-rank symmetric
but that the aspect parametdrL scales according to tensor with the same symmetry under global spin flips as the

interaction energy itself. Of course, this versiornt (i, j) is
M M not the only possible one; it can also be defined with further
¢ T (30 nheighbor interactions.

The precise connection between the discrete vatiant
In the scaling limit, therefore, the partition function with the of the stress tensor and its field theoretical counterpart is
anisotropic action of Eq(27), which we callZ(\,M/L) de-  obtained by taking the derivative of E(81) with respect to
pending on\, equals that of the isotropic Hamiltonian with a A at A=0. Using Eq.(24), this yields
rescaled aspect ratid '/L’,

ML
z(x,¥)=z(>\=o,eﬂ¥). 31 TOX (88+1j=8,,8,+0 = (TulU0)),
(36)

A general movement in the phase diagram is performed ) _
by a scaling operator. A renormalization transformation isWhere(Txx(u,v)) is the expressiofEq. (23)] for the expec-
isotropic, which implies that there can be no renormalizatiorfation value of the diagonal component of the stress tensor.
flow along the critical line g,,J,). This implies that the Note that 'gh_|s expression is a un|ver§al func't|o.n. pf central
scaling operator that governs the movement along this lin€harge, critical dimensions, and their multiplicities. The
must be invariant against a renormalization transformationvalue of J;(0), however, is in general unknown, such that
i.e., it is a marginal operator having its critical dimensionWe Will have to include it as a fit parameter.
X=2. Expression(36) combined with Eq(23) yields the rela-

In the case of the Ising model, actigd7) immediately tion that is central to this work: it expresses the expectation
shows which operator this must be. Write the action as ¥alue of the lattice representation of the stress tensor in terms

Symmetric part p|US a part that determines the anisotropy, of the universal quantities that V\{e want to know As we will
use a rectangular geometry, without the shift in boundary

conditions, we seM,=0 and obtain

A=Ac—; [N =3]S S 1+ Gy (M) = IS S+ 1,
B2  (SijS+1;—S,Sij+1)

where A is the action at the isotropic critical point SNix: exp — 2 Mx-
=] = i i i i i 2 =7 L

Jx=Jy=J.. Expanding up to first order i, this expression 2 c

can be written as —a(T)

12 M : (37)
ZNJ- ex —27-rij
A= AN ty(in), (33 j
i]

where 1= 7J,(0). SeeFig. 2 for an example of the func-
wheret,,(i,j) is the lattice representation of the stress ten+jgnal dependence. The prefactaris the samea that ap-
sor, pears in Eq(25). The physical interpretation of it is given by
. ) the relation 1&= 7J,(0); it determines the “amount of an-
bl 1,1) == 3x(0)(S;,jSi 41— S,iSij+1)- (34) isotropy” that the system obtains, once the stress tensor is
switched on. Note that is nonuniversal; it depends on the
Here we used the symmetry propedy(\)=Jy(—\). The  precise definition of the model, as well as on the definition of
operatorty,(i,j) governs the anisotropy of the system. Thisthe stress tensor. The other quantities present in(&f,
lattice representation of the stress ten&®4) for the Ising  nowever, are the central charge, the critical dimensions, and
model was already known for a long tinié8]; the value of  thejr multiplicities, and those are all universal. There is an
J/(0)=3v2. infinite number of critical dimensions, but only a limited
In fact, the operator in Eq34) is written ast,, because it number of these is “small,” say, less than 2. For large
is one of the two components of the full stress tensorenough values of the aspect raidL only a limited number
t,p(i,j). Thist,g(i,j) has the same properties as the fieldof critical dimensions have substantial contributions to Eq.
theoretical stress tensor: it is a second-rank, symmetric tracé37); the contributions of the remaining dimensions then are
less tensor. The other componeg(i,j) can be written as  in fact so small that they will fall in the noise of the MC data.
Hence a fit of the expression against MC data must be fea-
ty(i,))==0(S ;S +1j+1—S,;S+15-1)> (35 sible. Typically, we will takeM/L=1.
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e . A multiplicity is always integer, and when it is larger than
1, the corresponding critical dimensianis degenerate, and
004 | / ] thus an additional symmetry is present in the model. Some

theoretical reflection on the model often is sufficient to re-

M~ /
é 003 | I veal such symmetries. Another possibility is to perform fits
B! Lo with different values of the multiplicities and to choose the
# oo | Pl T —— set that gives the best fit. B
& ) j T The lowest appearing values of the dimensigmsA + A
correspond to primary fields. As noted in Sec. Il, to each
001 r/ primary field belongs a tower of conformal followers or de-
scendants, that have values of the critical dimensions that
0 differ by an integer from that of the primary field; they are

A+m and A+ mwith m,me N. The first descendant of a
FIG. 2. Th _ | ; for the Isi scalar primary fieldD(r) with dimensiongA,A) is VO(r), a
modeclalde.finez ?r:( FI)Eeq(z[:gIbc))na\l/saz:I ?Lsm(z:tif)tr:esfs tLeedgaq;poerctt Sarinmgeter vector field that has two components; one havidgt(LA),
M/L. From high to low, the plots show the expectation values from.and the other havingX(,A+1). To improve the fit, we will

system dimensionk running from 4 to 10. The lines are the result !nCIUde this first descendant into E(B7). This inclusion

of the fit against Eq(37) together with a correction to the scaling '(;T"Od“‘?es no new ;:It parlamﬁters;. .thel (\j/filue (.)f its fcrll]tlcal
term (45). Note that, for each value df, the stress tensor at imension isx+1 whenx is the critical dimension of the

M/L=1 is zero by symmetry. primgry field, aqd this value app'ears'twice. Hence the mul-
tiplicity of the first descendant is twice that of the corre-
IV. FITTING THE MONTE CARLO RESULTS sponding prima_ry field. Havin_g fixed the_multiplicities in ex-
pression(37), this leaves us with four or five free parameters:
Fitting the MC results against the universal expression fothe prefactora, the central charge, and two or three non-
the stress tensd37) requires a decent fit program, as the trivial dimensionsy; .
number of fit parameters is quite large, and requires some
theoretical reflection on the model as well. We will deal with
the use of the universal expressi@T) and the corrections to
scaling in different subsections. The above analysis of the universal behavior of the stress
tensor is valid in the scaling limit. The discrete version of the
stress tensar,,(r), however, is not a scaling field; as argued
- . . ] in Sec. lll, it can in fact be written as expansi¢25) in
The number of critical dimensiong that appears in the  scajing fields, of which only the first term is the true stress
universal expressior37) for the stress tensor is infinite, tensor with its universal behavior. The fit to this expression
which clearly is an infeasible number of fit parameters. Mos{s reated Sec. IV A, but for smaller system sizes other terms
of the dimensions, however, are large. Their contribution tqp the expansion become important. The scaling behavior of
Eq. (37) goes as expf2mxM/L), so if we limit the calcula-  hese terms i goes ad ~® with w>2.
tions to values of the aspect rati/L that are not too small,  Tq obtain accurate results, we should include at least one
most of the dimensiong; have a vanishing contribution. of these correction terms in the expression that we fit against
Performing some preliminary MC simulations suggests &yr MC results. That means that we have to perform calcu-
reasonable lower bound tM/L. Typically, we took |ations for different values of the width of the system in

M/L=1. The upper bound oM/L is determined by the order to be able to extract the 2 behavior of the true stress
value of M/L where(t,,(r)) reaches its asymptotic value. tensor.

5 6
M/L

B. Corrections to scaling

A. Universal expression for the stress tensor

To determine a reasonable upper bound\fi., the same In principle, we could proceed by performing simulations
prellmlnary simulations can be used. The asymptOtIC Valu¢0r a fixed value ofM/L and increasing values df and
of (txu(r)) is extract, by extrapolation, the part 6f,,(r)) that scales as
PUREIN L 2. This means that, for any value bf/L, we have to fit
<txx(r)>|M/LHw:a(T v (38

a b
<txx(r)>:F+Fa (39
This expression also shows why the asymptotic value itself is
not sufficient for a determination of the central charge: it
only gives an estimate afc instead ofc.

Performing simulations to obtain the expectation value o
the stress tensor between these bound#Mah is in prin-
ciple sufficient to extract the desired quantities by fitting the
results against expressid87). Typically, we take three or
four critical dimensions into account, the identity dimension (tex(1)) = a(T (1)) +(O(r)). (40)
Xo=0, present in any critical model, and two or three non-
trivial onesx; . For these dimensions, the multiplicitieg Now consider the general expression for the expectation
must be specified in the expression as well. value of an operatdd(r) on a system with geomettyxX M,

and have to use the values affor each value oM/L to fit
fagainst expressiof87). We can, however, do better.

To this end, write the first scaling operator on the dots in
expansion(25) asO(r),
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1 The number of critical dimensions;, and the values of
(O(M)=5 > (jle”™MHo(n)lj), (4)  M/L that have to be included in the fit are a matter of trial

! and error. Sometimes it turned out to be necessary to delete
some of the lowest values &f/L from the data set. Lower
values ofM/L clearly stabilize the fit, but on the other hand,
including these values requires more critical dimensions

with Z the partition function andi the Hamilton operator of
Eg. (9). Using the basi$A +m,A+m) of the Hilbert space

yields from expression37) to describe the full data set. We varied
ENAa.(L)e—Zw(M/L)xj the lower bound orM/L and the number of critical dimen-
. sions, until the quality of the fit became high enough.
(O(n)= SN ZrM% (42 This procedure requires a fit program that yields, apart
i

from the values of the fit parameters and their error bars, a
parameter that indicates whether the fit can be trusted or not.

where we used Ec(g) Here the parametem(L) are the Our case amounts to a tWO-dimenSionaI(iﬁit L and M/L)

diagonal elements of the operatdd(r) in the basis USINg eight or ten fit parameters. The program we used is
|A+m,K+F1} of the Hilbert space, based on routines from Ref19]. The parameter that indi-

cates the quality of the fit is called tlgpodness of fit QThe
value ofQ lies between 0 and 1, and is based on gReof
(43) the fitted dataQ gives the probability that thg? of a certain
data set exceeds that of the actual data set. A very low value
As the basis functionb&er,KwLF]) depend only ort. and of Q means that it is highly unlikely t_hat the function used
not on M/L, the full M/L dependence of the expectation 91V€S the correct theoret|cz_il de;crlpnon of the data. In our
value (O(r)) is accounted for by the exponentials in Eq. €25€ this means that we elther_ |_nclud_ed va!ueM«b[ that
(42). The amplitudess;(L) depend orL only. Taking only are too small, or not enough critical dimensiogs
the leading correction into account, they can be written as

J

a;(L)=(A;+m; , A+m|O(r)|A;+m; A +m).

V. COMPARISON WITH EXACTLY SOLVED MODELS

_ g In order to test the method, we performed MC simulations
3j(L)= (44) . . . :
on some models of which the scaling behavior on the torus is
known exactly. We chose the Ising modetith central
with the same value ok for each of the diagonal elements chargec= 1), the Ashkin-Teller modefwith c=1), and the
[1]. In our fit, we will only include the few most important g model(also withc=1). There is a line in the phase dia-
critical dimensionsx; : the identity dimensions,=0, and gram of the Ashkin-Teller model that can be mapped, by a
the first two nontrivial ones. That means that including theduality transformation and a graphical representafi2@|,
expression fofO(r)) as a correction to scaling gives only exactly on the F model. We chose to simulate the corre-
four additional fit parameters: the correction exponertnd  sponding points in the Ashkin-Teller model and the F model.
three amplitudesy, a;, anda;. The results, however, differ, which is an illustration of the

In the other case, by naively extrapolating the behavior ofmportance of boundary conditions in such simulations. The
(tx(r)) for largeL, we have to include the two fit param- duality transformation alters the boundary conditions, giving
etersw andb for each value oM/L. The above approach rise to a different behavior of both models on a finite geom-
thus drastically reduces the number of fit parameters. etry.

Still, in the complete analysis of the MC results, the num-  |n case of the Ising and Ashkin-Teller models, we per-
ber of fit parameters is quite large. Typically, we need fourformed MC simulations using the standard Metropolis algo-
parameters from expressi¢87), which are the prefactat,  rithm. For the F model, we had to use a cluster algorithm as
the central charge, and the two most relevant dimensions well (to be described belowWe performed simulations on a
X1 andx,. For the corrections to scaling, we use the expressystem with geometry. X M with varying values ofL as

sion following from Eqs.(42) and(44), well as ofM/L. We sampled different versions of the stress
2 (ML) X tensort,,(r), in order to obtain independent estimates of
1 2N;aje ! central charge and critical dimensions.
i
= 45
(O(r) L SNje 27 (ML (45) A. Ising model

J . . . .
We carried out our simulations on the ordinary square

giving four additional parameters, which aze a,, a,, and lattice Ising model, with the action given in ER7) at its
a,. isotropic critical point given byJX=Jy=JC=% In(1+v2).

In this way, we perform a combined fit of the MC results The construction of the stress tensor is described in Sec. Ill.
for all values ofL andM/L, in one single fit using eight fit Actually, taking different versions of the discrete stress ten-
parameters. This is a large number, but the functional depersort,,(r) gives an independent check on the accuracy of the
dence of the formula, to be fitted for two variables simulta-results. All different versions should couple to the true stress
neously, is very restrictive. Especially for expressi@T),  tensorT,,(r), albeit with different prefactorg.. We chose
the behavior inL is restricted toL 2, and the values of the two versions of the discrete stress tensor, one defined with
dimensionsx; andx, appear as dimension as well as ampli- nearest-neighbor couplings and the other with next-next-
tude. nearest-neighbor couplings:
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TABLE I. Monte Carlo results for the Ising model. Stress ten- 1+W

sors(1) and (2) refer to the definition in Eq(46b). Values of the exp(2J+2K)= - (48b)

prefactora, central charge, and the first two critical dimensions

X, andx; are given and compared with their exact values. ErTors iy g \yaight equals the Boltzmann weight of the four ver-
the Ias.t digit are given in pf‘remhesas"s t.h? power of the 1/ tices in the six vertex model that carry a step. The other
correction, and g.o.f. is the “goodness of fit.” In the case of stress " .

. vertices are flat and have Boltzmann weight 1.
tensor(1), the prefactor is known exactly{18].

The critical line of Eq.(48b) is a line with central charge

c=1 and continuously varying exponents. By expressing the
Stress tensofl) _stress tensod Exact partition function of the Ashkin-Teller model in the scaling
0.450 (2) 1.277 (3) V2/w=0.450...2 limit in terms of Coulomb gas partition functions, all critical
c 0.500 (2) 0.498 (1) 1/2 exponents can be obtained. For this derivation, the reader is
X1 0.1254 (6) 0.1256 (4) 1/8 referred to Ref[21]; we will only state the results.
Xp 1.0 (4) 1.1 (4) 1 Part of the exponents varies continuously along the criti-
) 4.3 (1) 4.29 (8) cal line. Their value is expressed in terms of the renormal-
g.o.f. 0.83 0.97 ized value of the Gaussian couplilgg present in the Cou-
lomb gas partition functions. The dimensions of the
%Only for stress tensafl). primary fields are
2 2
(1) (S,jS+1j—S,iSj+1) (463 x=2 9 ith e,meZ, (49
29 2
(2) (SS+2j=8,S+2) (46b) andg is the Gaussian coupling, given by
Note that the stress tensor defined with next-nearest-neighbor 8 1
couplings corresponds to the off-diagonal elements of the 9= P afCS"’{m . (50

stress tensor; its expectation value on the geometry used is

zero by symmetry. We took the system geométyM with  The other dimensions are constant along the critical line. We
L varying from 4 to 10 andM/L varying from 1.5 to 10. chose, rather arbitrarily, the poili¢=0.8 on the critical line

The resulting expectation values were fitted against exXfor our simulations. At this point, the three most relevant
pression(37) together with a correction to scaling term of dimensions are

Eq. (45). We took two nontrivial critical dimensions; and

X, into account, both with multiplicity 1. The data for stress x1=0.125 (with multiplicity 2), (51a
tensor(1), together with the results of our fit, are plotted in
Fig. 2 to obtain a feeling of the behavior of the stress tensor. X,=0.298... (with multiplicity 1), (51b
The numerical results of the fit are summarized in Table I.
Even for those small system sizes and correspondingly lim- X3=0.85%... (with multiplicity 1). (519

ited computer resources, accurate results are obtained. . oo . .
Typically, the multiplicity of the degenerate dimensiap

_ (which is constant along the critical linean be guessed
B. Ashkin-Teller model beforehand, though some theoretical reflection on the model
A more severe test of the method is obtained by considis necessary. To this end, consider the expansion in scaling
ering a model having dimensions lying closer to each otheroperators ofS and P,
The Ashkin-Teller model is a useful candidate for testing our

method. It has in its phase diagram a critical line which can S(r)=agp(r)+---, (52
be mapped on théexactly solved six vertex model[20]. _
The universal partition sum of the Ashkin-Teller model on P(r)=apq(r)+---, (33

the torus is exactly knowf21], so it can be compared with
our MC results.

The Ashkin-Teller model has two Ising spi&and P
with S,Pe{+1,—1} on each lattice site, that interact with

wherep(r) andq(r) are the leadingmost relevantscaling
operators in the expansion. The manifest symmstryP of
action (47) implies that

an action a¥(p(rp(ry)=ap(d(r)a(ry)). (54)
A=—> J(SS+P,P,)+KSSP;P;, (47)  Hence it follows thatp(r) andq(r) share the same critical
P ' J e dimensionsx. On the other hand, spin reversal symmegry

— — S implies that
where(ij) denotes a summation over nearest-neighbor lat-
tice sites. The critical line in the phase diagram that can be (S(r1)P(rz))=0, (55

mapped on the six vertex model is parametrized b e . .
PP P y which implies that the dominant term for,—r,| large in

this expression must vanish as well. Hence

asap(p(ry)q(ry))=0. (56)

exp2J)= W (483
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TABLE Il. Monte Carlo results for the Ashkin-Teller model, corresponding to the six vertex model with Boltzmann Wwéighi8. The
stress tensor€l)—(4) are defined in Eq(57d. For notation, see Table I.

Stress tensofl) Stress tensof2) Stress tensof3) Stress tensof4) Exact
o 0.36 (2 0.78 (3) 0.23 (1) 0.65 (2)
c 0.97 (6) 0.99 (3) 0.96 (4) 0.96 (3) 1
X1 0.128 (3) 0.130 (2 0.128 (3) 0.128 (2) 0.125
X5 0.33 (8) 0.34 (5) 0.34 (6) 0.35 (4) 0.2938...
X3 0.9 (4 0.8 (1) 0.9 (3 0.9 (2 0.85%...
w 3.8 (2 4.1 (1) 4.0 (2) 4.2 (1)
g.o.f. 0.80 0.016 0.76 0.065

This ensures thgb(r) andq(r) aredifferentscaling opera- bond carries a Boltzmann weighif, where the weighWV is
tors sharing the same critical dimensi&n Therefore this the same as th&/ in Eq. (48b) of the Ashkin-Teller model.
magnetic critical dimensior must have multiplicity 2. Note The coupling between the Ising models only exists in the
that the second argument does not apply for energylike oprestriction that two broken Ising bonds are not allowed to
erators likeS ;S 1;, such that the energy scaling field will cross each other. An elementary square of the lattice contains
be nondegenerate. two spins of both sublattices; diagonally opposed spins be-
We performed MC simulations using the standard Me-long to the same sublattice. The restriction is that at most one
tropolis algorithm, again on the system with geometryof the bonds over the elementary square may be broken.

L XM, with L varying from 5 to 12 andV/L varying from The resulting model can easily be mapped on the F
1.5 to 10. We sampled four different versions of the stresgnodel, seen as a body centered solid on s@BESOS
tensort,,(r): height model[22]. To this end, the Ising-Bloch walls are
identified with the steps, carried by the first four vertices of
(1) (SSi+1jTPijPi+1j—SSij+1— Pi,jPij+1). the F model. To become steps, walls have to be equipped
(578  with an arrow; the steps have to be identified as a step up or

a step down. This arrow assignment is simply such that two

(2) (SijSit2jtPijPit2j—S,Sij+2—PiiPij+2) adjacent Ising-Bloch walls carry antiparallel arrows if they
(570 belong to the same sublattice, and carry parallel arrows if

they belong to different sublattices.

(3) (SiPiiS+1iPi+1;=SiPi,iS j+1Pij+ 1) In this way, a configuration of the two Ising models is
(579 mapped onto a configuration of the F model, and vice versa.
There is, however, a difference in boundary conditions on
(4) (S,iPiSi+2iPi+2i=S,iPi,iSij+2Pij+2)- the torus. If we consider the F model on a finite geometry as
(579 a height model, we have to allow for defects at the boundary.

Stress tensor€l) and(2) are defined such that the symmetry Th_e smalles_,t defect in the F model is a defect_ of two unit
betweenS and P spins is incorporated. heights, which corresponds to two steps running over the

It turns out that in this case three nontrivial dimensionsSYStém. The corresponding Ising configuration however,

have to be included in the fit. This brings the total number ofVould have one Ising-Bloch wall running over the system for

fit parameters to no less than 10. Still, relatively good result§2ch sublattice, which is not allowed when the two Ising
are obtained; they are summarized in Table II. models have periodic boundary conditions. Hence for the F

model the allowed defects at the boundary are height differ-
C. F model ences muItipIe; of 2,_whereas in the formulation of the Ising
' models, the height differences at the boundary are multiples
A nice illustration of the importance of boundary condi- of 4.
tions is obtained when a dual version of the Ashkin-Teller Related to these defects is a complication that arises,
model is considered. As stated, the critical line of thewhen one naively tries to simulate this version of the F
Ashkin-Teller model can be mapped exactly onto the Fmodel using a single-spin Metropolis algorithm. As the up-
model, using a duality transformation and a graphical repredates in such an algorithm are always local, it cannot gener-
sentation[20]. On a finite system, however, this mapping ate configurations with defects around the torus. The algo-
affects the boundary conditions, such that both models withithm is able to generate islands of flipped spins, but such an
periodic boundary conditions will have a different behaviorisland never can cross an Ising-Bloch wall of the other sub-
on the torus. lattice. This implies that the algorithm is nonergodic; the part
The model we chose to consider in fact is an intermediat®f phase space it reaches is restricted to that part that has the
model between the F model and the Ashkin-Teller modelsame defects at the boundary as the initial configuration.
and is obtained from the latter by applying a duality trans- That does not mean that the results of the simulation make
formation on one of the spinS or P only. In this way, we no sense. The model that results when using only the Me-
obtain two coupled Ising models, defined on two interpen+tropolis algorithm is a true height model, such that on the
etrating sublattices. Both Ising models are equal; they interboundaries no defects are allowed at all. This model renor-
act via a nearest-neighbor coupling such that a broken Isingalizes to the Gaussian model. The universal form of its
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TABLE lll. Monte Carlo results for the F model with Boltz- It turned out that including values &fi/L smaller than 2
mann weightW=0.8. Two different stress tensors are used for thedestroyed the quality of the fit, yielding a far too low value
calculation of the central Charge and critical dimensions. They argf the goodness of fit. The reason probab|y is that there are
defined in Eq(58b). For notation, see Table . much more dimensions; present that are quite small and
that start to become important for values Mf/L smaller

Stress tensofl)  Stress tensof2) Exact than 2. This can be seen from the valuexgfthat follows
a 0.83 (6) 1.32 (7) from the fit; it is significantly lower than the exact value of
c 1.06 (7) 1.03 (6) 1 the second dimension. Appare_ntly, i_n the fit prograg
Xy 0.291 (6) 0.289 (5) 0.2938 . .. plays the role of an “effective” dimension, incorporating the
X, 0.7 (1) 0.65 (9) 0.85% . values of several dimensions in one. This casts doubt on the
© 322 2.8 (1) validity of the. highest dimension that is given by the fit
g.0f. 0.28 027 program, but is seen not to affect the values of the central

chargec and the most relevant dimensian.

partition function is known[23], but behaves somewhat VI. SIMULATION TIMES AND AUTOCORRELATIONS

anomalously because it has a continuous spectrum of critical \pc calculations of a marginal operator like the stress

dimensions, that result in an integral instead of a sum in Eckensor typically encounter additional difficulties as compared

(37). The universal partition sum of the Gaussian model isto observables like energy and magnetization. The latter

the result Of thIS integral. InClUSion Of ItS form in our f|t for quantities have a relative error in MC simulations that does

this model indeed yields the correct result. not scale with the system size, whereas this is not the case
The difficulty in boundary conditions, however, can easilyfor an operator like the stress tensor; its relative error in-

be overcome using a cluster algorithm, that allows for nongregses with the system size.

local updates of the configurations. In our simulations, we This can be seen as follows: consider an oper@igy of

used a standard Metropolis algorithm for thermal equilibrayhich we want to calculate its expectation value. Its scaling

tion, combined with a cluster algorithfa7,24 that is able to  pehavior will be dictated by a critical dimension
generate defects, in order to make sure that the whole phase

space can be reached. We performed simulations on the 1 L

model withL varying from 6 to 18 andvi/L from 2 to 5. It 2 Er: (O(r)~L™%, (59
turned out in this case the stress tensor reaches its asymptotic

value already foM/L~5. whereL is the linear system size. The errdiy, in the

We sampled two possible versions of the stress tensor, gyerage value is related to the number of samplds the
MC simulation and to the second moment of its distribution,
(1) (Si,jSi+2;—S,;Sij+2) (583

11
(2) (S Si+3i+1—S iS_1i+3) (58b) Aé(r):NFE (O(r)O(r"))=(O(r))O(r")). (60)
JOi+3+ JjOi—1,j+3/ r,r’

Note thatN stands for the number of statisticaligdepen-

where we took into account that energylike spin product dentMC samples. The dependence brof the simulation

always must couple spins of the same sublattice. The mosyme to reach independent samples will be discussed below.

simple version of the stress tensor couples nearest-neighb L !{&'g%gﬁt:;it%%im: Ss’#é?tnlggog ::r:)r:?r?b&?iitne;r?(;esslgonn
spins of each sublattice, but its expectation value on the sys- I ’ 9 - ‘ong
nge contribution. The short range contribution, say within

tem geometries that we considered is zero by symmetryr.a i ) .

Stress tensof?) is, regarding its definition, a mix df,(r) a region with radiusR, follows

andt,,(r), but this is no problem since, on the used geom-

etry, anyt,,(r) is zero. ; (O(r)0(0))—(O(r))(O(0))—const  (61)
The fact that this model is a height model ensures that <R

there are basically two types of operators, spin wave an

vortex operators, with dimensions given in Ed49), that

both are doubly degeneraief. Ref.[25] for further discus-

sion) Hence the lowest critical dimensions have multiplicity

2. We fitted the resulting expectation values of the different

stress tensors, using two non-trivial critical dimensions. The ; (O(r)0(0))—(O(r)){0(0))~L2"%. (62

results are summarized in Table III. N>R

It is noteworthy that the prefactar in the definition of Now there are two cases. If the dimensies1 the long

the stress tensor is independent of the boundary conditions, - ; .
Our fit on the simulation that only used the Metropolis algo-%’\nge contribution dominates E@0), and the relative error

rithm (described aboveyielded the same prefactors as those' (O(r)) scales according to
in Table lll. That means that expansi¢25) of the discrete

stress tensor in terms of scaling fields only depends on local Bom _ i
properties. (O(n) N

gor L large. The constant is roughly proportional to the radius
R when it is not too large. The long range contribution, on
the other hand, is dominated by the critical dimensioais

(63
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It is inversely proportional to the square root of the number (a)
of MC samples, but does not scale with the system kize
This is the usual case for, e.g., magnetization and energy in
the Ising model. In case>1, however, the short range con-
tribution dominates the error for larde which implies that

the relative error ifO(r)) scales according to

Autocorrelation

Ao 1y
GO (64)

We will want to obtain the same relative error for all differ-
ent linear system dimensiomsin our MC simulations. For
observables having=1 this requires the same number of
MC samples for alL. For x>1, however, Eq(64) dictates
thatN~L2*"2, In case of the stress tensor, having 2, the
number of MC samples should thus be proportional to

At first sight, it seems that this fact makes it difficult to
reach large system sizes, as the simulation time is directly
proportional to the number of required MC samples. This, 10° ok Bow :
however, is only partly true. The other parameter which de- 0 50 100 150
termines the simulation time is the time it takes to generate Monte Carlo cycles
statistically independent configurations. Critical systems are
known to suffer from critical slowing down. If one uses the
standard Metropolis algorithm, the typical timdt takes to
generate statistically independent configurations increas itical point. System dimensions are indicated in the figuag.

with the system S?Ze as a power law. , Autocorrelation function of the stress tensd) Autocorrelation
Unexpectedly, it turns out that the stress tensor is remarkynciion of the energy. Note the difference in scale ofttexes of
ably insensitive to critical slowing down. This can be judgedhe piots.

from its autocorrelation function. Let us define a MC cycle
as one attempted update per spin. The autocorrelation func- .y 67)

tion of a certain observabl® is defined as
(0,0 . )—(0,)? The exponent is believed to be connected to the dynamics
_ Tttt ‘o 65 Ofthe systentin our case, by the Metropolis algorithrand
g <Ot20>—<0t0>2 ' to be the same for all observables. For finite systems at their
critical point, the correlation lengtliis bounded by the sys-

The operatorO is, as usual, defined a8,0(r). HereO, tem dimensiorlL, such that

denotes the value @ aftert time steps, where a time step is

one cycle, i.e., one attempted update per spin. The autocor- m(L)~L% (68)

relation functiong(t) is normalized such thag(0)=1. In

practical situations, the number of MC cyclebetween two We extracted the values of(L), following from the auto-

consecutive MC samples has to be such {4} is (almosy  correlation function of the energy in Fig. 3, by fitting the

Zero. autocorrelation functions to Eq66). For this, we removed
The observation that the stress tensor does not suffer veitpe first data points, up to the point where the plot begins to

much from critical slowing down follows from Fig. 3. Here show a straight line. The values efL) were fitted to Eq.

we plotted the autocorrelation functioggt) for the energy  (68), yielding a value foz of roughly 2. The quoted value in

and the stress tensor, in the case of the Ising model at ithe literature[26] is z=2.17, which is consistent with our

critical point, for several different system dimensions. For afindings.

number of cycles not too small, the autocorrelation function ~ The autocorrelation behavior of the stress tensor, how-

of the energy shows a straight line in the log-normal plot,ever, is dramatically different from that of the energy. Note

meaning that its behavior is exponential tin Indeed, the the difference in scale of theaxes in Fig. 3. The autocor-

behavior of the autocorrelation functions for nearly critical relation function of the stress tensor drops so sharply that the

—_
=
~
—
<
©

Autocorrelation

FIG. 3. Plots of the autocorrelation functig{t) of Eq. (65),
wheret is the number of Monte Carlo cycles. Calculations are
erformed using the Metropolis algorithm for the Ising model at its

systems is given by exponential behavior can hardly, if at all, be seen. There is
almost no sign of critical slowing down; the autocorrelation
g(t)~exp(—t/7) for t large, (66)  functions even seem to converge for larger and larger sys-

tems. Even for systems as large as X880 spins the auto-
where 7 is the autocorrelation time. The dynamic scaling correlation function behaves not significantly different from
hypothesis states that the time scalef a dynamical system smaller system sizes.
is connected with the length scale, which is the correlation These findings can be explained as follows. The dynamic
length &, and that this connection is described by a universascaling hypothesis in its general form considers the com-
dynamic exponent, bined spatial and time correlation functi@{r,t), defined as
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G(r,1)=(O(r,tp) O(ro+r,to+1t)) —(O(ro,te))? (69 @ L
for a certain operatoD(r,t). Here the dynamics of the sys- g
tem is explicitly taken into account by the time dependence g
of the operator. The dynamic scaling hypothesis states that Té
Q
G(r,H)=b 2G(b tr,b™%), (70) 2
=1
wherex is the critical dimension of the operat@r(r,t). In <
terms of this correlation function, the autocorrelation func-
tion g(t) of Eq. (65) can be expressed as ®)
L
f d’r G(r,1) -
0 c
9(t) = . (7D) =
f d?r G(r,0) Tg
° g
Q
The integral is over the finite volurre?. The dynamic scal- 5
ing hypothesig70) will be valid provided that the appearing .
lengths are smaller than the correlation lengthand the 100 ol e
times are smaller than the autocorrelation timegiven by 10 100
7~ &% For finite systemsé~L. In that case, E(q.70) can be L
rephrased to FIG. 4. Plots of the autocorrelation functigiit) of Eq. (65) vs
oz Y the system siz&. From high to low, the plots amount te=3, 5,
G(r,t)=t G(t™ .1, (72) and 10.(a) g(t) for the stress tensoftb) g(t) for the energy. The

plots show that for the energg(t) converges to a value indepen-
dent oft, which must be 1. For the stress tensor, howegét)
converges to a value that does depend.on

which yields thel andt dependences in the scaling limit of
Eq. (71). Using Eq.(70), the numerator is

tfllzl_
t(z‘zx)/ZJ d?r G(r,1), (73 HereN is the total number of MC cycles, which is supposed
0 to be much larger than the autocorrelation tibrfe Using, as
and G(r,1) must follow the usual spatial behavitn ~2*. above, Eq(70) and the distinction between converging and

Now the scaling behavior of the integral depends on whethefliVerging integrals witiL., we obtain
it converges or diverges for larde Making this distinction,

. . ; 1
the scaling behavior of Eq71) is A<23<r)” N|_z—2>< for x<1+1z, 77
g(t)~const forx<1, (74
1
g(t)~t(272X)/Z for x=1. (75) Azo(r)’v NL72 for x=1+ %Z. (78)

This explains our MC results: both cases indicate ti{@)
must become independent bfin the scaling limit, i.e., for
largeL. The case of the energy, havirg 1, states thag(t)
must converge to a value independent ofvhereas the case
of the stress tensor implies thg{t) becomes a true power

The relative error is obtained by dividing these values by
(O(r)), which scales as ~*. The typical number of MC
cyclesN is obtained by demanding it to be such that the
same relative error is obtained for &ll This yields

law in t. This behavior indeed can be seen in Fig. 4, where, N~LZ? for z>2x—2 (79
for the stress tensor and for the energy, the valugggfare '
plotted as a function of system sikefor several values df. N~L2%"2 for z<2x—2. (80)

The plot for the energy indicates thg{t) converges to 1,

whereas the asymptote gft) for the stress tensor is seen to This implies that, for a relevant operator, like the energy in

depend ort. the Ising model, faster convergence is obtained by a MC
The above analysis also enables us to determine the scallgorithm that has a lower value of the dynamic exporznt

ing of the typical simulation time of a MC simulation with and lowering this value is precisely the point of the cluster

the system siz&. This scaling will depend on the MC algo- algorithm[17]. However, the case of the stress tenset,2,

rithm (i.e., onz) and on the observable we want to know. represents a border case, because for the Metropolis algo-

Starting point is that we will want to obtain the same relativerithm z is only slightly larger than 2. As a result, it is fruitless

error in the average valu®(r)) for each system dimension to invoke the more sophisticated cluster algorithms for simu-

L. The errorAg, in the average is proportional to the sec- lations on the stress tensor.

ond moment of the correlation function, Note that the actual simulatiotime is, in the case of a
, . Metropolis algorithm, proportional th?N, because the time
Azomzi _12 fL dtf d2r G(r,t). (76) needed for a'single MC cycle is simply proportional to thg
N L Jo 0 number of spins. An important consequence of the above is
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that the typical simulation time for the stress tensor iscalculations, which scale exponentiallyrs wheren is the
roughly proportional td_*. This contrasts with the computer number of different spin states.
time needed for transfer matrix calculations, which is expo- Hence much larger system sizes can be reached with our
nential inL. proposed method than with transfer matrix calculations, at
Hence, in principal much larger system sizes can pdeast in principle. For that reason, we expect the merits of our
reached with our MC method than in the transfer matrixmethod as compared with transfer matrix calculations to lie
method, to calculate the central charge. This is a promisingi@inly in simulations on models with a large number of spin
conclusion for systems of which the value of the centra/Statesn, especially when these states become continuous, as,

charge up to now is an open questi@,5]. e.g., in thexY-Ising model.
geup penq @v.9 It is not immediately clear what the advantagésny) of

our method are over the MC methods of Krech and Landau
Vil. SUMMARY AND DISCUSSION [13] or Wang and Bakef15], mentioned in Sec. |. With
In this paper, we proposed a Monte Carlo technique fothese latter methods, the observables to be averaged in the

the calculation of the central charge, and some critical diMC Simulation are more difficult than in our method. To

mensions of two-dimensional critical models. The techniqué®Pt@in accurate results, Krech and Landau had to use the
is based on the universal behavior of the stress tensor, a olff algorithm [24] and the optimized multiple histogram

operator that plays an important role in the theory of confor-an"leySiS of Ferrenberg and Swends@8], together with

mal invariance, but of which a lattice representation can eaéf"rge Comp“‘er power. The re.sult_s in th|§ paper were O.b'
ily be found as well. The rough data, following from the tained using standard Metropolis without histogram analysis,

Monte Carlo simulation, require a decent fit program to ex-°" @ simple workstation with moderate simulation times, but
tract the central charge,and critical dimensions. By compargre admittedly less accurate. Wang and Baker used a relation

ing our Monte Carlo analysis for three different models with for the central charge that contains the specific heat exponent

their exact results, we showed that the method works. W& as an unknown, a}nd had to sample a region of .the phase
explained why, on one hand, simulations on the stress tensgrlagram in the neighborhood of the critical point. T'he
are difficult because its expectation value is equipped Witﬁtren_gth of our method as compared to these other techniques
larger error bars than usual. On the other hand, it turns oJmains to be seen.

that the simulations are much easier thgn usu@l becau;g the ACKNOWLEDGMENTS

stress tensor shows to be remarkably insensitive to critical
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