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Exact localized solution for nonconservative systems with delayed nonlinear response
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We found an exact solitonlike solution for systems with gain and loss and delayed nonlinear response. An
example of an application of this solution is the passively mode-locked laser with slow saturable absorber.
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Localized structures are objects that define, to a large exene round trip, and(| ¢/|?) is the total loss including loss in
tent, the general dynamics of dissipative systems far fronthe semiconductor saturable absorber.
equilibrium. These are known as “solitary waves” or “soli- The gain termg(Q) in Eq. (1) describes a gain medium
tons” in a broad sense. Properties of these waves in variousith a recovery time much slower than the round-trip time of
conservative and nonconservative systems attracted a greae cavity and does not depend explicitly tinlt describes
deal of attention in recent years. The passively mode-lockedepletion of the gain medium and depends on the total pulse
laser[1-7] is an example of a dissipative system far from energy
equilibrium. Ultrashort pulse generation in laser systems is
based on a variety of schemes including figure-eight fiber Jo
laser desigr1], fast saturable absorbgs], coupled cavity 09(Q)= m 2
[6], additive pulse mode lockinf7], nonlinear polarization L
rotation[8,9], and stretched pulse operatid0]. The use of ] ) . ) ]
a semiconductor mirror-saturable absorber with relativelyVheredo is the small signal gain anf, is the saturation
slow response time and even slower recovery time has bedHergy. The value of(Q) decreases with the pulse energy
suggested for a passively mode-locked soliton f&&) Ex- SO that within gach round trip the pulse energy is I|m|'ted.
perimental verification of this possibility has been reported ~The absorption in the semiconductor can be described by
in [12,13. Some design aspects of the semiconductor satdhe rate equation
rable absorber mirrors are given, e.g.[14]. In the original
works[12,13 the pulses were approximated by the solitons 984 8s— 89 |W?
of the nonlinear Schidinger equation. However, in systems ot T,  Ep°% ©)
with gain and loss this approximation is too rough and is

close to reality for a very limited range of parameters. In theWhereTl is the recovery time of the saturable absortfgris

present work we have found the exact solitonlike solution for, . !

. , ; the loss introduced by the absorber in the absence of pulses,
pulses generated by a solid-state laser with a sem|conduct%dE is the saturation eneray of the absorber
saturable absorber with slow recovery time when the pulse A ; gy ort ; : i

The solution of Eq(3) can be written in general form:

amplitude is much smaller than the saturation threshold of
the absorber.

Degpite the fact that Iumpgd _eﬁects are present in the 54(t) =5, iJ [ex;{f i+% dt} dt+1
laser, it can be modeled as a distributed system if the changes T, T, Ea
to the field per round trip are small. The pulse evolution is )
then governed by the modified NLSE with nonlinear noncon- Xex;{ _ f - +ﬂ dtl 4)
servative term$4,11,15: T, Ea

D However, this expression does not allow the general solution
Hhyt 5 et |29 =110(Q) = 8(|¥*)]Y+iByn, (1) of Eq. (D) to be found.
We now consider the limiting case when the pulse ampli-
tude is well below the saturation level. The gain coefficignt

wherez is the cavity round-trip numbet, is the retarded is constant if we deal with stationary solutions of Ed)
time, ¢ is the normalized envelope of the optical field,is  whenQ is constant. We also assume that the relaxation time
the group velocity dispersion coefficierg, stands for spec- is large in comparison to the pulse width. In this cage,
tral filtering (8>0), g(Q) is the gain in the cavity which —c, and the loss changes across the pulse are given by the
depends on the total energ®= /" .||?dt, of the pulse in  approximate formula
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where a= 6,/E,. Substituting this into Eq(1) we obtain o%
the equation . 0
(==
D t < Q)
it o WPy su+iBu e[ ot @) a0
where §=g— &,. This equation is similar to the complex 30 20 -10 0 1o 20 30
Ginzburg-Landau equatiofCGLE) [16,17), except for the t

nonconservative nonlinear term in the right-hand-side of Eq.

(6), which is nonlocal in time. This equation has been stud- FIG. 1. Soliton profile(solid line and the loss curve(t)= 4

ied in a number of publications related to various physical+ o' . |#|?dt (dotted ling defined by the exact solution
situations[18—20. Exact solution of Eq(6) without a spec- Eq.(7) for §= —0.015,a=0.1, 3=0.02, andD = +1.

tral filtering term has been presented 9] and investigated

numerically in[20]. It has also been showi8] that Eq.(6) Let first § be negative. In this cas® must be positive
has a pulselike solution—"“autosoliton” but exact solution and we have to choose the minus sign in front of the square
has not been found. It is clear though that an explicit form ofroot in the expression foy. The sign in front of the square

the solution is very important for its further analysis. root in the expression fod is always positive. The soliton
We have found that E6) has the exact solution, which exists in a certain range of parameters. The limits of exis-
is the soliton, moving with velocity: tence are defined by the nonequality
Y=[A(t—Vz)]ttideKt-Toz ! 3ad(48°+D?)]? 2(5-BK?)
48(25—Dd) 26—dD ©
where
Figure 2 shows the region where this inequality is valid and
Ao hence, the solutiof¥7) exists(shaded areaParameters of the
A(X)= cosh yx) solution versus parameters of the equation are shown in Figs.
3 and 4.
3D 9D2 Dependence of the soliton amplitudg on the four pa-
d=— —+ , rameters of the equation is shown in Fig. 3. The dashed line
4B 1682 shows the limits in the parameter space defined by (Ex.

(boundary of the shaded apedhis means that the soliton

3ad(4B8%+D?) \/ 3ad(4B°+D?) % 2(6—BK?) exists only at positive & 8< 3., and negatives> &, where
= 43(23—Dd) * 48(23—Dd) } 28—dD Ber and &, correspond to the edges of shaded area in Fig. 2.
(8) Parameters andD are bounded from below. The amplitude
is finite in the above range of parameters and has an upper
2 2/ A p21 N2 limit. An important parameter for chirped pulses is the
A= 7\ /3d [g+D_ , K=-— M amplitude-width producp/y. It does not depend oa or &
45 8B%(1+d? but weakly depends o and D as shown in Fig. 4. The

velocity of the solitonV does not depend directly of but
depends linearly o becaus& depends linearly oa. The
velocity increases with increasing andD. The velocity is
always positive such that the soliton moves in the direction
For obtaining the solution, we used a method similar to theof higher gain.

one presented ifil6] (see Chap. 13 All the parameters of Now, let us consider the case whéris positive. In this

this solution including the velocity are fixed and depend case the solution exists for both signs in the expressiory for
on the parameters of the equation. However, there can be twdence, we have simultaneously two solutions for the same
branches of the solution given by the two signs in E). set of parameters. Below, we restrict ourselves to the case of
An example of the solution for certain values of parametergositive sign in Eq.(8). Moreover, the solution exists for

8, B anda is shown in Fig. 1. As can be seen from Fig. 1, both normal and anomalous dispersioegative and positive
the soliton always sticks to the gradient of the absorptiorD). This is not surprising21], because in systems with gain
curve §(t). Different values of loss or gain at different sides and loss, the pulse is the result of balance not only of the
of the soliton cause it to move relative to the reference framedispersion and nonlinearitywhich is impossible at negative
The solution disappears fat—0 where its amplitude goes D) but also the result of balance between gain and loss.
to zero. Note thab is equal to the amount of loger gain at  However, for negativeD the width of the pulse is much
the left hand side of the pulse. The properties of the solutiomreater than for the positivB (anomalous dispersidrcase
vary depending on whether the paramefeis positive or at the same values of other parameters. Dependence of the
negative. soliton amplitudeA, on the four parameters of the equation

V=K d 5

2 D
D-— —B), w= 5 (K?=y?+d?y?) —28dy~
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zero. The amplitude also goes to zero wher0. The ve-
0.05 locity of the pulse is again positive for both signsf
) For applications one of the most important properties of
the pulses is their stability. Clearly the background is un-
0 stable because of the positive gain on gnegative ) or
0 0.5 1 1.5 2 both (positive §) sides of the pulse. Total gain is always
D positive on the right hand side of the pulse. This region is

unstable with respect to both generation of continuum and
new pulses. However, for negative if we take into account

a finite relaxation time this unstable region is finite and gen-
eration of new pulses can be controlled by the depletion of
the gain medium.

. o o ] Most importantly the pulse itself is always unstable when
in the case of positive is shown in Fig. 5. The amplitude the parameters in the equatiéd) including & are fixed. In
increases to infinity wherB decreases to zero. This shows fact, any increase of the amplitude of the pulse relative to the

that spectral filtering is crucial for the existence of the pulseaxact solution increases the total gain across the pulse and
in this case. We can also see that the solution exists for both

signs of & except for a certain point where the amplitude is

FIG. 2. The space of parametdm § and 8 and(b) D and «
where soliton solution7) exists. Shaded area is defined by the
inequality (9). Parameters of calculation are shown in the plot.
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FIG. 3. Dependence of the pulse amplitude on the parameters of FIG. 5. Dependence of the pulse amplitude on the parameters of
the equation(a) «, (b) 8, (c) D, and(d) & (case of negative). the equatiory, (b) B, (c) D, and(d) & (case of positive’).
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Using the exact solution, the pulse energy can easily be
calculated asQ=2A§/y= 6dy(B+D?/4B). Substituting
Q=Q(¥) into Eqg.(2) we have the equation

0.025
0.02
Yo
|\VI2 0.015 0 17 OIE, 0= 6, (10
0.01 |
0.005 200
z which gives stationary values of the paramefeiThe exis-
0 - 100 tence and the number of solutions of Etj0) depend on the
-20 o " o values of the parametery, E, , and §,. Stability of these
t 40 stationary solutions depends on many parameters and is still

an open question. Each particular case can be checked nu-
FIG. 6. Stable propagation of the soliton solution fo.=  Mmerically. A numerical simulation showing stable propaga-
—0.015,4=0.1,3=0.02,D=+1, go=5, E, =0.00527,6,=0.1.  tion of the pulse for a certain choice of parameters is shown
in Fig. 6.
Taking into account the relaxation mechanism in Eyj.

the amplltqde Increases exponentlally.'Any_ decrease of thSoes not modify the pulse drastically unless the relaxation
pulse amplitude works in the opposite direction and the pU|S‘ﬁmeT is comparable to the width of the solitgr &, On the
decays. However, for a proper choice of the parameters, the 1 .

ulse mav become stabledfdepends on the total eneray of other hand, for negativé, the role of the relaxation is to
Fhe pulseé as in Eq.(2). The 5F():Iependence oD servesgz);s stabilize the background by returning the system to net loss

a feedback mechanism that stabilizes the pulse for a certafri1fter the pulse has passed.

range of values ofig, E| , anddy. The feedback mechanism N.N.A. and B.L.D. are part of the Australian Photonics
apparently has a delay of at least one round trip time and i€o-operative Research CentékPCRQO. M.J.L. acknowl-
defined by the relaxation time of the gain medium. Stabilityedges the financial support of Electro Optic Systems Pty.

may also depend on this delay time. Ltd. and the Australian Government.
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