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Controlling Hamiltonian chaos by medium perturbation in periodically driven systems
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By employing another external field with intensity not larger than 60% of the original driving force, the
Hamiltonian chaos in a driven Morse oscillator could be controlled in the sense that the bound state regions can
be changed at will. Based on our understanding about the complex dynamics of a periodically driven Hamil-
tonian system with one degree of freedom by two external fields, an idea of decreasing bound regions is
proposed. A formula for island width, being helpful for selecting a proper controlling field, is derived. The
mechanism in increasing bound regions extracted from a large number of numerical experiments is still not so
clear at present, but we have gotten a good grasp of the roles of controlling parameters with suppression of
Hamiltonian chaos. Though no small perturbations with this method can have a satisfactory effect, as previous
studies, some remarks about the magnitude of perturbation are pre§&it@63-651X98)03701-5

PACS numbds): 05.45+b

I. INTRODUCTION ones, the time average Hamiltonian is not conservative. A
driven Hamiltonian system is more appropriate as a model
Since Ott, Grebogi, and York@GY) [1] clearly pointed for the study of controlling chaos than a conservative one,
out that one had the possibility of utilizing chaos in practicesince the latter usually does not exchange energy with its
by controlling, a wide variety of methods have been devel-environment and it is not easy to find an externally control-
oped for controlling chaotic systerhs—5]. However, a large lable parameter in practice. On the other hand, by introduc-
number of controlling works in the literature so far haveing a pair of canonically conjugated variabtesnd—H, any
concentrated on dissipative systems. One of the reasomme of the time-dependent Hamiltonian systems witte-
might come from the fact that conservative systems, unlikgyrees of freedonH=H(q,5,t) can be transformed into a
dissipative systems, are generally difficult to meet in practiconservative oneH’=H(q,p,t)—H=H'(q§’,p’) with a
cal engineering. Another important reason is that due to areg(n+ 1) dimensional phase space, where=q;, p/=pi,
conservation in Hamiltonian maps, many control approaches,» _ ro_ - :
e.g., the OGY method that was%evelop):ad for the%?ssipativ?aq””__t’ Pn+1= _ H (i - 1.2, -_{1) and the canorlcal
systems, cannot be applied directly to Hamiltonian systemgduations associated witH’ are p’=—dH'/dq" and q'
[6]. In order to overcome this difficulty, Lait al.[6] gave a =dJH'/dp’, leading to some common features between con-
modified OGY algorithm that is successfully used in stabi-trolling processes of a driven Hamiltonian and a conservative
lizing not only the unstable periodic orbits bounded to aone. Therefore, some conclusions obtained from driven
finite volume in phase space in the standard fdut also  Hamiltonian systems are believed to be beneficial in control-
the unbound nonhyperbolic chaotic scattering trajectories ifing of chaos in conservative ones.
the Gaspard-Rice scattering m@af}. This algorithm features In the presence of an external field, the Poincargface
a possible, precise tailoring of the controlling process byof section of a driven Hamiltonian system is divided into
applying weak parameter perturbations around preselectdsbund and unbound state regions. These regions are sepa-
unstable periodic orbits. As pointed out in RES], its effi-  rated by a bounding torus, i.e., the most robust Kolmogorov-
ciency will be greatly enhanced if a general scheme of tarArnold-Moser(KAM) torus that breaks up eventually as the
geting for the layered Hamiltonian phase space structureamplitude of the external field is gradually increased. Our
emerges in the future. aim is to control the structures of phase space, i.e., to in-
In this paper, we propose a different way to controlcrease the area of bound regiofws the area of unbound
Hamiltonian chaos, which could be generally suitable for aregions depending on one’s requiremenihis is realized
type of periodically driven system with one degree of free-by employing a second external field whose frequency and
dom. A driven Hamiltonian system is no longer conserva-amplitude are appropriately chosen. In order to distinguish
tive, and only its time average may be such. The specifithese two fields, we call the second one a controlling field.
condition for the average Hamiltonian to be conservative idJsually by controlling chaos one means a process achieved
that there exist a periodic orbit along which the natural fre-by small perturbations less than a few percent. We also ex-
guency of the system and the forcing frequency are commerpect here that the controlling field has an intensity as small as
surable. For other orbits such as quasiperiodic or chaotipossible. However, the results show that our method features
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a medium perturbation by which we mean that the amplitudédamilton’s equations associated with Ed) can be written
of the controlling field ranges from 40% to 60% of the origi- as
nal driving field. The possible reasons will be analyzed in

Sec. IV. dx_ -
Furthermore, the Morse oscillator is used to illustrate our E-_( X)Y,
controlling method. At this point it is worth comparing our @)
approach with another one that controls the chaotic scatter-
ing between two atoms interacting via a Morse potential in ar —(1-x)x+A cod Q7).

the presence of a laser fidll]. The latter is focusing on the

unbound motion above the field-free dissociation energy ims it is not convenient to apply Chirikov’s nonlinear reso-
an impulsively driven model, while our interest is concen-nance theory in such a form, E) is rewritten in terms of
trated on the phase space below the field-free dissociatiogiction-angle variabled and 6) of an isolated Morse oscilla-
energy in a sinusoidal driven model. Additionally, their con-tor by using the transformation relatiofs3]:

trol mechanism makes full use of a newly created stable

resonance island to trap the chaotic scattering trajectories by E+ JE cos @

switching on the driving force during the collision, while X=——F=,

ours is based on the analysis of the interaction between two 1+1JE cos g
sets of resonances induced by the driving force and the con- _
trolling field, respectively. Another important difference lies —w\VEsing

in the strength of perturbations. The required field in R&f. y= 1+ E cos @’ ©
must be very strong, while in the present paper the amplitude

of a controlling field is smaller than that of the original driv- whereE=1-12/4 is the dimensionless energy of the unper-
ing force. turbed Morse oscillator andw=1-1/2 is the natural

This paper is organized as follows. In Sec. Il we shallfrequency of the oscillator. ObviouslyE takes a value
describe the model and present the island width forf@la  between 0 and 1 for a bound state. In terms of new vari-
Chirikov's overlap criterion shall be used to analyze thegples the HamiltonianH becomes [13] K=H/D=E
width of islands in a periodically driven system, giving rise —2A”_ f(E)cosff)cosds). The Chirikov's standard

to “the island width formula,” which provides preliminaries heory[15] gives the following formula for the primary reso-
for the controlling method. In Sec. lll we shall develop the nance width:
Eln n/2
) )

control method. Numerical results and discussions and con-
1+\1-E™M

cluding remarks are given in Secs. IV and V, respectively.

A periodically driven Morse oscillator is extensively used whereEY" denote§ the energy determined by conditions for
in investigating the dynamical behaviors of a molecular sysoccurrences of primary resonances
tem under intensive laser radiatiph0—14. It is described

A(l— El/r‘l)) 1/2

AEl’“ZS(
n

II. MODEL AND THE ISLAND WIDTH FORMULA

by a Hamiltonian nw(l)=0Q=0, n=1.2,.... (5)
p? X Now let us discuss the islands in a chaotic sea. According
H= 2t D(1-e “")*—ey cogft), (1) to Chirikov’s theory, when two primary resonances overlap

each other, all the KAM tori between them break up, and

where the Symbo]s carry their usual meanings' as in ReﬁJmOSt all the nearby phase points fall within the stochastic

[13]. Considering our purpose in the following we shall first layer except those initiated within small islands. We think
briefly review the resonance structures in systénana- that the remaining islands deserve to be noticed, because the

lyzed by Guet al. [13], and then present our method. existence of them implies that a driven molecular system
We define dimensionless variables as with higher energy can be kept in a bound state by employ-

ing a specially designed initial condition. In order to illus-

x=1—e %7, trate how to estimate the width of an island, we take the

winding numberw/Q)=1/1 island as an example that denotes

p the remaining regular region around the 1/1 primary reso-

y= , nance center after two primary resonances wiitlil=1/1
V2D p and 1/2 overlap, as shown in Fig. 1.

oD\ 12 When a touch between separatrices of the 1/1 and 1/2
T_a(_> t, primary resonances occurs at the critical field strength, the

H global instability arises. What happens to the motion of the

system when the separatrices overlap further? To answer this
— question, we first restrict ourselves to the vicinity of the 1/1
2Da’ resonance center. The dynamics with a driving strength be-
12 yond a critical value can be understood in such a way that a
f M phase point initiated within the intersected pAmB or its
(ZD) symmetric line segmenB’A’ about the center of the 1/1

&€
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a good approximate extent, the relation between the width of

the 1/1 island andl). The discrepancy betwedy, andC, is

due to the fact that other resonances, especially the infinite
number of fi—1)/n secondary resonances generated via the

E A 1/2 : . :

B interaction of these 1/1 and 1/2 primary resonances, have

11 effects on the size of the 1/1 island.

B}
'y / Ill. THE CONTROLLING METHOD

Using the driven Morse oscillatgd) as a model we can
investigate in this section the controlling of Hamiltonian
chaos. As mentioned in Sec. |, our aim is to change the ratio

FIG. 1. Overlap of two primary resonances with the winding of hound state regions to unbound state regions by employ-
numbers 1/1 and 1/2 in the Pomcasprface of sectlo.n. Line seg- ing a weak controlling field with amplitud. and frequency
mentsAB and B'A’ along theE axis are symmetric about the Q., where the bound regions denote the region below the
center of the 1/1 resonance. bounding torus and the tiny islands in the chaotic sea in the

S Poincaresurface of section. This definition of the bound re-
resonance along thié axis will wander from one resonance _.gions comes from the fact that, although there is a stochastic

r_egion to a_nother, a}nd finally escape out. A phase point inITayer below the bounding torus, the trajectories initiated be-
tiated within theBB’ segment will be bounded around the (Ijow it will be made to remain below it forever.

center of the 1/1 resonance. Thus the width of the 1/1 islan In the presence of botiA cos@)?) and A, cos€).7),

can be estimated by Hamilton’s equations corresponding to a driven Morse oscil-
lator can be written as

6

A il(/tlheo)zz(Ellz_ El/l)_AE1/2_ (6)
Similar to the overlap criteriofil5], only the 1/1 and 1/2 j—xz(l—x)y,
primary resonances are considered, and all other primary T (7)
resonances and the sequences of secondary or higher reso-
nances are neglected. So Ef) can be used to estimate an y_ —(1-x)x+A cogQ71)+A; cogQ.7)
order of magnitude of island width which usually gives too dr ¢ e

large values. For instance, by applying a similar expression . ] .
to the overlap between 1/2 and 1/3 primary resonances in Eq. Although the dynamics of a driven Morse oscillator by
(2) with A=0.025 andQ=0.9, the 1/2 island has a width two external fields with different frequencies simultaneously
A i1(/t2heo):2(|51/3_ EY2)— AEY3=0.087 along theE axis, 'S SO comple>_< that it is very difficult to analyz_e by using
while numerical simulation yieIdsAE-”Z —0.031. How- existing theories, _the .problem regarding the size Qf bound
i(exp) regions can be simplified by means of the following pre-
sumption. Each external field induces a set of resonances as

ever, in this formula it is highly important for us to devise a
controlling method for Hamiltonian chaos, because it dIS'if the other field did not exist, and each primary resonance
with the winding number I/ or 1/, has an equal status in

closes qualitatively the relation between the width of the
:;loatnv?/eag(rjetsheitd Sglﬂ%g;egﬂle nc};’nzzzqgwnégr\igs' VzérISrL;h'Sf[he sense that the overlap crjteri@hS] and the \_/vidth of _
i(theo) i(exp) . island formula(6) can be applied to any two adjacent pri-
2 (C, and Cy) for Eq. (2) with the dr_lvmg amplltudeA_ mary resonances no matter to which set they belong, where
=0.025. It can be seen that the theoretical results describe, H)c=1,2, ... and T, denotes the winding number of the
primary resonances induced By, cos).7). Therefore, we
06 F : can chooséA, and (). deliberately so that the largest one
G c among the i, resonances is embedded just between two
2 resonances with the winding numbernland 1/g+1),
where there are yet undestroyed KAM tori. This procedure
results in an emergence of stochastic layers according to
AEM Chirikov’'s nonlinear resonance theory. In order to decrease
' the bound regions as much as possible, the area between 1/1
02rf and 1/2 resonances is usually chosen as the embedded region
so that the bounding torus breaks down and the global insta-
bility arises. The width of the remaining bound regions of the
0 A ele . , controlled system can be estimated by means of forrf@)la
0 0.25 0.5 0.75 1 Obviously, the above presumption describes the structures of
phase space only in the zeroth-order approximation, but nu-
merical experiments given in the next section indicate that
this method is simple and practical.
FIG. 2. The width of the 1/1 island with response to the driving  On the other hand, in a large number of experiments we
frequency®) in Eq. (2) with A=0.025.C; is obtained from formula  find that the bound regions can also be increased by employ-
(6) while C, corresponds to numerical experiment results. ing a method similar to the above except that the controlling
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11— — — — at (0.280;- ) in Fig. 3(b). The former corresponds to a
‘a chaotic unbound motion, while the latter corresponds to a
075 | - complicated bound motion whose frequency cannot be deter-

mined easily. These results show that the numerical experi-
ment agrees qualitatively with our theory.

Further experiments show that all attempts to control such
a system by small perturbations have failed, and the most
suitable intensity ranges from 40% to 50% of the original

E osp .

0.25

1] driving force. Although such a result can be easily explained
1 by applying the theoretical formula in our controlling
b method, a radical reason is needed. In a dissipative chaotic
075k system, there exists a strange attractor, and due to the ergod-
icity the system can reach an arbitrarily small vicinity of any
E osl phase point included in the attractor. So the small perturba-
_ - tions that are deliberately chosen can stabilize a chaotic tra-
0.25 s os oy jectory if the system enters a proper small controlling region
) .‘a.:*: ’-5,,_,:"a (the neighborhood of desired periodic ojbiiowever, for a
X . Hamiltonian system, the phase space is divided into layered
0-1 05 o 05 9 components that are separated from each other, and the tra-

o/r jectories initiated at different energies are constrained within
the distinct regions in phase space. For example, according
to the resonance structures in a driven Morse oscillator, the
FIG. 3. Numerical results of decreasing bound regions in(Bg.  stable 1/1 island does not get in touch with the stable 1/2
with A=0.025,02=0.9,A;=0.010, and2.=0.7.(a) An unbound island, and a phase point initiated in a stochastic layer under
trajectory initiated at o, 6,) =(0.330;~ ). (b) A bound trajec-  the bounding torus will not enter the unbound stochastic re-
tory initiated at €, 6) = (0.280;- ). gion forever, etc. The layered structure is so universal in
Hamiltonian systems that the phase space of the same sto-
chastic layer is separated by cantori, remains of KAM tori,
field must satisfyQ),=2() and A® =, whereAd is the and particles initialized in one layer of the chaotic region
phase difference between the driving fiélccos()7) and the  wander in that layer for a long period of time before they
controlling field. The mechanism in such a suppression otross the cantori and wander in the next layer. Furthermore,
Hamiltonian chaos is still not so clear, but through numericakhe layered structure repeats itself in each smaller space
experiments we have gotten a good grasp of the roles afcale, such as the scale of secondary or higher resonances.
controlling parameter§),, A®, andA. in increasing bound Different layers correspond to different initial conditions. If

regions, as will be seen in the next section. an initial condition and the intended target are in the same
layer, the needed perturbations may be as small as possible
IV. NUMERICAL RESULTS after the system enters the desired controlling redite

problem of long chaotic transients is not discussed )here

For a driven Morse oscillatof2) with A=0.025 and() e.g., the maximum range of parameter variation in R&fis
=0.9, about a 50% phase space area in the Poirstaface 1% of the unperturbed parameter. When the initial condition
of section is dominated by bound states. From Edsand and the target are in different layers, as the situation met in
(5) we obtain €Y% 6)=(0.1900; %), (EY?6)=(0.7975, most cases, the controlling force must be large in order to
— ), AEY*=0.5453, andAEY?=0.2479, where E¥,6)  bring the system from one layer to another. We guess the
and (EY2 6) are centers of 1/1 and 1/2 primary resonancesamount of perturbation would be proportional to the initial
respectively. Suppose that the strength of a controlling fielenergy difference of these two layers. In our controlling
is fixed atA.=0.010. The proper frequency that will be used method, A; cos{2.7) is used to induce a sufficiently wide
in decreasing bound regions is selectedlas- 0.7 by apply- resonance that can touch the two adjacent separatrices of
ing the method proposed in Sec. lll. By substitutihgand  resonances in two different layers, so a mediag(about
Q. in Egs. (4) and (5), we can obtain the largest primary 40% of A) can be reasonably understood.
resonanceE}{%O.SlOO andAE(1{§=0.3630 induced by the ~ On the other hand, for the same driven oscillat@y
controlling field. Thus, when the controliing field is turned With A=0.025 and}=0.9 as above, it is expected that the
on, the global instability sets in. The bound state is restrictet?,’ound regions will be increased by adding a controlling

; ; ; ; m o _ 1/1 ield A, cosQ.7+Ad) with A,=0.010. As pointed out in
malzlly o t?ﬁ_lll island with & Wit Eigneq=2(En; 5o lll, we must sef);=1.8 andA®=7. The numerical
-E )_AEQC_O-277- results are displayed in Fig(&. In this figure, we present

The numerical experiment from Eq7) shows that seven typical trajectories whose initial conditions &¥&l10,
AE(3,,=0.140, and all the phase points with initial condi- —m), (0.448;~), (0.520~m), (0.580;-), (0.617~m),
tions Eq=0.290 (8= * ) or E;<0.130 (9= = =) disso- (0.670;-m), and (0.745;-m), respectively. It can be seen
ciate within a few optical cycles, as shown in Fig. 3. We that not only is the bounding torus of the system raised from
present separately the Poincareface of section of a trajec- Eq=0.548 (6p=— ) to Eq=0.670 (6= — ), but also the

tory initiated at €y, 60,) =(0.330,~7) in Fig. 3(@ and that width of the 1/2 island is increased froﬁEil(fxp)=0.03l to
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1 driven Morse oscillator controlled by this method changes
with A® quantitatively or continuously.
0.75 74‘\\ VAN /__..\i As an addi_tion we also explore the effect @g. In nu-
e R T merical experiments it is found that the controlling field with
E o5 _f\_/\ a too large or a too small strength cannot reach a good sup-
RN P pressing effect; e.g., for the situation with=0.025, Q
025} \_/’ =0.9, Q.=1.8, andA® =, a suitable range oA is
L *. a {0.010,0.01% A great number of experimental results show
ol= " : S - that the most suitablé. used in increasing the bound re-

gions is about 50% of. Whether this is due to the layered

structure of the Hamiltonian system as discussed above or

. o _other reasons remains a open question, which needs further
4""""?3?" s ,:,,,M T investigation.

E
V. SUMMARY
(4
S ' b _ In this paper we suggest an ide_a th_at the comple>_< dynam-
o Les== =7 o~ ics of a periodically driven Hamiltonian system with one
degree of freedom by two external fields can be understood
1 gualitatively based on the interaction between two sets of
: - J resonances induced by every single driving force, respec-
7Sy o s aen tively, and all primary resonances can be regarded as being
e S Q\t;\, . “)‘-4;?‘0«,’ Rt . .. S
¥ e on an equal status in the sense that Chirikov’s theory can be
E os - . used in any two adjacent resonances. Another contribution of
NN yrhd the present work is the island width formula, which provides
0251 N \__/ i a necessary preparation for this controlling method. The area
. . C of bound regions in a driven Hamiltonian system can be
~ g Yy

changed at will by adding another medium driving field, and

specifically a controlling field used to decrease the bound
O/n regions is selected by means of the island width formula
while that used to increase the bound regions must satisfy

FIG. 4. Influence of a small perturbation to the frequetky (=20 andAd=.

and the phase differencid separately on the effect in increasing NUmerical results for a periodically driven Morse oscilla-
the bound regions in Eq7) with A=0.025,0=0.9, andA,=0.010. tor show that our method is quite effective. The discrepancy

(a) Seven trajectories wit.=1.8 andAd=. (b) Five trajecto- Petween theory and numerical experiments in decreasing the
ries with Q,=1.7995 andAd=. (c) Three trajectories wittfy, ~ Pound regions is due to the zeroth-order approximation of
=1.8 andAd= 1. The initial phase pointi,, 6,) of each trajec- OuUr method, i.e., we only consider the primary resonances
tory is given in the text. and neglect all secondary and other higher resonances. In
fact, the resonance structures of a driven Morse oscillator are
actually much more complicated than those that appear ex-
0.075 along theE axis. Furthermore, the stochastic layer plicitly in the Hamiltonian[15].
under the bounding torus is much thinner than before con- Wwith the development of high-power infrared lasers, there
trolling. has been considerable interest in investigating the dynamical
In order to investigate the effect 6f., we cut down();  behavior of a molecular system under intensive laser radia-
by 3/10 000 and repeat the above simulation. Three trajectaion [10—14,16. Our method not only gives a useful way for
ries are given in Fig. @). The lower trajectory initiated from  controlling chaos in such a system but also provides some
(0.410;- 7) represents a bound motion, the middle one fromintuitive examples for study of the complex dynamics of a
(0.520;- ) dissociates from the bound state very slowly, driven molecular system under two external fields. For ex-
and the upper one from (0.61777) escapes quickly. This ample, since increasing the bound region in the Poincare
fact demonstrates that a slight perturbatiorfXgp can result  surface of section of a Hamiltonian system is related to the
in a disastrous or qualitative change in the phase space strugolecular association rate in a chemical reaction while de-
tures, which is quite different from the situation in decreas-creasing the bound region is related to the dissociation rate,
ing bound regions where the resonance structure is not 9oy employing a second external field whose intensity is
sensitive to the perturbation 61, . smaller than that of the original driving field these processes
It is interesting that the effect af® is not so important would find applications in controlling chemical reactions by
as(). in suppressing Hamiltonian chaos of E8). Reducing using a laser field. In particular, it is well known that the
A® by 1/10, we present the Poincasarface of section of laser intensity required to dissociate a diatomic molecular is
five trajectories initiated from (0.418,7), (0.448;- ), far too high to be practical. We hope that the approach for
(0.520~7), (0.617~=), and (0.800; 7) in Fig. 4(c), decreasing the bound region in this paper may give a chal-
where the area of bound regions is clearly greater than that itenging idea for a universal solution to this problem. More-
Fig. 4(b). We can conclude that the dynamical behavior of aover, in order to get a better effect on lowering the strength
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