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Controlling Hamiltonian chaos by medium perturbation in periodically driven systems
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By employing another external field with intensity not larger than 60% of the original driving force, the
Hamiltonian chaos in a driven Morse oscillator could be controlled in the sense that the bound state regions can
be changed at will. Based on our understanding about the complex dynamics of a periodically driven Hamil-
tonian system with one degree of freedom by two external fields, an idea of decreasing bound regions is
proposed. A formula for island width, being helpful for selecting a proper controlling field, is derived. The
mechanism in increasing bound regions extracted from a large number of numerical experiments is still not so
clear at present, but we have gotten a good grasp of the roles of controlling parameters with suppression of
Hamiltonian chaos. Though no small perturbations with this method can have a satisfactory effect, as previous
studies, some remarks about the magnitude of perturbation are presented.@S1063-651X~98!03701-5#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Since Ott, Grebogi, and Yorke~OGY! @1# clearly pointed
out that one had the possibility of utilizing chaos in pract
by controlling, a wide variety of methods have been dev
oped for controlling chaotic systems@1–5#. However, a large
number of controlling works in the literature so far ha
concentrated on dissipative systems. One of the rea
might come from the fact that conservative systems, un
dissipative systems, are generally difficult to meet in pra
cal engineering. Another important reason is that due to a
conservation in Hamiltonian maps, many control approach
e.g., the OGY method that was developed for the dissipa
systems, cannot be applied directly to Hamiltonian syste
@6#. In order to overcome this difficulty, Laiet al. @6# gave a
modified OGY algorithm that is successfully used in sta
lizing not only the unstable periodic orbits bounded to
finite volume in phase space in the standard map@6# but also
the unbound nonhyperbolic chaotic scattering trajectorie
the Gaspard-Rice scattering map@7#. This algorithm features
a possible, precise tailoring of the controlling process
applying weak parameter perturbations around presele
unstable periodic orbits. As pointed out in Ref.@6#, its effi-
ciency will be greatly enhanced if a general scheme of
geting for the layered Hamiltonian phase space structu
emerges in the future.

In this paper, we propose a different way to cont
Hamiltonian chaos, which could be generally suitable fo
type of periodically driven system with one degree of fre
dom. A driven Hamiltonian system is no longer conserv
tive, and only its time average may be such. The spec
condition for the average Hamiltonian to be conservative
that there exist a periodic orbit along which the natural f
quency of the system and the forcing frequency are comm
surable. For other orbits such as quasiperiodic or cha
571063-651X/98/57~1!/366~6!/$15.00
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ones, the time average Hamiltonian is not conservative
driven Hamiltonian system is more appropriate as a mo
for the study of controlling chaos than a conservative o
since the latter usually does not exchange energy with
environment and it is not easy to find an externally contr
lable parameter in practice. On the other hand, by introd
ing a pair of canonically conjugated variablest and2H, any
one of the time-dependent Hamiltonian systems withn de-
grees of freedomH5H(qW ,pW ,t) can be transformed into a
conservative oneH85H(qW ,pW ,t)2H5H8(qW 8,pW 8) with a
2(n11) dimensional phase space, whereqi85qi , pi85pi ,
qn118 5t, pn118 52H ( i 51,2, . . . ,n) and the canonica

equations associated withH8 are pẆ 852]H8/]qW 8 and qẆ 8
5]H8/]pW 8, leading to some common features between c
trolling processes of a driven Hamiltonian and a conserva
one. Therefore, some conclusions obtained from driv
Hamiltonian systems are believed to be beneficial in cont
ling of chaos in conservative ones.

In the presence of an external field, the Poincare´ surface
of section of a driven Hamiltonian system is divided in
bound and unbound state regions. These regions are s
rated by a bounding torus, i.e., the most robust Kolmogor
Arnold-Moser~KAM ! torus that breaks up eventually as th
amplitude of the external field is gradually increased. O
aim is to control the structures of phase space, i.e., to
crease the area of bound regions~or the area of unbound
regions depending on one’s requirements!. This is realized
by employing a second external field whose frequency
amplitude are appropriately chosen. In order to distingu
these two fields, we call the second one a controlling fie
Usually by controlling chaos one means a process achie
by small perturbations less than a few percent. We also
pect here that the controlling field has an intensity as sma
possible. However, the results show that our method feat
366 © 1998 The American Physical Society
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57 367CONTROLLING HAMILTONIAN CHAOS BY MEDIUM . . .
a medium perturbation by which we mean that the amplitu
of the controlling field ranges from 40% to 60% of the orig
nal driving field. The possible reasons will be analyzed
Sec. IV.

Furthermore, the Morse oscillator is used to illustrate o
controlling method. At this point it is worth comparing ou
approach with another one that controls the chaotic sca
ing between two atoms interacting via a Morse potentia
the presence of a laser field@8#. The latter is focusing on the
unbound motion above the field-free dissociation energy
an impulsively driven model, while our interest is conce
trated on the phase space below the field-free dissocia
energy in a sinusoidal driven model. Additionally, their co
trol mechanism makes full use of a newly created sta
resonance island to trap the chaotic scattering trajectorie
switching on the driving force during the collision, whil
ours is based on the analysis of the interaction between
sets of resonances induced by the driving force and the
trolling field, respectively. Another important difference lie
in the strength of perturbations. The required field in Ref.@8#
must be very strong, while in the present paper the amplit
of a controlling field is smaller than that of the original dri
ing force.

This paper is organized as follows. In Sec. II we sh
describe the model and present the island width formula@9#.
Chirikov’s overlap criterion shall be used to analyze t
width of islands in a periodically driven system, giving ris
to ‘‘the island width formula,’’ which provides preliminarie
for the controlling method. In Sec. III we shall develop t
control method. Numerical results and discussions and c
cluding remarks are given in Secs. IV and V, respectivel

II. MODEL AND THE ISLAND WIDTH FORMULA

A periodically driven Morse oscillator is extensively use
in investigating the dynamical behaviors of a molecular s
tem under intensive laser radiation@10–14#. It is described
by a Hamiltonian

H5
p2

2m
1D~12e2ag!22«g cos~ f t !, ~1!

where the symbols carry their usual meanings, as in R
@13#. Considering our purpose in the following we shall fir
briefly review the resonance structures in system~1! ana-
lyzed by Guet al. @13#, and then present our method.

We define dimensionless variables as

x512e2ag,

y5
p

A2Dm
,

t5aS 2D

m D 1/2

t,

A5
«

2Da
,

V5
f

a S m

2D D 1/2

.
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Hamilton’s equations associated with Eq.~1! can be written
as

dx

dt
5~12x!y,

~2!

dy

dt
52~12x!x1A cos~Vt!.

As it is not convenient to apply Chirikov’s nonlinear res
nance theory in such a form, Eq.~2! is rewritten in terms of
action-angle variables~I andu! of an isolated Morse oscilla
tor by using the transformation relations@13#:

x5
E1AE cosu

11AE cosu
,

y5
2vAE sin u

11AE cosu
, ~3!

whereE5I 2I 2/4 is the dimensionless energy of the unpe
turbed Morse oscillator andv512I /2 is the natural
frequency of the oscillator. Obviously,E takes a value
between 0 and 1 for a bound state. In terms of new v
ables the HamiltonianH becomes @13# K5H/D5E
22A(n50

` f n(E)cos(nu)cos(Vt). The Chirikov’s standard
theory@15# gives the following formula for the primary reso
nance width:

DE1/n58S A~12E1/n!

n D 1/2S AE1/n

11A12E1/nD n/2

, ~4!

whereE1/n denotes the energy determined by conditions
occurrences of primary resonances

nv~ I !6V50, n51,2, . . . . ~5!

Now let us discuss the islands in a chaotic sea. Accord
to Chirikov’s theory, when two primary resonances overl
each other, all the KAM tori between them break up, a
almost all the nearby phase points fall within the stocha
layer except those initiated within small islands. We thi
that the remaining islands deserve to be noticed, becaus
existence of them implies that a driven molecular syst
with higher energy can be kept in a bound state by empl
ing a specially designed initial condition. In order to illu
trate how to estimate the width of an island, we take
winding numberv/V51/1 island as an example that denot
the remaining regular region around the 1/1 primary re
nance center after two primary resonances withv/V51/1
and 1/2 overlap, as shown in Fig. 1.

When a touch between separatrices of the 1/1 and
primary resonances occurs at the critical field strength,
global instability arises. What happens to the motion of
system when the separatrices overlap further? To answer
question, we first restrict ourselves to the vicinity of the 1
resonance center. The dynamics with a driving strength
yond a critical value can be understood in such a way th
phase point initiated within the intersected partAB or its
symmetric line segmentB8A8 about the center of the 1/1
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resonance along theE axis will wander from one resonanc
region to another, and finally escape out. A phase point
tiated within theBB8 segment will be bounded around th
center of the 1/1 resonance. Thus the width of the 1/1 isl
can be estimated by

DEi ~ theo!
1/1 52~E1/22E1/1!2DE1/2. ~6!

Similar to the overlap criterion@15#, only the 1/1 and 1/2
primary resonances are considered, and all other prim
resonances and the sequences of secondary or higher
nances are neglected. So Eq.~6! can be used to estimate a
order of magnitude of island width which usually gives t
large values. For instance, by applying a similar express
to the overlap between 1/2 and 1/3 primary resonances in
~2! with A50.025 andV50.9, the 1/2 island has a widt
DEi (theo)

1/2 52(E1/32E1/2)2DE1/350.087 along theE axis,
while numerical simulation yieldsDEi (exp)

1/2 50.031. How-
ever, in this formula it is highly important for us to devise
controlling method for Hamiltonian chaos, because it d
closes qualitatively the relation between the width of t
island and the driving frequency, as shown in Fig. 2. In t
plot we present both theDEi (theo)

1/1 andDEi (exp)
1/1 curves versus

V ~C1 and C2! for Eq. ~2! with the driving amplitudeA
50.025. It can be seen that the theoretical results describ

FIG. 1. Overlap of two primary resonances with the windi
numbers 1/1 and 1/2 in the Poincare´ surface of section. Line seg
ments AB and B8A8 along theE axis are symmetric about th
center of the 1/1 resonance.

FIG. 2. The width of the 1/1 island with response to the drivi
frequencyV in Eq. ~2! with A50.025.C1 is obtained from formula
~6! while C2 corresponds to numerical experiment results.
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a good approximate extent, the relation between the width
the 1/1 island andV. The discrepancy betweenC1 andC2 is
due to the fact that other resonances, especially the infi
number of (n21)/n secondary resonances generated via
interaction of these 1/1 and 1/2 primary resonances, h
effects on the size of the 1/1 island.

III. THE CONTROLLING METHOD

Using the driven Morse oscillator~1! as a model we can
investigate in this section the controlling of Hamiltonia
chaos. As mentioned in Sec. I, our aim is to change the r
of bound state regions to unbound state regions by emp
ing a weak controlling field with amplitudeAc and frequency
Vc , where the bound regions denote the region below
bounding torus and the tiny islands in the chaotic sea in
Poincare´ surface of section. This definition of the bound r
gions comes from the fact that, although there is a stocha
layer below the bounding torus, the trajectories initiated
low it will be made to remain below it forever.

In the presence of bothA cos(Vt) and Ac cos(Vct),
Hamilton’s equations corresponding to a driven Morse os
lator can be written as

dx

dt
5~12x!y,

~7!

dy

dt
52~12x!x1A cos~Vt!1Ac cos~Vct!.

Although the dynamics of a driven Morse oscillator b
two external fields with different frequencies simultaneou
is so complex that it is very difficult to analyze by usin
existing theories, the problem regarding the size of bou
regions can be simplified by means of the following pr
sumption. Each external field induces a set of resonance
if the other field did not exist, and each primary resonan
with the winding number 1/n or 1/nc has an equal status i
the sense that the overlap criterion@15# and the width of
island formula~6! can be applied to any two adjacent pr
mary resonances no matter to which set they belong, wh
nc51,2, . . . and 1/nc denotes the winding number of th
primary resonances induced byAc cos(Vct). Therefore, we
can chooseAc and Vc deliberately so that the largest on
among the 1/nc resonances is embedded just between t
resonances with the winding number 1/n and 1/(n11),
where there are yet undestroyed KAM tori. This procedu
results in an emergence of stochastic layers according
Chirikov’s nonlinear resonance theory. In order to decre
the bound regions as much as possible, the area betwee
and 1/2 resonances is usually chosen as the embedded r
so that the bounding torus breaks down and the global in
bility arises. The width of the remaining bound regions of t
controlled system can be estimated by means of formula~6!.
Obviously, the above presumption describes the structure
phase space only in the zeroth-order approximation, but
merical experiments given in the next section indicate t
this method is simple and practical.

On the other hand, in a large number of experiments
find that the bound regions can also be increased by emp
ing a method similar to the above except that the controll
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57 369CONTROLLING HAMILTONIAN CHAOS BY MEDIUM . . .
field must satisfyVc52V and DF5p, whereDF is the
phase difference between the driving fieldA cos(Vt) and the
controlling field. The mechanism in such a suppression
Hamiltonian chaos is still not so clear, but through numeri
experiments we have gotten a good grasp of the roles
controlling parametersVc , DF, andAc in increasing bound
regions, as will be seen in the next section.

IV. NUMERICAL RESULTS

For a driven Morse oscillator~2! with A50.025 andV
50.9, about a 50% phase space area in the Poincare´ surface
of section is dominated by bound states. From Eqs.~4! and
~5! we obtain (E1/1,u)5(0.1900,2p), (E1/2,u)5(0.7975,
2p), DE1/150.5453, andDE1/250.2479, where (E1/1,u)
and (E1/2,u) are centers of 1/1 and 1/2 primary resonanc
respectively. Suppose that the strength of a controlling fi
is fixed atAc50.010. The proper frequency that will be us
in decreasing bound regions is selected asVc50.7 by apply-
ing the method proposed in Sec. III. By substitutingAc and
Vc in Eqs. ~4! and ~5!, we can obtain the largest primar
resonanceEVc

1/150.5100 andDEVc

1/150.3630 induced by the

controlling field. Thus, when the controlling field is turne
on, the global instability sets in. The bound state is restric
mainly to the 1/1 island with a widthDEi (theo)

1/1 52(EVc

1/1

2E1/1)2DEVc

1/150.277.

The numerical experiment from Eq.~7! shows that
DEi (exp)

1/1 50.140, and all the phase points with initial cond
tions E0>0.290 (u056p) or E0<0.130 (u056p) disso-
ciate within a few optical cycles, as shown in Fig. 3. W
present separately the Poincare´ surface of section of a trajec
tory initiated at (E0 ,u0)5(0.330,2p) in Fig. 3~a! and that

FIG. 3. Numerical results of decreasing bound regions in Eq.~7!
with A50.025,V50.9, Ac50.010, andVc50.7. ~a! An unbound
trajectory initiated at (E0 ,u0)5(0.330,2p). ~b! A bound trajec-
tory initiated at (E0 ,u0)5(0.280,2p).
f
l
of

s,
ld

d

at (0.280,2p) in Fig. 3~b!. The former corresponds to
chaotic unbound motion, while the latter corresponds to
complicated bound motion whose frequency cannot be de
mined easily. These results show that the numerical exp
ment agrees qualitatively with our theory.

Further experiments show that all attempts to control s
a system by small perturbations have failed, and the m
suitable intensity ranges from 40% to 50% of the origin
driving force. Although such a result can be easily explain
by applying the theoretical formula in our controllin
method, a radical reason is needed. In a dissipative cha
system, there exists a strange attractor, and due to the er
icity the system can reach an arbitrarily small vicinity of a
phase point included in the attractor. So the small pertur
tions that are deliberately chosen can stabilize a chaotic
jectory if the system enters a proper small controlling reg
~the neighborhood of desired periodic orbit!. However, for a
Hamiltonian system, the phase space is divided into laye
components that are separated from each other, and the
jectories initiated at different energies are constrained wit
the distinct regions in phase space. For example, accor
to the resonance structures in a driven Morse oscillator,
stable 1/1 island does not get in touch with the stable
island, and a phase point initiated in a stochastic layer un
the bounding torus will not enter the unbound stochastic
gion forever, etc. The layered structure is so universal
Hamiltonian systems that the phase space of the same
chastic layer is separated by cantori, remains of KAM to
and particles initialized in one layer of the chaotic regi
wander in that layer for a long period of time before th
cross the cantori and wander in the next layer. Furtherm
the layered structure repeats itself in each smaller sp
scale, such as the scale of secondary or higher resona
Different layers correspond to different initial conditions.
an initial condition and the intended target are in the sa
layer, the needed perturbations may be as small as pos
after the system enters the desired controlling region~the
problem of long chaotic transients is not discussed he!;
e.g., the maximum range of parameter variation in Ref.@6# is
1% of the unperturbed parameter. When the initial condit
and the target are in different layers, as the situation me
most cases, the controlling force must be large in orde
bring the system from one layer to another. We guess
amount of perturbation would be proportional to the init
energy difference of these two layers. In our controlli
method,Ac cos(Vct) is used to induce a sufficiently wid
resonance that can touch the two adjacent separatrice
resonances in two different layers, so a mediumAc ~about
40% of A! can be reasonably understood.

On the other hand, for the same driven oscillator~2!
with A50.025 andV50.9 as above, it is expected that th
bound regions will be increased by adding a controlli
field Ac cos(Vct1DF) with Ac50.010. As pointed out in
Sec. III, we must setVc51.8 andDF5p. The numerical
results are displayed in Fig. 4~a!. In this figure, we presen
seven typical trajectories whose initial conditions are~0.410,
2p!, ~0.448,2p!, ~0.520,2p!, ~0.580,2p!, ~0.617,2p!,
~0.670,2p!, and ~0.745,2p!, respectively. It can be see
that not only is the bounding torus of the system raised fr
E050.548 (u052p) to E050.670 (u052p), but also the
width of the 1/2 island is increased fromDEi (exp)

1/2 50.031 to
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0.075 along theE axis. Furthermore, the stochastic lay
under the bounding torus is much thinner than before c
trolling.

In order to investigate the effect ofVc , we cut downVc
by 3/10 000 and repeat the above simulation. Three traje
ries are given in Fig. 4~b!. The lower trajectory initiated from
(0.410,2p) represents a bound motion, the middle one fro
(0.520,2p) dissociates from the bound state very slow
and the upper one from (0.617,2p) escapes quickly. This
fact demonstrates that a slight perturbation toVc can result
in a disastrous or qualitative change in the phase space s
tures, which is quite different from the situation in decrea
ing bound regions where the resonance structure is no
sensitive to the perturbation ofVc .

It is interesting that the effect ofDF is not so important
asVc in suppressing Hamiltonian chaos of Eq.~2!. Reducing
DF by 1/10, we present the Poincare´ surface of section of
five trajectories initiated from (0.410,2p), (0.448,2p),
(0.520,2p), (0.617,2p), and (0.800,2p) in Fig. 4~c!,
where the area of bound regions is clearly greater than th
Fig. 4~b!. We can conclude that the dynamical behavior o

FIG. 4. Influence of a small perturbation to the frequencyVc

and the phase differenceDF separately on the effect in increasin
the bound regions in Eq.~7! with A50.025,V50.9, andAc50.010.
~a! Seven trajectories withVc51.8 andDF5p. ~b! Five trajecto-
ries with Vc51.7995 andDF5p. ~c! Three trajectories withVc

51.8 andDF5
9
10p. The initial phase point (E0 ,u0) of each trajec-

tory is given in the text.
-

o-

,

uc-
-
so

in
a

driven Morse oscillator controlled by this method chang
with DF quantitatively or continuously.

As an addition we also explore the effect ofAc . In nu-
merical experiments it is found that the controlling field wi
a too large or a too small strength cannot reach a good
pressing effect; e.g., for the situation withA50.025, V
50.9, Vc51.8, and DF5p, a suitable range ofAc is
$0.010,0.015%. A great number of experimental results sho
that the most suitableAc used in increasing the bound re
gions is about 50% ofA. Whether this is due to the layere
structure of the Hamiltonian system as discussed abov
other reasons remains a open question, which needs fu
investigation.

V. SUMMARY

In this paper we suggest an idea that the complex dyn
ics of a periodically driven Hamiltonian system with on
degree of freedom by two external fields can be underst
qualitatively based on the interaction between two sets
resonances induced by every single driving force, resp
tively, and all primary resonances can be regarded as b
on an equal status in the sense that Chirikov’s theory can
used in any two adjacent resonances. Another contributio
the present work is the island width formula, which provid
a necessary preparation for this controlling method. The a
of bound regions in a driven Hamiltonian system can
changed at will by adding another medium driving field, a
specifically a controlling field used to decrease the bou
regions is selected by means of the island width form
while that used to increase the bound regions must sa
Vc52V andDF5p.

Numerical results for a periodically driven Morse oscill
tor show that our method is quite effective. The discrepan
between theory and numerical experiments in decreasing
bound regions is due to the zeroth-order approximation
our method, i.e., we only consider the primary resonan
and neglect all secondary and other higher resonances
fact, the resonance structures of a driven Morse oscillator
actually much more complicated than those that appear
plicitly in the Hamiltonian@15#.

With the development of high-power infrared lasers, the
has been considerable interest in investigating the dynam
behavior of a molecular system under intensive laser ra
tion @10–14,16#. Our method not only gives a useful way fo
controlling chaos in such a system but also provides so
intuitive examples for study of the complex dynamics of
driven molecular system under two external fields. For
ample, since increasing the bound region in the Poinc´
surface of section of a Hamiltonian system is related to
molecular association rate in a chemical reaction while
creasing the bound region is related to the dissociation r
by employing a second external field whose intensity
smaller than that of the original driving field these proces
would find applications in controlling chemical reactions
using a laser field. In particular, it is well known that th
laser intensity required to dissociate a diatomic molecula
far too high to be practical. We hope that the approach
decreasing the bound region in this paper may give a c
lenging idea for a universal solution to this problem. Mor
over, in order to get a better effect on lowering the stren
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of a driving force required in all molecular photodissociati
processes, is it more practical to apply two or more we
controlling fields to a driven diatomic molecular than on
This question needs further investigation on the dynamic
a driven Hamiltonian system by three or more external fie
both theoretically and practically.
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