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Appearance and nonappearance of self-organized criticality in sandpiles
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Self-organized criticalit SOQ often features in sandpile-type modeling of complex systems such as mag-
netic fusion plasmas, but its observed role in real sandpiles is equivocal. Here, a probabilistic model displaying
some of the observed phenomenology of real sandpiles is proposed. It generates avalanches involving particle
loss that, like most experiments, do not exhibit SOC, but its internal energy avalanches resemble recent
experiments by showing SOC. This suggests that the absence of SOC in the flow of matter from such systems
can be consistent with internal dynamics governed by §8C063-651X98)10903-0

PACS numbd(s): 64.60.Lx, 46.10+z, 05.40+j

The concept of self-organized criticalitgOQ [1,2] and  the aspect ratig(length/(diametey] of the rice grains. The
the physics of sandpileg3—23] are of great interest, both experimental data includes the following: amplitude and time
intrinsically and as a paradigm for more complex macro-separation of avalanches involving mass loss from the sand-
scopic systems the global properties of which may arise fronpile, for example, Fig. 1 of Ref.7]; time evolution of sand-
the growth, saturation, and nearest-neighbor couplings of pile mass, for example Fig. 2 of R48] and Fig. 1 of Ref.
discrete sequence of spatially localized modes. An examplglQ]; the confinement time of tracer particles, for example
of the latter is provided by sandpile modeling of the transporfFig. 3 of Ref. [11]; avalanches involving rearrangement
properties of magnetically confined plasmas, some of whiclmather than mass loss, for example, Fig. 2 of R&fand Fig.
are claimed to display features of SQZ1-23. In this pa- 2 of Ref.[9]; and avalanche size distribution$,6—-11. The
per, we construct a theoretical sandpile model to help adexisting experimental database on avalanches is weighted to-
dress an apparently paradoxical feature of sandpile physicsards the subset of avalanches that result in particle loss
while the statistics of avalanches in most experimental sandrom the edge of the sandpile. However, it can be ardééd
piles do not display SOC, the reverse is true for mathematithat avalanches involving internal reorganization reflect a
cal sandpile algorithms. more direct response to the driving than do avalanches in-

SOC was introduced by Bak and co-workddd who  volving loss. It has also been pointed dudf that energy
showed that certain systems of cellular automata evolve to dissipation in avalancheésee Ref.[6]) is a fundamental
critical state through a self-organized process. The state hysical quantity that has not yet been subjected to the same
termed critical because it has no characteristic length or timéevel of scrutiny as sand movement. The observation that
scales; it is self-organized since it is insensitive to initialavalanches in real sandpile experiments, with exceptions
conditions. The simplest such systems are mathematic&b,11], tend not to replicate the SOC behavior that emerges
sandpiles, the states of which are specified by an array dfom idealized mathematical sandpile models poses several
integersh, representing the height of the pil@aumber of challenges. One of the most immediate, which we now ad-
sand grainsat each position. At each time step a grain ofdress, is to construct a theoretical model that yields more
sand is added at a random position. If the local slope of theealistic results.
pile exceeds some critical value, sand is redistributed so as to We begin with a few remarks. First, the internal dynamics
reduce the local slope; this may result in the critical gradienbf most sandpile models is completely deterministic: ran-
being exceeded at neighboring positions, leading to redistridomness is usually introduced only through the fueling pro-
bution there. The process may then spread, becoming an aveess, for instance by adding grains of sand from above at
lanche. Kadanoff and co-workef&] have investigated the random positions. However, in a real sandpile the variations
distribution of avalanches in mathematical sandpiles, whiclamong individual sand grains and their stacking properties
typically follows a simple scaling lawfor example, a power are expected to introduce an element of randomness in the
law) over a range of several orders of magnitude, implyingpile itself. The random internal distribution of stress has been
SOC. The overall behavior is typically independent of theilluminated by several recent advandd8—16. Our choice
critical gradient and of the finer details of the redistribution of sandpile rules will therefore be probabilistic rather than
algorithm. deterministic. In this, we follow a trend set in the models of

It is apparently acceptef3—6] that experimental sand- Ref.[11] and of Refs[17-19, where an element of random-
piles [6—11] do not usually(with one notable exception ness has been introduced in, for example, the critical slope or
[6,11]) exhibit SOC avalanches. Experiments have been cathe relaxation rule. The question of which classes of sandpile
ried out using slowly rotating drums partially filled with sand model will best replicate experimental results, and the origin
[7,9]; conical sandpiles with grains fed to the agé10];  of differences between classes of model, is highly topical
sandpiles fed by random sprinkling of particles over the ac{19] and not yet resolved. Second, we note that in order to
tive surfacg7]; and piles of rice graings,11]. Reanalysis in model experiments such as those done with a rotating drum
Ref.[4] of the data of Refd.7—10] suggests the absence of [7,9], where the avalanches are caused by tilting the pile
SOC, while the occurrence of SOC in Rg6] depends on rather than adding sand to it, the slope should be a continu-
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ous variable. In contrast, the slope is constrained to integeXote that wherny— o this function approaches a step func-
values in most sandpile algorithms appearing in the literation atz=1, where instability then always occurs.

ture. Third, experiments support the idea of relaxation to an Once instability occurs somewhere in the pile, the slope
angle of repose. This means that if an avalanche occunglaxes locally to the angle of repose by redistributing sand.
somewhere in the pile, the slope is reduced, at least locallyThe first step of this process is constructed in the conven-
to the value defined by this angle. tional way by the rule,—0, z,+1—Z,+1+2,/2, which con-

To proceed with the model, we discretize the pile into aserves the total amount of sand in the pile. At the boundary
series of nodes labeled by=1,... N each with a slope of the pile,n=N, the redistribution rule is, as usual, slightly
z,=h,—h,,, as is conventional in sandpile models. Thedifferent to allow sand to fall off the edge: we expégf,; ;
heighth,, and the slope, are normalized to zero at the angle =0 and thereforey—0, zy_1—2zy_1+ 2y . We also make
of repose, since the material in the pile below the angle othe conventional assumption that the redistribution is instan-
repose plays no explicit role in our model. Redistribution oftaneous. However, in contrast to conventional sandpile mod-
sand occurs as a result of instability that arises if the pile isls, we allow for the possibility that several adjacent posi-
too steep, in the following sense. Consider an initially stableions besimultaneouslynstable. This is clearly the case in
sandpile, and suppose the slope somewhere increases by raal sandpiles where, during avalanches, many grains of sand
infinitesimal amountz, either by external interferencéke  are simultaneously in motion over an extended spatial re-
tilting the pile or adding sandor by internal redistribution. gion. Therefore, if as a result of redistribution from one po-
That position may then become unstable, and we assign sition, one or both of the neighboring positions become un-
probability dp to that possibility. We expealp to depend stable, the pile is flattened over the entire unstable region.

on the local slope, so that This process continues, in an avalanche that may or may not
spread over the entire pile, until all positions are stable again.

dp/dz=£(z). To work out the redistribution rule during an ongoing ava-
lanches, suppose that, after a series of redistribution events,

There is no longer, in our model, a single critical gradient
at which instability occurs; instead there is a probability of
instability dp associated with each increment in sloge
This models the randomness inherent in real sandpiles a
produces a probabilistic spreading of criticality, which is
now distributed across a range of gradients whose width i
controlled by the functionf(z). Since instability becomes
increasingly likely as the pile becomes steepgé¢e) should

the positionsn, n+1, ... n+k—1 are unstable. The pile

relaxes to the angle of repose in this regian,>z* =0 for
=i=n+k—1, where an asterisk denotes the configuration

after relaxation at this step. As a result of redistribution, the

pile is locally flattened so thaty =z; ;= =25, _1=0.

It follows from the requirement that sand be conserved that

after redistribution the slopes become

be a monotonically increasing function, vanishing at the K1 K1
angle of reposg=0. The simplest model is * 1 . " 1 .
g anlzmizl Znyk—ils Zn+k:mi221 Znti—1hs
f(2)=AZ, (1)

with A andy>0 adjustable parameters. We can chofse if no sand leaves the pilen(-k—1<N), and otherwise

=1 by an appropriate normalization of the slapesince this N
leaves the redistribution rule§yet to be specified un- 7 =S 2.
changed. The remaining parameyaiefines the sharpness of oS,

the critical gradient. In the limity—o instability always

occurs exactly whe=1, which then becomes an exactly = Sand can be added in different ways, and we explore the
defined critical gradient, as in conventional sandpile modelsfollowing possibilities. (1) Central fueling—adding single
For finitey, the slope at which instability occurs is a stochas-grains at the top of the pile; — z; + g with g the grain size.

tic variable. Its distribution functiofr(z), i.e., the probabil- (2) Sprinkling—adding single grains at random positions,
ity that any particular position becomes unstable before theniformly distributed over the pilez,—z,+49, z,_1— 2,1

slope there exceedsis given by —g, with n random and uniformly distributed over<in
<N. (3) Tilting—increasing the slope continuously by equal
F(z)=1— H [1-f(z')]dZ, amounts everywherez,—z,+t for all n, wheret denotes

dimensionless time. In each case the slope is increased by
one of these external means until some position becomes
where the product represents the probability that the positioonstable. The redistribution rules are then applied until the

remains stable when the slopeis reached. Taking loga- pile has relaxed to a new stable state, after which the proce-

z'<z

rithms we find dure is repeated.
Using this model in numerical simulations of a sandpile
_ _ e R PPN with discrete central fueling, the amount of sand above the
Inf1 F(Z)]_Z,E;‘Z In[1-1(z)]dz"= fof(z )az’, angle of repose typically varies with the total amount of sand
added as shown in Fig. 1. It looks much like the correspond-
whence ing graph obtained for a continuously tilted pile in Fig. 2.

The amount of sand in the pile increases linearly until a
major avalanche occurs. The pile then relaxes to the angle of
repose, and all excess material leaves the system. Small ava-

1+y

F(z)=1—ex;{ Try
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FIG. 1. The total amount of sarld (above the angle of repose

in the pile versus the total amount of sand added to the pile by 5 3 Ag Fig. 1, where sand is added to the pile by random
central fueling of particles. The length of the pile Ns=50, the sprinkling across the, surfacht=50y=1,g=0.01.

exponent in Eq(1) is y=1, and the size of the sand grainsgs o

=0.01.

N
. . _ 2
lanches, resulting in some, but not all, sand above the angle E_Z’l hn.
of repose leaving the pile are rare. All avalanches are of the

same order of magnitude, and no power law or other broad, . ] )
distribution of avalanche sizes is observed. This is in agreedissipated in avalanches, and pursue the conjecture that the

ment with most experiments on real sandpiles, see, for exdtatistics associated with the energf dissipated in ava-
ample, Fig. 2d) of Ref.[8] and Fig. 1 of Ref[10]. Changing '@nches may be different from the drop numbers measured in
the parametey does not influence the results much, regard-MOSt eéxperiments. Figure 4 shows the evolutiorEoin a
less of the way the pile is fueled. &1, instability is very ~ 9rowing sandpile fueled at the center. The energy increases
unlikely unlessz=1. For largey, there is therefore a lower duadratically with the amount of sand added, but is fre-
limit to the avalanche sizes. quently interrupted by minor avalanches. In this respect, cen-
The situation is only slightly different if the pile is fueled tral fueling is different in our model from random sprinkling
by random sprinkling by small graing=<1, as shown in Fig. ©" pltmg, which, as we have seen, tend to make the pile grow
3. Since the sand is now added discretely but, on averagdninterrupted until it is emptied by a major avalanche. In

evenly over the pile, the slope only builds up at the lastcontrast, when the pile is at the angle of repose and the
position, n=N. When this position becomes unstable, afueling begins from the center, a small excess is first estab-

small avalanche occurs involving only one, or sometimes (J_{‘jshed near the center since this is the only place where sand
few, positions at the end of the pile. The latter is thus slightly

is added. The pile then grows and spreads by a series of

eroded. As the sprinkling continues, the slope again in_avalanche_s propagating ouMards. These events occur on.aII
creases at the edge. The next time it becomes unstable,S§2!es until the front of he pile reaches the edge, and a major
large avalanche spreading over the entire pile usually devefvalanche soon occurs, reducing the entire pile to the angle
ops. Most of the material above the angle of repose thuSf repose. The time series of avalanches, shown in Fig. 5, is
leaves the pile in major avalanches. a strongly reminiscent of Fig.(@) in Ref.[6], which appears
Thus, SOC is not observed in the material that leaves thE? Pe the only report of an experiment where energy dissipa-
sandpile for the models we have considered. However, if onOn has been recorded. Figure 6 shows a logarithmic plot of
studies thenternal dynamics of our model sandpile growing the avalanche energy distribution. Most of the distribution is
by central fueling, a rather different picture emerges, whichVell approximated by a power law, shown as a solid line;
doesinvolve SOC. Let us follow recent suggestiof#20] only the very Iarg_est events are exceptional since t_hey in-
that what should be measured is the amount of potentia‘fOIVe the entire pile and thus possess a characteristic scale.

energy,
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FIG. 4. Potential energl stored in the sandpile versus the total
FIG. 2. As Fig. 1, for a continuously tilted pile with dimension- amount of sand added by fueling at the center LN=50g
less timet as independent variabl&t=50,y=1. =0.001.
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FIG. 5. Potential energy released in the avalanches in Fig. 4. log,, (AE)

FIG. 6. Distribution of avalanche energi&ots in a centrally
The power law exponent is abotit — 0.65. We find that the fueled pile;y=1,N=100g=0.001.

behavior is highly insensitive to the si2¢ of the sandpile,

the grain sizeg (as long as it is small and the exponent.  fueled sandpile, the statistics for energy release in internal
From these observations it is clear that the internal dynamicgvalanches display SOC, whereas the statistics for material
of the growing sandpile is indeed self-organized and criticaljost from the pile due to avalanches do not. This suggests

but that this manifestation of SOC is invisible to an observeknat nonobservation of SOC in the flow of matter from ex-
watching only what leaves the system.

In conclusion, we have proposed a simple new theoretic
model for sandpile, which appears consistent with many ex-
perimentally observed features. Furthermore, the model pro- We are grateful to Jack Connor and Bryan Taylor for
vides a conceptually appealing step towards resolving theomments and suggestions. This work was supported by the
role of SOC in sandpile experiments: for a growing, centrallyU.K. Department of Trade and Industry and Euratom.

perimental sandpile-type systems can be consistent with in-
rnal dynamics that are governed by SOC.
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