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Appearance and nonappearance of self-organized criticality in sandpiles
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~Received 10 June 1997; revised manuscript received 12 November 1997!

Self-organized criticality~SOC! often features in sandpile-type modeling of complex systems such as mag-
netic fusion plasmas, but its observed role in real sandpiles is equivocal. Here, a probabilistic model displaying
some of the observed phenomenology of real sandpiles is proposed. It generates avalanches involving particle
loss that, like most experiments, do not exhibit SOC, but its internal energy avalanches resemble recent
experiments by showing SOC. This suggests that the absence of SOC in the flow of matter from such systems
can be consistent with internal dynamics governed by SOC.@S1063-651X~98!10903-0#

PACS number~s!: 64.60.Lx, 46.10.1z, 05.40.1j
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The concept of self-organized criticality~SOC! @1,2# and
the physics of sandpiles@3–23# are of great interest, both
intrinsically and as a paradigm for more complex mac
scopic systems the global properties of which may arise fr
the growth, saturation, and nearest-neighbor couplings
discrete sequence of spatially localized modes. An exam
of the latter is provided by sandpile modeling of the transp
properties of magnetically confined plasmas, some of wh
are claimed to display features of SOC@21–23#. In this pa-
per, we construct a theoretical sandpile model to help
dress an apparently paradoxical feature of sandpile phy
while the statistics of avalanches in most experimental sa
piles do not display SOC, the reverse is true for mathem
cal sandpile algorithms.

SOC was introduced by Bak and co-workers@1# who
showed that certain systems of cellular automata evolve
critical state through a self-organized process. The stat
termed critical because it has no characteristic length or t
scales; it is self-organized since it is insensitive to init
conditions. The simplest such systems are mathema
sandpiles, the states of which are specified by an arra
integershn representing the height of the pile~number of
sand grains! at each position. At each time step a grain
sand is added at a random position. If the local slope of
pile exceeds some critical value, sand is redistributed so a
reduce the local slope; this may result in the critical gradi
being exceeded at neighboring positions, leading to redi
bution there. The process may then spread, becoming an
lanche. Kadanoff and co-workers@2# have investigated the
distribution of avalanches in mathematical sandpiles, wh
typically follows a simple scaling law~for example, a power
law! over a range of several orders of magnitude, imply
SOC. The overall behavior is typically independent of t
critical gradient and of the finer details of the redistributi
algorithm.

It is apparently accepted@3–6# that experimental sand
piles @6–11# do not usually~with one notable exception
@6,11#! exhibit SOC avalanches. Experiments have been
ried out using slowly rotating drums partially filled with san
@7,9#; conical sandpiles with grains fed to the apex@8,10#;
sandpiles fed by random sprinkling of particles over the
tive surface@7#; and piles of rice grains@6,11#. Reanalysis in
Ref. @4# of the data of Refs.@7–10# suggests the absence
SOC, while the occurrence of SOC in Ref.@6# depends on
571063-651X/98/57~3!/3641~4!/$15.00
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the aspect ratio@~length!/~diameter!# of the rice grains. The
experimental data includes the following: amplitude and ti
separation of avalanches involving mass loss from the sa
pile, for example, Fig. 1 of Ref.@7#; time evolution of sand-
pile mass, for example Fig. 2 of Ref.@8# and Fig. 1 of Ref.
@10#; the confinement time of tracer particles, for examp
Fig. 3 of Ref. @11#; avalanches involving rearrangeme
rather than mass loss, for example, Fig. 2 of Ref.@6# and Fig.
2 of Ref. @9#; and avalanche size distributions@4,6–11#. The
existing experimental database on avalanches is weighte
wards the subset of avalanches that result in particle
from the edge of the sandpile. However, it can be argued@6#
that avalanches involving internal reorganization reflec
more direct response to the driving than do avalanches
volving loss. It has also been pointed out@4# that energy
dissipation in avalanches~see Ref.@6#! is a fundamental
physical quantity that has not yet been subjected to the s
level of scrutiny as sand movement. The observation t
avalanches in real sandpile experiments, with excepti
@6,11#, tend not to replicate the SOC behavior that emer
from idealized mathematical sandpile models poses sev
challenges. One of the most immediate, which we now
dress, is to construct a theoretical model that yields m
realistic results.

We begin with a few remarks. First, the internal dynam
of most sandpile models is completely deterministic: ra
domness is usually introduced only through the fueling p
cess, for instance by adding grains of sand from above
random positions. However, in a real sandpile the variati
among individual sand grains and their stacking proper
are expected to introduce an element of randomness in
pile itself. The random internal distribution of stress has be
illuminated by several recent advances@13–16#. Our choice
of sandpile rules will therefore be probabilistic rather th
deterministic. In this, we follow a trend set in the models
Ref. @11# and of Refs.@17–19#, where an element of random
ness has been introduced in, for example, the critical slop
the relaxation rule. The question of which classes of sand
model will best replicate experimental results, and the ori
of differences between classes of model, is highly topi
@19# and not yet resolved. Second, we note that in orde
model experiments such as those done with a rotating d
@7,9#, where the avalanches are caused by tilting the p
rather than adding sand to it, the slope should be a cont
3641 © 1998 The American Physical Society
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3642 57BRIEF REPORTS
ous variable. In contrast, the slope is constrained to inte
values in most sandpile algorithms appearing in the lite
ture. Third, experiments support the idea of relaxation to
angle of repose. This means that if an avalanche oc
somewhere in the pile, the slope is reduced, at least loc
to the value defined by this angle.

To proceed with the model, we discretize the pile into
series of nodes labeled byn51, . . . ,N each with a slope
zn5hn2hn11, as is conventional in sandpile models. T
heighthn and the slopezn are normalized to zero at the ang
of repose, since the material in the pile below the angle
repose plays no explicit role in our model. Redistribution
sand occurs as a result of instability that arises if the pile
too steep, in the following sense. Consider an initially sta
sandpile, and suppose the slope somewhere increases
infinitesimal amountdz, either by external interference~like
tilting the pile or adding sand! or by internal redistribution.
That position may then become unstable, and we assig
probability dp to that possibility. We expectdp to depend
on the local slopez, so that

dp/dz5 f ~z!.

There is no longer, in our model, a single critical gradie
at which instability occurs; instead there is a probability
instability dp associated with each increment in slopedz.
This models the randomness inherent in real sandpiles
produces a probabilistic spreading of criticality, which
now distributed across a range of gradients whose widt
controlled by the functionf (z). Since instability becomes
increasingly likely as the pile becomes steeper,f (z) should
be a monotonically increasing function, vanishing at t
angle of reposez50. The simplest model is

f ~z!5Azy, ~1!

with A and y.0 adjustable parameters. We can chooseA
51 by an appropriate normalization of the slopez, since this
leaves the redistribution rules~yet to be specified! un-
changed. The remaining parametery defines the sharpness o
the critical gradient. In the limity→` instability always
occurs exactly whenz51, which then becomes an exact
defined critical gradient, as in conventional sandpile mod
For finitey, the slope at which instability occurs is a stocha
tic variable. Its distribution functionF(z), i.e., the probabil-
ity that any particular position becomes unstable before
slope there exceedsz is given by

F~z!512 )
z8,z

@12 f ~z8!#dz8,

where the product represents the probability that the posi
remains stable when the slopez is reached. Taking loga
rithms we find

ln@12F~z!#5 (
z8,z

ln@12 f ~z8!#dz852E
0

z

f ~z8!dz8,

whence

F~z!512expF2z11y
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Note that wheny→` this function approaches a step fun
tion at z51, where instability then always occurs.

Once instability occurs somewhere in the pile, the slo
relaxes locally to the angle of repose by redistributing sa
The first step of this process is constructed in the conv
tional way by the rulezn→0, zn61→zn611zn/2, which con-
serves the total amount of sand in the pile. At the bound
of the pile,n5N, the redistribution rule is, as usual, slight
different to allow sand to fall off the edge: we expecthN11
50 and thereforezN→0, zN21→zN211zN . We also make
the conventional assumption that the redistribution is inst
taneous. However, in contrast to conventional sandpile m
els, we allow for the possibility that several adjacent po
tions besimultaneouslyunstable. This is clearly the case
real sandpiles where, during avalanches, many grains of s
are simultaneously in motion over an extended spatial
gion. Therefore, if as a result of redistribution from one p
sition, one or both of the neighboring positions become
stable, the pile is flattened over the entire unstable reg
This process continues, in an avalanche that may or may
spread over the entire pile, until all positions are stable ag
To work out the redistribution rule during an ongoing av
lanches, suppose that, after a series of redistribution eve
the positionsn, n11, . . . ,n1k21 are unstable. The pile
relaxes to the angle of repose in this region,zi→zi* 50 for
n< i<n1k21, where an asterisk denotes the configurat
after relaxation at this step. As a result of redistribution,
pile is locally flattened so thatzn* 5zn11* 5•••5zn1k21* 50.
It follows from the requirement that sand be conserved t
after redistribution the slopes become

zn21* 5
1

k11(
i 51

k11

zn1k2 i i , zn1k* 5
1

k11(
i 51

k11

zn1 i 21i ,

if no sand leaves the pile (n1k21,N), and otherwise

zn21* 5 (
i 5n21

N

zi .

Sand can be added in different ways, and we explore
following possibilities. ~1! Central fueling—adding single
grains at the top of the pile:z1→z11g with g the grain size.
~2! Sprinkling—adding single grains at random position
uniformly distributed over the pile:zn→zn1g, zn21→zn21
2g, with n random and uniformly distributed over 1<n
<N. ~3! Tilting—increasing the slope continuously by equ
amounts everywhere:zn→zn1t for all n, where t denotes
dimensionless time. In each case the slope is increase
one of these external means until some position beco
unstable. The redistribution rules are then applied until
pile has relaxed to a new stable state, after which the pro
dure is repeated.

Using this model in numerical simulations of a sandp
with discrete central fueling, the amount of sand above
angle of repose typically varies with the total amount of sa
added as shown in Fig. 1. It looks much like the correspo
ing graph obtained for a continuously tilted pile in Fig.
The amount of sand in the pile increases linearly unti
major avalanche occurs. The pile then relaxes to the angl
repose, and all excess material leaves the system. Small
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lanches, resulting in some, but not all, sand above the a
of repose leaving the pile are rare. All avalanches are of
same order of magnitude, and no power law or other br
distribution of avalanche sizes is observed. This is in agr
ment with most experiments on real sandpiles, see, for
ample, Fig. 2~d! of Ref. @8# and Fig. 1 of Ref.@10#. Changing
the parametery does not influence the results much, rega
less of the way the pile is fueled. Ify@1, instability is very
unlikely unlessz>1. For largey, there is therefore a lowe
limit to the avalanche sizes.

The situation is only slightly different if the pile is fuele
by random sprinkling by small grains,g!1, as shown in Fig.
3. Since the sand is now added discretely but, on aver
evenly over the pile, the slope only builds up at the l
position, n5N. When this position becomes unstable,
small avalanche occurs involving only one, or sometime
few, positions at the end of the pile. The latter is thus sligh
eroded. As the sprinkling continues, the slope again
creases at the edge. The next time it becomes unstab
large avalanche spreading over the entire pile usually de
ops. Most of the material above the angle of repose t
leaves the pile in major avalanches.

Thus, SOC is not observed in the material that leaves
sandpile for the models we have considered. However, if
studies theinternal dynamics of our model sandpile growin
by central fueling, a rather different picture emerges, wh
doesinvolve SOC. Let us follow recent suggestions@4,20#
that what should be measured is the amount of poten
energy,

FIG. 2. As Fig. 1, for a continuously tilted pile with dimension
less timet as independent variable;N550, y51.

FIG. 1. The total amount of sandM ~above the angle of repose!
in the pile versus the total amount of sand added to the pile
central fueling of particles. The length of the pile isN550, the
exponent in Eq.~1! is y51, and the size of the sand grains isg
50.01.
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dissipated in avalanches, and pursue the conjecture tha
statistics associated with the energyDE dissipated in ava-
lanches may be different from the drop numbers measure
most experiments. Figure 4 shows the evolution ofE in a
growing sandpile fueled at the center. The energy increa
quadratically with the amount of sand added, but is f
quently interrupted by minor avalanches. In this respect, c
tral fueling is different in our model from random sprinklin
or tilting, which, as we have seen, tend to make the pile gr
uninterrupted until it is emptied by a major avalanche.
contrast, when the pile is at the angle of repose and
fueling begins from the center, a small excess is first es
lished near the center since this is the only place where s
is added. The pile then grows and spreads by a serie
avalanches propagating outwards. These events occur o
scales until the front of he pile reaches the edge, and a m
avalanche soon occurs, reducing the entire pile to the a
of repose. The time series of avalanches, shown in Fig. 5
a strongly reminiscent of Fig. 2~c! in Ref. @6#, which appears
to be the only report of an experiment where energy diss
tion has been recorded. Figure 6 shows a logarithmic plo
the avalanche energy distribution. Most of the distribution
well approximated by a power law, shown as a solid lin
only the very largest events are exceptional since they
volve the entire pile and thus possess a characteristic s

FIG. 4. Potential energyE stored in the sandpile versus the tot
amount of sand added by fueling at the center;y51,N550,g
50.001.

y FIG. 3. As Fig. 1, where sand is added to the pile by rand
sprinkling across the surface;N550,y51,g50.01.
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The power law exponent is aboutt520.65. We find that the
behavior is highly insensitive to the sizeN of the sandpile,
the grain sizeg ~as long as it is small!, and the exponenty.
From these observations it is clear that the internal dynam
of the growing sandpile is indeed self-organized and critic
but that this manifestation of SOC is invisible to an obser
watching only what leaves the system.

In conclusion, we have proposed a simple new theoret
model for sandpile, which appears consistent with many
perimentally observed features. Furthermore, the model
vides a conceptually appealing step towards resolving
role of SOC in sandpile experiments: for a growing, centra

FIG. 5. Potential energy released in the avalanches in Fig.
cs
l,
r

al
x-
o-
e

y

fueled sandpile, the statistics for energy release in inte
avalanches display SOC, whereas the statistics for mat
lost from the pile due to avalanches do not. This sugge
that nonobservation of SOC in the flow of matter from e
perimental sandpile-type systems can be consistent with
ternal dynamics that are governed by SOC.

We are grateful to Jack Connor and Bryan Taylor f
comments and suggestions. This work was supported by
U.K. Department of Trade and Industry and Euratom.

FIG. 6. Distribution of avalanche energies~dots! in a centrally
fueled pile;y51,N5100,g50.001.
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