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Markovian kinetic equations in a nonequilibrium statistical ensemble formalism
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The nonlinear quantum kinetic theory for many-body systems either near or far from equilibrium that a
nonequilibrium ensemble formalism provides is revisited. In this communication we consider an important
limit of such transport equations, consisting of the memoryless approximation, which leads to the so-called
Markovian kinetic equations. They are derived in Zubarev's approach to the method, and next applied to a
particular model of a spin system in interaction with a thermal bath of lattice vibrations. The limitations of the
approach, as well as some criticism it has received, are discy&HiI63-651X98)10203-9

PACS numbgs): 05.70.Ln, 82.20.Mj, 82.20.Db

A physical question of quite large interest is the one retonian for the free subsystems and the strong interactions
lated to the evolution of the macroscopic state of dissipativéeading to processes with very short relaxation times. The
systems. Earlier attempts to tackle this problem go back t@ther termA’, contains the interactions related to long-time
the Iundgahment?l WO_Ir_E of Maxv¥ellll an% _Botl';]zmann mt the relaxation mechanisms. Assuming that the basiq é@({r)}

Fme gen cer: ury. b €y ;Neretpb ot\'/ve 'B e presenthcenhas been chosen, the nonequilibrium statistical operator is
ury by a vast number of contributions by many authors,, ;. in NESOM, using the principle of maximization of the

particularly the nonequilibrium statistical operator methOdstatistical informational entro ; ;
. : . o - py, with fading memory and an
(NESOM ) [1], which provides for a nonlinear kinetic theory ad hochypothesis that introduce from the outset irreversible

[1-3] .Of large r_ele\{ance .for Qee}l|ng with a large clqss Qfevolution from an initial condition of preparation of the sys-
experimental situations in dissipative systems arbltrarllytem[l]

away from equilibrium. Among the different approaches to
NESOM, the one due to Zubar¢¥] (the renowned Russian
scientist deceased a few years 4P appears to be soundly
based, and provides a most concise and practical method.
this theory the so-calleMarkovian limitplays an important 9 1 . R
role, which is valid in the weak coupling limit of interaction EQj(r,t)zTr E[Pj(r),H] p), (2
between subsystems, when one can retain terms only up to

secon_d orde_r in the_ interactior_1 strength. We carry an analysifﬁat is to say, they are the average over the nonequilibrium
and discussion of it, and we introduce as an illustration th

. S ; . X &nsemble of the corresponding Heisenberg equation of mo-
case of a spin system in interaction with the lattice.

The first, and fundamental, step in NESOM is the Choicetion for quantitiesP;(r). Equation(2) can be rewritten in the

of the basic set of variables deemed appropriate for the chaFgrm of equations of evolution of the type

acterization of the macroscopic state of the system. This in- o

voIvesAa description in terms of, say, the mechanical quanti- in(r,t)= Z Q}m)(r,t), 3
ties {Pj(r)}, j=1,2,..., with the upper circumflex Jt m=0

indicating Hermitian operators, and the dependence on the ) o (m) )

space coordinate indicates the local density of the corre- Where the partial collision operatof$;™ , which are of or-

sponding dynamical quantit?j. The NESOM nonequilib- derm and higher in the interaction strengths, are givel8in

rium  statistical operator will be denoted by.(t). and We stress that Eq3), which is highly nonlinear, contains

| , . contributions nonlocal in spacéspace correlationsand
Zubarev’s approach is consistently used. The thermodynami¢ . X .

) . L . memory (time correlationg and can be considered as far-
state is characterized by a point in Gibbs—or thermody-

hamic state—space given, at timeby the set of macrova- reaching generalizations of Mori's equatiof®. Let us re-

. o : tain only terms up tan=2, and take theMarkovian limit
riables{Q;(r.h}, j=1.2,... which are the averages of the consisting of neglecting contributions of order higher than

'Si(_r)' i.e.,_QJ—(r,t_)=Tr{|5j(r)pe(t)}_ The choice of the basic o when the kinetic equations becorie-3]
variables is assisted by the fundamental Bogoliubov proce-

dure of the contraction of the description based on a hierar- J o L 5
chy of relaxation time$1,5], introducing a separation of the ﬁQj(ht):J} () +30(r, ) +32(r 1), 4
total Hamiltonian into two parts, namely,

Let us consider the construction of the NESOM nonlinear
quantum kinetic theory. First, it should be noticed that the
(anuations of evolution for the basic variables are given by

R where
H=H,+H’', (1)

1 . S
N () =Tr{ =[P: .
where H, is the “relevant” part composed of the Hamil- Iy =Tr iﬁ[PJ(r)’H‘)]p(t’o) '
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1 . R tion between spin and thermal bath. The chaige=0, g,

Jfl)(f,t)ZTr[ﬁ[Pj(f),H']p(t-o) (5 =g,=0, corresponds to the model Hamiltonian used in the

theory of paraeletric resonance and relaxation, wHgfe

and stands for isospifi8], and in what follows, for simplicity, we

112 1o take an isotropicgy=g,=9,=g, model.

19 t):(__) J' dt,eeuut)-l-r{[,:',(t,_t)o The chosen set of basic dynamical variables for the spin

A i) J)-w ' system is composed of NB spin operators, namely,

o o {5x.5y.5..i=1.2,... N}, we call (§|t) the corre-

[H",P;(]]p(t,00}, (6)  sponding macrovariables, andF,(t) the associated
R Lagrange multipliers, with the Zubarev-Peletminskii closure
the lower-right index nought ik’ (t" —t) stands for evolu- condition of Eq.(2) being satisfied. For the thermal bath, the

tion in the interaction representatigne., the evolution due pasic variable is the Hamiltonidfg and, since it is assumed

to Hqy along, andp(t,0) is the so-called coarse-graining part to constantly remain in equilibrium, it is statistically charac-

of the statistical operatqgs (t) [1-3]. terized by a canonical distribution in which the associated
Let us next consider in particular a systemMfspins in  Lagrange multiplier isBy=1/kgT,. On the other hand, the

interaction with a lattice, the latter composed of a phonorcontribution to the spin dynamics due to the interaction is

gas at temperaturg, and to be taken as an ideal reservoir, 1

and in the presence of a magnetic fidd=(B,,B, ,B,). & Dr—i Ty (& &

Spin-lattice ch)eIaxation is of fundgmental rele\sar);ce)iln tﬁ)e areds Lom H =] \/X; €mm mar 9(K) (3= 3) (Sjem = Sy ),

of eletronic paramagnetic resonance, the first studies dating 9

back to the work of Waller in 1932. Two types of processes .

were proposed, a direct one with absorption or emission of #r €achj=1,2,... N, and wherem#m’#m’, m,m’,m"

phonon, and a so-called Raman process with scattering 6f .Y,z €mmm=1 if mm'm” is a cyclic permutation of

phonons. The theory was extended by van Vleck on the basi&yZ (i-€.,Xyz zxy, andyzx) and null otherwise. For such a

of the study of the effect arising out of the modulation of thechoice of basic variables the auxiliary NESOM nonequilib-

crystalline electrostatic potentidl7]. We are considering um statistical operator is

here an ideal model involving only the direct process men- N

tioned above. In this case the Hamiltonian is of the form of 7t 0 = &

Eq. (1), where now(third part of Ref[7]) p(L0) exp{ ¢t ,2’1 % Fim(t)Sym

o . N . X exp{— ¢pr— BoHR}- 10
Fo=FstHr=> (hoSythw Sy, +h,S,) M= ¢r Aolle) (10
=1 This operator is the direct product of the auxiliary statistical
1 operator for the spin system times the one for the thermal
+> hoy aja,+ 5) (7)  bath, the latter being the equilibrium canonical distribution
K

as already noticed. We recall thétand ¢g ensure the nor-
malization of each one, respectively, akg,(t) are the
Lagrange multipliers that the variational method introduces.
N Applying the memoryless approximation of Eg), once
A =i\a>, > éij gm(k)(a—al,). (8) it is verified that all four contributions of the typ¥® are
j=1 m k null, it follows in a matrix form, which is the same for each
spin ((=1,2, ... N), that

and

In Eq. (7), wx,y,, are the Larmor frequencies of the spins in
the magnetic fieldﬂs accounts for the precession of the spin d

around the magnetic field, andg the Hamiltonian of the aM(t):AM(tHa’ (12)
free phonons with frequency dispersion relatiop More- A
over,5,.,5,,5, are the spin-half operatora,(a’) boson an-  whereM(t) is the column vector with componen¢§,|t),
nihilation (creation operators. In Eq(8), m=x,y,z, N isa  (S/|t), and(S/|t); a is the nonhomogeneous term in this
coupling constanty,,(k) the matrix elements of the interac- equation, namely, the column vector of components

ZQO)SEmmI m//( Wy — Wy

T [ )
am=mf0 da)G(w)[ rala?—0P) +2 (0 — o) dw—Q) (1, (12

m

wherews= w,+ wy+ 0,, O?=wi+ i+ w7, wp is Debye cut-off frequency, an@(w) = \|g(w)|?D(w) whereD(w) is the
density of phonon states, agdw) the matrix elementy(k) in frequency space in this isotropic model. The square matrix
is
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— Yx —w,+ay wy+ ay
A=| wztay Yy —wytay|, (13
—wy—Ha.Z wy+a, — Yz

where the quantitiey,, anda,, are given by(we recall thatm’ #m")

2
T emm,m”(wmr - a)mu)(wz— 02)71

a wp
)/m:ﬁjo doG(w)[2n(w)+1]

+

(wm”_wm’)2+2 wm(wm_wm’)}é(w_ﬂ)]' (149

T 2

RLRPYY.

wp 2
f de(w)[zn(w)+1]|7emm,m,,(wm,,—wm,)(wz—nz)1+E om0y —on)dw—Q).  (14b
0 m’
Finally, n(w)=[exp{Bsiw}—1]* is the population of the phonon modes.
Consider now the steady state, which is the final state of equilibrium with the lattice. After some lengthy, but straightfor-
ward algebra, we find that the components of the magnetization in the steady state are

. P Boh Q)
MrSnS: (Sm)ss= — zgtanl‘( 2 ) ) (19
where

Z;m:wm)(ma Xm:(l_Qm)(l_p)ilr (16)

2
—2wy0yw,+ 2 W (Q%— wh)
m’#m

qm=>\f0wawD(w)|g(w)|2(wz—ﬂz)1[ 2 (0n= om)op'2n(e)+ 1)+

m’

X(Qwog)  12nQ)+1)}, (173

2\ (op
p= Q—);fo dwD(w)|g(w)|}(02—02) "1 2n(w)+1)7, 179

wherep=02— (0xwy+ w0+ wyw,). To be consistent with the fact that the Markovian limit is valid only in first ordex in
(second order in the interaction strengthse expand (£ p) ! in a series of powers of around\ =0 and take only terms
up to first order, to obtain 4+ p+O(\?). Consequently, up to first order i, y,=1+p—4a,, and then the renormalized

Larmor frequencies are = wy,+ Aw, whereAw,= wn(P—qm).
Moreover, taking into account Eg€l5), (16), and(17) we find that

2 2
[tani‘(ﬁozﬂﬂ =%[tam‘('3029” $%, (18

~2

wm
20

m 40

|M342:% |<Asm>ssJZ:

as it should. This is so because we have neglected contribshould. In other words, according to Luczka the Markovian-
tions of type O(A?) to be consistent with the Markovian ization process in Zubarev’s approach does not, in this case,
approximation. The contribution linear i (second order in  satisfy that the sum of the squares of the steady state values
the interaction strength in o 2+ §+g 2 that is, of the spin variables is smaller or at most equal to one-
wy Ao+ o, Aw,+ 0, Aw, cancels out, while those of or- fourth. An alternative Markovianization procedure is at-
der O(\?) do not. Overlooking this point led Lucz®] to ~ tempted by Luczka resorting to a modified version of
the wrong conclusion that the Markovian limit in Zubarev's Davies’ techniqu¢10]. Equations of the form of Eq11) are
NESOM has not been properly derived. He claims that Eqobtained but with a modified matrix and vectora, which

(4) is incorrect, because from it there follow unphysical re-apparently corrects the above mentioned claimed incorrect-
sults, that is, the Lagrange parameters (8, in his nomen- ness of the Markovianization procedure described in the pre-
clature cannot in all circumstances be real numbers as theyious section. However, the modified terms lead to new
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equations of evolution for the magnetization which are not AD
Heisenberg equations of motion for the spins averaged over  B,=B¢+ABm: ABm=pBo
the nonequilibrium ensemble as it should, which are our Eq.

(11), but contain additionalspuriou$ terms. This evidently

points to some mistake in Luczka’s treatment of the problemFinally, we note that using the Lagrange multipliers as de-
which, as noticed, resides in that a failure of consistency irfined above, i.e.Fyy= B iwy,, in Eg. (10 and introducing
the calculation has been introduced, consisting in the facthe latter in the expression that defines Zubarev's statistical
that he obtains the value ¢f.J? larger than 1/4, but as a operator in the steady statel®, we obtain a “fine-grained”

2= Bo(p—am). (22

w
®m

consequence of the presence of te@(3.2). statistical operator that coincides with the canonical distribu-
Let us now look into the relevant question of analyzingtion in equilibrium at temperaturg,.
the Lagrange multiplier$ ,(t). A straightforward calcula- In conclusion, we have considered the particular case of
tion leads to the result that the Markovian limit, showing that the equations of evolution
are composed, in this memoryless limit, of a contribution
M ()= (&) =Tr{&, p(t O)}:—l Fm(t)tan&‘(@) that can be interpreted as the “golden rule” of quantum
' 2 F(t) 2 ) mechanicginvolving two-particle collisions averaged over

(199 the nonequilibrium ensemble plus a contribution arising out
of the change in time of the macroscopic variables that char-
acterize the macroscopic state of the system. Moreover, we

F()=TF2(t)+F2(t)+ F2(t)1¥2 20 _haye appll_ed thg theory to a specmc_model for a spin system
(O=[F+FyO+F(V)] 20 in interaction with a thermal reservoir composed of the lat-
Using Egs.(19) and (20), it follows that the Lagrange mul- tice vibrations in the material. The equations of evolution for

where

tipliers can be expressed in the form the variables corresponding to the average of the spin dy-
namical variables are derived in the memoryless limit. The

Mp(t)  [1+2|M(1)] complete solution for the evolution of the magnetization is

Fm(t)=— IM(t)] n 1-2M(D)]} (21)  optained, as well as the correct final state of equilibrium of

the spin system and the lattice at temperatiige In this
whereM (t) is the solution of the equations of evolution for process we have compared our results, for such system, with
the magnetization, Eq(11), and [M(t)[2=MZ(t)+MZ(t)  those of Luczkd9], who mantained that the Markovian ap-
+ Mg(t). In the steady state regime it follows, up to first proach as derived by Zubarev, Peletminskii, and us is incor-
order in\ (second order in the interaction strengththat ~ rect. We have shown that such consideration is invalid, and
the result of a failure of consistency in the order of the ap-

SS_ - ; it inlie
F = Bofiwy,. This suggests rewriting the Lagrange multipli proximations he introduced.

ers as o= B oy, Where nows,, plays the role of a kind of
inverse temperature for the component of magnetization, This work was supported by the Brazilian Governmental
which we write as Agencies CNPq and FAPESP.
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