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Monte Carlo simulations of the violation of the fluctuation-dissipation theorem
in domain growth processes
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Numerical simulations of various domain growth systems are reported in order to compute the parameter
describing the violation of fluctuation-dissipation theor@fDT) in aging phenomena. We compute two-time
correlation and response functions and find that, as expected from the exact solution of a certain mean-field
model[equivalent to théD(N) model in three dimensions, in the limit &f going to infinity], this parameter
is equal to onéno violation of FDT) in the quasiequilibrium regiméshort separation of timgsand zero in the
aging regime[S1063-651X98)05703-1

PACS numbds): 02.50.Ng

The study of aging phenomena is currently the subject of X(C) dC(t,t’)
many efforts, since this kind of behavior, for which a given R(t,t")= — —, (4
system remains out of equilibrium at all available times, is ot

present in many systems of interest, like spin glasses or

structural glasseld]. When concerned with the dynamics of This X(C_Z) has moreover received_ an interpretation in terms
a given system, it is usual to study the correlation function of°f €ffective temperaturgg]. In the high-temperature phase of
an observablé any systemX is equal to 1 since the system equilibrates and

the equilibrium properties hold. In the low-temperature
"— / phase where aging phenomena appear, violations of FDT can
CELE)=(AMAL)) @ be quantified by its departure from 1. In simulations or ex-
periments, it is more convenient to look at an integrated re-
sponse function: the system can be quenched under a mag-
netic field, which is cut off after a waiting timg, (the
> relaxation of the magnetization is then measured, and found

(( ) denotes an average over thermal npiged the conju-
gated response function

AA(t
R(t,t’)=<ah((t,))

?) to depend on the waiting timeor it is quenched under zero
field, and a field is applied aftey,. In this second case, the
growth of the zero-field-cooled magnetization

where h is an external field applied at timg. Then, at it

e.quilib.riumz these two-time qgantities satisfy time transla- M(Htw,tw):f WR(t+tW,s)h(s)ds (5)
tional invariancd TTI: the functions depend only on the dif- ty

ference of the two times—t'] and the fluctuation dissipation . . )

theorem (FDT) relating correlation and response by 1S _observed. The quasi-FDT relatig8) allows one to then
R(t—t')=(1/T)dC(t—t')/4t'. On the other hand, for aging Write (for a constant field

phenomena, since the dynamics is out of equilibrium, such IC(t+1,,5)

equilibrium properties are not expected to hold. In the con-  _m(t+t,,,t,)= ft+th(t+tw,s) ds, (6)
text of mean-field spin glasses, Cugliandolo and Kurchan tw Js

have proposed the general following scenario, in the limit o )

where the timeg andt’ go to infinity [2]: for small time ~ Which, in the limit of larget,,, gives
differences[(t—t')/t’<1], the system is in quasiequilib- L

rium, and the equilibrium properties hold; howevert #t’ IM(t+tW,tW)= X(C)dC. 7

is not small with respect tt', the study of two-time quanti- h C(t+ty.ty)
ties reveals that it is not at equilibriup€(t,t’) depend ex- _ _ o _ _ _
p||C|t|y ont andt’]. Moreover, they have proposed to mea- Then, if FDT is satisfied, we obtain a linear relation

sure the violation of FDT by the functioX(t,t’) where (T/)M(t+ty,t,)=1-C(t+t,,t,), independently of the
system, while a deviation from this straight line in &h

X(t,t') 9C(t,t") versusC plot indicates violation of FDT and gives informa-
St (3)  tion onX: different systems can have different types of vio-
T at’ lation of FDT. This kind ofM-versus€ plot has been used
to compute the value oX in the aging regime, analytically
with the important assumptiotafterwards supported by the for various mean-field model,3,9], and using numerical
study of many different cases, see for exaniple7]) that, as simulations for the mean-field Sherrington-Kirkpatrick
t andt’ go to infinity, it becomes a function of time only model [6], for the three-dimensional Edwards-Anderson
throughC(t,t’): model[4] (a more realistic spin glaggor thep spin in finite

R(t,t")=
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dimensiong5]. While, for thep=2 sphericalp-spin model,
equivalent to the(N) ferromagnetic model in three dimen- 4| ™. ]
sions, X is zero[9], it is found to be constant fqp=3, and
a nontrivial function ofC for the Sherrington-Kirkpatrick _
and the three-dimensional Edwards-Anderson model. An nu 4| |
merical investigation of a glass forming binary mixtuiie '

three dimensionshas also been made receniti], with the B

result of a constant value of. T T
P -

In this paper, we report numerical simulations of various jom o Mmmf;%
domain-growth systemgor a review on such systems, see o “alxg
[10]), for which it is expected8] that X is zero in the aging %*W»*&x&x o
regime. We examine Ising ferromagnetic systems in two anc0.1 | aonesan000009090000000600 0000 6 o o o o 7 "% ]
three dimensions at various temperatures, and with con RTCUITITST TSR
served or nonconserved order parameter. We also make
simulation of the Edwards-Anderson model in three dimen- g . . . s

0.6 0.7 0.8 0.9

sions, to show the striking difference of behavior.
We consider Ising spins; on a square or cubic lattice of  FiG. 1. TM(t+t,,,t,)/h vs C(t+1,,t,) for two-dimensional
linear sizeL, with ferromagnetic interactions. Starting from a domain growth T,=2.27), at temperatureérom top to bottom
random configuration, we quench the system at time O tad=1.7 andt, =200, 400, 800, 2000T =1.3 andt, =800, T=1
temperaturd and let it evolve according to Glauber dynam- andt,,=800. The straight line i1 =1— C: we see that FDT holds
ics, with a single-spin-flip algorithnwe will also consider at short timeg, and the violation of FDT wittK=0 at longer time
later soft spins evolving through a Langevin equatioNe  separation.
then measure the spin-spin correlation function
from 0.01 to 0.2). The sizes used dre- 600 in two dimen-
1 sions, and_=80 in three dimensions.
C(t,t')=— 2 (si(H)si(t")) (8) To compare the various curves, obtained for various sys-
N = tems, temperatures and waiting timgs, we look at the
plots of TM(t+t,,,t,)/h versusC(t,+t,t,). We first made
for an unperturbed system. It is known that this correlationsome runs at higii': in this case, the system reaches quickly
function exhibits two time regimes: fdr—t'<t’ (for sim-  equilibrium, with TTI [C(t,+t,t,)=Cc(t), M(t+t,,t,)
plicity we taket’ <t), it decays rapidly from £C(t’,t") to = =Mg{t)] and we checked that FDT hold3M{(T)/h=1
gea=m?, m being the magnetization at temperatiirethen, —Ce{1)]. For temperatures below the transition tempera-
for more separated times, it scales likét)/L(t’'), where ture, a dependence dp, appears inC andM (violation of
L(t) is the characteristic size of the domains at tim&Vve  TTI), corresponding to the growth of domains of the two
also check that the domain sizes remain much less than competing phases. We observe as expected two time regimes
thus ensuring that finite size effects are not significant. At gwe stress that we are interested in long time limits, since the
certain waiting timet,,, we take a copy of the system, to X(C) function is defined as such; nevertheless, we already
which a small, constant magnetic field is applied. We thercan observe two distinct regimes with finite times, and de-
measure the staggered magnetization duce the limit of interegt
(i) For timest smaller thant,,, the two-times quantities
1 N do not depend ont,, and FDT also holds:TM(t
M(t+t,,t,)= =N 2 (si(ty+D)h). 9) +t,,tw)/h=1-C(t,+1t,t,). This happens at large values
= of C (close to 1) and small values ™.
(ii) For larger times separation, we observe aging in the
For spin glasses, the applied field can equivalently beorrelation function, and also clearly a deviation from FDT.
taken uniform or random, since the interactions between We show the data in Figs. 1-3 for the various systems,
spins are random. Taking a uniform field allows one to avoidand for various waiting times. In the aging part, we see that
averaging over the realizations of the field. On the othetheM versusC curves are in fact getting flat, except at small
hand, for a ferromagnetic system, the action of a unifornt,,. A closer look at the data for the aging part shows that
field is to favor one of the phases, which will grow faster. for largert,,, the plateau reached by the magnetization is
The correct quantity to measure is therefore the response tolawer, and(ii) for a fixedt,,, the magnetization first grows
random field: the staggered magnetizati®. [In two di- [like 1—C(t,+t,t,), this is the nonaging pdrtthen satu-
mensions, a random field destroys the long range diskr  rates, and eventually goes slowly down again, this last effect
[11] for a review on the random field Ising mogtehowever, becoming less important &g grows, with a flattening of the
the instability destroying it appears only for domain sizescurves(the slope of this part of the curves decreases,as
growing exponentially with 1/ [12], so that this effect is not increases We can explain these effects in the following
important as long as we work with small enough fields and atvay: aftert,,, the domains have reached a certain typical
times not to long For simplicity, the randonh; are taken size, and the domain walls have a certain total length. The
from a bimodal distribution ifj=+h). The staggered mag- effect of the random field is then to try to flip some spins;
netization is averaged over the realizationshof and we this flipping will be easier at the domain walls, since the
checked linear response using various valuel @pically  spins there are less constrained by their neighbors. Therefore
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FIG. 2. Same as Fig. 1 for a nonconserved order parameter in : : . .
. . FIG. 4. Same as Fig. 1 for soft spins on a two-dimensional
three dimensionsT=2.5 (T,~3.5), t,=100, 300, 600, 1000, g P

1500 square lattice, evolving througti0), with, from top to bottom,T

=1 andt,,=200, 600,T=0.33 andt,,= 200, 600.

we have two contributions to the staggered magnetization(:)bservalbles A and B, the correlations Cag(tt')
one from the bulk, and one from the domain walls. As time—(A(t)B(t’)) and Cg (t t”) are equal, are also gr? e,quilib

H n@h H - BA\ Y ] -
evolves_, the QOmams grow aqd the total le surface, in rium theorem, and therefore are not expected to hold for
three dimensionsof the domain walls decreases. Therefore,a ing dynamics. For a fields evolving according to a
the contribution from the interfaces decreases. On the oth(irgn gevir): e uatic.)n where the force at ?im'es E(t) ?t can
hand, the contribution of the bulk will be rather independentbe gshown ?14] th,at oven if the asymmetry,,zl(t t)
T o o o o v v vt = (D) ()60 goes to zer0 or o mes, e
staggered magnetization is thus decreasing whgrin- integraIfE,A(t,t’)dt’ has a finite limit ag goes to infinity, if
creases, and also, &} fixed, ast grows (after the initial the system is out of equilibrium. Following a suggestion by
growth, ’vvhen the f'ield is svx;itched onin the limit of large Franz, and slig_htly modifying the_ simulation program, we
. the fetof e bulk becomes rfatvey more ertn: 5012 11175, S 1 e Langeh ustn
o s it Yappone, AEPace by he spirs and h 1l ot rce ' plyed
short times, the majoriy of the spins flipped by the random e 2 0 Zuo™ hick Culd also be of interest n the
field are on the domain walls, this fraction going then down N dg ¢ qu 3;]
as the domains grow; we will also see that this effect due tgudies of aging phenomena.

the motion of domain walls is not present for the Edwards—d Langev;r ebqu?:Lnort\: ITmce swgﬂgr Iz'etsbglt? were ot;talnecfi n-
Anderson spin glas. ependently by Castellano and Selliftt3] for a system o

Note: the reciprocity relations, which state that, for two soft SpIns _evolvm_g through a Lang'?"'”. equation, we also
mention briefly this case, and show in Fig. 4 an example of

— . . the results that can be obtained with a system of this type: we

simulate soft spins on a square lattice, with a quartic poten-

03} i tial confining them to the vicinity of its minima-1 and

’ —1, and evolving through the discretized Langevin equation

s(i,j,t+1)=s(i,j,0)+[s(i+1],t)+s(i—1j,0)+s(,]
0.2} 4
+1t)+s(i,j—1t)—4*s(i,j,t)+s(i,j,t)

=s(i,j,0)%]xh+5(i.j,b), (10)

jaf
#%*m °

o1 = 1 wheres(i, j,t) is the value of the spin at the lattice sitigj(

e at timet, » is a Gaussian noise with zero mean and variance

* - 2Th, h being the used time step. We proceed by parallel

updating of the field, and, at=0, thes(i,j) are taken as

. . . independent random variables uniformly distributed between

0.7 08 0.9 —1 and 1. Again, at,, a random field is switched on and the
FIG. 3. Same as Fig. 1 for conserved order parameter in twétaggered magnetization and the correlation are measured.

dimensionsT=0.8 and from top to bottorh,= 100, 200, 400, 600, All these simulations clearly show that the parameétes

800, and in three dimensiori®wer symboly, T=2,t,,=100, 200, zero for these domain-growth systems. This flattening of the

300, 400. integrated response shows that the long-term memory of

0
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FIG. 5. Same as in Fig. 1 for the Edwards-Anderson matel,
=0.7, from top to bottont,,= 1000, 600, 300, 100, compared to the
data for the domain growth in two dimensions at1.7, t,,
=1000 (highest plateay and in three dimensions at=2.5, t,,

=1000(lowest plateau

such systems is in fact wedB]: the aging phenomena are
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where the sum is over nearest neighbors, the spirare
Ising spins, and the coupling; are quenched random vari-
ables, taking values-1 or —1 with equal probability.

We simulated a system of linear site=80 at T=0.7.
Although no precise conclusion can be drawn as to the form
of the functionX(C), since the obtained curves still show a
dependence of},, it is quite clearias was shown if4]) that
they tend to a certain nontrivial curve, very different from
the case of domain growth systems, like the comparison of
Fig. 5 shows. Let us remark that curves similar to the ones
obtained for the EA spin glass have also been obtained for
the p-spin model in three dimensions 5] and for the
mean-field version of Eq11), the Sherrington-Kirkpatrick
model[6].

To conclude, we have reported measurements of the vio-
lation of the fluctuation-dissipation theorem in some systems
exhibiting domain growth, and found that, as expected but
shown only in one particular case, the paramtatescrib-
ing it is equal to zero in the aging pha&nd of course to 1
in the quasiequilibrium regime, where FDT holdén the
interpretation of(8], this means that the effective tempera-
ture is the temperature of the heat bath in the quasiequilib-
rium regime(corresponding to the fast relaxation of the spins
in the bulk of the domains while it is infinite in the coars-

essentially in the correlations, while it is also important forening regime, which corresponds to the dynamics of the do-

the response in spin-glasses.

mains themselvetsee[8], Sec. IV-C for a detailed discus-

In Fig. 5, we indeed show the obtained data for ansion). It should also be noted that this behavior shows a
Edwards-Anderson system in three dimensions, with Hamiltendency of the long-term memory to disappear, in contrast

tonian

H

> Jijsisy,

0y

(11)

with spin glasses or glasses.
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