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We address the two-dimensional bimolecular annihilation reactionA1A→0 in the presence of random
impurities. Impurities with sufficiently long-ranged interactions are known to lead to anomalous diffusion,
^r 2(t)&;t12d, in the absence of reaction. Applying renormalization group theory to a field theoretic descrip-
tion of this reaction, we find that this disorder also leads to anomalous kinetics in the long time limit:c(t)
;td21. This kinetics results because the disorder forces the system into the~sub!diffusion controlled regime,
in which the kinetics must become anomalous.@S1063-651X~98!06503-9#

PACS number~s!: 82.20.Db, 05.40.1j, 82.20.Mj
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Surface reactions show a variety of complex spatial a
temporal patterns. Simple systems, such as oxidation of
on single crystal Pt~110!, show surprisingly rich behavio
@1#, ranging from spirals and standing waves to chemi
turbulence@2,3#. Such behavior results because two dime
sions is the upper critical dimension for many surface re
tions, and so collective fluctuations control the dynami
Toussaint and Wilczek and Kang and Redner first noticed
diffusion-controlled kinetics that can arise from reactant m
crophase separation@4–6#. Field theoretic techniques wer
developed that rigorously showed two dimensions to be
upper critical dimension for the annihilation reactionsA
1A→0 @7,8# and A1B→0 @9#. Adsorption effects have
been addressed within the field theoretic framework@10#.
Real systems, of course, possess many defects, and ran
ness in adsorption energies can lead to a variety of ph
observed at steady state@11#.

Defects can dramatically affect the diffusion of particles
correlations in the potential field are sufficiently long range
For a single ion diffusing in disorder that is charged, t
appropriate form of the correlation function at long wav
lengths is@12#

x̂vv~k!5g/k2. ~1!

For this model, the upper critical dimension is 2. In tw
dimensions and below, subdiffusion occurs@13,14#. In this
anomalous regime the mean-square displacement incre
sublinearly with time,^r 2(t)&;t12d. The diffusion expo-
nent, 12d, depends on the strength of disorder; it can
found exactly@15–21#.

These same defects can have an effect on reacting spe
We consider species that diffuse in this quenched, rand
571063-651X/98/57~3!/3618~4!/$15.00
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potential and which also react according to the lawA1A
→0. The diffusing species, however, do not interact in a
other way.

The type of physical system that we have in mind is
reaction that occurs on the surface of a crystalline ionic
tice. The substrate lattice has dislocation line pairs, wh
form line vacancies or line interstitials. These defects
immobile and generate a random, quenched electrostatic
tential on the surface, represented by Eq.~1!. On the surface,
the reactionA1A→0 occurs, whereA is a reactive ion. The
1/r interaction between the ions is technically irrelevant, a
so it can be ignored. So as to maintain surface charge n
trality, however, we may wish to include additional count
ions, which can desorb.

Alternatively, our results can be viewed as approximat
describing the annealing of two-dimensional topological d
fects, such as line dislocations in solids. Topological defe
have logarithmic interactions, due to a slowly decaying el
tic strain field~see@22# for a review!. If some of the defects
were pinned and unreactive, the remaining defects wo
diffuse and combine in the quenched, random potential
scribed by Eq.~1!. The logarithmic interaction between th
topological defects prevents microphase separation, an
the kinetics of this two-species reaction is similar to that
the A1A reaction@4#.

In this paper we analyze a field theoretic formulation
the two-dimensional annihilation reactionA1A→0 in the
presence of quenched disorder. The concentration ofA is
initially Poissonian, with average densityn0. No creation or
unimolecular annihilation is allowed. We search for t
asymptotic decay law at long times using renormalizat
group~RG! theory. A field theory is derived by identifying a
master equation, writing the master equation in terms of c
ation and annihilation operators, and using the coherent s
3618 © 1998 The American Physical Society
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representation@7,8#. The random potential is incorporate
with the replica trick@14#. The concentration ofA at time t,
c(x,t), is given by

c~x,t !5 lim
N→0

^a~x,t !& , ~2!

where the average is taken with respect to exp(2S), with the
actionS5S01S11S21S3,

S05E ddxE
0

t f
dt āa~x,t !@] t2D¹21d~ t !#aa~x,t !,

S15E ddxE
0

t f
dt@l1 āa~x,t !aa

2~x,t !1l2 āa
2~x,t !aa

2~x,t !#,

S252n0E ddxāa~x,0!,

S35
b2D2

2 E dt1dt2E
k1k2k3k4

~2p!dd~k11k21k31k4!

3 â̄a1
~k1 ,t1!âa1

~k2 ,t1! â̄a2
~k3 ,t2!âa2

~k4 ,t2!

3k1•~k11k2!k3•~k11k2!x̂vv~ uk11k2u!. ~3!

Summation is implied over replica indices. The notation*k
stands for*ddk/(2p)d. The upper time limit in the action is
arbitrary as long ast f>t. The termS0 represents simple
diffusion, without an external potential. Thed function, of-
ten left out by convention, enforces the initial condition
the free field propagator. The termS1 comes from the reac
tion terms. The parameters are related to the conventi
reaction rate,k, by l152l25k. The termS2 comes from the
random, Poissonian initial condition. The termS3 comes
from averaging the concentration over the random poten
The potential is assumed to be Gaussian, with zero mean
correlation function given by Eq.~1!. The inverse tempera
ture is given byb51/(kBT).

An approximate solution to Eq.~2! can be derived by a
saddle point approximation to the action~3!. The result, be-
fore the average over the random potential is taken, is

] tcv5D¹2cv1bD“•~cv“v !2l1cv
2 ,

cv~x,0!5n0 . ~4!

For constant potential, this equation has the solut
cv(x,t)51/(l1t11/n0).

An alternative, exact expression for the concentration
be derived by performing a Hubbard-Stratonovich transf
mation on Eq.~3! and integrating out the fieldā :

] tchv5D¹2chv1bD“•~chv“v !2l1chv
2 1 ihchv ,

chv~x,0!5n0 , ~5!

where the real, Gaussian, random fieldh has zero mean an
variance ^h(x,t)h(x8,t8)&52l2d(x2x8)d(t2t8). The
physical concentration is given by averaging the solut
over the random fieldh. From this representation, we se
that mean field theory is exact whenl2 5 0. It is for this
al
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reason that diagrams to all orders inl1 can be summed in
this limit ~see, for example,@8#!.

We apply renormalization group theory to the action~3!
to take into account the effects of nonzerol2. Time ordering
prevents a term of the formāa from being generated, and a
other relevant terms are already present in Eq.~3!. The limit
N→0 turns out not to matter, as time ordering cancels
same terms that this limit does. We follow the flow equatio
until l2 is small enough so that we have entered the per
bative regime. In this regime, we can match the flow eq
tions with the solution to Eq.~4!. We integrate over mo-
menta in the rangeL/b,k,L and then rescale the fields b

â̄8(bk,b2zt)5 â̄ (k,t)/ ā and â8(bk,b2zt)5â(k,t)/a. To
achieve a fixed point, and to keep the time derivative inS0

constant, we seta51,ā5bd. We determine the dynamica
exponent by requiring that the diffusion coefficient rema
unchanged. The flow equations in two dimensions, to o
loop order, then become

dlnn0

dl
52,

dlnl1

dl
52

l2

2pD
1

3b2g

4p
,

dlnl2

dl
52

l2

2pD
1

3b2g

4p
,

db2g

dl
50. ~6!

The dynamical exponent is given by

z521
b2g

4p
. ~7!

These flow equations reproduce known anomalous sca
in the cases of no reaction or no disorder. They are integra
to a time such that

t~ l * !5te2*0
l*z~ l !dl5t0 . ~8!

The matching time,t0, is chosen to be on the order o
4p2/(L2D) so as to be within the range of validity of bot
RG scaling and mean field theory. Mean field theory is
good approximation at this time becausel2( l * ) is small.
~An expansion inl2 generates an expansion int0 that leads
to subdominant scaling.! For short times, particles see on
the local value of the potential, and the effective diffusivi
is given by the bare value.~An expansion inb generates an
expansion int0 that leads to subdominant scaling.! We can,
therefore, ignore the potential term in Eq.~4! for short times.
Matching with mean field theory, we find the mean squa
displacement is given by

^r 2
„t~ l * !,l * …&54Dt~ l * ! ~9!

in the absence of reaction, and the concentration profil
given by
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c„t~ l * !,l * …5
1

1/n0~ l * !1l1~ l * !t~ l * !
~10!

in the absence of random forces. The observed values
related by scaling:

^r 2~ t !&5e2l^r 2
„t~ l !,l …&,

c~ t !5e22lc„t~ l !,l …. ~11!

With no reaction, the one-loop flow equations prove to
exact@15–21#. The disorder strength is not renormalized
any order. The dynamical exponent is greater than 2, an
we have subdiffusive behavior. Matching atl 5 l * , we find
the mean square displacement at long times is given by

^r 2~ t !&;4DtS t

t0
D 2d

, ~12!

with

d5F11
8p

b2g
G21

. ~13!

We have a continuously variable exponent that depends
the strength of disorder. The prefactor is nonuniversal, si
the matching timet0 explicitly enters.

With no external potential, the flow equations becom
asymptotically exact at long times@7,8#. The rate constants
decay slowly to zero, with the ratiol2( l )/l1( l ) remaining
constant. The dynamical exponent is 2, since there is no
renormalization. Matching with mean field theory atl 5 l * ,
we find for long times

c~ t !;
ln~ t/t0!

8pDt
. ~14!

We see the characteristic universal logarithmic correction
the mean-field kinetic equations. There is a subdomin
nonuniversal 1/t decay.

The presense of disorder dramatically affects the react
The rate constants no longer decay to zero, but to a non
fixed point. The ratiol2( l )/l1( l ) again remains constant. T
one loop, we find the reaction terms do not renormalize
diffusivity, disorder strength, or dynamical exponent. Matc
ing with mean field theory atl 5 l * , we find

c~ t !;
1

l1* t
S t

t0
D d

, ~15!

with the fixed point given from Eq.~6! as
re
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l1* 53Db2g. ~16!

We have, therefore, a nonuniversal decay exponent that
pends, again, on the strength of disorder. The exponen
precisely the inverse of that for the pure diffusion case,
~12!. The prefactor is also nonuniversal, since the match
time t0 again enters.

We see that to one loop, the reaction terms leave
diffusion process unaffected. Physically, the disorder tr
diffusing species in wells of deep potential energy. Norm
diffusion between these wells leads to the observed, ove
diffusivity. Progressively deeper wells are encountered
longer times, and so anomalous diffusion occurs. For dif
sion limited reactions, the effective reaction rate is prop
tional to the effective diffusion constant. Since we ha
Deff(t);D(t/t0)2d, we should expectkeff}(t/t0)2d. This is
exactly the behavior observed in Eq.~15!.

When two reactants are attracted to the same well, re
tion almost always occurs, since the escape time is m
greater than the reaction time. In other words, the reac
becomes~sub!diffusion limited, and the bare reaction ra
should not enter the decay law. Three species entering a
is much less probable at low densities than two, and so
case should be irrelevant at long times. Reactants can
counter each other outside the wells. Reaction outside
wells would show up as renormalization of the disord
strength and dynamical exponent in a two-loop calculati
We have checked that these terms are not generated to
loop order. So the dynamical exponent is unchanged by
reaction, and the bare reaction rate is not present in the d
law. From this argument, we expect the dynamical expon
and the flow equation for the disorder to remain unchan
in higher order calculations.

The diffusion terms, on the other hand, do affect the
action process. Since the reaction becomes diffusion limi
the diffusion terms actually control the reaction process.
this reason, we find a nonzero fixed point for the effect
reaction rate. The effective reaction rate should be a func
of the strength of disorder, since it is related to the rate
which species diffuse between wells. The rate~at l 5 l * ) is
proportional to the effective diffusion coefficient divided b
a characteristic distance squared. This is exactly the beha
that we observe in Eq.~16!, with b2g an inverse distance
squared. Higher order calculations may, of course, lead
modification of the numerical value of the fixed point fo
largeb2g.
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