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We address the two-dimensional bimolecular annihilation reactierA—0 in the presence of random
impurities. Impurities with sufficiently long-ranged interactions are known to lead to anomalous diffusion,
(r?(t))~t17?, in the absence of reaction. Applying renormalization group theory to a field theoretic descrip-
tion of this reaction, we find that this disorder also leads to anomalous kinetics in the long timec(ithit:
~1%~1, This kinetics results because the disorder forces the system intsubdiffusion controlled regime,
in which the kinetics must become anomaloj&1063-651X98)06503-9

PACS numbes): 82.20.Db, 05.40+j, 82.20.Mj

Surface reactions show a variety of complex spatial angotential and which also react according to the law A
temporal patterns. Simple systems, such as oxidation of CO-0. The diffusing species, however, do not interact in any
on single crystal R110), show surprisingly rich behavior other way.

[1], ranging from spirals and standing waves to chemical The type of physical system that we have in mind is a
turbulence[2,3]. Such behavior results because two dimen-reaction that occurs on the surface of a crystalline ionic lat-
sions is the upper critical dimension for many surface reactice, The substrate lattice has dislocation line pairs, which
tions, and so collective fluctuations control the dynamicS¢orm Jine vacancies or line interstitials. These defects are
Toussaint and Wilczek and Kang and Redner first noticed thg,, mobile and generate a random, quenched electrostatic po-

diffusion-controlleq kinetics _that can ari_se from_reactant mi'tential on the surface, represented by E. On the surface,
crophase separatioal—6]. Field theoretic techniques were the reactiom+ A—0 occurs, wherd\ is a reactive ion. The

developed that rigorously showed two dimensions to be th Ir interaction between the ions is technically irrelevant, and

upper critical dimension for the annihilation reactioAs <o it can be ignored. So as to maintain surface charge neu-
+A—0 [7,8] and A+B—0 [9]. Adsorption effects have . 9 ' . . " 9
trality, however, we may wish to include additional counter

been addressed within the field theoretic framewfi@]. . ;
Real systems, of course, possess many defects, and randoff?S: Wh'ch can desorb. . _
ness in adsorption energies can lead to a variety of phases Altérnatively, our results can be viewed as approximately
observed at steady stdtel]. describing the gnnegllng o_f two.—d|me.n3|onal topqlog|cal de-
Defects can dramatically affect the diffusion of particles if fCts, such as line dislocations in solids. Topological defects
correlations in the potential field are sufficiently long ranged.nave logarithmic interactions, due to a slowly decaying elas-
For a single ion diffusing in disorder that is charged, thetic strain field(see[22] for a review. If some of the defects
appropriate form of the correlation function at long wave-were pinned and unreactive, the remaining defects would
lengths is[12] diffuse and combine in the quenched, random potential de-
scribed by Eq(1). The logarithmic interaction between the
topological defects prevents microphase separation, and so
;(w(k)z y/kZ_ ) the kinetics of this two-species reaction is similar to that of
the A+ A reaction[4].
In this paper we analyze a field theoretic formulation of
For this model, the upper critical dimension is 2. In two the two-dimensional annihilation reactioh+A—0 in the
dimensions and below, subdiffusion occiis,14. In this  presence of quenched disorder. The concentratioA af
anomalous regime the mean-square displacement increasegially Poissonian, with average density. No creation or
sublinearly with time,(r?(t))~t'~°. The diffusion expo- unimolecular annihilation is allowed. We search for the
nent, 1- &, depends on the strength of disorder; it can beasymptotic decay law at long times using renormalization
found exactly{15-21]. group(RG) theory. A field theory is derived by identifying a
These same defects can have an effect on reacting speci@saster equation, writing the master equation in terms of cre-
We consider species that diffuse in this quenched, randoration and annihilation operators, and using the coherent state
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representatior7,8]. The random potential is incorporated
with the replica trick{ 14]. The concentration oA at timet,
c(x,t), is given by

c(x,t)=lim(a(x,t)),
N—O

)

where the average is taken with respect to exg)( with the
actionS=S5;+S;+S,+S;,

tf
SO=J dde dta,(x,t)[d,— DV?+ 8(t)]a,(x,t),
0
Sl=f ddxftfdt[xli(x,t)ai(x,t)+>\ZE§(x,t)a§(x,t)],
0

S

- nOJ dan_a(X, 0)1

IBZDZ
fdtldtzf (2m)98(ky+ky+ks+ky)
2 kikoksks

33:

X 8 (K1 t1) A (Ko 1) g (Ka 1) 2, (Ka to)

XKy (kyt+ka)ks- (Ky+Kp) xyo([ki+kal). 3
Summation is implied over replica indices. The notatjgn
stands forfd%/(2)9. The upper time limit in the action is
arbitrary as long ad;=t. The termS, represents simple
diffusion, without an external potential. Th&function, of-
ten left out by convention, enforces the initial condition on
the free field propagator. The ter8) comes from the reac-
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reason that diagrams to all ordershp can be summed in
this limit (see, for exampld,8]).

We apply renormalization group theory to the acti@
to take into account the effects of nonzarg Time ordering

prevents a term of the forma from being generated, and all
other relevant terms are already present in By. The limit
N—O turns out not to matter, as time ordering cancels the
same terms that this limit does. We follow the flow equations
until X, is small enough so that we have entered the pertur-
bative regime. In this regime, we can match the flow equa-
tions with the solution to Eq(4). We integrate over mo-
menta in the rangA/b<k<<A and then rescale the fields by
a'(bk,b %t)=a(k,t)/a and a’'(bk,b"%t)=a(k,t)/a. To
achieve a fixed point, and to keep the time derivativé&jn
constant, we setr=1,a=hb" We determine the dynamical
exponent by requiring that the diffusion coefficient remain
unchanged. The flow equations in two dimensions, to one
loop order, then become

tion terms. The parameters are related to the conventional

reaction ratek, by A ;=2\ ,=Kk. The termS, comes from the
random, Poissonian initial condition. The ter8y comes

from averaging the concentration over the random potential.
The potential is assumed to be Gaussian, with zero mean and

correlation function given by Eq1). The inverse tempera-
ture is given byB=1/(kgT).

An approximate solution to Eq2) can be derived by a
saddle point approximation to the acti@®). The result, be-
fore the average over the random potential is taken, is

4c,=DV?c,+BDV-(c,Vv)—\,C?

v

c,(%,0)=ng.

(4)

dinng
dl =2
dinn; A, 3B%
dl ~ 2aD  4x’
dinn, X, 3B%
dl ~ 2aD  4x’
dp’y
ai =0. (6)
The dynamical exponent is given by
2
=2+ B2 @
41

These flow equations reproduce known anomalous scaling
in the cases of no reaction or no disorder. They are integrated
to a time such that

t(l*)zte*f'oﬂ')d':tO . (8)

The matching timet,, is chosen to be on the order of
47%/(A°D) so as to be within the range of validity of both

For constant potential, this equation has the solutiorRG scaling and mean field theory. Mean field theory is a

C,(X,t)=1/(\1t+ 1/ng).

good approximation at this time becausg(l*) is small.

An alternative, exact expression for the concentration cafAn expansion i\, generates an expansiontinthat leads
be derived by performing a Hubbard-Stratonovich transforto subdominant scalingFor short times, particles see only

mation on Eq.3) and integrating out the field:

9C,,=DV?c,,+pBDV-(c,,Vv)—\iC2 +inc,,,

C”U(X,O): no,

)

where the real, Gaussian, random fieldhas zero mean and
variance (7n(x,t)p(x’',t"))=2N,8(x—x")S8(t—t'). The

the local value of the potential, and the effective diffusivity
is given by the bare valu¢An expansion in3 generates an
expansion irty that leads to subdominant scalipgVe can,
therefore, ignore the potential term in E¢g) for short times.
Matching with mean field theory, we find the mean square
displacement is given by

(r2@(1*),1*))=4Dt(1*) 9

physical concentration is given by averaging the solution
over the random fieldy. From this representation, we see in the absence of reaction, and the concentration profile is
that mean field theory is exact whan = 0. It is for this  given by
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- 1 A1 =3Dp%y. (16)
ca(®), )_1/n0(l*)+)\1(l*)t(l*) (10

in the absence of random forces. The observed values aM/e have, therefore, a nonuniversal decay exponent that de-

related by scaling: pends, again, on the strength of disorder. The exponent is
precisely the inverse of that for the pure diffusion case, Eg.
(r2t)=e?(r2@t(,1), (12). The prefactor is also nonuniversal, since the matching
ol time t, again enters.
c(t)y=e “c(t(),h). 1D We see that to one loop, the reaction terms leave the

With no reaction, the one-loop flow equations prove to bed?ffus@on process _unaffected. Physically,_ the disorder traps
exact[15—-21. The disorder strength is not renormalized to 9iffusing species in wells of deep potential energy. Normal
any order. The dynamical exponent is greater than 2, and Sffusion between these wells leads to the observed, overall
we have subdiffusive behavior. Matching lat1*, we find  diffusivity. Progressively deeper wells are encountered at

the mean square displacement at long times is given by Io'nge'r ti.mes, andi S0 anomalous.diffusion_ occurs. For diffu-
sion limited reactions, the effective reaction rate is propor-

tional to the effective diffusion constant. Since we have
: (120 Dp_(t)~D(t/ty) 2, we should expedteqe: (t/ty) ~°. This is
exactly the behavior observed in Ed5).
with When two reactants are attracted to the same well, reac-
tion almost always occurs, since the escape time is much
greater than the reaction time. In other words, the reaction
1+,6’T (13 becomes(subdiffusion limited, and the bare reaction rate
L4 should not enter the decay law. Three species entering a well
We have a continuously variable exponent that depends of§ much less probable at low densities than two, and so this
the strength of disorder. The prefactor is nonuniversal, sincéase should be irrelevant at long times. Reactants can en-
the matching time, explicitly enters. counter each other outside the wells. Reaction outside the
With no external potential, the flow equations becomeWells would show up as renormalization of the disorder
asymptotically exact at long timdg,8]. The rate constants Strength and dynamical exponent in a two-loop calculation.
decay slowly to zero, with the ratin,(1)/\,(1) remaining We have checked that these terms are not generated to two-

constant. The dynamical exponent is 2, since there is no fiellpoP order. So the dynamical exponent is unchanged by the
renormalization. Matching with mean field theory lat|* reaction, and the bare reaction rate is not present in the decay

-0

(rz(t)>~4Dt(l
to

8 -t
5:

we find for long times law. From this argument, we expect the dynamical exponent
and the flow equation for the disorder to remain unchanged

In(t/ty) in higher order calculations.
cO~35 Dt - (14) The diffusion terms, on the other hand, do affect the re-

action process. Since the reaction becomes diffusion limited,

We see the characteristic universal logarithmic correction tdhe diffusion terms actually control the reaction process. For
the mean-field kinetic equations. There is a subdominanthis reason, we find a nonzero fixed point for the effective
nonuniversal 1/decay. reaction rate. The effective reaction rate should be a function

The presense of disorder dramatically affects the reactioraf the strength of disorder, since it is related to the rate at
The rate constants no longer decay to zero, but to a nonzemhich species diffuse between wells. The réel =1%) is
fixed point. The ratio\,(1)/\ (1) again remains constant. To proportional to the effective diffusion coefficient divided by
one loop, we find the reaction terms do not renormalize thé characteristic distance squared. This is exactly the behavior
diffusivity, disorder strength, or dynamical exponent. Match-that we observe in Eq(16), with B?y an inverse distance

ing with mean field theory at=1*, we find squared. Higher order calculations may, of course, lead to
modification of the numerical value of the fixed point for
1/t)\? large 8?y.
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