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Transfer matrix method for a dynamical mesoscopic system

K. Yakubo
Department of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan

~Received 23 June 1997!

A transfer matrix method for analyzing quantum transport in harmonically driven systems with spatiotem-
poral coherence has been developed. In such systems, the energy conservation law is violated, and transport
occurs through an infinite number of sideband states. This transfer matrix method enables us to compute
transmission and reflection probabilities of such dynamical mesoscopic systems without consuming a large
amount of computing time and memory space. We apply this technique to photon-assisted tunneling~PAT! in
a dual-gate field-effect transistor, and demonstrate the possibility of observing resonant level splittings due to
the dynamical Stark effect in dual-gate PAT devices.@S1063-651X~98!06103-0#

PACS number~s!: 02.70.2c, 73.23.2b, 73.40.Gk, 73.50.Mx
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I. INTRODUCTION

Quantum transport through mesoscopic systems is an
tive research field in condensed matter physics. Recent
vances in microfabrication technology have made it poss
to realize electron transport in harmonically driven syste
showing electron coherence@1,2#. In suchdynamical mesos
copic systems, new effects, such as delocalization in a ph
tonic field @3#, the dynamic localization@4#, the absolute
negative conductance@5#, and dephasing by oscillating po
tential @6#, due to thespatiotemporalcoherence of the elec
tronic states are expected. Photon-assisted tunneling~PAT!
is a typical example of dynamical mesoscopic transport@7–
16#. Since an electronic state in an electromagnetic field
frequencyv possesses a finite amplitude in an infinite nu
ber of sideband states whose energies are separated by\v,
the tunneling current depends on both the frequency and
intensity of the external ac field. In general, the response
the current on applying an ac field is very quick (;10212

sec!. It may thus be feasible to develop a high-speed dete
of electromagnetic waves or a photoinduced switch. Elect
transport through vibrating systems is another example
dynamical mesoscopic transport@17,18#. In this case, phonon
sidebands play an important role in the transport. The c
pling between an electron and an external field in a dyna
cal mesoscopic system must be distinguished from the u
inelastic scattering leading to incoherence of electro
states. In dynamical mesoscopic transport, the phase me
of the electron still remains after the coupling, but the ene
transfer occurs, because the external field is coherent.

In theoretical studies of electron transport through sta
mesoscopic systems, the transfer matrix method is a po
ful tool. This method enables us to numerically calcula
transmission probabilities for arbitrarily shaped poten
barriers. The conductance of the system can be obta
from the transmission probability by using the Landauer f
mula @19,20#. However, since the conventional transfer m
trix method fails in systems for which energy conservation
violated, it is inapplicable in the presence of a tim
dependent external field. In order to calculate numerica
the transmission probability of a dynamical mesoscopic s
tem, one has to solve directly the time-dependent Sch¨-
dinger equation with a specific initial condition such as
571063-651X/98/57~3!/3602~9!/$15.00
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Gaussian wave packet@21#. The numerical integration of a
parabolic partial differential equation such as the Sch¨-
dinger equation usually consumes much computing time.
example, the Crank-Nicolson scheme@22# requires a small
time sliceDt in order to satisfy the unitarity condition, an
Dt decreases with decreasing spatial intervalDx. This means
that the computing time often becomes excessively long
complex systems or systems used in actual experiments

In this paper, we develop a transfer matrix method
dynamical mesoscopic systems with harmonically oscillat
potentials in addition to arbitrary static potentials. T
present technique can lead to a considerable saving of c
puter resources compared to a numerical approach to
solution of the time-dependent Schro¨dinger equation. This
method enables us to calculate not only the total transmis
and reflection probabilities but also the contributions fro
each sideband state yielded by the oscillating potential.
paper is organized as follows. In Sec. II, the transfer ma
method is formulated for one-dimensional systems. W
present the explicit form of the transfer matrix and transm
sion probability through each sideband in this section. T
method described in Sec. II is extended to two-dimensio
systems in Sec. III. Quantum transport in a two-dimensio
dynamical mesoscopic system occurs through many chan
in addition to sideband states. By using the two-dimensio
version of the transfer matrix method, it is possible to calc
late the transmission probability through thenth channel of
the pth sideband. In Sec. IV, using the present numeri
method, we predict that resonant level splitting phenom
caused by the dynamical Stark effect can occur in doub
barrier PAT devices. Concluding remarks are given in S
V.

II. ONE-DIMENSIONAL SYSTEMS

In this section, we consider a one-dimensional mes
copic system with a static and a harmonically oscillati
potentials. The basic idea to construct a transfer matrix
similar to that of Ref.@23#. An electron in the system can b
described by the Schro¨dinger equation,

i\
]c

]t
5F2

\2

2m*
]2

]x2 1V0~x!1V1~x!cosvt Gc, ~2.1!
3602 © 1998 The American Physical Society
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57 3603TRANSFER MATRIX METHOD FOR A DYNAMICAL . . .
whereV0(x) andV1(x) are arbitrary functions ofx. Hereaf-
ter we assume thatV0 approaches finite values asympto
cally atx→6`, and the origin of the energy scale is chos
to beV0(2`)50. The symbolm* represents the effectiv
mass of the electron. In order to formulate a transfer mat
we divide the system intoN segments with a widthDx. The
nth segment is a region betweenxn21 andxn. The widthDx
is so small that the potentialsV0(x) and V1(x) can be re-
garded as constants in each segment. These constant v
for V0(x) and V1(x) in the nth segment are given byV0

n

5@V0(xn21)1V0(xn)#/2 and V1
n5@V1(xn21)1V1(xn)#/2,

respectively. The wave functioncn(x,t) in the nth segment
is then governed by

i\
]cn

]t
5F2

\2

2m*
]2

]x2 1V0
n1V1

ncosvt Gcn. ~2.2!

The general solution of Eq.~2.2! is given by

cn~x,t !5E dE@A~E!eikn~E!x

1B~E!e2 ikn~E!x# (
m52`

`

JmS V1
n

\v De2 i ~E1m\v!t/\,

~2.3!

where

kn~E!5
A2m* ~E2V0

n!

\
, ~2.4!

andJm is a Bessel function of the first kind. The coefficien
A(E) and B(E) are determined by boundary condition
These coefficients should be zero atEÞE01p\v, whereE0
is the energy of the incident electron andp50,61,62, . . .
because of the boundary condition atx→2` and the form
of Eq. ~2.3! itself. This implies that the energy of the electro
can be changed only by way of absorbing or emittingp
energy quanta of\v. Therefore, the solutioncn(x,t) is writ-
ten as

cn~x,t !5 (
p52`

`

@A~p!eikn~p!x1B~p!e2 ikn~p!x#

3 (
m52`

`

JmS V1
n

\v Dexp@2 i ~E01p\v1m\v!t/\#,

~2.5!

whereA(p), B(p), andkn(p) are the abbreviated notation
of A(E01p\v), B(E01p\v), andkn(E01p\v), respec-
tively. The boundary conditions to determine the coefficie
A(p) andB(p) are

cn~xn,t !5cn11~xn,t !, ~2.6a!

]xc
n~xn,t !5]xc

n11~xn,t !. ~2.6b!

These conditions should be valid for any timet. Substituting
Eq. ~2.5! into Eq. ~2.6!, we obtain
,

lues

s

(
p52`

`

f1
n ~p,xn!Jr 2pS V1

n

\v D
5 (

p52`

`

f1
n11~p,xn!Jr 2pS V1

n11

\v D , ~2.7a!

(
p52`

`

kn~p!f2
n ~p,xn!Jr 2pS V1

n

\v D
5 (

p52`

`

kn11~p!f2
n11~p,xn!Jr 2pS V1

n11

\v D , ~2.7b!

for any integerr . Here

f6
n ~p,x!5An~p!eikn~p!x6Bn~p!e2 ikn~p!x. ~2.8!

Using the addition theorem for the Bessel functions,

(
m852`

`

Jm1m8~x!Jm8~y!5Jm~x2y!, ~2.9!

Eq. ~2.7! reads

f1
n11~p,xn!5 (

q52`

`

f1
n ~q,xn!Jp2qS V1

n2V1
n11

\v D ,

~2.10a!

f2
n11~p,xn!5 (

q52`

`
kn~q!

kn11~p!
f2

n ~q,xn!Jp2qS V1
n2V1

n11

\v D .

~2.10b!

From Eqs.~2.8! and ~2.10!, the coefficientsAn11 andBn11

are expressed byAn andBn as

An11~p!5 (
q52`

`

@gn~p,q;1,21!An~p1q!

1gn~p,q;21,21!Bn~p1q!#, ~2.11a!

Bn11~p!5 (
q52`

`

@gn~p,q;21,1!An~p1q!

1gn~p,q;1,1!Bn~p1q!#, ~2.11b!

where

gn~p,q;a,b!5
1

2F11a
kn~p1q!

kn11~p! Gexp$ ib@kn11~p!

2akn~p1q!#xn%J2qS V1
n2V1

n11

\v D .

~2.12!

Using Eq. ~2.11!, in principle, one can obtainAN(p) and
BN(p) from A1(p) andB1(p). In actual numerical calcula
tions, the summations in Eq.~2.11! should be truncated at
finite order. CoefficientsAn(p) and Bn(p) are, however,
small compared withAn(p8) and Bn(p8), respectively, if
upu,up8u, becauseuV1

n2V1
n11u!\v for sufficiently small
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segments andJn(x) for x!1 is a monotonically decreasin
function of unu. This corresponds to the fact that the pro
ability to absorb~emit! p energy quanta of the oscillatin
external field is larger than that forp8 quanta ifp,p8. In
order to calculate the coefficientsAn(p) and Bn(p) within
the M th-order approximation in whichM quanta excitations
are taken into account, we restrict the ranges ofp andq in
Eq. ~2.11! as

upu<M ,

uqu<M , ~2.13!

up1qu<M .

The similar expression to Eq.~2.11! has been presented wit
the aim of constructing a transfer matrix for a on
dimensional system@9,23,24#. However, the phase factor i
Eq. ~2.12! and the way to approximate were not prope
evaluated in previous works.

It is convenient to define a vectorYm
n (m51,2, . . . ,4M

12) defined by

Ym
n 5H AnS M2

m21

2 D if ~m mod 2!51

BnS M2
m22

2 D if ~m mod 2!50.

~2.14!

Using the vectorYn, Eq. ~2.11! can be written in a matrix
form:

Yn115L̃nYn, ~2.15!

where L̃n is a (4M12)3(4M12) matrix. Hereafter the
tilde on a symbol implies that the symbol is a matrix. T
n

-
matrix L̃n is expressed by a (2M11)3(2M11) block ma-
trix whose elements are given by 232 submatrices. The
block matrix elementL̃ l l 8

n ( l ,l 851,2, . . . ,2M11) of the

matrix L̃n is then

L̃ l l 8
n

5 j̃ n~ l 2 l 8,M2 l 11!, ~2.16!

where

j̃ n~p,q!5h~p!h~q! ũ n~p,q!. ~2.17!

Hereh(p) is a step function defined by

h~p!5H 1 if upu<M

0 if upu.M
~2.18!

and ũ n(p,q) is a 232 matrix:

ũ n~p,q!5S gn~p,q;1,21! gn~p,q;21,21!

gn~p,q;21,1! gn~p,q;1,1!
D .

~2.19!

The matrix elementLmm8
n (m,m851,2, . . . ,4M12) is, then,

given by

Lmm8
n

5h~p!h~q!gn~p,q;a,b!, ~2.20!

where p5@(m21)/2#2@(m821)/2#, q5@M2(m21)/2#
11, a5122$(m1m8)mod 2%, and b5122(m mod 2).
The symbol@x# denotes the largest integer less than or eq
to x. For instance, in the case ofM52, the 10310 matrix
L̃n reads
L̃n5S ũ n~0,2! ũ n~21,2! ũ n~22,2! 0 0

ũ n~1,1! ũ n~0,1! ũ n~21,1! ũ n~22,1! 0

ũ n~2,0! ũ n~1,0! ũ n~0,0! ũ n~21,0! ũ n~22,0!

0 ũ n~2,21! ũ n~1,21! ũ n~0,21! ũ n~21,21!

0 0 ũ n~2,22! ũ n~1,22! ũ n~0,22!

D . ~2.21!
We construct a transfer matrixT̃ that relates the left-hand
side coefficients vectorY1 to the right-hand side oneYN as

YN5 T̃Y1 by

T̃5 )
n51

N

L̃n. ~2.22!

SinceY1 has its nonzero components only for the incide
wave and reflecting waves,
t

Ym
1 5H B1S M2

m22

2 D if ~m mod 2!50

1 if m52M11

0 otherwise.

~2.23!

Moreover, YN involves only amplitudes of transmitting
waves;

Ym
N5H ANS M2

m21

2 D if ~m mod 2!51

0 otherwise.

~2.24!
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57 3605TRANSFER MATRIX METHOD FOR A DYNAMICAL . . .
Substituting these conditions into the relationYN5 T̃Y1, one
can easily solveAN andB1 as

AN~p!5T2M22p11,2M11

2 (
l 51

2M11

(
l 851

2M11

T2M22p11,2lG l l 8T2l 8,2M11 ,

~2.25a!

B1~p!52 (
l 51

2M11

GM2p11,lT2l ,2M11 , ~2.25b!

where the (2M11)3(2M11) matrix G̃ is the inverse ma-
trix of T2l ,2l 8 ( l ,l 851,2, . . . ,2M11), i.e.,

(
l 951

2M11

G l l 9T2l 9,2l 85d l l 8. ~2.26!

Finally the transmission and reflection probabilities throu
the pth sideband are given by

T~p!5
kR~p!

kL~0!
uAN~p!u2 ~2.27!

and

R~p!5
kL~p!

kL~0!
uB1~p!u2, ~2.28!

respectively, where

kL~p!5
A2m* ~E01p\v!

\
,

kR~p!5
A2m* ~E01V0~`!1p\v!

\
. ~2.29!

The probability conservation law,(p52M
M @T(p)1R(p)#

51, is valid only in the limiting case ofM→`, and the
quantity(p52M

M @T(p)1R(p)# becomes less than unity for
finite value of M . The deviation D[12(p52M

M @T(p)
1R(p)# is, however, quite small, ifM is sufficiently large.
In fact, the order ofD is uNJM11(z)u2, whereN is the num-
ber of segments into which the system is divided,z
5V1

max/N\v, and V1
max is the maximum value ofuV1(x)u.

The quantityuNJM11(z)u2 is a decreasing function ofM and
N. This means thatD becomes small even for smallM if one
chooses sufficiently largeN. For instance, in the case th
V1

max5\v, N5100, andM53, the deviationD is smaller
than 10218.

III. TWO-DIMENSIONAL SYSTEMS

In this section, we extend our transfer matrix method
two-dimensional systems. The formulation is essentially
same as the one-dimensional one except for additional c
nels of transport due to the transverse degree of freed
The two-dimensional version of the transfer matrix meth
should be able to extract the electron transport throug
specific sideband and a channel. The method for two dim
h

o
e
n-

m.
d
a

n-

sions can be easily extended to a three-dimensional one
cause multichannel transport in three-dimensional syst
has no intrinsic difference from a two-dimensional one.

Here we concentrate on the case where the static pote
V0 is an arbitrary function ofx andy while the amplitude of
the ac potentialV1 depends only onx. The restriction onV1
does not greatly reduce the applicability of the pres
method. The Schro¨dinger equation of an electron in such
system is

i\
]

]t
c~x,y,t !5F2

\2

2m* S ]2

]x2 1
]2

]y2D1V0~x,y!

1V1~x!cosvt Gc~x,y,t !. ~3.1!

An example of physical systems described by Eq.~3.1! is a
two-dimensional electron in the presence of a linearly po
ized electromagnetic field, which propagates in the direct
perpendicular to the two-dimensional electron surfa
Choosing thex and z directions as the polarization an
propagating directions of the electromagnetic wave, resp
tively, the ac potentialV1 by the electromagnetic wave doe
not depend ony. Since the oscillating magnetic field, in
duced by the electromagnetic wave, in they direction cannot
affect the orbital motion of the electron in thex-y plane, the
electron in this system is described by Eq.~3.1!.

Hereafter we consider the electron transport in thex di-
rection. In order to formulate the transfer matrix method,
system is divided, in thex direction, intoN thin strips with a
width of Dx. As in the one-dimensional case, we assume t
Dx is so small thatV0 andV1 can be regarded as constan
with respect tox within each strip. In thenth strip, the wave
function is governed by

i\
]

]t
cn~x,y,t !5F2

\2

2m* S ]2

]x2 1
]2

]y2D1V0
n~y!

1V1
ncosvt Gcn~x,y,t !, ~3.2!

where V0
n and V1

n are defined in the same way as in th
one-dimensional case. The special solution of this equatio

c6
n ~x,y,t !5e6 iknxwn~y! (

m52`

`

JmS V1
n

\v De2 i ~E1m\v!t/\,

~3.3!

whereE is a constant,wn(y) satisfies

F2
\2

2m*
]2

]y2 1V0
n~y!Gwn~y!5«nwn~y!, ~3.4!

andkn5A2m* (E2«n)/\. Equation~3.4! can be solved nu-
merically by discretizing the space in they direction intoK
grid pointsyk (k51,2, . . . ,K). One obtainsK solutions of
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Eq. ~3.4!, which are denoted bywn
n and«n

n (n51,2, . . . ,K)
for eachn. The wave functionswn

n(yk) are chosen to be
orthonormalized as

(
k51

K

wn
n~yk!wn8

n
~yk!5dnn8 ~n,n851,2, . . . ,K !.

~3.5!

Using the set of these wave functions, the general solutio
Eq. ~3.2! in the discretized space is given by

cn~x,yk ,t !5 (
n51

K

(
p52`

`

@An
n~p!eikn

n
~p!x1Bn

n~p!e2 ikn
n
~p!x#

3wn
n~yk! (

m52`

`

JmS V1
n

\v De2 i ~E01p\v1m\v!t/\,

~3.6!

where

kn
n~p!5

A2m* ~E01p\v2«n
n!

\
, ~3.7!

andAn
n andBn

n are amplitudes of right- and left-going wave
respectively.

From the matching conditions, cn(xn,yk ,t)
5cn11(xn,yk ,t) and]xc

n(xn,yk ,t)5]xc
n11(xn,yk ,t), the

coefficientsAn
n11 andBn

n11 can be expressed byAn
n andBn

n

as

An
n11~p!5 (

n851

K

(
q52`

`

@gnn8
n

~p,q;1,21!An8
n

~p1q!

1gnn8
n

~p,q;21,21!Bn8
n

~p1q!#, ~3.8a!

Bn
n11~p!5 (

n851

K

(
q52`

`

@gnn8
n

~p,q;21,1!An8
n

~p1q!

1gnn8
n

~p,q;1,1!Bn8
n

~p1q!#, ~3.8b!

where

gnn8
n

~p,q;a,b!5
1

2F11a
kn8

n
~p1q!

kn
n11~p!

GCnn8
n exp$ ib@kn

n11~p!

2akn8
n

~p1q!#xn%J2qS V1
n2V1

n11

\v D ,

~3.9!

and

Cnn8
n

5 (
k51

K

wn
n11~yk!wn8

n
~yk!. ~3.10!

Here we use the orthonormality condition Eq.~3.5! and the
addition theorem for the Bessel functions Eq.~2.9!. The
quantity Cnn8

n represents a channel mixing between thenth
and (n11)th strips. In actual calculations within th
M th-order approximation, the ranges ofp andq in Eq. ~3.8!
of

are restricted by Eq.~2.13!. As in the case of one-
dimensional problems, we introduce a coefficient vectorYn

to define the transfer matrix. For two-dimensional problem
Yn has (4M12)K elements due toK channels of the trans
port. Each element ofYn is given by

Ym
n 5H An

n~M2z! if l51

m51,2, . . . ,~4M12!K

Bn
n~M2z! if l50

,

~3.11!

where

z5Fm21

2K G ,
l5S Fm1K21

K Gmod 2D , ~3.12!

n5$~m21!mod K%11.

Equation~3.8! can be expressed by using this vector as

Yn115L̃nYn. ~3.13!

L̃n is a (4M12)K3(4M12)K matrix. Dividing this ma-
trix into 2K32K submatrices, the (l ,l 8) element of the
block matrix is given by

L̃ l l 8
n

5 j̃ n~ l 2 l 8,M2 l 11!, l ,l 851,2, . . . ,2M11,
~3.14!

where

j̃ n~p,q!5h~p!h~q! ũ n~p,q!, ~3.15!

and the 2K32K matrix ũ n(p,q) is

ũ n~p,q!5S G̃n~p,q;1,21! G̃n~p,q;21,21!

G̃n~p,q;21,1! G̃n~p,q;1,1!
D .

~3.16!

The function h(p) was defined by Eq.~2.18!. Here the
K3K matrix G̃n(p,q;a,b) has its (n,n8) element as
gnn8

n (p,q;a,b). Therefore the matrix elementLmm8
n (m,m8

51,2, . . . ,(4M12)K) is expressed as

Lmm8
n

5h~p!h~q!gnn8
n

~p,q;a,b!, ~3.17!

where p5@(m21)/2K#2@(m821)/2K#, q5M2@(m21)
/2K#11, n5$(m21)modK%11, n85$(m821)modK%
11, a5122$(@(m21)/K#1@(m821)/K#)mod 2%, and
b5122(@(m21)/2#mod 2).

The coefficient vectorYN of the Nth strip is calculated
from Y1 of the first strip by the matrixT̃5)n51

N L̃n. The
elements ofY1 andYN are given by

Ym
1 5H Bn

1~M2z! if l50

Dn if m52Mk1n

0 otherwise,

~3.18!
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and

Ym
N5H An

N~M2z! if l51

0 otherwise,
~3.19!

wherez, l, andn are the same as those defined by Eq.~3.12!
andDn is thenth channel amplitude of the incident wave. B
solving the equationYN5 T̃Y1 under the conditions~3.18!
and ~3.19!, the coefficientsAn

N andBn
1 are expressed as

AN~p!5W̃2M22p11,2M11D

2 (
l ,l 851

2M11

W̃2M22p11,2l G̃ l l 8W̃2l 8,2M11D,

~3.20a!

B1~p!52 (
l 51

2M11

G̃M2p11,l W̃2l ,2M11D, ~3.20b!

whereAN(p), B1(p), andD are vectors whose elements a
An

N(p), Bn
1(p), and Dn (n51,2, . . . ,K), respectively.

W̃gg8’s (g,g851,2, . . . ,4M12) are K3K matrices into
which the (4M12)K3(4M12)K matrix T̃ is divided.G̃ l l 8
is a K3K matrix defined by

(
l 951

2M11

G̃ l l 9W̃2l 9,2l 85D̃ l l 8, ~3.21!

where D̃ l l 8 is a K3K matrix whose (n,n8) element
is d l l 8dnn8. The transmission probabilityTn(p) through
the pth sideband and thenth channel is, for ex-
ample, given byTn(p)5kn

L(p)uAn
N(p)u2/(n51

K kn
R(0)uDnu2,

where kn
L(p)5A2m* (E01p\v2«n

L)/\ and kn
R(p)

5A2m* (E01p\v2«n
R)/\. «n

L and«n
R are the eigenenergie

in Eq. ~3.4! with V0(y)5V0(`) and V0(y)5V0(2`)50,
respectively.

IV. APPLICATION TO DYNAMICAL STARK EFFECT
IN A DOUBLE BARRIER PAT DEVICE

In this section, we apply the transfer matrix method
electron transport through a double barrier structure in a
crowave irradiation. This process is a typical example of
photon-assisted tunneling@7–16#. PAT is an electron trans
port phenomenon exchanging the energy of an external e
tromagnetic field. This phenomenon has been found
superconductor-insulator-superconductor tunneling juncti
@7,8#, semiconductor superlattices@11,12#, or two-
dimensional quantum well devices@13–16#. Here we exam-
ine our transfer matrix method by applying it to PAT ph
nomena in a double barrier structure in which electr
transport can be regarded to be one dimensional. Suc
system can be realized by the two-dimensional electron
~2DEG! in a dual-gate field-effect transistor fabricated
GaAs-AlGaAs@14#. Gates with strip shapes are configur
parallel to the transverse direction~the direction perpendicu
lar to the electron transport!. The irradiated field is applied
perpendicular to the 2DEG surface, and the polarization
the ac field is in the longitudinal direction. If the transver
i-
e

c-
in
s

n
a

as

f

dimension of the system is sufficiently large, the electr
transport is described by the one-dimensional Schro¨dinger
equation~2.1!.

We will show that the system exhibits the dynamic
Stark effect by applying a strong ac field. The dynamic
Stark effect is a level splitting phenomenon observed wh
the frequency of the ac field is made resonant with the
ergy separation between two levels of the system, and
studied for atomic systems more than forty years ago@25#.
Our numerical calculations presented in this section sh
that the dynamical Stark effect can occur even in a semic
ductor PAT device.

The potentialV0(x) andV1(x) in Eq. ~2.1! are chosen as

V0~x!5V0@e2~x1x0!2/j2
1e2~x2x0!2/j2

# ~4.1!

and

V1~x!52eEx, ~4.2!

respectively, wheree and E in Eq. ~4.2! are the electron
charge and the strength of the electric field. Here parame
in Eqs. ~2.1! and ~4.1! are set to beV0510 meV,x05150
nm, j550 nm, andm* 50.067me . These values are not fa
from those in experimental situations@14#. The total length
of this one-dimensional system is 1mm. In order to carry out
the transfer matrix calculations, the system is divided in
200 segments, so the length of each segment is 5 nm.
length is sufficiently small in comparison withj and a typi-
cal electron wavelengthle (le;50 nm, whenE510 meV!.
At first, we calculated a dc transmission probability by usi
our transfer matrix method withV1(x)50. The result shown
in the inset of Fig. 1 exhibits that the system has seve
resonant tunneling levels. Since the static potential barr
are symmetric aroundx50, transmission probabilities a
these resonant levels are exactly equal to unity.

In order to obtain transmission probabilities in ac field
the frequency of the ac field is chosen to be equal to

FIG. 1. Transmission probabilities for double-barrier syste
(V0510 meV,x05150 nm, andj550 nm! with and without an ac
field as a function of the energy of the incident electron. Solid lin
in this figure and its inset indicate the transmission probability
the static system. Dotted line shows the result for the harmonic
driven system (\v51.10 meV anda51). Dashed line indicates
the ac transmission probability calculated by settingM51.
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energy difference between two adjacent resonant levelsE1
and E2, whereE158.34 meV andE259.44 meV, so\v
51.10 meV. It is convenient to introduce a quantitya de-
fined bya52eEx0 /\v, which represents the strength of th
electromagnetic field. The actual magnitude of the elec
field is, for example,E537 V/cm for a51. The dotted line
in Fig. 1 shows the ac transmission probability fora51. In
this calculation, the order of the approximation,M in Eq.
~2.13!, is 6. The violation of the probability conservatio
~unitarity! is of the order of 10211. The dotted line indicates
that the resonant tunneling energyE2 is split into several
levels.

This level splitting can be attributed to the dynamic
Stark effect. The theory of the dynamical Stark effect fo
two level system without any dissipation was formulated
Autler and Townes@25#. In their theory, a system were sup
posed to be moleculelike, so the energy levels (E1 andE2)
are treated as perfectly sharp. In this case, the level is
into doublets («1 and«2) symmetrically around the origina
level. The width of the energy splittingD«5u«12«2u is
given by

D«52wF12
w2

8~E12E2!2G , ~4.3!

wherew is the matrix element of the potentialeEx between
two states atE1 and E2. The above expression is precis
within third order ofw. The Rabi splitting@26# for the case
of a magnetic dipole in a rotating magnetic field is equival
to this phenomenon@27,28#. The symmetric splitting has als
been found in a system described by a tunneling Hamilton
with only two resonant levels@29#. On the other hand, ou
system possesses many resonant levels and energy d
ences between adjacent levels are close each other.~The en-
ergy of the lower adjacent level ofE1 is 7.17 and 10.50 meV

FIG. 2. Peak positions of split levels vs the ac field streng
Solid linesA andB are the energy shifts~from E2) of peaks labeled
by A andB on the dotted line in Fig. 1, respectively. Dashed lin
show peak positions of the dashed line in Fig. 1.
ic

l

y

lit

t

n

er-

for the upper adjacent level ofE2.! In this case, as shown in
Fig. 1, the original level is split into more than two, and th
splitting is not symmetric. The dashed line in Fig. 1 sho
the transmission probability calculated by settingM51.
This result extracts mainly the effect of excitations betwe
only two levelsE1 andE2. It should be noted that the resul
of course, violates the unitarity. The fact that in the dash
line the original level is split into doublets makes it clear th
the multiple splitting is attributed to the existence of ma
resonant levels separated by almost equal distance. Figu
indicates thea dependence of split level energies. The so
lines are results for peaks labeled byA andB on the dotted
line in Fig. 1. The dashed lines in Fig. 2 show peak positio
of the dashed line in Fig. 1. The symmetric character of
dashed lines suggests that the asymmetric splitting~the solid
lines in Fig. 2! is due to an asymmetric profile of the d
transmission probability aroundE5E1.

The energy separationD« between split levels labeled b
A and B in Fig. 1 is plotted by solid line in Fig. 3 as
function of the field strengtha. For small a (a&3), the
width of the split levels is roughly proportional to the squa
root of the field strength. However,D« decreases fora.6.
According to a simple Tien-Gordon picture@7#, the ampli-
tude of a one-photon absorption sideband state is pro
tional to J1(a* ), wherea* is an effective strength of the
external ac field. Therefore, the decreasing ofD« can be
explained by the oscillating character of the Bessel functi
(a* ;0.3a from the maximum point of theD«-curve.! The
dashed line in Fig. 3 is calculated in terms of Eq.~4.3!,
which is valid only for a system with two perfectly shar
levels. The quantityw in Eq. ~4.3! is written asw5eEd,
whered is an off-diagonal element ofx. The value ofd for
the dashed line was chosen as 7 nm. The numerical resu
our PAT system obviously differs from Eq.~4.3!. This dis-
crepancy is a consequence of many resonant levels in
system.

Results of our numerical calculations suggest that
level splitting caused by the dynamical Stark effect occ
even in an irradiated semiconductor PAT device, as in
atomic system. The computing time is about 1.2 sec to
culate a transmission probability at a specific incident ene

.

FIG. 3. Energy separationD« of split levels as a function of the
ac field strength. Solid line indicatesD« between resonant peak
labeled byA andB in Fig. 1. Dashed line is calculated in terms
Eq. ~4.3! with d57 nm.
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of electron by using our transfer matrix method and a co
puter facility of FACOM VPP500, while the CPU time i
more than 1 h for the same calculation by solving nume
cally the time-dependent Schro¨dinger equation. This fac
clearly shows the efficiency of our method.

V. CONCLUSIONS

A transfer matrix method has been developed for inve
gating quantum transport in dynamical mesoscopic syst
with harmonically oscillating potentials. Since the ener
conservation law is violated in dynamical mesoscopic s
tems, a conventional transfer matrix technique cannot be
plied. Using the present numerical method, one can ob
transmission and reflection probabilities of systems with
bitrary dc and ac potentials.~In a two-dimensional case, th
spatial profile of the ac potential should depend only on
longitudinal direction.! This method saves much computin
time compared with solving numerically a time-depend
Schrödinger equation. The CPU time required for the tran
fer matrix calculation is proportional toN(4M12)3 and
NK3(4M12)3 for one- and two-dimensional systems, r
spectively. HereN and K are numbers of divisions of th
system in thex andy directions, respectively, andM is the
order of the approximation introduced by Eq.~2.13!. The
proportionality coefficient depends on neither a poten
profile nor an energy of the incident electron, but on t
performance of a computer hardware. The value of this
efficient, for example, for FACOM VPP500 is about 3
31027 sec. Consequently, one can calculate a transmis
probability by using the transfer matrix method more tha
thousand times faster than by the numerical integration of
Schrödinger equation. The memory space for the calculat
is proportional to (4M12)2 andK2(4M12)2 for one- and
two-dimensional systems, respectively. The precision o
n
ve

tt

C
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n

a

calculated result depends onN, K, andM . In particular, the
unitarity condition does not hold for insufficientM , but K is
irrelevant to this condition. The required value ofM is de-
termined by the strength of the ac potential and the num
of segmentsN.

We applied our numerical method to a PAT in a dual-g
field-effect transistor. Results suggest that the resonant l
splitting due to the dynamical Stark effect occurs in an ir
diated semiconductor PAT device. The level splitting has
following characteristic features:~i! The resonant energy i
split into several levels, not into doublets.~ii ! The level split-
ting is asymmetric.~iii ! The width of the energy splitting
does not obey Eq.~4.3!. These features arise from the exi
tence of many resonant levels separated by almost equa
tance and the asymmetry of the level distribution aroun
specific level, and are significant for characterizing the P
device as an artificial atom. The fact that these results ca
obtained within a very short CPU time proves the efficien
of our numerical method.

The transfer matrix methods for one- and tw
dimensional systems have been described in this paper.
extension to a three-dimensional system is easy. We h
that the present method will be utilized to find or study ne
transport phenomena in dynamical mesoscopic systems.
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