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Transfer matrix method for a dynamical mesoscopic system
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A transfer matrix method for analyzing quantum transport in harmonically driven systems with spatiotem-
poral coherence has been developed. In such systems, the energy conservation law is violated, and transport
occurs through an infinite number of sideband states. This transfer matrix method enables us to compute
transmission and reflection probabilities of such dynamical mesoscopic systems without consuming a large
amount of computing time and memory space. We apply this technique to photon-assisted tuR#elnin
a dual-gate field-effect transistor, and demonstrate the possibility of observing resonant level splittings due to
the dynamical Stark effect in dual-gate PAT devid&x1063-651X98)06103-0

PACS numbgs): 02.70-c, 73.23-b, 73.40.Gk, 73.50.Mx

[. INTRODUCTION Gaussian wave packg®l]. The numerical integration of a
parabolic partial differential equation such as the Sehro
Quantum transport through mesoscopic systems is an aéinger equation usually consumes much computing time. For
tive research field in condensed matter physics. Recent agxample, the Crank-Nicolson scherf22] requires a small
vances in microfabrication technology have made it possibléime sliceAt in order to satisfy the unitarity condition, and
to realize electron transport in harmonically driven systemsAt decreases with decreasing spatial intedval This means
showing electron cohereng#,2]. In suchdynamical mesos- that the computing time often becomes excessively long for
copic systemsnew effects, such as delocalization in a pho-complex systems or systems used in actual experiments.
tonic field [3], the dynamic localizatiof4], the absolute In this paper, we develop a transfer matrix method for
negative conductandé), and dephasing by oscillating po- dynamical mesoscopic systems with harmonically oscillating
tential [6], due to thespatiotemporakoherence of the elec- potentials in addition to arbitrary static potentials. The
tronic states are expected. Photon-assisted tunnéfAg) present technique can lead to a considerable saving of com-
is a typical example of dynamical mesoscopic transfipst ~ puter resources compared to a numerical approach to the
16]. Since an electronic state in an electromagnetic field ofolution of the time-dependent Schiioger equation. This
frequencyw possesses a finite amplitude in an infinite num-method enables us to calculate not only the total transmission
ber of sideband states whose energies are Separatéd)by and reflection probabilities but also the contributions from
the tunneling current depends on both the frequency and tHeach sideband state yielded by the oscillating potential. The
intensity of the external ac field. In general, the response opaper is organized as follows. In Sec. Il, the transfer matrix
the current on applying an ac field is very quick {0-*2  method is formulated for one-dimensional systems. We
seq. It may thus be feasible to develop a high-speed detectdPresent the explicit form of the transfer matrix and transmis-
of electromagnetic waves or a photoinduced switch. Electro§ion probability through each sideband in this section. The
transport through Vibrating systems is another examp|e olfnethOd described in Sec. Il is extended to two-dimensional
dynamica| mesoscopic transp@lﬂlla_ In this case, phonon systems in Sec. lll. Quantum transport in a two-dimensional
sidebands play an important role in the transport. The coudynamical mesoscopic system occurs through many channels
p||ng between an electron and an external field in a dynam|m addition to sideband states. By USiﬂg the two-dimensional
cal mesoscopic system must be distinguished from the usudersion of the transfer matrix method, it is possible to calcu-
inelastic scattering leading to incoherence of electronidate the transmission probability through thth channel of
states. In dynamical mesoscopic transport, the phase memoitje pth sideband. In Sec. IV, using the present numerical
of the electron still remains after the coupling, but the energymethod, we predict that resonant level splitting phenomena
transfer occurs, because the external field is coherent. ~ caused by the dynamical Stark effect can occur in double-
In theoretical studies of electron transport through statidarrier PAT devices. Concluding remarks are given in Sec.
mesoscopic systems, the transfer matrix method is a powel-
ful tool. This method enables us to numerically calculate
transmission probabilities for arbitrarily shaped potential Il. ONE-DIMENSIONAL SYSTEMS
barriers. The conductance of the system can be obtained ) ) ) ) )
from the transmission probability by using the Landauer for- In this section, we consider a one-dimensional mesos-
mula[19,20. However, since the conventional transfer ma-Copic system with a static and a harmonically oscillating
trix method fails in systems for which energy conservation isPotentials. The basic idea to construct a transfer matrix is
violated, it is inapplicable in the presence of a time-S'm'|3r to that of Ref[23]. An eIectron in the system can be
dependent external field. In order to calculate numericallydescribed by the Schdinger equation,
the transmission probability of a dynamical mesoscopic sys- s
tem, one has to solve directly the time-dependent Schro -ﬁ‘7_‘/f: R 49

. . . e e " — % -5t + .
dinger equation with a specific initial condition such as a at 2m* gx? Vo(x) +Va)comt |, (2.)
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whereVy(x) andV,(x) are arbitrary functions oft. Hereaf- n
ter we assume tha¥, approaches finite values asymptoti- E d)’l(p,x”)\]r_p(ﬁ—)
cally atx— * o, and the origin of the energy scale is chosen p=e @
to beVy(—=)=0. The symbolm* represents the effective o n+1
mass of the electron. In order to formulate a transfer matrix, = 2 ”+1(p xMJ,_ p( ) (2.7a
we divide the system intbl segments with a widtiAx. The p=—o ho
nth segment is a region betwegh * andx". The widthAx .
is so small that the potentialéy(x) and V(x) can be re- 2 K" n n Vi
garded as constants in each segment. These constant values 0 (P) = (p.x")Jr—p ho
for Vo(x) and V4(x) in the nth segment are given byj .
=[V0(Xn71)+V0(Xn)]/2 and VTZ[Vl(Xn71)+Vl(Xn)]/2, . 1 n+1 VnJr
respectively. The wave functiog”(x,t) in the nth segment _p;_ K" H(P) T (P XN —p| 5, (27D
is then governed by
for any integerr. Here
" nro .
o= 2me g TVotVacosat iyt (22 & (p,x)=A"(p)ek"Px+BN(p)e~ k"X (2.8
The general solution of Ed2.2) is given by Using the addition theorem for the Bessel functions,
df”(x,t)Zf dE[A(E)e/" (B Y T (I (Y) = In(x—Y), 29
m=-o
n - Vi) Eq. (2.7) reads
+B(E)eflk (E)X] 2 J (_) e*I(Eerﬁw)t/ﬁ, . .
m=—w m ﬁw 0 VQ—VT—:L
(2.3 ¢>””(p,><“)=q=§;x dﬂ(q,X“)Jpq(—hw )
where (2.108
© n n n+1
J2m*(E— VD) NP K'(a) ﬂ
K(E) = @4 OTPXN= 2 faery #AXNIpo| =)

(2.10b

andJ,, is a Bessel function of the first kind. The coefficients
A(E) and B(E) are determined by boundary conditions.
These coefficients should be zerdsst Ey+ phi w, WhereE,

is the energy of the incident electron apef0,+=1,£2, ... %
because of the boundary conditionxat —c and the form A" (p)= E [g"(p,q;1,—1)A"(p+q)
of Eqg.(2.3) itself. This implies that the energy of the electron q=—c

can be changed only by way of absorbing or emittimg
energy quanta of w. Therefore, the solutiog"(x,t) is writ-
ten as

From Eqs.(2.8) and(2.10, the coefficientsA"** andB" "1
are expressed b&" andB" as

+9"(p,g;—1,—1)B"(p+q)], (2.113

% Bn+l(p):q=2x [gn(p,q,—l,l)An(p+q)
W= 2 [Ap)e Pt B(p)e P
p=—x

+9"(p,q;1,)B"(p+a)], (2.11b
X E J ( )exp[—l(Eo+ prho+mhow)t/fi], where
m=—o
1 k'(p+q) .
(2.5 9"(P.Gi@.B)= 5| L+ amrr expli BLK" *(p)
whereA(p), B(p), andk"(p) are the abbreviated notations n_yn+l
of A(Ep+phow), B(Eg+ prw), andk"(Ey+ phw), respec- —ak“(p+q)]x”}Jq(1h—l>.
tively. The boundary conditions to determine the coefficients @
A(p) andB(p) are (2.12
Y0 = "X 1), (2.6 Using Eq.(2.11), in principle, one can obtai\N(p) and
BN(p) from Al(p) andB(p). In actual numerical calcula-
A" (X" 1) = O "X 1), (2.6b tions, the summations in E¢2.11) should be truncated at a

finite order. CoefficientsA"(p) and B"(p) are, however,
These conditions should be valid for any timeSubstituting ~ small compared withA"(p’) and B"(p’), respectively, if
Eg. (2.5 into Eq.(2.6), we obtain Ip|<|p’|, becausgV]—Vi* <o for sufficiently small
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segments andn(x)_ for x<1 is a monotonically decreasing matrix A" is expressed by a (@ +1)x (2M + 1) block ma-
function of |n|. This corresponds to the fact that the prob-trix whose elements are given byx2 submatrices. The

ability to absorb(emit) p energy quanta of the oscillating block matrix elementA”, (I,1'=1,2 M+1) of the
external field is larger than that fqr' quanta ifp<p’. In e A B

order to calculate the coefficients’(p) and B"(p) within
the Mth-order approximation in whicM quanta excitations

matrix A" is then

are taken into account, we restrict the range$ @fndq in KL =2"=1"M=1+1), (2.19
Eqg.(2.11) as
where
[pl<M,
Igl=<M (2.13 €"(p,a)=n(p) 7(a) 0"(p.4)- (2.17)
Here n(p) is a step function defined by
Ip+ql<M [ function defined b
The similar expression to ER.11) has been presented with _ 1 if |p[<M 21
the aim of constructing a transfer matrix for a one- MP)= g |p|>M (2.18
dimensional systerf9,23,24. However, the phase factor in
Eqg. (2.12 _and thg way to approximate were not properlyand'én(p,q) is a 2x 2 matrix:
evaluated in previous works.
It is convenient to define a vectof” (u=1,2,...,M n 11 n 1.1
g"(p,a;—-1,)  g"(p,a;1,1) 21
A"(M—“T) if (« mod2=1 9
Y= s (2.14  The matrix element\}, , (u,u'=12,...,M+2) s, then,
Bn( M — MT) if (x mod2=0. given by
n _ n .
Using the vectorY", Eq. (2.11) can be written in a matrix AW’_ 7(P)7(a)g*(p. G, B), (2.20

form:
where p=[(x—1)/2]-[(n'-1)/2], q=[M—(pn—1)/2]

ynti=Anyn (2.15 +1, a=1-2{(u+u')mod 2}, and B=1-2(n mod 2).
The symbol x] denotes the largest integer less than or equal
where A" is a (4M +2)X (4M+2) matrix. Hereafter the 0 X. For instance, in the case =2, the 10< 10 matrix
tilde on a symbol implies that the symbol is a matrix. The A" reads

9"(0,2 6"(—-1,2 6" (—2,22 0 0
9"(1,)  8"(0,1) B"(—1,) B"(—2,0 0
Ar=| 92,0 (1,0 60,0 " (-1,0 (-2,0 |. (2.20)
0  9"(2-1) 6"(1,-1) 6"(0,~1) 6"(—1,—1)
0 0 9"(2,—2) 6"(1,-2) 6"0,—-2)
|
We construct a transfer matrik that relates the left-hand 1 n—2 i mod 2)=0
side coefficients vectoy® to the right-hand side ong" as . BY M- 2 (u mo N
YN=TY! by Yo=Y 1 it u=om+1 22
0 otherwise.
N
— - N . . - .
TZH xn (2.22 Moreoyer, Y" involves only amplitudes of transmitting
n=1 waves;
N p-1y
N AN M———| if (w mod2=1
Since Y! has its nonzero components only for the incident Y= 2 (2.24

wave and reflecting waves, 0 otherwise.
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Substituting these conditions into the relatigh="7Y!, one  sions can be easily extended to a three-dimensional one, be-

can easily solva\N andB! as cause multichannel transport in three-dimensional systems
has no intrinsic difference from a two-dimensional one.
AN(p) =Dom-2p+1.M+1 Here we concentrate on the case where the static potential

V is an arbitrary function ok andy while the amplitude of

2M+1 2M+1
_ 2 2 T ToT the ac potential/; depends only ox. The restriction oV,
& 2, TAMozerraniraA AL does not greatly reduce the applicability of the present
method. The Schdinger equation of an electron in such a
(2.253 system is
2M+1
BYp)== 2 TwpyTaawss, (225 0 AT
| Elp(xayvt) 2m XZ o—,y O(Xay)
where the (M +1)X (2M+1) matrixT is the inverse ma-
trix of Ty 5/ (I,1'=1,2,... , M+1), i.e, +V;(x)coswt [#(X,y,t). (3.2
2M+1
,Z‘l P T = (2.29 An example of physical systems described by B3l is a

_ o _ . two-dimensional electron in the presence of a linearly polar-
Finally the transmission and reflection probabilities throughized electromagnetic field, which propagates in the direction

the pth sideband are given by perpendicular to the two-dimensional electron surface.
KR Choosing thex and z directions as the polarization and
T(p)= kK*(p) AN(p)|2 29 propagating directions of the electromagnetic wave, respec-
(P =g A P @27 P : .
(0) tively, the ac potential/, by the electromagnetic wave does

not depend ory. Since the oscillating magnetic field, in-
and duced by the electromagnetic wave, in thdirection cannot
K-(p) affect the orbital motion of the electron in tley plane, the
R(p)= Lo 0 |Bl(p)|2 (2.29 electron in this system is described by E8.1). _ _
( Hereafter we consider the electron transport in xhei-
rection. In order to formulate the transfer matrix method, the
system is divided, in th& direction, intoN thin strips with a
2m* (Eg+ pho) width of Ax. As in the one-dimensional case, we assume that

respectively, where

kt(p)= 7 , Ax is so small thaVy andV; can be regarded as constants
with respect tax within each strip. In theath strip, the wave
I (Eat V(%) ¥ phe) function is governed by
e w
kR(p) = — PRe)  (2.29

2 2 (92
n n
The probability conservation IawZ"\)"=,M[T(p)+R(p)] ¢ (y.= [ (077 W)Jrvo(y)
=1, is valid only in the limiting case oM —o, and the
quanntyEp__M[T(p) +R(p) ] becomes less than unity for a +Vicoswt
finite value of M. The deviation A=1-3}_,[T(p)
+R(p)] is, however, quite small, iM is sufficiently large.
In fact, the order of\ is [NJy1(2)|%, whereN is the num-  where V1l and V! are defined in the same way as in the

ber of segments into which the system is dividerl, one-dimensional case. The special solution of this equation is
=VI"?N%w, and V]'® is the maximum value ofV,(x)|.

The quantitylNJy, . 1(2)|? is a decreasing function ®fl and

Prxy,b), (3.2

© n
N. This means thah becomes small even for smal if one n — axik"x, N ﬁ —i(E+mhw)t/h
chooses sufficiently largdl. For instance, in the case that pe(xyty=e ¢'y) 2 Jm(ﬁ € '
VI¥=%w, N=100, andM =3, the deviationA is smaller (3.3
than 108,

whereE is a constantp"(y) satisfies
Ill. TWO-DIMENSIONAL SYSTEMS

In this section, we extend our transfer matrix method to hZ 92
two-dimensional systems. The formulation is essentially the
same as the one-dimensional one except for additional chan-
nels of transport due to the transverse degree of freedom.
The two-dimensional version of the transfer matrix methodandk"= y2m* (E—&")/%. Equation(3.4) can be solved nu-
should be able to extract the electron transport through aerically by dlscretlzmg the space in tigedirection intoK
specific sideband and a channel. The method for two dimergrid pointsy, («=1,2, ... K). One obtainK solutions of

T 2m* a2 Vo(y)} "(y)=e"e"(y), (34
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Eq. (3.4), which are denoted by ande” (v=1,2,...K)
for eachn. The wave functionsp’(y,) are chosen to be
orthonormalized as

K
21 MY (Y I=8,, (v,p'=12,...K).
(3.5)

Y=
Using the set of these wave functions, the general solution of *

Eq. (3.2 in the discretized space is given by

K
Py t=2 X [AYp)elPr Bl(pre P

[’

n

= Vi
n __* | a—i(Egtpho+mhw)t/ih
X(pV(yK)m;oo Jm(ﬁw)e 0 1
(3.6
where
V2m* (Eg+ pho—e")
kKp(p)= 3.7)

h 1

andA” andB" are amplitudes of right- and left-going waves,
respectively.

From the matching conditions, #"(x",y,,t)
=" XY 1) and a (XY 1) = ap" XY, 1), the
coefficientsA”"* andB""* can be expressed By andB"
as

M s

K
AT (p)= >

=14
+g0,,(p,0;—1,—1)B},(p+a)],

K
BY M(p)= 2 X [9;,/(p.a;~1LDA}(p+0)

v =149~

+g,,(p.q;1,1)B),(p+0q)],

[}, (p,a;1,— 1A, (p+0q)

—o0

(3.83

[}

(3.8b

where
Ky (p+a)| o
1+« kr;+1(p) :|CVV’eXp{IB[kV (p)

vg—v’l‘“)

hw

n 1
gwr(pqua,ﬁFE{

—ak,”,,(p+q)]><”}Jq(
(3.9

and

K
Cru=2 &1 (V) en(y.). (3.10

Here we use the orthonormality condition Eg.5) and the
addition theorem for the Bessel functions EQ.9). The

quantity C:V, represents a channel mixing between tik
and (h+21)th strips. In actual calculations within the
Mth-order approximation, the rangespfindq in Eq. (3.8

K. YAKUBO
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are restricted by EQg.2.13. As in the case of one-
dimensional problems, we introduce a coefficient vedtor
to define the transfer matrix. For two-dimensional problems,

Y" has (M +2)K elements due t& channels of the trans-
port. Each element of" is given by

AY(M=9) if \=1
w=12,... (4AM+2)K,

B"(M—¢) if \=0
(3.12)

where
Tl 2K |

K—1

- ( [% mod 2), (3.12

v={(u—1)modK}+ 1.

Equation(3.8) can be expressed by using this vector as

(3.13

AMis a (4M +2)K X (4M +2)K matrix. Dividing this ma-
trix into 2KX 2K submatrices, thel(l’) element of the
block matrix is given by

ynti_ "A"nYn_

AL =E=1",M=1+1), 1,1"=12,... , M+1,
(3.14
where
£(p,q)=7(p) 7(q) 6"(p,q), (3.19
and the X X 2K matrix 6"(p.q) is
~ G"(p.q;1,-1) G"(p.g;—1,-1)
0"(p,a)=| ~ ~ .
G"(p.a;—1)  G"(p,a;1)
(3.16

The function n(p) was defined by Eq(2.18. Here the
KxXK matrix G"(p,q;a,8) has its @,v') element as
9,,/(p.g;a,B). Therefore the matrix element’, , (u,u’
=1,2,...,(M+2)K) is expressed as

(3.17

where p=[(u—1)/K]-[(n'—1)/K], g=M—[(x—1)
2K]+1, v={(pg—1)modK}+1, v'={(u’'—1)modK}
+1, a=1-2{([(x—1)/K]+[(x'—1)/K])mod 2, and
B=1-2([(u—1)/2]mod 2).

The coefficient vectoiN of the Nth strip is calculated
from Y* of the first strip by the matrix7=II\_,A". The
elements ofy! and YN are given by

AL =n(P)n(a)d), (p.g;a,B),

BYM-¢) if A=0
D, if u=2Mk+w»
0 otherwise,

Y;, (3.19
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and 10 . . .
ANM=—¢) if A=1
N 14
= . 3.1 L 4
# 10 otherwise, 319 % 08 10
©
whereZ, \, andv are the same as those defined by Bql2 'B 06} os de i
andD , is thevth channel amplitude of the incident wave. By n:_
solving the equatiorYN=7Y" under the conditiong3.18 = .
and(3.19, the coefficientA andB? are expressed as £ ‘ ® Energylmey)
[2]
~ £ g2t
AN(P) =W,y _2p+1m+1D R A N W
2M+1 Y N
~ - ~ 0.0 boeriinat/ Mg tozoznecn: e -
- E WZM*Zerl,ZF“/W2|',2M+1D1 8.0 9.0 95 10.0
LI'=1 Energy (meV)
(3.203
OM+1 FIG. 1. Transmission probabilities for double-barrier systems

(Vo=10 meV,xq= 150 nm, anct=50 nm) with and without an ac
field as a function of the energy of the incident electron. Solid lines
in this figure and its inset indicate the transmission probability for
whereAN(p), BY(p), andD are vectors whose elements are the static system. Dotted line shows the result for the harmonically
A’;‘(p), B,l,(p), and D, (v=12,...K), respectively. driven system »=1.10 meV ande=1). Dashed line indicates

~ . . the ac transmission probability calculated by settiher 1.

W,,’s (y,y'=12,... M+2) are KXK matrices into

B(p)=— 21 TM—p+1,|\TV2|,2M+1D, (3.200

WhiCh the (‘M’.LZ)K_X(“MJFZ)K matrix 7 is divided. Ty, dimension of the system is sufficiently large, the electron
is aK XK matrix defined by transport is described by the one-dimensional Singer
2M+1 equation(2.1).
= 7 < We will show that the system exhibits the dynamical
2 F”HWZ'H,Z'!:A”!, (32]) y y

Stark effect by applying a strong ac field. The dynamical

Stark effect is a level splitting phenomenon observed when
where A, is a KXK matrix whose ¢,»') element the frequency of the ac field is made resonant with the en-
is &,/8,,. The transmission probabilityT,(p) through €rgy separation between two levels of the system, and was

the pth sideband and thevth channel is, for ex- studied for atomic systems more than forty years E2fs.
ample, given byT,(p)=k5(p)|AN(p)|Z/=X_,k%(0)|D,|2,  Our numerical calculations presented in this section show
here  K:(D)= /2m* (E~+ bho— L) /% d KR that the dynampal Stark effect can occur even in a semicon-
W A(P)=y2m* (Eqo+ pho—e,) an v(P) 4 ctor PAT device.
The potentialMy(x) andV4(x) in Eg. (2.1) are chosen as

1"=1

=\2m* (Eq+phw—sc")/h. 5 ande are the eigenenergies
in Eq. (3.4) with V(y)=Vgy() and Vy(y)=Vy(—=)=0,
respectively. Vo(X) = V[ e~ X X076 4 g~ (x—x0)?/%] (4.1

IV. APPLICATION TO DYNAMICAL STARK EFFECT and
IN A DOUBLE BARRIER PAT DEVICE
V(X)=—eé&X, (4.2
In this section, we apply the transfer matrix method to
electron transport through a double barrier structure in a mitespectively, wheree and £ in Eq. (4.2) are the electron
crowave irradiation. This process is a typical example of thecharge and the strength of the electric field. Here parameters
photon-assisted tunnelif@—16). PAT is an electron trans- in Egs.(2.1) and (4.1) are set to be/y=10 meV,x,=150
port phenomenon exchanging the energy of an external eleem, £=50 nm, andn* =0.067",. These values are not far
tromagnetic field. This phenomenon has been found iffrom those in experimental situatiof$4]. The total length
superconductor-insulator-superconductor tunneling junctionsf this one-dimensional system isudm. In order to carry out
[7,8], semiconductor superlattice11,12, or two- the transfer matrix calculations, the system is divided into
dimensional quantum well devic¢s3—16. Here we exam- 200 segments, so the length of each segment is 5 nm. This
ine our transfer matrix method by applying it to PAT phe- length is sufficiently small in comparison withand a typi-
nomena in a double barrier structure in which electroncal electron wavelength, (A¢~50 nm, wherE=10 me\).
transport can be regarded to be one dimensional. Such At first, we calculated a dc transmission probability by using
system can be realized by the two-dimensional electron gasur transfer matrix method withl,(x) =0. The result shown
(2DEG) in a dual-gate field-effect transistor fabricated byin the inset of Fig. 1 exhibits that the system has several
GaAs-AlGaAs[14]. Gates with strip shapes are configuredresonant tunneling levels. Since the static potential barriers
parallel to the transverse directidtihe direction perpendicu- are symmetric arounk=0, transmission probabilities at
lar to the electron transpgrtThe irradiated field is applied these resonant levels are exactly equal to unity.
perpendicular to the 2DEG surface, and the polarization of In order to obtain transmission probabilities in ac fields,
the ac field is in the longitudinal direction. If the transversethe frequency of the ac field is chosen to be equal to the
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04 T T r T T T 0.25 T T T T pal T
sl A 020}
A __015f o .
% 02} . E 7
3 o 0.10f 1
8 L7 < ’ — PAT System
= 0.1 B N K Two-Level System
8 0.05} l
o 7.
§ 00KS 0.00
o B ) 1 2 3 4 5 6 7
a
01 b
FIG. 3. Energy separatioie of split levels as a function of the
0.2 . . N . . ac field strength. Solid line indicatese between resonant peaks

0.0 20 4.0 6.0 labeled byA andB in Fig. 1. Dashed line is calculated in terms of
a Eq. (4.3 with d=7 nm.
for the upper adjacent level &-.) In this case, as shown in
Fig. 1, the original level is split into more than two, and the
splitting is not symmetric. The dashed line in Fig. 1 shows
the transmission probability calculated by settivg=1.
This result extracts mainly the effect of excitations between
only two levelsk; andE,. It should be noted that the result,
of course, violates the unitarity. The fact that in the dashed

—1.10 meV. It is convenient to introduce a quantityde- line the original level is split into doublets makes it clear that

. T . the multiple splitting is attributed to the existence of many
fined by a=2e&x,/# w, which represents the strength of thg resonant levels separated by almost equal distance. Figure 2

Gndicates thex dependence of split level energies. The solid
lines are results for peaks labeled AyandB on the dotted
line in Fig. 1. The dashed lines in Fig. 2 show peak positions
of the dashed line in Fig. 1. The symmetric character of the
dashed lines suggests that the asymmetric splittimg solid
lines in Fig. 3 is due to an asymmetric profile of the dc
transmission probability around=E;.

FIG. 2. Peak positions of split levels vs the ac field strength.
Solid linesA andB are the energy shiftdrom E,) of peaks labeled
by A andB on the dotted line in Fig. 1, respectively. Dashed lines
show peak positions of the dashed line in Fig. 1.

energy difference between two adjacent resonant |legls
and E,, whereE;=8.34 meV andE,=9.44 meV, sofiw

field is, for example£=37 V/cm for «=1. The dotted line
in Fig. 1 shows the ac transmission probability o= 1. In
this calculation, the order of the approximatiad, in Eq.
(2.13, is 6. The violation of the probability conservation
(unitarity) is of the order of 10%, The dotted line indicates
that the resonant tunneling ener@y is split into several

levels. . .
. -~ . . The energy separatiahe between split levels labeled by
This level splitting can be attributed to the dynamlcaIA and B in Fig. 1 is plotted by solid line in Fig. 3 as a

Stark effect. The th_eory of the _dy_namical Stark effect for %unction of the field strengthv. For smalla (a=<3), the
two level system without any.dlssmatlon was formulated byWidth of the split levels is roughly proportional to the square
Autler and Towne$25]._ In their theory, a system were sup- root of the field strength. HoweveAe decreases foxr>6.
posed to be moleculelike, so the energy levéls and E2.) According to a simple Tien-Gordon pictuf&], the ampli-

are treated as perfectly sharp. In this case, the level is Spl{bde of a one-photon absorption sideband state is propor-
into doublets £, ande_) symmetrically around the original

) T - . tional to J;(a*), where o* is an effective strength of the
lgeizzlr'] g}f)e width of the energy splitinde=|e.—s-| IS o iormal ac field. Therefore, the decreasingAof can be

explained by the oscillating character of the Bessel function.
(a* ~ 0.3« from the maximum point of thé e-curve) The
(4.3 dashed line in Fig. 3 is calculated in terms of H4.3),
which is valid only for a system with two perfectly sharp
levels. The quantityw in Eq. (4.3 is written asw=eé&d,
wherew is the matrix element of the potentiefx between whered is an off-diagonal element of. The value ofd for
two states atE; and E,. The above expression is precise the dashed line was chosen as 7 nm. The numerical result for
within third order ofw. The Rabi splitting26] for the case our PAT system obviously differs from E@4.3). This dis-
of a magnetic dipole in a rotating magnetic field is equivalentcrepancy is a consequence of many resonant levels in our
to this phenomenof27,28. The symmetric splitting has also system.
been found in a system described by a tunneling Hamiltonian Results of our numerical calculations suggest that the
with only two resonant levelg29]. On the other hand, our level splitting caused by the dynamical Stark effect occurs
system possesses many resonant levels and energy diffaven in an irradiated semiconductor PAT device, as in an
ences between adjacent levels are close each ¢fftex.en-  atomic system. The computing time is about 1.2 sec to cal-
ergy of the lower adjacent level &; is 7.17 and 10.50 meV culate a transmission probability at a specific incident energy

W2

8(E;—Ey)?

AsZZW[l—
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of electron by using our transfer matrix method and a com<alculated result depends dh K, andM. In particular, the
puter facility of FACOM VPP500, while the CPU time is unitarity condition does not hold for insufficieM, butK is

more tha 1 h for the same qalculation by solving numeri- irrelevant to this condition. The required value Mf is de-
cally the time-dependent Scltioger equation. This fact termined by the strength of the ac potential and the number

clearly shows the efficiency of our method. of segmentsN.
We applied our numerical method to a PAT in a dual-gate
V. CONCLUSIONS field-effect transistor. Results suggest that the resonant level

) _ _splitting due to the dynamical Stark effect occurs in an irra-

A transfer matrix method has been developed for investiyiated semiconductor PAT device. The level splitting has the
gating quantum transport in dynamical mesoscopic Systemg|iowing characteristic featuresi) The resonant energy is
with harmonically oscillating potentials. Since the energygpjit into several levels, not into doublets) The level split-
conservation law is violated in dynamical mesoscopic SYSting is asymmetric i) The width of the energy splitting
tems, a conventional transfer matrix technique cannot be agjoes not obey Eq4.3). These features arise from the exis-
plied. Using the present numerical method, one can obtaigsce of many resonant levels separated by almost equal dis-
transmission and reflection probabilities of systems with aryance and the asymmetry of the level distribution around a
bitrary dc and ac potentialéln a two-dimensional case, the gpecific level, and are significant for characterizing the PAT
spatial profile of the ac potential should depend only on th§jeyice as an artificial atom. The fact that these results can be

longitudinal direction. This method saves much computing gptained within a very short CPU time proves the efficiency
time compared with solving numerically a time-dependentys o,y numerical method.

Schralinger equation. The CPU time required for the trans-  The transfer matrix methods for one- and two-

. - . . 3
fer smatrlx caglculaﬂon is proportional tl(4M+2)” and  gimensional systems have been described in this paper. The
NK*(4M +2)° for one- and two-dimensional systems, re- extension to a three-dimensional system is easy. We hope
spectively. HereN and K are numbers of divisions of the hat the present method will be utilized to find or study new

system in thex andy directions, respectively, anld is the  transport phenomena in dynamical mesoscopic systems.
order of the approximation introduced by E@.13. The

proportionality coefficient depends on neither a potential

profile nor an energy of the incident electron, but on the ACKNOWLEDGMENTS
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