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Dielectric breakdown in media with defects
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We investigate the breakdown field and geometry of breakdown paths of an electrical circuit model for
dielectric breakdown in media with defects of arbitrary residual resistivity. The circuit model consists of a
two-dimensional square lattice network of resistors that break down from a high resistance to @dseiden)
resistance when the local electric field exceeds a critical value. We consider infinite and semi-infinite samples
with a single clustetneedl¢ of defects as well as samples with a finite concentration of defects from the dilute
limit to the percolation threshold. We find that for needle defects with nonzero residual resistivity, the break-
down field reaches a finite value as the defects lengthen, causing the random lattice to reach the same
breakdown field in the thermodynamic limit. Furthermore, we find that depending on the initial length of the
seed defect and the residual resistivity, the breakdown either grows one dimensionally, or spreads with a fractal
dimension. We give the phase diagram and relevant exponents for this crossover, and report similar behavior
in random lattices at dilute defect concentratidr&1063-651X98)03103-1

PACS numbg(s): 41.20.Cv, 03.50.De, 77.22.Jp, 64.60.Cn

[. INTRODUCTION in an infinite homogeneous medium exactly. In Sec. Il A we
investigate the fields due to the presence of needle defects in

Random nonlinear resistor and fuse networks provide rea homogeneous medium, using analytical and numerical
alistic and tractable models for understanding the geometrinethods. In Sec. Il B, we report on simulations of needle
and stability of dielectric breakdown and other breakdowngrowth in homogeneous media. In Secs. Ill A and Ill B we
phenomen41,2]. Although the random-fuse network, and its Use these results to analyze the breakdown field and paths on
dual in two dimensions, the random nonlinear resistor netf@ndom lattices. Finally, in Sec. Ill C we report on the nu-
work, have been studied extensivé-7], few studies have merical simulation of breakdown on disordered lattices.
investigated breakdown models where the broken bonds
have nonzero resistivityresidual resistivity [5]. Since di-
electric breakdown of real materials results in nonzero resis-
tivity, its effect is an important consideration. We need to define the rules used in simulation carefully,

In this paper we investigate the breakdown field and thesince differences in the simulation can lead to different re-
geometry of breakdown paths of an electrical circuit modelsults for needle growth. Our adiabatic simulation of the
for dielectric breakdown in media with defects of arbitrary breakdown growth proceeds as follows. The initial defect
residual resistivity. Previous studies of random networksconfiguration is selected. Each defect is a bond of residual
have shown that, in dilute samples, the breakdown procegé&sistance R,<1 in an infinite or semi-infinite two-
begins at the critical defect in the network. The critical defectdimensional square lattice of @-resistors, as shown in Fig.
for dielectric breakdown is often a long thin defect— a 1. A uniform electric field is applied to the lattice along the
needle directed along the electric field. Characteristics of theertical crystalline axis. The field magnitude is determined
breakdown process on a random lattice, including the breaky its value in a region far from the defects for the infinite
down field and the geometry of the breakdown cluster, ardattice, or by the applied voltage for a finite lattice. All bonds
related to the characteristics of the breakdown for the needle
defect. Few studies have examined the nature of the needle
growth in detail; although, in one of the first studies, Taka-
yasu observed that breakdown clusters usually have similar
shape[8]. The clusters in that study exhibited bifurcation,
i.e., the spreading of breakdown paths into two dimensions,
but a definitive cause was not identified.

We are interested in the breakdown field as a function of
residual resistivity, and in examining the geometrical struc-
ture of the breakdown cluster in order to separate the aspects
of the structure inherent in the growth of needles in homo-
geneous media from those arising from the disorder in the :
system. We simulated such growth on two-dimensional e
square lattice networks. Unfortunately, a study of needle MM~ R={
growth requires simulations on large and computationally B
expensive lattices. So, to perform our study, we developed a FIG. 1. A section of an infinite lattice of resistors with a two-
new algorithm, described in Appendix A, that uses Green'siefect needlgheavy ling oriented along the direction of the ap-
functions to compute the field due to a collection of defectsplied field.

Breakdown process

1  initially

Ry oncee>1.
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where the local field exceeds the critical field, taken to be

unity, break down, becoming defects and lowering their re-
sistance tdR,, irreversibly. The local fields are recalculated

for the new configuration of defects, and the process is re-

peated. Note that it is always possible to rescale resistances

and the electric fields so that the resistances of the lattice and N
the critical field are unity. This simulation allows for an ex-

tension of the random-resistor network to an infinite lattice;

it is different from the dielectric breakdown mod&BM) of

Pietronero and Evertd®]. The main difference is that, for
deterministic breakdown, the DBM causes breakdown only

in a single branch for each iteration, which produces a quali- 1
tatively different geometry of needle growth.

FIG. 2. The field at the tip of the needig vs needle length for
variousR, at E=1. The fieldse; andE are in units of breakdown
field of individual resistors|, is in units of lattice spacing, ari, is

We investigate the growth of a needle defecthain of,  the ratio of resistance after breakdown to resistance before break-
nearest-neighbor defects of resistamggeoriented along the down.
applied field in an otherwise homogeneous infinite lattice.

There are three independent parameters: the initial defegystem is brittle. Thus the final breakdown field for the sys-
|ength|o, the magnitude of the app“ed fiel, and the re- temis equal to the initial breakdown fieIE[b= Epi - Section

Il. NEEDLE DEFECTS ON A HOMOGENEOUS LATTICE

sidual resistance of the defect resisky. We found that, Il B examines needle growth in more detail.
depending on the parameters, needle growth exhibits a be-
havior that corresponds to one of three phases of the break- B. Breakdown paths

down process. The lattice is in the insulating phébere is
no connected path of defects across the I3tiicihe applied
field is too small to initiate breakdown. As the field in- "' 3 .
creases, it reaches a critical value, which we call the initiaPiStS Of elongation of the needle so that the defect remains
breakdown fields,;, that just initiates breakdown and causes®"® dimensiona(1D), b.Ut’ for defect_s with low residual re- .
the needle defect to grow through the lattice. Depending oijistance, the needle bifurcates as it grows longer, spreading

the initial parameters, the breakdown may proceed in évyo dimensionally, and spans a finite sect'or of the mt_edium.
single path or in a fractal tree, as Sec. Il B shows. Figure 4 shows growth patterns for four different configura-

tions. Figure 5 shows a graph used to measure the fractal
dimensionD of the patterns using the procedure of counting
the number of filled boxes at various scald®,11. The

As the field is applied, the local field is greatest at the tippoints below the line illustrate finite lattice effects. Exclud-
of the needle(of lengthly), causing breakdown growth to ing these, the four patterns exhibit a fractal dimensibn
begin there. This happens whey(E)=1. For R,=0, an  =1.722+0.018.
analytic calculation of the tip fields presented in Appendix As R, increases, the onset of 2D growth occurs at longer

We studied the path formed by the broken bonds. The
needle begins to grow &=E,;. At first, the growth con-

A. Breakdown field

B 3 gives needles, and requires more iterations until, at a certain criti-
cal residual resistance, the growth is purely one dimensional
— 0.218 as the needle never bifurcates. However, at higher applied
ezE( 1.132/2l+ /—2|0) ’ (1a fields, the transition from 1D to 2D growth occurs at larger
0.154 . ' ' ' '
eL:E(O.S\/ZIO— ﬁ) (1b)
0 © 1

This shows that the tip field increases without limit as
JIo, causing the initial breakdown fiell,; to go to zero as
I, ¥2. Unfortunately, we have not been able to obtain exact
analytic results on square lattices for needles of nonzero re-
sidual resistivity. Considerations of elliptical defects in con-
tinuous media, presented in Appendix B, suggest that the tip
fields reach a finite asymptotic value for long defects. We
calculated the fields numerically using the algorithm of Ap-
pendix A. Typical field behavior is shown in Fig. 2. As ex-
pected, the fields appear to approach an asymptotic value. FG. 3. The asymptotic values of the field, forx, at the tip of
The numerically calculated asymptotic fields appear in Figine needle ... (solid line) ande, .. (dotted ling vs R, at E=1.
3. The fieldse,, are in the units of the breakdown field of individual

In all cases, the tip field increases with needle length, s@esistors, andr,, is the ratio of resistance after breakdown to resis-
that, once the needle begins to grow, it cannot stop, i.e., theance before breakdown.
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FIG. 4. Growth clusters for four configurations on the semi-infinite lattiegeR,=0, 1,=2; (b) R,=0, 1y=4; (c) R,=0.03, I
=2;(d) R,=0.03, Iy=4. The axesX andY denote the number of lattice spaces in each direction. The thick lines are the initial defects,
the thin dashed lines are the broken-down bonds, and the dotted lines outline the angle filled out by the growing cluster.

values of R,. When the applied field reaches unity, the For zero-resistance defects, the fields at the tip grow with-
whole lattice breaks, so that there is 2D growth for all valuesout bounds as the needle elongates. Thus, if we have a defect
of Ry. at the initial breakdown field, the adjacent bond breaks
Thus the lattice can exist in three distinct states: insulatdown, the cluster elongates, and the tip field becomes even
ing, 1D breakdown, or 2D breakdowreferring to topologi- ~ Stronger, causing the defect to grow without limit. But, as the
cal dimension, i.e., within a 2D wedyeTo obtain a qualita- defect grows, the field perpendicular to the cluster axis also
tive understanding of this behavior, we studied the fields ag™Ws, leading to the eventual failure of horizontal bonds as

the tip of an elliptical defect. The results are described inell: causing the defect to spread out and become greater
Appendix B. than one dimensional. We see that zero-resistance defects

always eventually spread in two dimensions.

© ——— However, for defects with nonzero residual resistivity, the

o 1,=4, Ry=0 & =4, R,=0.03 fields at the tip reach an asymptotic value. Thus the defect
[l o 1,=2, R,=0 x 1,=2, R,=0.03 elongates as before, but the perpendicular field may or may
not reach unity. Ife, .,(E)=1 the defect bifurcates, but if

e, »(E)<1, the defect cluster stays one dimensional as it
grows.

4

In(Nggoq)

C. Numerical simulation of the phase behavior

1n(Npyp,q)=0.2+1.722In(scale) Armed with this understanding, we can now construct a
o . . phase diagram. We calculate the asymptotic field on an infi-
° ' ? ° nite lattice numerically for differern®, , and we calculat&,,
for different R, and l,. Thus we determine whether the
FIG. 5. Graph of the logarithm of the number of occupied boxesn€edle bifurcates for each configuration. The phase diagram
vs the logarithm of the scale of the linear size of each box when thés shown in Fig. 6. The bottom sheet correspond<€gp
cluster is covered by a mesh of boxég.is in units of the lattice  While the top sheet corresponds to the field required to pro-
spacing.R,, is the ratio of resistance after breakdown to resistanceduce “spreading” breakdown. Where the two sheets merge,
before breakdown. the breakdown paths are always more than one dimensional.

In(scale)
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FIG. 6. Phase surface for needle growthis in the units of FIG. 8. Needle length at bifurcatidn; as a function oR;, for

breakdown field of individual resistor, is in the units of lattice ~ E=Ex; for all values ofl ; between 1 and 10. The inset sholysvs

spacing.R, is the ratio of resistance after breakdown to resistancdP—Rpy) on a log-log scale. The offsétwas calculated using a fit
before breakdown. of a, b, andc to Eq.(2) for each value of,. The curves from right

to left in both figures correspond to increasing valued ofThe
Figure 7 shows the phase diagramBatE;. The line lengthsl, andly; are in the units of the lattice spacing, aRglis the
separating 1D and 2D regions corresponds to the line wheri@!io of resistance after breakdown to resistance before breakdown.
the two sheets join in Fig. 6. This phase boundary,| fovs

1/R, is approximately a straight lingy=a/R,—b, wherea =VIN, whereV is the applied voltage. We study the effect of
—0.44+0.002 andb=3.96+0.14. residual resistance on the breakdown field and the break-

We also numerically studied the lengdih that the needle d0Wn paths.

reaches prior to bifurcation for variol&, andl, at E=E,;. One difficulty in looking at a lattice with non-zero-

Figure 8 shows the results. AR, approaches the critical '€Sistivity defects is that, for largR,, the presence of a
value at a particulay, |, diverges. We attempted to fit these SPanning breakdown cluster does not necessarily change the
curves to a power law of the form overall lattice resistance significantly. Thus we define break-

down geometrically—breakdown is deemed to have oc-
lp=a(b—Ry)C. (2)  curred when there is a cluster of defects spanning the entire
lattice.
The resulting fits are excellent for all values kbf. The
sample of exponents has a median of 0.745, and a standard A. Breakdown voltage
deviation of 0.038. These results are consistent with an ex-

ponent of 0.75. To investigate the properties of the breakdown field, we

consider the lattice in the dilute limg<1 and the limit near
Il DISORDERED LATTICE the percolation .transmorpj p.=0.5. We also investigate
the breakdown field numerically for afi.

In Sec. Il we considered the initial breakdown field and ) o
the growth patterns on a perfect infinite or semi-infinite lat- 1. Dilute limit
tice with a single needle defect. In this section we investigate |n the dilute limit, the initial breakdown voltage is con-
the effect of residual resistance on the breakdown propertiegolied by the probability of the occurrence of critical defects
of a squareN X N disordered lattice with periodic boundary [2]. The probability that a needle of lengthoccurs in an
conditions. The disorder comprises a fractnf bonds that  Nx N lattice is on the order of'N2. The valuel producing
randomly have an initial resistance B, i.e., initially, a & probability of order 1 corresponds to the lenggtof the
fraction p of bonds is broken down randomly. There are characteristic largest defect cluster on such a lattice,
three parameterd\, p, and Ry, and the applied fielde

2InN

Inp -~

()

e~

Q
©

We expect the breakdown field to be controlled by the field
] enhancement at the tip of such a defect cluster, so that

40
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For a lattice with zero-resistance defects the field behaves
according to Eq(1) as~ /., which leads to the logarithmic
vanishing of the breakdown field with the increase in lattice

FIG. 7. Phase diagram for needle growth at the critical figJd. Size reported previouslyf3]. However, with non-zero-
is in units of the lattice spacing, is the ratio of resistance after resistance defects, the field at the tip reaches the limiting
breakdown to resistance before breakdown. value shown in Fig. 3, so that, beyond some critical lattice

0.1
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size, the breakdown field is finite and independent of thdance of the lattice cannot exceed unity. Hence, for suffi-

sample size. In the thermodynamic lirhit— o, asp changes ciently largeN, the overall medium dominates the resistance.

from zero, we expect a rather sharp transition of the break- The expression for the resistance of the effective medium

down field from unity to the inverse of the value shown in was presented by Kirkpatridk.2]. For two dimensions it is

Fig. 3.
At larger p we expecEy, to decrease due to the increased . 2p—1+Ry(1-2p) [2p—1+Ry(1-2p)]*+4R,

probability of configurations with a small gap between elon-""m" 2 + 2 :

gated defects. Such configurations have a smaller initial @)

breakdown voltage, but the breakdown may not be sustain-

able [5]. Instead, the result is a single elongated defectAt p=3, Rp=+Ry, so that

whose breakdown field is given by the inverseepf. Thus

we expectE,=1/g.. even beyond the dilute region. Epg(1)= \/R—b ®)

2. Near the percolation transition Thus the breakdown field g@t. can be approximated by sub-

- ] stituting Eqgs.(8) and(6) into Eq. (5),
Near the critical percolation threshopd , the breakdown

field is controlled by the largest defect cluster in the network, 1+ \/R—b(N_ 1)
whose linear size is of ordeX. If the cluster percolates <Eb>zT[l_P(prN)]N\/R_b[l_P(va)]-
(spans the entire lattitethe breakdown strength is zero 9)

identically. Otherwise, the largest cluster is nearly percolat-

ing except for a small number of bonds that need to be This grossly simplified argument suggests that the break-

broken. These single “red” gap bonds are the dual of “red” down strength of a large system with a single red bond with

bonds of the random-fuse network. The breakdown strengthonzero residual resistivity remains finite as the lattice size

of the lattice depends upon the breakdown strength of thincreases. Physically, this is reasonable, sinceRfpe0 the

gapE,g(x), which fluctuates for the samedepending onthe entire applied voltage appears across the red bond, causing

configuration. The average size of the gap dependp en its breakdown strength to decrease ds, While for nonzero

that the average breakdown fie{e,) is (Eng(x)x(p,N)).  resistivity defects, the field dissipates in the defects.

However, we expect that the fluctuations of the gap break- Looking at Eq.(9), P(p,N) undergoes a sharp transition

down field are small for small gaps, so we can characteriz@earp, from nearly zero to nearly unity10]. This transition

the gap breakdown field by a single-parameter functioroccurs over a region of width whereAp~N*1’V andv

Epg(X), which is configuration independent for a given =3 in two dimensions. This implies thé, undergoes a
For a finite-size lattice, we can defipg to occur where  sharp transition to a breakdown strength of essentially zero,

the probability of a spanning cluster s The dominant con- regardless oRy,.

figurations neap. are those with either a percolating cluster  In the thermodynamic limit, at ang<p, the lattice size

or an almost percolating cluster with a single red gap bondis always larger than the largest cluster, so that the dilute

Hence we can approximate the average breakdown field nepehavior prevails up until the transition. The transition ap-

the critical point by assuming that there are only those twqoroaches a step function, and therefore we expect the break-

states, down field to make a sharp transition fron{ &/.(Rp)] to
zero. Thus we expect a disordered lattice in the thermody-

(Ep)=En()[1-P(p,N)], (5) namic limit N—oo to have three phases as functionpof

where P(p,N) is the probability that a percolating cluster 1 if p=0,

occurs. This relation allows us to relate the breakdown field

to P(p,N) whose properties have been investigated exten- E,= 1 if 0<p<p. (10)

sively [10]. We can, for simplicity, estimatEpg(1) by con- €(Rp)

sidering a cluster that spans the lattice except for the bottom- 0 if p=p..

most row. We assume that the bottommost row contains
unity resistances only, while the tdg—1 rows are com-
posed of uniform medium of effective resistanRg,. By
translational symmetry, the field across the gap is found by We also expect the nature of breakdown paths in the dis-
voltage division a§1[1+ R.,(N—1)]}NE. Breakdown oc- ordered lattices to vary with. In the dilute limit we expect
curs when the field across the gap is unity, so thaf{1[1  the paths to originate at the critical defects and grow in a
+Rn(N—1)]}NEpg(1), leading to manner similar to that of a needle on an infinite, perfect
square lattice. The fractal dimension of such paths should be
1+Rn(N-1) about 1.722 ifl . is in the 2D region of Fig. 7, and close to
Eog(1)= N ~Rm. 6) unity if I is in the 1D region. This implies, that we expect
the fractal dimension of the breakdown cluster at sqgarte
An effective medium theory is appropriate because thalecrease ak. increases oN increasegas given by Eq(3)]
resistance of the percolating cluster+sR,N*/*, with u/v  or R, increases.
=0.975 in two dimensions, wherg is the conductivity ex- Near the percolation transition, we expect the geometrical
ponent and the correlation-length exponent. This resistanceproperties of the breakdown cluster to be controlled by the
increases without bound for large, while the total resis- percolation process, and to be given by the largest defect

B. Breakdown paths
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P FIG. 10. 1E, vs — 1/In(p) in the dilute limit. E,, is in the units
of breakdown field of individual resistors. There are 5000 simula-
tions at each point.

R.—0.5000 1 swept in increments of 0.03 starting@at 0.02. Ten samples

at each parameter point were simulatedNat 10, while 50
realizations were simulated &=10. The programs were
run on the IBM SP2 supercomputer at the Cornell theory
center using message passing interfdd®l) [14] for paral-

lel coding.

1. Breakdown voltage

L n 2 N Il
0 0.2 0.4 0.6 0.8

Figure 9 shows the breakdown field averaged over ran-
dom initial configurations as a function of concentration of
initial defectsp on three different lattice sizes at different
Ne10 Ry . Ten configurations for each data point were averaged for
N=30 and 50, and 50 configurations fof=10. Dashed

' ' o500 lines indicated the values expected from the asymptotic form
o e LR [Eg. (10)], at intermediate concentrations Lattices with
° ] large R, reach the asymptotic value quickly because their
10 N N Fam02000 respective needles rapidly reach their asymptotic values. Lat-
SIS NN\ W U £,=0.1000 tices with smallR,, require largeN to reach this value.
S AN - R,=0.0500 - Figure 10 shows the inverse of the breakdown fiel,1/
N R,=0.0100 | as a function of-1/In(p) at the dilute limit for 10< 10 lat-
S N\EEY N tice averaged over 5000 simulations for each point. The
“““““““““““ curves of Fig. 10 are consistent with Eg), Eq. (4), and the
®0 oz o4 o6 o8 curves of Fig. 2.

2. Near the percolation transition
FIG. 9. E, vs p at variousR,, plotted for three lattice sizes

N. E, is in the units of breakdown field of individual resistors. . U . -
Each point is averaged over 50 configurations Nor 10 and ten the percolation transition is proportional to the probability of

: : ) occurrence of a percolating clustefp,N), as given by Eq.
li t forN=30 d 50. The dotted | t - : .
i?er‘: '?;E? ons for an © dotted fine represents (5). We performed 10 000 simulations on Q0 lattice at

Rp,=0.1 and 0.5 for 0.4 p<0.6. We measured from the

. . imulations the breakdown fielel, and the percolation prob-
cluster that exists prior to breakdown. The number of Iocar;bility P(p,N) (the probability of spanning the sample

?E?Edlvrmzﬁﬂugﬁd ?eadgalsh;?t;u g:g:igng ;f g:gréat' hen we plotted the breakdown field as a functi®(ip,N) in
Ice 1S very ,» SO WE EXp wh ciu ig. 11. A linear curve fit yielded the values &,y(1),

p~p. will have fractal dimensioni of the p_erpqlating cluster which were 0.41 aR,=0.1 and 0.76 aR,=0.5. This agrees
(D=1.90 [10] regardless of residual resistivity. well with Eq. (6), which predictsE,(1) of 0.44 and 0.74 for
a 10x10 lattice. Thus on a small lattice we were able to
verify Eq. (8), which gives us information about the ap-
We investigated the breakdown onldx N square lattice  proach to the critical point, such as the critical exponent,
with periodic boundary conditions using Monte Carlo simu-while large lattices are necessary to study such properties
lations. Our computer program solved the circuit using nodadlirectly.
analysis, with the admittance matrix inverted using the
conjugate-gradient methofil3]. The program performed
simulations atN=10, 20, 30, 40, and 50 and,=0.0001, Figures 12—14 show the breakdown paths for three differ-
0.001, 0.01, 0.1, 0.2, and 0.5. For each lattice sireyas  ent initial parameters. As expected, the paths are straight for

We tested our assumption that the breakdown field near

C. Numerical results

3. Breakdown paths
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FIG. 11. E, vs P(p,N=10) atR, of 0.1 and 0.5 for 0.4p
<0.6. The solid lines represent linear curve fits to the points. The . o
inset shows a curve & vs p using the same datk,, is in units of - . vl
the breakdown field of individual resistors. o L

largeRy, and spread out for smal,, . In Fig. 15 we plot the
fractal dimension as a function @f for two extreme values FIG. 13. An example of breakdown paths on ax@D lattice
of R,. We observe the expected behavior, as the curve fofith r,=0.5 andp=0.02. Thick lines indicate initial defects. The
R,=0.5 begins ab =1, while the curve foR,=0.001 hov-  axesX andY denote the number of lattice spaces in each direction.
ers initially nearD=1.722. Both curves converge at thg  D=1.
to the neighborhood ob =1.89. The scatter in the data is
statistical, each data point is averaged over ten configurazentration range. For defects with nonzero residual resistiv-
tions. ity, the breakdown field reaches a finite value as the defects
lengthen causing the random lattice to reach the same break-
down field in the thermodynamic limit. We also observed
that depending on the initial length of the seed defect and the
We investigated the breakdown field and the geometry ofesidual resistivity, the breakdown either grows one dimen-
breakdown paths of an electrical circuit model for dielectricsionally, or spreads with a fractal dimension. We calculated
breakdown in media with defects of arbitrary residual resisthe phase diagram and relevant exponents for this crossover.
tivity. We investigated the breakdown in an infinite or semi- A similar spreading crossover also appears in the random
infinite square lattice with a long needle defect, and breaklattice with a dilute concentration of defects.
down in lattice networks with finite concentrations of The effects observed in our simulations rely on the unlim-
random defects. ited energy supplied by the field source. An open question is
We found that analytic results from the infinite perfect how the breakdown field and paths behave when the break-
lattice and percolation theory can help us to understand théown is driven by an energy-limite@urrent-limited source.
breakdown properties of random lattices throughout the conThis question is also important for practical observation of

IV. SUMMARY

!
4

L
I

B i T e

40

FIG. 12. An example of breakdown paths on&B0 lattice with FIG. 14. An example of breakdown paths on ax&D lattice
Rp,=0.0001 andp=0.02. Thick lines indicate initial defects. The with R,=0.5 andp=0.5. Thick lines indicate initial defects. The
axesX andY denote the number of lattice spaces in each directionaxesX andY denote the number of lattice spaces in each direction.
D=1.8. D=1.89.
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' ' N it as a parallel combination of the unity lattice resistance and
wl 0L T Th an effective resistancl’,
= r ¥ on B fom
bt A - e |~ Q.
o |[H . . 4 1
= 1 —=1+—, Ala)
8 r Rp R’ (Al
~ [ 0 o T
o~ , Rb
=T o Bp=05 | R'= 1-R." (Alb)
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We can also consider the nodes of this equivalent resis-
P tance as a pofterminal paiy of ann-port linear circuit Fig.

FIG. 15. The fractal dimensiol of the largest breakdown clus- 3.h6e(32)r]. glles V%thblgs ll,IJ§| ttg I;t?[i(i:es;iaerr; :rr]% fr::céﬂffelnfgfun
ter vsp plotted forN=50. Each point is averaged over ten configu- Y- géeq ik

rations. The dotted line represerits=1.722 for needle growth on €ach port are related by, = —iR’, or, in matrix form, e

an infinite perfect lattice. The dashed line is the fractal dimension of= — j R’ | |, where| is the identity matrix.

the percolating clgster g=p.. Ry, is the ratio of resistance after The voltagee; at a portj of a linearn-port circuit can be
breakdown to resistance before breakdown. calculated by a linear superposition of voltages produced by

) _ . ] the current into each pori, and the open-circuit voltage
these effects, since most adiabatie., with a very slow R

voltage rate of risedielectric breakdown tests for real appli- '
cations are performed with strongly current-limited sources.
Also, the effect of open surfaces is very important, as a
needle defect near a surface is, due to the image potential,
like two neighboring needles in the interior of the sample. ]
This effect was previously noted by Li and Duxbuigj, and ~ OF in matrix form
recently calculated in a simple fiber-bundle model by Leath
and Chen[15]. Future studies should take into account the
effect of various boundary conditions.

k=n

ej=eM+ kgl iR (A2)

= g%+ RM,

>

(A3)

In circuit theory, the proportionality constanﬁl are known
as driving-point and transfer resistand@hevenin equiva-
lent resistancgs

This research was conducted using the resources of the The variables are easy to evaluate: the open-circuit volt-
Cornell Theory Center, which receives major funding fromagee!” is equal to the applied fiel for vertical bonds and
the National Science FoundatigNSP and New York State, zero for horizontal bondsR!} is equal to the voltage devel-
with additional support from the National Center for Re- oped at porj when a unit current source is applied to plort
search Resoqrces at the National Institutes of He@lthl), The resistance can be found by calculating the voltage
IBM Corporation, and other members of the center's Corpoyye to two unit current sources of opposite polarity attached
rate Partnership Program. at the nodes, a dipole source. The solution for this voltage
due to a unit current source for a perfect network was evalu-
ated by Watsom16].
) ] Briefly, Watson[16] computed the potential(l,m) on an

We wish to compute the field due todefect bonds, 1a-  jnfinjte lattice of 1Q resistances at a distantenorizontal
beled 1 throughn, in an otherwise uniform, infinite, perfect, |attice spacings anth vertical lattice spacings from the cur-

square latticgFig. 16a)]. The basis for the algorithm is the et source into the lattice at (0,0) by using a discrete form
solution for the potential due to a unit current source in anof Laplace equation, namely

infinite lattice. Consider each defect bond. We can consider
dv(mD=v(I=1m)+v(l+1m)+v(l,m—1)+v(l,m—1)

+8(1,m). (A4)
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APPENDIX A: ALGORITHM

e [2R

Infinite
lattice

<
> R!
SR

SR

(c)

To find the potential, this equation was Fourier trans-
formed, so that it was possible to solve for the potential,
which, when normalized to be zero at the origin, became

o(mil)= 1 J':f:d)(dy(e_imxe_“y_l)_

2(2m)2 cosx+cosy—2
(A5)

FIG. 16. An infinite lattice network with defect bonda), the _ . . _
same lattice with each defect drawn as a parallel combination oFrom this result he obtained a set of recursion relations for

resistancesb), and an equivalent electricatport network(c). the potential on the diagonal:
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v(m+1m+1)= 2m+1[4pu(m,m) . - el_).
—(2m-1)v(m-1m-1)], (A6) e e e ".
with P

4 FIG. 17. An elliptical defect as an approximation of a defect
cluster on a lattice.

v(0,0=0, v(1,)= 3.

APPENDIX B: ANALYTIC RESULTS FOR ELLIPTICAL

Also, he obtained a recursion relation for the potential along DEFECT

the principal axes We study the fields near an elliptical defect of resistivity

pp in @ homogeneous continuous medium of resistigityAn
elliptical defect represents a continuum approximation to a
v(0)=v(l,0)= ZO lo, (A7) defect cluster.
- To solve the continuum problem, we use elliptical coor-
dinates as described in Morse and FeshHaal

-1

1
lp=pl2+3(2p—Dlpi=(p=Dlp-2],  (ATD)

X=ccosh¢ cos 7, (B1)
with y=csinh ¢ sin 7. (B2)
2 3 We consider an ellipse with semimajor and minor akes
lo=1%, |1=;— 1 andb,, respectively, defined by

b;=ccosh&,, b,=csinh¢&,,
The potential at all other nodes can be computed by using ! o 2 o
Eq. (A4) recursively. Using this procedure, we computed theas shown in Fig. 17
potential in a 106« 100 square due to a single current source applied. p.otential is given byV=—Ex=

at the origin once and for all. To obtain meaningful results, it_ Eccoshé cos». The solution given by Morse and Fesh-

was necessary to use high-precision arithméliz0 digity bach [17] for a problem of a dielectric ellipse is easily

?Sr thFe :ef(; u;s];lc;rr]l relatrlror;lsE are ;/ery tiensm;/en;[io Irci)und-o;‘f fitédapted for the resistive ellipse by associating the resistivity
or. +ar 1ro € current source, the potential 1S approXtyith the dielectric constant.

mately The potential outside the ellipse takes the form
v(l,m):£+ iln(|2+m2). (A8) V0=—Ex+Bce*fcosn, (B3)
4 A
where
We will label by aj, the fraction of the current driven by _
sourcej into the bondk. This fraction, which we will call the B E( 1- @) efosinh ¢ycoshé,
Watson coefficient, is independent of the nature of the bond, p | po

and depends only on the distance and orientation of the ?cosh§0+sinh o
bonds. The field in the resistive lattice due to a unit dipole

source is therRajk=R}ﬂ. Thus, we can find equivalent re- Pb b,b,
sistances without having to actually find the equivalent cir- =E[1- s (B4)
cuit. (Fbﬁ b, | (by—by)

Now it is easy to combine this with EGA3) to find the

current into each port, . . .
P To apply the continuum solution to the lattice problem,

L we express the fields in Cartesian coordinates, and then
=e"+ i (RA+R'I), (A9) guantize the field at the lattice spacing, that we take to be
unity without loss of generality. Also we normalize the re-
sistanceR,= p,/p. To convert to Cartesian coordinates, we
solve Eq.(B2) for the hyperbolic and trigonometric func-
tions. The result is

whereA is the matrix of Watson coefficients. We can solve
this equation numerically, for example, lhyJ decomposi-
tion [13]. This algorithm has a number of advantages. It
avoids finite-size effects by using an exact solution for an > =
infinite medium. It can easily incorporate perfectly reflecting Vo= —Ex+B{x— VA2+ JA?+4x%y?/2},  (BS)
planes or periodic boundary conditions by methods of im-

ages. Also, it is very efficient for small numbers of defects. A=(x2—Db;2)— (y2—b,?).




3540 JEFFREY BOKSINER AND P. L. LEATH 57

We can read off the local field, which is just the differ- whereas the resistance associated with the lattice element is
ence in potentiaM(x,y) between adjacent nodes, directly p,b;/b,. So, to obtain the correct resistance at the tip, we
from Eq. (B5). The field at the bond at the tip of the ellipse “fix” the width of the ellipse, substitutings; for by:
parallel to the major axig, is the voltage difference along

they=0 axis:
1
r__ —1 _
&= Vo(b1,0) = Vo(b;+1,0) b2=bab;cos (1 bl)' (B10
~ bib,
=E+E(1- Rb)(Rbbl+ b,)(b;—b,) Then the asymptotic behavior becomes
x{V2b;+1+by>—b,—1}. (B6a)
€ =E[1+2b,(R,—1)], (B11a
The tip voltage perpendicular to the major axis of the ellipse
is
e »=Eb,(Ry,—1). (B11b

b;b,

e, =Vo(by,0)—V(by,1) =E(1-Ry) , , ,
(Rpbi+by)(b;—by)  We see that the field has vastly different behavior for per-
fectly conducting defects and defects of finite conductivity.

% %\/bzz— 1+ (b2—1)2+ 4b,2—b, . (B7) For defects of finite conductivity, the fields reach a nonzero
2

asymptotic value.

1. Perfectly conducting defect 3. Analytic results for needle defects

A perfectly conducting defect in a material of finite con- ~ The preceding calculation is useful for showing the be-
ductivity and a defect of any nonzero conductivity in a per-havior of arbitrary defect clusters. In this section we develop
fectly insulating dielectric both hav@,=0 and behave iden- & more elaborate calculation for an improved understanding

tically. The fields at the tip fob,>1 andb,;>b, become of the needle bifurcation. The simple ellipse model has two
shortcomings for application to needle growth. The first one

b, 5 is that the numerical coefficients correlate poorly with the
e=E+ Em{ V2by+1+b,"—b,—1}~E+ E\2b,, exact numerical results on a square lattice. Second, an ellipse
(B8a) s atwo-dimensional structure whose representation on a lat-
tice involves resistance changes to bonds that are parallel and
perpendicular to the main ellipse axis.

b, 1 : .
_ _ 2_14(b2—1)2+4p.2— Here we develop a more accurate ana!yncal model. It in-
°L E(bl—bz) ﬁ\/bz 1+ V(b,"~1)"+4b,"~b, volves two steps. First, we calculate the fields due to a con-
tinuum needle with resistivitR,, by using the ellipse results
~Evb;. (B8h)  and taking the limitb,—0. However, such fields contain

variations on all distance scales, while the fields on a lattice

As the perfectly conducting defect cluster becomes longe€2NNnot vary at scales greater th@rHencg it is necessary to
the fields at the tip increase without bounds as the squarfé!ter the resulting field to the appropriate wavelength. To
root of the ellipse lengtib,. simplify the filtering operation, the continuum fields are ex-

panded in a Taylor series near the tip of the needle, since we

are only interested in the fields on bonds adjacent to the

needle. The fields are sampled to obtain the voltage at the
A similar analysis of Eq(B5) for R,#0 shows that the discrete nodes.

fields at the tip first increase with;, and then decrease to ~ The continuous fields for a needle are

zero, as was pointed out by Li and Duxby#j]. However, 13
this behavior is not observed in numerical simulations on _ 7 2_12 \/7 3/2)

. . . e=EJ(X'+by)*—bi~E| v2b X+ —\/—Xx>“|,
lattices. The reason is that as the ellipse becomes longer, the I W v ! V2b, 4 N b,
tip becomes very narrow and sharp causing the resistance of (B123
the tip to become very large. This makes the ellipse a poor

analog for the discrete lattice problem. The resistance of the

2. Defect with nonzero residual resistivity

tip Ry, IS E 1 /1
P Rip el=—\/—y2+\/y4+4y2b12~E( /bly_z\/b:yslz)'
by dx by, 1 V2 !
Rip= f pp————— = py—cos Y 1- — (B12b
b-1  byy1—x2/b,? b, by
_Po b (BY) We take the Laplace transform of the fields using trans-
b, " form pairs \x— 2J7s™%? and x¥%- 2 \/7s~%2 to obtain
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es)= E\/F( \/%s%L %\/bzlsf”z), (B13a

e (s)= Eﬁ( gs?”z— 13_6\/}155/2) . (B13b

For the filter, we a use a single-pole filtef 14 (s/7)]. We

3541
—5/2 512~ mx 32
x°%e X VX
372 3. o V"
1+s/m 3/4ar (— mx)52 +a/ 312 27T5/2
x%e™ ™erfa( \/— mX)
Bs—r:? (B14b)

multiply the fields by the filter and take the inverse trans-1n€ field across adjacent bonds is obtained by seiing

form. We use the following transform pairs:

S—3/2 X3/2e— X X
1273 ——+ 2£
1+s/@ (— ax)3¥2 32
x3e™ ™erfg( \/— mX)
S e T (B14a

andy=1 to obtain the field across the bonds to obtain

0.218

e=E| 1.132/b +—>, (B153
e sasa 22
0.154

=E| 0.8yby— —|. B15b

€ ( 1 \/b—l ) ( )

[1] L. A. Dissado, J. Phys. @3, 1582(1990.

[2] P. Duxbury, P. Beale, and P. Leath, Phys. Rev. %#t.1052
(1986.

[3] P. Duxbury, P. Beale, and P. Leath, Phys. Rev3® 367
(1987).

[4] Y. S. Li and P. Duxbury, Phys. Rev. 86, 5411(1987).

[5] Y. S. Li and P. Duxbury, Phys. Rev. 83, 9257(1988.

[6] S. Manna and B. Chakrabarti, Phys. Rev3® 4078(1987).

[7] L. Benguigi, Phys. Rev. B8, 7211(1988.

[8] H. Takayasu, Phys. Rev. Lefi4, 1099(1985.

[9] L. Pietronero, A. Erzan, and C. Evertsz, Physitsl, 207
(1988.

[10] D. Stauffer and A. Aharony Introduction to Percolation
Theory(Taylor and Francis, London, 1994

[11] H. Peitgen, H. Jurgens, and D. Saug@haos and Fractals

(Springer-Verlag, New York, 1992

[12] S. Kirkpatrick, Rev. Mod. Phys45, 574 (1973.

[13] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery,
Numerical Recipes in @Cambridge University Press, Cam-
bridge, 1992, Chap. 2.

[14] W. Gropp, E. Lusk, and A. Skjellum)sing MPI (MIT Press,
Cambridge, MA, 1994

[15] P. Leath and N. Chen, iMNonlinear Analysis of Fracture
IUTUM Symposium, edited by J. WillisKluwer, Dordrecht,
1997, pp. 265—274.

[16] B. Watson, Ph.D. thesis, Rutgers University, 1975.

[17] P. M. Morse and H. Feshbacklethods of Theoretical Physics
(McGraw-Hill, New York, 1953, Part 2, Chap. 10, pp. 1199—
1199.



