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Dielectric breakdown in media with defects

Jeffrey Boksiner and P. L. Leath
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855-0849

~Received 18 August 1997!

We investigate the breakdown field and geometry of breakdown paths of an electrical circuit model for
dielectric breakdown in media with defects of arbitrary residual resistivity. The circuit model consists of a
two-dimensional square lattice network of resistors that break down from a high resistance to a lower~residual!
resistance when the local electric field exceeds a critical value. We consider infinite and semi-infinite samples
with a single cluster~needle! of defects as well as samples with a finite concentration of defects from the dilute
limit to the percolation threshold. We find that for needle defects with nonzero residual resistivity, the break-
down field reaches a finite value as the defects lengthen, causing the random lattice to reach the same
breakdown field in the thermodynamic limit. Furthermore, we find that depending on the initial length of the
seed defect and the residual resistivity, the breakdown either grows one dimensionally, or spreads with a fractal
dimension. We give the phase diagram and relevant exponents for this crossover, and report similar behavior
in random lattices at dilute defect concentrations.@S1063-651X~98!03103-1#

PACS number~s!: 41.20.Cv, 03.50.De, 77.22.Jp, 64.60.Cn
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I. INTRODUCTION

Random nonlinear resistor and fuse networks provide
alistic and tractable models for understanding the geom
and stability of dielectric breakdown and other breakdo
phenomena@1,2#. Although the random-fuse network, and i
dual in two dimensions, the random nonlinear resistor n
work, have been studied extensively@3–7#, few studies have
investigated breakdown models where the broken bo
have nonzero resistivity~residual resistivity! @5#. Since di-
electric breakdown of real materials results in nonzero re
tivity, its effect is an important consideration.

In this paper we investigate the breakdown field and
geometry of breakdown paths of an electrical circuit mo
for dielectric breakdown in media with defects of arbitra
residual resistivity. Previous studies of random netwo
have shown that, in dilute samples, the breakdown proc
begins at the critical defect in the network. The critical def
for dielectric breakdown is often a long thin defect —
needle directed along the electric field. Characteristics of
breakdown process on a random lattice, including the bre
down field and the geometry of the breakdown cluster,
related to the characteristics of the breakdown for the ne
defect. Few studies have examined the nature of the ne
growth in detail; although, in one of the first studies, Tak
yasu observed that breakdown clusters usually have sim
shape@8#. The clusters in that study exhibited bifurcatio
i.e., the spreading of breakdown paths into two dimensio
but a definitive cause was not identified.

We are interested in the breakdown field as a function
residual resistivity, and in examining the geometrical str
ture of the breakdown cluster in order to separate the asp
of the structure inherent in the growth of needles in hom
geneous media from those arising from the disorder in
system. We simulated such growth on two-dimensio
square lattice networks. Unfortunately, a study of nee
growth requires simulations on large and computationa
expensive lattices. So, to perform our study, we develope
new algorithm, described in Appendix A, that uses Gree
functions to compute the field due to a collection of defe
571063-651X/98/57~3!/3531~11!/$15.00
-
ry
n

t-

s

s-

e
l

s
ss
t

e
k-
e
le

dle
-
ar

s,

f
-
cts
-
e
l
e
y
a

’s
s

in an infinite homogeneous medium exactly. In Sec. II A w
investigate the fields due to the presence of needle defec
a homogeneous medium, using analytical and numer
methods. In Sec. II B, we report on simulations of nee
growth in homogeneous media. In Secs. III A and III B w
use these results to analyze the breakdown field and path
random lattices. Finally, in Sec. III C we report on the n
merical simulation of breakdown on disordered lattices.

Breakdown process

We need to define the rules used in simulation carefu
since differences in the simulation can lead to different
sults for needle growth. Our adiabatic simulation of t
breakdown growth proceeds as follows. The initial defe
configuration is selected. Each defect is a bond of resid
resistance Rb,1 in an infinite or semi-infinite two-
dimensional square lattice of 1-V resistors, as shown in Fig
1. A uniform electric field is applied to the lattice along th
vertical crystalline axis. The field magnitude is determin
by its value in a region far from the defects for the infini
lattice, or by the applied voltage for a finite lattice. All bond

FIG. 1. A section of an infinite lattice of resistors with a two
defect needle~heavy line! oriented along the direction of the ap
plied field.
3531 © 1998 The American Physical Society
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where the local field exceeds the critical field, taken to
unity, break down, becoming defects and lowering their
sistance toRb irreversibly. The local fields are recalculate
for the new configuration of defects, and the process is
peated. Note that it is always possible to rescale resista
and the electric fields so that the resistances of the lattice
the critical field are unity. This simulation allows for an e
tension of the random-resistor network to an infinite latti
it is different from the dielectric breakdown model~DBM! of
Pietronero and Evertsz@9#. The main difference is that, fo
deterministic breakdown, the DBM causes breakdown o
in a single branch for each iteration, which produces a qu
tatively different geometry of needle growth.

II. NEEDLE DEFECTS ON A HOMOGENEOUS LATTICE

We investigate the growth of a needle defect~a chain ofl 0
nearest-neighbor defects of resistanceRb oriented along the
applied field! in an otherwise homogeneous infinite lattic
There are three independent parameters: the initial de
length l 0, the magnitude of the applied fieldE, and the re-
sidual resistance of the defect resistorRb . We found that,
depending on the parameters, needle growth exhibits a
havior that corresponds to one of three phases of the br
down process. The lattice is in the insulating phase~there is
no connected path of defects across the lattice! if the applied
field is too small to initiate breakdown. As the field in
creases, it reaches a critical value, which we call the ini
breakdown fieldEbi , that just initiates breakdown and caus
the needle defect to grow through the lattice. Depending
the initial parameters, the breakdown may proceed in
single path or in a fractal tree, as Sec. II B shows.

A. Breakdown field

As the field is applied, the local field is greatest at the
of the needle~of length l 0), causing breakdown growth t
begin there. This happens whenei(E)51. For Rb50, an
analytic calculation of the tip fields presented in Append
B 3 gives

ei.ES 1.132A2l 01
0.218

A2l 0
D , ~1a!

e'.ES 0.8A2l 02
0.154

A2l 0
D . ~1b!

This shows that the tip field increases without limit
Al 0, causing the initial breakdown fieldEbi to go to zero as
l 0

21/2. Unfortunately, we have not been able to obtain ex
analytic results on square lattices for needles of nonzero
sidual resistivity. Considerations of elliptical defects in co
tinuous media, presented in Appendix B, suggest that the
fields reach a finite asymptotic value for long defects. W
calculated the fields numerically using the algorithm of A
pendix A. Typical field behavior is shown in Fig. 2. As e
pected, the fields appear to approach an asymptotic va
The numerically calculated asymptotic fields appear in F
3.

In all cases, the tip field increases with needle length
that, once the needle begins to grow, it cannot stop, i.e.,
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system is brittle. Thus the final breakdown field for the sy
tem is equal to the initial breakdown field,Eb5Ebi . Section
II B examines needle growth in more detail.

B. Breakdown paths

We studied the path formed by the broken bonds. T
needle begins to grow atE5Ebi . At first, the growth con-
sists of elongation of the needle so that the defect rem
one dimensional~1D!, but, for defects with low residual re
sistance, the needle bifurcates as it grows longer, sprea
two dimensionally, and spans a finite sector of the mediu
Figure 4 shows growth patterns for four different configu
tions. Figure 5 shows a graph used to measure the fra
dimensionD of the patterns using the procedure of counti
the number of filled boxes at various scales@10,11#. The
points below the line illustrate finite lattice effects. Exclu
ing these, the four patterns exhibit a fractal dimensionD
51.72260.018.

As Rb increases, the onset of 2D growth occurs at lon
needles, and requires more iterations until, at a certain c
cal residual resistance, the growth is purely one dimensio
as the needle never bifurcates. However, at higher app
fields, the transition from 1D to 2D growth occurs at larg

FIG. 2. The field at the tip of the needleei vs needle lengthl for
variousRb at E51. The fieldsel andE are in units of breakdown
field of individual resistors,l is in units of lattice spacing, andRb is
the ratio of resistance after breakdown to resistance before br
down.

FIG. 3. The asymptotic values of the field, forl→`, at the tip of
the needle –ei` ~solid line! ande'` ~dotted line! vs Rb at E51.
The fieldse` are in the units of the breakdown field of individua
resistors, andRb is the ratio of resistance after breakdown to res
tance before breakdown.
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FIG. 4. Growth clusters for four configurations on the semi-infinite lattice:~a! Rb50, l 052; ~b! Rb50, l 054; ~c! Rb50.03, l 0

52; ~d! Rb50.03, l 054. The axesX andY denote the number of lattice spaces in each direction. The thick lines are the initial de
the thin dashed lines are the broken-down bonds, and the dotted lines outline the angle filled out by the growing cluster.
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values of Rb . When the applied field reaches unity, th
whole lattice breaks, so that there is 2D growth for all valu
of Rb .

Thus the lattice can exist in three distinct states: insu
ing, 1D breakdown, or 2D breakdown~referring to topologi-
cal dimension, i.e., within a 2D wedge!. To obtain a qualita-
tive understanding of this behavior, we studied the fields
the tip of an elliptical defect. The results are described
Appendix B.

FIG. 5. Graph of the logarithm of the number of occupied box
vs the logarithm of the scale of the linear size of each box when
cluster is covered by a mesh of boxes.l 0 is in units of the lattice
spacing.Rb is the ratio of resistance after breakdown to resista
before breakdown.
s
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For zero-resistance defects, the fields at the tip grow w
out bounds as the needle elongates. Thus, if we have a d
at the initial breakdown field, the adjacent bond brea
down, the cluster elongates, and the tip field becomes e
stronger, causing the defect to grow without limit. But, as t
defect grows, the field perpendicular to the cluster axis a
grows, leading to the eventual failure of horizontal bonds
well, causing the defect to spread out and become gre
than one dimensional. We see that zero-resistance de
always eventually spread in two dimensions.

However, for defects with nonzero residual resistivity, t
fields at the tip reach an asymptotic value. Thus the de
elongates as before, but the perpendicular field may or m
not reach unity. Ife'`(E)>1 the defect bifurcates, but i
e'`(E),1, the defect cluster stays one dimensional as
grows.

C. Numerical simulation of the phase behavior

Armed with this understanding, we can now construc
phase diagram. We calculate the asymptotic field on an i
nite lattice numerically for differentRb , and we calculateEbi
for different Rb and l 0. Thus we determine whether th
needle bifurcates for each configuration. The phase diag
is shown in Fig. 6. The bottom sheet corresponds toEbi ,
while the top sheet corresponds to the field required to p
duce ‘‘spreading’’ breakdown. Where the two sheets mer
the breakdown paths are always more than one dimensio
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3534 57JEFFREY BOKSINER AND P. L. LEATH
Figure 7 shows the phase diagram atE5Ebi . The line
separating 1D and 2D regions corresponds to the line wh
the two sheets join in Fig. 6. This phase boundary, forl 0 vs
1/Rb is approximately a straight linel 0>a/R02b, wherea
50.4460.002 andb53.9660.14.

We also numerically studied the lengthl bi that the needle
reaches prior to bifurcation for variousRb and l 0 at E5Ebi .
Figure 8 shows the results. AsRb approaches the critica
value at a particularl 0 ,l bi diverges. We attempted to fit thes
curves to a power law of the form

l bi5a~b2Rb!2c. ~2!

The resulting fits are excellent for all values ofl 0. The
sample of exponents has a median of 0.745, and a stan
deviation of 0.038. These results are consistent with an
ponent of 0.75.

III. DISORDERED LATTICE

In Sec. II we considered the initial breakdown field a
the growth patterns on a perfect infinite or semi-infinite l
tice with a single needle defect. In this section we investig
the effect of residual resistance on the breakdown prope
of a squareN3N disordered lattice with periodic boundar
conditions. The disorder comprises a fractionp of bonds that
randomly have an initial resistance ofRb , i.e., initially, a
fraction p of bonds is broken down randomly. There a
three parameters,N, p, and Rb , and the applied fieldE

FIG. 6. Phase surface for needle growth.E is in the units of
breakdown field of individual resistors.l 0 is in the units of lattice
spacing.Rb is the ratio of resistance after breakdown to resista
before breakdown.

FIG. 7. Phase diagram for needle growth at the critical fieldl 0

is in units of the lattice spacing,Rb is the ratio of resistance afte
breakdown to resistance before breakdown.
re
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-
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5V/N, whereV is the applied voltage. We study the effect
residual resistance on the breakdown field and the bre
down paths.

One difficulty in looking at a lattice with non-zero
resistivity defects is that, for largeRb , the presence of a
spanning breakdown cluster does not necessarily change
overall lattice resistance significantly. Thus we define bre
down geometrically—breakdown is deemed to have
curred when there is a cluster of defects spanning the en
lattice.

A. Breakdown voltage

To investigate the properties of the breakdown field,
consider the lattice in the dilute limitp!1 and the limit near
the percolation transitionp;pc50.5. We also investigate
the breakdown field numerically for allp.

1. Dilute limit

In the dilute limit, the initial breakdown voltage is con
trolled by the probability of the occurrence of critical defec
@2#. The probability that a needle of lengthl occurs in an
N3N lattice is on the order ofplN2. The valuel producing
a probability of order 1 corresponds to the lengthl c of the
characteristic largest defect cluster on such a lattice,

l c;2
2 ln N

ln p
. ~3!

We expect the breakdown field to be controlled by the fi
enhancement at the tip of such a defect cluster, so that

Ebi.
1

ei~ l c ,Rb!
. ~4!

For a lattice with zero-resistance defects the field beha
according to Eq.~1! as;Al c, which leads to the logarithmic
vanishing of the breakdown field with the increase in latt
size reported previously@3#. However, with non-zero-
resistance defects, the field at the tip reaches the limi
value shown in Fig. 3, so that, beyond some critical latt

e

FIG. 8. Needle length at bifurcationl bi as a function ofRb for
E5Ebi for all values ofl 0 between 1 and 10. The inset showsl bi vs
(b2Rb) on a log-log scale. The offsetb was calculated using a fi
of a, b, andc to Eq.~2! for each value ofl 0. The curves from right
to left in both figures correspond to increasing values ofl 0. The
lengthsl 0 andl bi are in the units of the lattice spacing, andRb is the
ratio of resistance after breakdown to resistance before breakd
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57 3535DIELECTRIC BREAKDOWN IN MEDIA WITH DEFECTS
size, the breakdown field is finite and independent of
sample size. In the thermodynamic limitN→`, asp changes
from zero, we expect a rather sharp transition of the bre
down field from unity to the inverse of the value shown
Fig. 3.

At largerp we expectEbi to decrease due to the increas
probability of configurations with a small gap between elo
gated defects. Such configurations have a smaller in
breakdown voltage, but the breakdown may not be sust
able @5#. Instead, the result is a single elongated defe
whose breakdown field is given by the inverse ofei` . Thus
we expectEb.1/ei` even beyond the dilute region.

2. Near the percolation transition

Near the critical percolation thresholdpc , the breakdown
field is controlled by the largest defect cluster in the netwo
whose linear size is of orderN. If the cluster percolates
~spans the entire lattice!, the breakdown strength is zer
identically. Otherwise, the largest cluster is nearly perco
ing except for a small numberx of bonds that need to b
broken. These single ‘‘red’’ gap bonds are the dual of ‘‘re
bonds of the random-fuse network. The breakdown stren
of the lattice depends upon the breakdown strength of
gapEbg(x), which fluctuates for the samex depending on the
configuration. The average size of the gap depends onp so
that the average breakdown field^Eb& is ^Ebg(x)x(p,N)&.
However, we expect that the fluctuations of the gap bre
down field are small for small gaps, so we can characte
the gap breakdown field by a single-parameter funct
Ebg(x), which is configuration independent for a givenx.

For a finite-size lattice, we can definepc to occur where
the probability of a spanning cluster is1

2. The dominant con-
figurations nearpc are those with either a percolating clust
or an almost percolating cluster with a single red gap bo
Hence we can approximate the average breakdown field
the critical point by assuming that there are only those t
states,

^Eb&.Ebg~1!@12P~p,N!#, ~5!

where P(p,N) is the probability that a percolating cluste
occurs. This relation allows us to relate the breakdown fi
to P(p,N) whose properties have been investigated ext
sively @10#. We can, for simplicity, estimateEbg(1) by con-
sidering a cluster that spans the lattice except for the bott
most row. We assume that the bottommost row conta
unity resistances only, while the topN21 rows are com-
posed of uniform medium of effective resistanceRm . By
translational symmetry, the field across the gap is found
voltage division as$1/@11Rm(N21)#%NE. Breakdown oc-
curs when the field across the gap is unity, so that 15$1/@1
1Rm(N21)#%NEbg(1), leading to

Ebg~1!5
11Rm~N21!

N
;Rm . ~6!

An effective medium theory is appropriate because
resistance of the percolating cluster is;RbNm/n, with m/n
50.975 in two dimensions, wherem is the conductivity ex-
ponent andn the correlation-length exponent. This resistan
increases without bound for largeN, while the total resis-
e
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tance of the lattice cannot exceed unity. Hence, for su
ciently largeN, the overall medium dominates the resistan

The expression for the resistance of the effective med
was presented by Kirkpatrick@12#. For two dimensions it is

Rm5
2p211Rb~122p!

2
1

A@2p211Rb~122p!#214Rb

2
.

~7!

At p5 1
2 , Rm5ARb, so that

Ebg~1!.ARb. ~8!

Thus the breakdown field atpc can be approximated by sub
stituting Eqs.~8! and ~6! into Eq. ~5!,

^Eb&.
11ARb~N21!

N
@12P~p,N!#;ARb@12P~p,N!#.

~9!

This grossly simplified argument suggests that the bre
down strength of a large system with a single red bond w
nonzero residual resistivity remains finite as the lattice s
increases. Physically, this is reasonable, since forRb50 the
entire applied voltage appears across the red bond, cau
its breakdown strength to decrease as 1/N, while for nonzero
resistivity defects, the field dissipates in the defects.

Looking at Eq.~9!, P(p,N) undergoes a sharp transitio
nearpc from nearly zero to nearly unity@10#. This transition
occurs over a region of widthDp , whereDp;N21/n andn
5 4

3 in two dimensions. This implies thatEb undergoes a
sharp transition to a breakdown strength of essentially z
regardless ofRb .

In the thermodynamic limit, at anyp,pc , the lattice size
is always larger than the largest cluster, so that the di
behavior prevails up until the transition. The transition a
proaches a step function, and therefore we expect the br
down field to make a sharp transition from 1/@ei`(Rb)# to
zero. Thus we expect a disordered lattice in the thermo
namic limit N→` to have three phases as function ofp,

Eb5H 1 if p50,

1

ei`~Rb!
if 0 ,p,pc

0 if p>pc .

~10!

B. Breakdown paths

We also expect the nature of breakdown paths in the
ordered lattices to vary withp. In the dilute limit we expect
the paths to originate at the critical defects and grow in
manner similar to that of a needle on an infinite, perfe
square lattice. The fractal dimension of such paths should
about 1.722 ifl c is in the 2D region of Fig. 7, and close t
unity if l c is in the 1D region. This implies, that we expe
the fractal dimension of the breakdown cluster at somep to
decrease asl c increases orN increases@as given by Eq.~3!#
or Rb increases.

Near the percolation transition, we expect the geometr
properties of the breakdown cluster to be controlled by
percolation process, and to be given by the largest de
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3536 57JEFFREY BOKSINER AND P. L. LEATH
cluster that exists prior to breakdown. The number of lo
breakdowns required to achieve total breakdown of the
tice is very small, so we expect that all breakdown cluster
p;pc will have fractal dimension of the percolating clust
(D.1.905! @10# regardless of residual resistivity.

C. Numerical results

We investigated the breakdown on anN3N square lattice
with periodic boundary conditions using Monte Carlo sim
lations. Our computer program solved the circuit using no
analysis, with the admittance matrix inverted using t
conjugate-gradient method@13#. The program performed
simulations atN510, 20, 30, 40, and 50 andRb50.0001,
0.001, 0.01, 0.1, 0.2, and 0.5. For each lattice size,p was

FIG. 9. Eb vs p at variousRb plotted for three lattice sizes
N. Eb is in the units of breakdown field of individual resistor
Each point is averaged over 50 configurations forN510 and ten
configurations for N530 and 50. The dotted line represen
1/ei`(Rb).
l
t-
at

-
l

e

swept in increments of 0.03 starting atp50.02. Ten samples
at each parameter point were simulated atN.10, while 50
realizations were simulated atN510. The programs were
run on the IBM SP2 supercomputer at the Cornell the
center using message passing interface~MPI! @14# for paral-
lel coding.

1. Breakdown voltage

Figure 9 shows the breakdown field averaged over r
dom initial configurations as a function of concentration
initial defectsp on three different lattice sizes at differen
Rb . Ten configurations for each data point were averaged
N530 and 50, and 50 configurations forN510. Dashed
lines indicated the values expected from the asymptotic fo
@Eq. ~10!#, at intermediate concentrationsp. Lattices with
large Rb reach the asymptotic value quickly because th
respective needles rapidly reach their asymptotic values.
tices with smallRb require largeN to reach this value.

Figure 10 shows the inverse of the breakdown field 1/Eb
as a function of21/ln(p) at the dilute limit for 10310 lat-
tice averaged over 5000 simulations for each point. T
curves of Fig. 10 are consistent with Eq.~3!, Eq. ~4!, and the
curves of Fig. 2.

2. Near the percolation transition

We tested our assumption that the breakdown field n
the percolation transition is proportional to the probability
occurrence of a percolating clusterP(p,N), as given by Eq.
~5!. We performed 10 000 simulations on 10310 lattice at
Rb50.1 and 0.5 for 0.4,p,0.6. We measured from th
simulations the breakdown fieldEb and the percolation prob
ability P(p,N) ~the probability of spanning the sample!.
Then we plotted the breakdown field as a functionP(p,N) in
Fig. 11. A linear curve fit yielded the values ofEbg(1),
which were 0.41 atRb50.1 and 0.76 atRb50.5. This agrees
well with Eq. ~6!, which predictsEbg(1) of 0.44 and 0.74 for
a 10310 lattice. Thus on a small lattice we were able
verify Eq. ~8!, which gives us information about the ap
proach to the critical point, such as the critical expone
while large lattices are necessary to study such prope
directly.

3. Breakdown paths

Figures 12–14 show the breakdown paths for three dif
ent initial parameters. As expected, the paths are straigh

FIG. 10. 1/Eb vs 21/ln(p) in the dilute limit.Eb is in the units
of breakdown field of individual resistors. There are 5000 simu
tions at each point.
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57 3537DIELECTRIC BREAKDOWN IN MEDIA WITH DEFECTS
largeRb and spread out for smallRb . In Fig. 15 we plot the
fractal dimension as a function ofp for two extreme values
of Rb . We observe the expected behavior, as the curve
Rb50.5 begins atD51, while the curve forRb50.001 hov-
ers initially nearD51.722. Both curves converge at thepc
to the neighborhood ofD51.89. The scatter in the data
statistical; each data point is averaged over ten config
tions.

IV. SUMMARY

We investigated the breakdown field and the geometry
breakdown paths of an electrical circuit model for dielect
breakdown in media with defects of arbitrary residual res
tivity. We investigated the breakdown in an infinite or sem
infinite square lattice with a long needle defect, and bre
down in lattice networks with finite concentrations
random defects.

We found that analytic results from the infinite perfe
lattice and percolation theory can help us to understand
breakdown properties of random lattices throughout the c

FIG. 11. Eb vs P(p,N510) at Rb of 0.1 and 0.5 for 0.4<p
<0.6. The solid lines represent linear curve fits to the points. T
inset shows a curve ofEb vs p using the same data.Eb is in units of
the breakdown field of individual resistors.

FIG. 12. An example of breakdown paths on 50350 lattice with
Rb50.0001 andp50.02. Thick lines indicate initial defects. Th
axesX andY denote the number of lattice spaces in each direct
D.1.8.
or

a-

f

-
-
-

he
n-

centration range. For defects with nonzero residual resis
ity, the breakdown field reaches a finite value as the defe
lengthen causing the random lattice to reach the same br
down field in the thermodynamic limit. We also observ
that depending on the initial length of the seed defect and
residual resistivity, the breakdown either grows one dim
sionally, or spreads with a fractal dimension. We calcula
the phase diagram and relevant exponents for this crosso
A similar spreading crossover also appears in the rand
lattice with a dilute concentration of defects.

The effects observed in our simulations rely on the unli
ited energy supplied by the field source. An open questio
how the breakdown field and paths behave when the bre
down is driven by an energy-limited~current-limited! source.
This question is also important for practical observation

e

.

FIG. 13. An example of breakdown paths on a 50350 lattice
with Rb50.5 andp50.02. Thick lines indicate initial defects. Th
axesX andY denote the number of lattice spaces in each directi
D.1.

FIG. 14. An example of breakdown paths on a 50350 lattice
with Rb50.5 andp50.5. Thick lines indicate initial defects. Th
axesX andY denote the number of lattice spaces in each directi
D.1.89.
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these effects, since most adiabatic~i.e., with a very slow
voltage rate of rise! dielectric breakdown tests for real app
cations are performed with strongly current-limited sourc

Also, the effect of open surfaces is very important, a
needle defect near a surface is, due to the image poten
like two neighboring needles in the interior of the samp
This effect was previously noted by Li and Duxbury@4#, and
recently calculated in a simple fiber-bundle model by Le
and Chen@15#. Future studies should take into account t
effect of various boundary conditions.
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APPENDIX A: ALGORITHM

We wish to compute the field due ton defect bonds, la-
beled 1 throughn, in an otherwise uniform, infinite, perfec
square lattice@Fig. 16~a!#. The basis for the algorithm is th
solution for the potential due to a unit current source in
infinite lattice. Consider each defect bond. We can cons

FIG. 15. The fractal dimensionD of the largest breakdown clus
ter vsp plotted forN550. Each point is averaged over ten config
rations. The dotted line representsD51.722 for needle growth on
an infinite perfect lattice. The dashed line is the fractal dimensio
the percolating cluster atp5pc . Rb is the ratio of resistance afte
breakdown to resistance before breakdown.

FIG. 16. An infinite lattice network with defect bonds~a!, the
same lattice with each defect drawn as a parallel combination
resistances~b!, and an equivalent electricaln-port network~c!.
.
a
al,
.

h

he

-

n
er

it as a parallel combination of the unity lattice resistance a
an effective resistanceR8,

1

Rb
511

1

R8
, ~A1a!

R85
Rb

12Rb
. ~A1b!

We can also consider the nodes of this equivalent re
tance as a port~terminal pair! of ann-port linear circuit@Fig.
16~b!#. This enables us to use standard electrical circ
theory. The voltage~equal to lattice field! and the current at
each port are related byek52 i kR8, or, in matrix form, ē

52 ī R8 Ī̄ , where Ī̄ is the identity matrix.
The voltageej at a portj of a linearn-port circuit can be

calculated by a linear superposition of voltages produced
the current into each porti k , and the open-circuit voltage
ej

oc,

ej5ej
oc1 (

k51

k5n

i kRjk
th , ~A2!

or in matrix form

ē5 ēoc1 ī R̄̄th. ~A3!

In circuit theory, the proportionality constantsRjk
th are known

as driving-point and transfer resistances~Thévenin equiva-
lent resistances!.

The variables are easy to evaluate: the open-circuit v
ageej

th is equal to the applied fieldE for vertical bonds and
zero for horizontal bonds.Rjk

th is equal to the voltage devel
oped at portj when a unit current source is applied to portk.

The resistance can be found by calculating the volta
due to two unit current sources of opposite polarity attach
at the nodes, a dipole source. The solution for this volta
due to a unit current source for a perfect network was eva
ated by Watson@16#.

Briefly, Watson@16# computed the potentialv( l ,m) on an
infinite lattice of 1-V resistances at a distancel horizontal
lattice spacings andm vertical lattice spacings from the cur
rent source into the lattice at (0,0) by using a discrete fo
of Laplace equation, namely,

4v~m,l !5v~ l 21,m!1v~ l 11,m!1v~ l ,m21!1v~ l ,m21!

1d~ l ,m!. ~A4!

To find the potential, this equation was Fourier tran
formed, so that it was possible to solve for the potent
which, when normalized to be zero at the origin, became

v~m,l !5
1

2~2p!2E2p

p E
2p

p dx dy~e2 imxe2 i ly21!

cosx1cosy22
.

~A5!

From this result he obtained a set of recursion relations
the potential on the diagonal:

f

of
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v~m11,m11!5
1

2m11
@4pv~m,m!

2~2m21!v~m21,m21!#, ~A6!

with

v~0,0!50, v~1,1!5
4

3p
.

Also, he obtained a recursion relation for the potential alo
the principal axes

v~0,l !5v~ l ,0!5 (
p50

l 21

I p , ~A7a!

I p5
1

pp
@213~2p21!I p2 i2~p21!I p22#, ~A7b!

with

I 05 1
4 , I 15

2

p
2

3

4
.

The potential at all other nodes can be computed by us
Eq. ~A4! recursively. Using this procedure, we computed
potential in a 1003100 square due to a single current sou
at the origin once and for all. To obtain meaningful results
was necessary to use high-precision arithmetic~120 digits!
as the recursion relations are very sensitive to round-off
ror. Far from the current source, the potential is appro
mately

v~ l ,m!5
1

4
1

1

4p
ln~ l 21m2!. ~A8!

We will label by ajk the fraction of the current driven b
sourcej into the bondk. This fraction, which we will call the
Watson coefficient, is independent of the nature of the bo
and depends only on the distance and orientation of
bonds. The field in the resistive lattice due to a unit dip
source is thenRajk5Rjk

th . Thus, we can find equivalent re
sistances without having to actually find the equivalent c
cuit.

Now it is easy to combine this with Eq.~A3! to find the
current into each port,

0̄5 ē th1 ī ~RĀ̄1R8 Ī̄ !, ~A9!

where Ā̄ is the matrix of Watson coefficients. We can sol
this equation numerically, for example, byLU decomposi-
tion @13#. This algorithm has a number of advantages.
avoids finite-size effects by using an exact solution for
infinite medium. It can easily incorporate perfectly reflecti
planes or periodic boundary conditions by methods of
ages. Also, it is very efficient for small numbers of defec
g

g
e
e
t

r-
i-

d,
e

e

-

t
n

-
.

APPENDIX B: ANALYTIC RESULTS FOR ELLIPTICAL
DEFECT

We study the fields near an elliptical defect of resistiv
rb in a homogeneous continuous medium of resistivityr. An
elliptical defect represents a continuum approximation t
defect cluster.

To solve the continuum problem, we use elliptical coo
dinates as described in Morse and Feshbach@17#:

x5c coshj cosh, ~B1!

y5c sinh j sin h. ~B2!

We consider an ellipse with semimajor and minor axesb1
andb2, respectively, defined by

b15c coshj0 , b25c sinh j0 ,

as shown in Fig. 17.
The applied potential is given byV52Ex5

2Eccoshj cosh. The solution given by Morse and Fesh
bach @17# for a problem of a dielectric ellipse is easil
adapted for the resistive ellipse by associating the resisti
with the dielectric constant.

The potential outside the ellipse takes the form

Vo52Ex1Bce2jcosh, ~B3!

where

B5ES 12
rb

r D ej0sinh j0coshj0

rb

r
coshj01sinh j0

5ES 12
rb

r D b1b2

S rb

r
b11b2D ~b12b2!

. ~B4!

To apply the continuum solution to the lattice problem
we express the fields in Cartesian coordinates, and t
quantize the field at the lattice spacing, that we take to
unity without loss of generality. Also we normalize the r
sistanceRb5rb /r. To convert to Cartesian coordinates, w
solve Eq.~B2! for the hyperbolic and trigonometric func
tions. The result is

Vo52Ex1B$x2AD/21AD214x2y2/2%, ~B5!

D5~x22b1
2!2~y22b2

2!.

FIG. 17. An elliptical defect as an approximation of a defe
cluster on a lattice.
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We can read off the local fielde, which is just the differ-
ence in potentialV(x,y) between adjacent nodes, direct
from Eq. ~B5!. The field at the bond at the tip of the ellips
parallel to the major axisei is the voltage difference alon
the y50 axis:

ei5Vo~b1 ,0!2Vo~b111,0!

5E1E~12Rb!
b1b2

~Rbb11b2!~b12b2!

3$A2b1111b2
22b221%. ~B6a!

The tip voltage perpendicular to the major axis of the ellip
is

e'5Vo~b1 ,0!2Vo~b1,1!5E~12Rb!
b1b2

~Rbb11b2!~b12b2!

3H 1

A2
Ab2

2211A~b2
221!214b1

22b2J . ~B7!

1. Perfectly conducting defect

A perfectly conducting defect in a material of finite co
ductivity and a defect of any nonzero conductivity in a p
fectly insulating dielectric both haveRb50 and behave iden
tically. The fields at the tip forb1@1 andb1@b2 become

ei5E1E
b1

~b12b2!
$A2b1111b2

22b221%;E1EA2b1,

~B8a!

e'5E
b1

~b12b2!H 1

A2
Ab2

2211A~b2
221!214b1

22b2J
;EAb1. ~B8b!

As the perfectly conducting defect cluster becomes long
the fields at the tip increase without bounds as the squ
root of the ellipse lengthb1.

2. Defect with nonzero residual resistivity

A similar analysis of Eq.~B5! for RbÞ0 shows that the
fields at the tip first increase withb1, and then decrease t
zero, as was pointed out by Li and Duxbury@4#. However,
this behavior is not observed in numerical simulations
lattices. The reason is that as the ellipse becomes longer
tip becomes very narrow and sharp causing the resistanc
the tip to become very large. This makes the ellipse a p
analog for the discrete lattice problem. The resistance of
tip Rtip is

Rtip5E
b121

b1
rb

dx

b2A12x2/b1
2

5rb

b1

b2
cos21S 12

1

b1
D

;
rb

b2
A2b1, ~B9!
e

-

r,
re

n
the
of

or
e

whereas the resistance associated with the lattice eleme
rbb1 /b2. So, to obtain the correct resistance at the tip,
‘‘fix’’ the width of the ellipse, substitutingb28 for b2:

b285b1b2cos21S 12
1

b1
D . ~B10!

Then the asymptotic behavior becomes

ei`5E@112b2~Rb21!#, ~B11a!

e'`5Eb2~Rb21!. ~B11b!

We see that the field has vastly different behavior for p
fectly conducting defects and defects of finite conductivi
For defects of finite conductivity, the fields reach a nonze
asymptotic value.

3. Analytic results for needle defects

The preceding calculation is useful for showing the b
havior of arbitrary defect clusters. In this section we deve
a more elaborate calculation for an improved understand
of the needle bifurcation. The simple ellipse model has t
shortcomings for application to needle growth. The first o
is that the numerical coefficients correlate poorly with t
exact numerical results on a square lattice. Second, an el
is a two-dimensional structure whose representation on a
tice involves resistance changes to bonds that are paralle
perpendicular to the main ellipse axis.

Here we develop a more accurate analytical model. It
volves two steps. First, we calculate the fields due to a c
tinuum needle with resistivityRb by using the ellipse results
and taking the limitb2→0. However, such fields contai
variations on all distance scales, while the fields on a lat
cannot vary at scales greater than1

2. Hence it is necessary to
filter the resulting field to the appropriate wavelength.
simplify the filtering operation, the continuum fields are e
panded in a Taylor series near the tip of the needle, since
are only interested in the fields on bonds adjacent to
needle. The fields are sampled to obtain the voltage at
discrete nodes.

The continuous fields for a needle are

ei5EA~x81b1!22b1
2;ESA2b1x1

1

4
A 2

b1
x3/2D ,

~B12a!

e'5
E

A2
A2y21Ay414y2b1

2;ES Ab1y2
1

4
A 1

b1
y3/2D .

~B12b!

We take the Laplace transform of the fields using tra

form pairs Ax↔ 1
2 Aps23/2 and x3/2↔ 3

4 Aps25/2, to obtain
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ei~s!5EApSAb1

2
s23/21

3

16
A 2

b1
s25/2D , ~B13a!

e'~s!5EApSAb1

2
s23/22

3

16
A 1

b1
s25/2D . ~B13b!

For the filter, we a use a single-pole filter 1/@11(s/p)#. We
multiply the fields by the filter and take the inverse tran
form. We use the following transform pairs:

s23/2

11s/p
↔1/2p3/2F x3/2e2px

~2px!3/2
12

Ax

p3/2

2
x3/2e2pxerfc~A2px!

~2px!3/2
, ~B14a!
-

s25/2

11s/p
↔3/4p3/2F x5/2e2px

~2px!5/2
14/3

x3/2

p3/2
22

Ax

p5/2

2
x5/2e2pxerfc~A2px!

~2px!5/2
. ~B14b!

The field across adjacent bonds is obtained by settingx51
andy51 to obtain the field across the bonds to obtain

ei5ES 1.132Ab11
0.218

Ab1
D , ~B15a!

e'5ES 0.8Ab12
0.154

Ab1
D . ~B15b!
ry,
-
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