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Breather solutions to the focusing nonlinear Schrdinger equation
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The N-breather solution to the focusing nonlinear Sclinger equation is presented. It is shown that the
breather is linearly unstable, but the unstable modes are overstabilized and do not destroy the structure of the
breather. It is also demonstrated that the breather solution can be constructed as an imbricate series of rational
growing-and-decaying modelsS1063-651%98)01903-5

PACS numbd(s): 03.40.Kf, 03.40.Gc

I. INTRODUCTION

whereg; are distinct real constants,, _ ; is the summation
over all possible combinations @f;=0,1, u,=0,1,..., un

The self-modulation of one-dimensional waves in a non-=0,1, andzi@j indicates the summation over all possible
linear dispersive medium can be described by the nonlinegsairs chosen fronN elements, andy? are arbitrary phases.

Schralinger (NLS) equation
iUy + Uy +qlul?u=0, (1)

which has been derived in various branches of phydies).

It is well known that ifg<<0, a plane wave is stable for the
modulation and ifg>0, the plane wave is not stable but

subject to the modulational instability. Equatiéh with g

>0 is called the focusing NLENLS) equation and has an
N-envelope-soliton solution which satisfies the boundar

conditionu—0 as|x|—o [6,7]. On the other hand, Eq1)

with q<0 is called the defocusing NLEDNLS) equation
and has théN-dark-hole soliton solution which satisfies the
boundary conditioru|?— const as|x|— and which was

given by Hirota[8] as

U=po eXp(i0) 7, @

where
(N) N

f=2 EXF{Z Ajj i 2 w7
©=0,1 1> =1

3

(N) N

9= > exp[z AijMiMj"'E mi(n+2ig) |, Q)
401 =i =1

and

2

sin 3(¢i— ;)

A )=
SXPA) sin 3(¢i+ &)

7= Pix—Qjt+ 75,
p{=—2qp§ sir’ ;.
Q;=2kp;—p; cot ¢;,

6=Kkx— wt,
omie=ar}
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Substituting the expressidR) into the NLS equatioril),
we have the coupled equations foandg,

(iD+2ikD,+D2)g-f=0,
(DZ+qpd)f-f—apd|g|?=0, e

where we have used the boundary conditioi’— p3 as

))x|—>oo and 6=kx— ot, o=k?—qp3, the operator®,, Dy,

and various products of them are defined by

n

Dn b= i_i t)b(t’
ga-b= T a(t)b(t’)[y—¢,
{9 n
n = _ '
Dxa-b—<ﬁX P a(x)b(x")|xr—x-

We see that the bilinear forfd) of the DNLS(FNLS) equa-
tion is converted into that of the FNLEDNLS) equation
under the transformation

k— —ik,

X—iX, g——4q. (5)

t——t, w——w,
This fact shows the possibility that the solution of the DNLS
equation with expressiof2) can be transformed into the so-
lution of the FNLS equation by using the transformat{&n
Ablowitz and Herbst[9] have already shown that the
2N-dark-hole soliton solutiof8] of the DNLS equation be-
comes the solution of the FNLS equation under the transfor-
mation (5) with k=0 provided the evenness condition,
u(x,t)=u(—x,t), is satisfied.

It is well known that an exact periodic solution to the
soliton equations can often be expressed by the sum of con-
stituents which have a localized structure individually, such
as solitond 10—12. Such a superposition was found by Toda
[13] for the case of the cnoidal wave of the Toda lattice and
the Korteweg—de VriesKdV) equations. Zaitsey14] and
Tajiri and Murakami[15] have succeeded in obtaining the
periodic soliton solution and the lattice soliton solution by
the nonlinear superposition of the rational soliton solutions
for the Kadmtsev-PetviashviliKP) equation with positive
dispersion, respectively. Recently, it was shown that the non-
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linear periodic wave solutions to the Boussinesq equation f=1+e”+e"24+ae"* 72

can be constructed as the imbricate series of rational

growing-and-decaying modes which are localized in space g=1+ent2diy gmt2doy gemt (et - (10)
and time[16,17. The uniform state with negative back-
ground described by the Boussinesq equation is linearly urand
stable for all waves. The rational growing-and-decaying
mode solution can be in existence on such a uniform state.
Taking into account the fact that the uniform plane wave
described by the FNLS equation is not stable but subject to
the modulational instability18—20, we can expect that the
FNLS equation also has the rational growing-and-decayin
mode solution, which solution has already been found b
Akhmediev, Eleonskii, and Kulagif21]. And we can also

6=kx— wt,

where P;, Q;, 77]9, and ¢; are complex. Substituting Eq.
10) into Eq. (4) with g>0, we find that if the following

relations are satisfied, EP) is the solution of Eq(6),

expect that overstabilized wave solutions to the FNLS equa- o= kz—qu,
tion are constructed as the imbricate series of the rational
growing-and-decaying modes. b= £

In this paper we discuss the solutions of the FNLS equa- ! '
tion. The purposes of this study are to show itnathe FNLS P, =i \/ﬁpo sin ¢, ,

equation has th&l-breather solution(ii) the recurrent wave
solutions can be constructed as the imbricate series of ratio-
nal growing-and-decaying modes, afiid) the breather solu-
tion is linearly unstable but the linearly unstable modes do
not destroy the structure of the breather.

P,=iv20po Sin ¢,=—i/2qp sin #1,
Q=2kP,—P? cot¢; (j=1,2),

2
II. BREATHER SOLUTIONS a=

(11)

{sin%wl—@) ? [cos%wl—dﬁ*)

L1 = 1 *
sin 3 (¢, + cos5( 1+
We consider periodic envelope-wave solutions of the 2(éa+ 62) 2(dat 1)
FNLS equation Then, we have the breather solution

iU+ Uy, t+qlul?u=0 (g>0), (6) 1

1+
Ja cosh g+ o) +cos 7,

U= pg cos 2pge'(?*2¢R)

with the boundary condition

) cosh 25, ) )
lu2=p§ as |x|—. 7) X W_l cos 7, +i| tan 2pg sinh g+ o)
R
Under the transformatio(®), the 2N-dark-hole soliton solu- sinh 2,
tion of the DNLS equatiorg<0 transforms the solution of ~ Cos % sin m)} , (12
the FNLS equatiom>0 with R
plzi\/ﬁpo sin d)l Where’Y]R: PRX_QRt+ 7]%, n= P|X_Q|t+ 7]|O, andois a

constant, and®,=Pgr+iP,, Q;=Qr+iQ,, anda are de-
_ ) termined for giveng,= ¢r+i¢, by Eq.(11) as follows:
Prem="iV2dpo sinhy  (1=12,... M),

(PR—PP)+0pg(1—cos 2 cosh 24) =0,

w=k’=dpj ®) , ,
2PRrP,+qpg Sin 2¢ sinh 2$,=0,

for N=2M (M is an integex, which has been pointed out by
Ablowitz and Herbst[9]. It should be noted thap; (j
=1,2,... N) are distinct pure imaginary angl; and{}; (j
=1,2,... N) are real constants. In this paper we call it the

(PZ— P?)sin 2pg+2PgP, sinh 2, 0

Qr—2kPrt cosh 2p, — cos 2pg, :

N-growing-and-decaying mode solution. (Pé— P,Z)sinh 2p,—2PRP, sin 265
We now consider the extension of the solution to the case 1~ 2kP,— = =0,
; cosh 2p,—cos 2pg
thatp;, ;, and ¢; are complex numbers. First of all, we
confirm that the two-soliton solution with complex wave cosit ¢,

numbers and frequencies satisfies ). The two-soliton
solution may be written as

The condition of the nonsingular solutioa>1, is always
u=po exgli 0) 9 9) satisfied. Figure 1 shows the typical time development of the
f breather solution.
As special cases of this solutiofi) the solution with
where ¢r#0 and ¢, =0 corresponds to the first homoclinic orbit
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to the stationary breather solution, which is periodic in time
and localized in thex space.(iii) Taking ¢g=€7y and ¢,
=¢€d, we have

lul 1 W Pr=—20pode+O(€?),

L Pi=\2qpoye+O(€),

30 -15 0 15 30
a) Qr=(20p3y—2kpo\298) e+ O(&°),
, Q= (2qp55+2kpoV207) e+ O(€%),
2| ] Va=1+3(y+ 8% €, (14
lul
1 N - and
0 . - f=[(T&+70)+ (¥*+ %)+ 0( %),
30 15 0 15 30
x b) 9=[(T&+ 7)) —3(¥*+ &%) +4i(yp+ 67)) 1€+ O(€%),
(15
3 ' ' as e—0, where ng— 7= €nr+O(€?) and n,— 7= €+
O(€?). Substituting Eq(15) into Eq.(9) and taking the limit
2r 5 e—0, we have
lul
1 ) 4+ 8iqp§t
. , , U=po &XMI0)| 1= o o 2k 2+ 4l
-30 15 0 15 30 (16
X C)

This is an exact solution which is localized in space and time
as shown in Fig. 2 and we call this solution the rational
FIG. 1. Typical time development of a breather solutiondor growing-and-decaying mode.

=2, wherex andu are dimensionless. It is interesting to note that even if we take the wave
numberP; and frequency}; complex §=1,2), the disper-

obtained by Ablowitz and Herb$8], which is periodic in the  sion relation(11) is the same form as the case whéreare

x direction and localized in time. We call this solution the pure imaginary and}; are real. The same statements are true

growing-and-decaying mode solution hereafter in this paperfor four-soliton solutions. This suggests that tNebreather

(i) The solution withk=0, ¢g=0, and¢,# 0 corresponds solution to the FNLS equatio(6) can be expressed as

FIG. 2. Rational growing-and-decaying mode solution of the FNLS equationgwith for po=1 andk=0. Curved lines drawn at the
bottom of this figure are contour lines. In this figuke,t, andu are all dimensionless.
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A. Growing-and-decaying mode

.9
U= po eXpi 6) £ (17 First of all, we try to construct the growing-and-decaying

mode solution. It is interesting to note that the rational

(2N) 2N

f= > eXF{E Aij i 2, i,
©=0,1 1>] =1

growing-and-decaying mode solutiéi6) is rewritten as the
following form:

u=po expli[kx—(k?—qp§)t]}

(2N) 2N
g= 2)1 exl{gj AijMiMJ“LJEl ri(n+2id)) |, x| 1+ ! )
u=0, = .
18 iqpt+31+20p5(x—2kt)?
where X ( 1+ ! ) (22)
. iqpgt—31+2qp5(x—2kt)?)
7= Pix—=Q;t+ 7y, _ _ . ,
Especially in the case where the rational growing-and-
% decaying mode does not propagate, ikes0, it takes the
n+NT 7n following form:
PronPh Higpdt| 1+ !
u=pq exp(i
* Po PHIPE T e s Vi 200
Qn-%—NZQn g
X[ 1+ ! (22
— % .
nen= Pt iqp3t—3V1+2qpax?
forj=1,...,N,n=12,...N; On the basis of Eq22), we assume the form of a growing-
and-decaying mode solution witth=0 as follows:
w=k?-qp},
1
_ _ u=po exdi(at+¢)]| 1+b>, ——————
P;=iv2qp, sin ¢;, ~ jat+v(x)+n
- _p2 , - -
Qj=2kP;—P{ cot ¢ (19 X(“—b% iat—v(x)+n’)’ (23
forj=12,....N; and where the summatiol,, means limy_,., EL_N, v(x) is a
- 2 function of x to be determined, and and o are real con-
exp(A )= Sin 3(ém— én) stants. This expression shows the superposition of the ratio-
XA Amn) = sink (ém+ ) ' nal growing-and-decaying mode about thedirection be-

cause the parts connected witlare treated as real functions
2 and the parts connected withare treated as pure imaginary
functions. We note that Eq23) is rewritten as

cos 3 (¢m—b7)
cos 3 (¢m+ é7)

quAm,n+N):[

u=pg exdi(ot+ ¢)](1+bm cof m[ v(x) +iat]})
1k g%y ]2 X (1—ba co{m[ v(x) —iat]}). (29
sin 3 (¢m—n) 20

sin %((%Jr ¢*) After substituting Eq(24) into Eq. (6), we have

quAer N,n+N) :|:

— 2 2K2\2
for m=1,2,...N, n=1,2,... N, where ¢,, are distinct o =0pp(1+7b%)%, (25)

complex constants. Here, it should be noted that in the (

DNLS equation we cannot take the wave numbers and fre- [1- 72b2 cof 27u(x)],  (26)

dv(x))zqugbz

quencies,P; and ();, complex since the solution becomes dx 2
singular.
d?w(x) 2 3% cot 2mu(x) 1+27%b? a
w2 dpom DT COt amp(X 202 42213
Ill. BREATHER SOLUTION AS IMBRICATE SERIES OF dx b apomb

RATIONAL GROWING-AND-DECAYING MODES
+ cof 27 v(X)

. (27)

The purpose of this section is to show that the growing-
and-decaying mode, stationary breather, and breather solu-
tions can be constructed by the imbricate series of the ratioccomparing Eq(27) with the derivation of Eq(26) by x and
nal growing-and-decaying modes. using the relation * co A=coseé A we find
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FIG. 3. Growing-and-decaying mode solution of the FNLS equation @tl2 for pg=1, b=0.137,C=0, andk=0. As we can see, it
is constructed as the imbricate series of rational growing-and-decaying modesxiritieetion.

a=qp3(1+ 7w2b?)b. (28) X' =x—2kt,
t'=t,
Integrating Eq.(26), we obtain the form of/(x),
u(x’,t")=exd —i(kx+k?)Ju(x,t), (31
1 1 5 we find that the growing-and-decaying mode solution with
v(x)=5_ arcco g cog y2m abx+C)|. k#0 is constructed by the following imbricate series:
(29 U=po expli{kx+[ —k2+qp2(1+ m2b?)2]t})
1

These show that Eq23) is the solution to Eq(6) if two X| 1+ bE - oK
constantsg and a, and the functiorv(x) are given by Egs. n lat+p(x=2ki)+n

(25), (28), and(29), respectively. From Eq$23), (25), (28),

1
and(29), we obtain an exact solution, . .
(29), w i X uti X 1+b§ Tat—s(x—2kD 1’ (32
u=po(1+ 7?b?)exp(i[qpa(1+ m?b?)%t+ ¢]} The imbricate series of rational growing-and-decaying
modes, Eq(23) or Eq.(32), is modified from the usual way
27b of applying imbricate series which is the superposition of the
X|1= 1+ 72p2 whole solitary wave. It is very interesting to note that the

growing-and-decaying mode is constructed by the products

b cosh 2rat+i sinh 2rat of two imbricate series.

X
cosh 2rat— (1/\1+ 7°b?)cog \2m?abx+ C)

B. Stationary breather

(30 Next, in the same way as in the preceding section, we

construct another periodic solution, the stationary breather
This solution is periodic in ther direction and it grows ex- Selution, from the superposition of the rational growing-and-
ponentially at initial stage from the time-oscillate back- d€caying modes. On the basis of Eg2), we assume the
ground, takes the maximum amplitude at a time, and finallyfOrm Of & stationary breather solution as
decays exponentially to the time-oscillate background, which
we call the growing-and-decaying mode solution. In the case u=po exdi({t+¢)]| 1+ ihE
g=2, Eq.(30) is in agreement with the solution shown by n

1
l+|h§ kt—iu(x)+n’

1
kt+ip(X)+n

Ablowitz and Herbst. A typical growing-and-decaying mode

solution is shown in Fig. 3. Comparing Figs. 2 and 3 is X

helpful for us to understand that the growing-and-decaying

mode solution can be constructed as the imbricate series of

rational growing-and-decaying modes. where the summation means jim., =\__\, u(x) is a
Since Eq.(6) is invariant under the Galilei transforma- function of x to be determined, ands and ¢ are real con-

tions, stants. This expression shows the superposition of the ratio-

; (33
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nal growing-and-decaying modes about thdirection be- 7r=Prx— Qgt+ 72,
cause the parts connected withre treated as real functions
and the parts connected withare treated as pure imaginary 7m=Px—Qt+7°,

functions. Rewriting Eq(33) as
anda and relations amongg,P,,Qr,, are given by Eq.

u=po exdi({t+¢)](1+ha coth{wl u(x)—ixt]}) (13). And furthermore, taking into account that is un-

% (1—h t Fikt 34 _changed even if is mgltiplied by expéx+b) with a andb
( m coth ] p(x) +ixct]}) 39 independent ok, we find that the breather solution can be

and substituting Eq(34) into Eq. (6), we have expressed by
o n2(1_ 212\2 2 &
{=0qpy(1—mh%)*, (35 |u|2=p%+am In[ Va cosiPrx— Qgt+ o)
du(x)\2 qpzh?
( F )) = [1- 720 cotf? 2mu(0)],  (36) ~eosPy it 0)), 49
whereo=73+3 Ina, 6= 7"+ .
dux) o, L, 1—272%h? K In Fig. 4, this solution is drawn for a particular choice of
B2~ o h” coth 2rpu(X)| | —z7—+ qp2m2h? the constants. The time development of the breather appears

to be complicated at one view as shown in Fig. 1. However,
when we depict the breather solution in tket plane, it
' (37) seems to represent an inclined sequence of rational growing-
and-decaying modes as shown in Fig. 4. This leads to the
Comparing Eq(37) with the derivation of Eq(36) by x and ~ conjecture that the breather solution is also expressed by the

+ coth? 27 u(X)

using the relation cofhA—1=cosecR A gives imbricate series of rational growing- and-decaying modes.
But, if we assume the same expression for the breather solu-
KI_QPcz)(l—thz)h. (38)  tion as the previous sections, the calculation becomes te-
dious. We note that the rational growing-and-decaying mode
Integrating Eq.(36), we obtain the form ofu(x), solution(21) can be rewritten as
1 1 1 4° 1
w(X)= =—— arccos —COSK\/—ZWZKhX-f-C)]. ul2=p2—=—1In
2m %\/1—w2h2 lul*=ro g x| [ 11+ 2qp2(x—2kt)2+iqpit]?
(39
1
From Eqs(33), (35), (38), and(39), we obtain the following X - . (44)
exact solution: [3V1+20p5(x—2kt)*~iqpjt]?
Then, we assume the form of the imbricate series for the
242 C2 2h2\2p 2mh i :
u=po(1—mh?)exdiqpg(1—7h?)“t+i¢]| 1+ 1= 22 breather solution as follows:
1 4 - 1
—i ai 2_ 2 —
y wh cos 2rkt—i sin 2wkt | |u|?=p3 qa_lean_E_x PO TR
cos 2rkt— (11— m?h?)cosk - 2m°khx+ C)

(40) X

- 1
H:E—OO [QD(X,t)'f‘Hﬂ(X,t)_n]z:“,
This is the stationary breather solution. This solution is lo- _
calized in space and grows and decays recurrently in timewhere o(x,t) and (x,t) are functions ofx andt to be

(49)

oscillate background. determined. It is important to note that E45) is rewritten
in the form
C. Breather solution 2
It is difficult to construct the breather solution in the same |U|2=P§_ a 2 In{[ w*coseém(o—iy)]
way as in the previous two sections. It is interesting to note
that the absolute square of the breather solution is given by X[ mw2coseém(o+iy)]}
2. 2,27 = 2+Ea—2 In[cosh 27— cos 27 (46)
|U| —p0+am|nf, (41 =Po qaxz [ U @]
with Comparing this equation with E¢43), we find
f=1+2e"R cos 7, +ae?R, (42 cosh 2ry=\/a cosHPrx— Qgt+ o),

where cos Zro=cog P x—Qt+6), 47
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FIG. 4. Breather solution of the FNLS equation witk 2 for pp=1, Pg=0.5,P,=1.5, andk=0.1. We can see that the breather solution
is constructed as an inclined sequence of rational growing-and-decaying modesctarttie axes.

or

cosh Zri=cosiPrx— Qgt+ o),

1
COS 2rp= — cog P x—Q,t+6). (48

Ja

Equations(47) and (48) are readily solved to give

1
=5 In[ Va coshPrx—Qgt+ o)

+ Va cosi(Prx— Qgt+0)—1],

1
and

1
l//:Z (PRX_QRt+O'),

: (50

1 1
o= — arcco{— cog P\ x—Qt+0)

2 \/5

respectively. The substitution of EGL9) or Eq.(50) into Eq.

(45) gives the breather solution as an imbricate series of
rational growing-and-decaying modes.

Now, we consider the asymptotic formulas of these solu-
tions. Taking the limit (@ ¢gr—0 and ¢, —0 with
¢r! P —0(P—0,02—0), we have

1
Y=o J1+20ap5(x— 2k,

1 2
o= 5= (2ap8) b, (51)

(b) pgr—0 andp,—0 with ¢,/ pg—0, we have

— 1 2
U= 5 (2ap30) i,

1
o= 5= V1+20p5(x— 2k . (52)

Thus for very smallpg and ¢, (very smallP and Q)), the
solution(45) to Eq.(6) having ¢ and ¢ defined by Eqs(49)
and (50) is approximated by

1 2 =
|U|2=Pﬁ—am |HH >

©

X

1
[%¢1+qug<x-zkt>2+iqut—wn/qb,JZ]

1

and

53
2. [%¢1+2qpé<x—2kt>2—iqpét—wn/¢|]2H 3

1 -
|U|2=Pg—aﬁ—xz |”” >

X

1
N [%\/1+2qu(x—2kt)2+iqp§t+iwﬂ/(bR]zl

: 54
n;w [%¢1+2qu(x—2kt)2—iqut+iwn/¢>R]2]] 59
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respectively; which are simple summations of rational

growing-and-decaying mode solutions. The constituent t B
hump of the breather with smaflz and P, resembles ratio- E..
nal growing-and-decaying mode sufficiently as shown in Fig. E Y A E-

4. In this sense, it is proper to regard the breather as the
nonlinear superposition of rational growing-and-decaying

modes.
A A
Y A A
IV. STABILITY OF BREATHER

In this section, the stability of the breather is studied by
making use of the breather and the growing-and-decaying D
mode solution. The plane wave of E®),

u=po exfi(kx—ot)], (55 FIG. 5. The schematic diagram of the world lines of breather
. . . . and growing-and-decaying mode. Breather takes the maximum am-
with the dispersion relation plitudes on lineB. Growing-and-decaying mode takes the maxi-
2 2 mum amplitude on lineG. In the neighborhood of lin&, the
w=Kk"—0qpp, (56) growing-and-decaying mode is grown, but at regions far from line
G, ie., att=—T" andt=T" (T',T">1), the amplitudes of the
growing-and-decaying mode are too small, astat—T' the
growing-and-decaying mode does not grow yet, and=al” it
damps to die out already, respectively.

is linearly unstable to infinitesimal modulational perturba-
tions of the form

A d
u=pg exgi(kx—wt)]y 1+ e+(t)exp{ip X— a—(: t”
Qg=p? cot ¢gr=py20p5—p,
~ J
+e(t)exp{—ip x—% )” (57)
Jw
L - Q=2kp=—-p, (61)
with €. (t) = €. (0)expt), where the growth rate is given d

by
s 2 which are in agreement with the growth rgt8) and the
o°=p*(29p5—P%). (58 frequency of modulational perturbation given by E&7),

This is well known as the Benjamin-Feir instabil[t#2]. The respectively.

most peculiar feature of solutions to the NLS equation is the Now, we consider a solution consisting of a breather
St p . q and growing-and-decaying mode. This is obtained from
existence of the Fermi-Pasta-Ulam recurrence phenomen

) . . . 0é‘qs. (17)—(20), whereN=2 is set and the breather wave
in the long time evolution of the unstable solution. Lakenumber, frequency, and phasB,=Pg+iP,, Q,=Qpt

et al. [18] have shown that the numerical solution of Eg). i), and ¢,=detid , are taken as the same as Etd)
I 17 ¥R ]

with periodic boundary conditions and with a Benjamin-Feirand the arowing-and-decaving mode wave number and fre-
unstable initial condition shows that a state of maximum 9 9 ying

modulation is reached by the unstable wave system and aft&"€"<Y P2=2|p.=| V2ap, sin ¢, .and Q=05 Fi0y
reaching maximum modulation, the solution demodulates=PV2dpo— P +i2kp. The world lines of the breather and
and eventually returns to an unmodulated state. It is interesgrowing-and-decaying mode in thet plane are schemati-
ing to note that the nonlinear evolution of an unstable mod&ally drawn in Fig. 5. The lin€5 shows the maximum am-

is described by the growing-and-decaying mode solutiorPlitude of the growing-and-decaying mode. The growing-
which is given by Eq.(12) with ¢,=0. The mode grows @and-decaying mode has a finite value only in the shaded

exponentially at initial stagete —T', T’>1) as follows: ~ 'egion near the lineG. The breather and growing-and-
decaying mode solution before growth of the growing-and-

u=po expli(kx— wt+4¢g) {1+ cert’ cog px—Qt decayjng mode is expr'esse(':i ap.proximately by the following
equationsyi) in the regionD in Fig. 5,
+ )}, (59
wheret’=t+ T’ and e=(2/a) (e~ 2 r—1)exp( QrT' — 7%) U= pge! (Kot +4¢2) @+geﬂth’ glszflgO (62
<1, takes the maximum modulation at a time, and finally fo fa
(t=T">1) returns exponentially to the initial state as fol-
lows: with

u=pg exfi(kx—ot) {1+ €e'e 2" cog px—Q,t+ 7%}, .
po exlikx—wt) {1+ e apx=dh 77'()6}30) go=1+ 267" T+ 295 cosh 2h, CO 7, + 0, + 0,)

Wheret”:t_-l—" and 6, — 2(e2i¢R_ 1)exp(_QRT"+ 77%) and _| S|nh 2¢| S|r( i + 01“1‘ 02)] + M lean+20'+4i¢R,
the growth rate()z and frequency}, are given by (63
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g,=e 2?2 [cosp(x— 2kt)
+e"R2¢R(L  {cosh 2b, cog 7, + p(x—2kt)+ 6]
—i sinh 2p, sin 7, +p(x—2kt)+ 6,1}
+Ly{cosh 2h, cog n,— p(x—2kt)+ 6,]
—i sinh 2¢, sin 7,— p(x—2kt)+ 6,1})
+M;L,L,e?"R"4r cog p(x—2kt) + 6, — 6,]],
(64)

fo=1+2e"™"7 cog 5+ 01+ 6,) + M,e?>"R" 27 (65)

f1=cosp(x—2kt)+e"™{L, cog n + p(x—2kt)+ 0]
+L, cog n,— p(x—2kt) + 65]}

+M;L,L,e?"R cog p(x— 2kt)+ 6, — 6,], (66)
where
o=In(L,L,),
cosh¢y|? 12
cos¢r| ' |cosd, =Ma,
[sin%wl—(ﬁz) L an [coi—wl—@) L
sink(d+ )] [ cosi(ehy+ bp) ’

2 ,
;-: J— e_QZRT _772
M, ’
7r=PrX— Qpt+ 75, m=PX=Qt+ 7},

andt’=t+T’; and(ii) in the regiondD,; andD,, the solu-
tions are given by

U:poei(kX7wt+4¢2){1+ 2L1L26”R
X[ (€% R cosh 2p,—1)cog 5, + 61+ 6,)

+e(e 8% 1)eR cogp(x—2kt)]}  (67)
and
U:P ei(kx—m'[) 1+ 2 e R
0 MLl

X[ (e~ 2%r cosh 2p,—1)cod 7, + 61+ 6,)
_ie72i¢R sinh 2¢| S|rK 7]|+ 01+ 02)]

€ . ’
+ —— (e 2%2—1)e"2R" cog p(x—2kt)+6;— 6,]¢,
LiLo
(68)

respectively. Here, we note that’R is small ande™ "r is
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with the same growth rat@,g as Eq.(58) for the Benjamin-
Feir instability. This means that the breather solution is lin-
early unstable to modulational perturbation. The perturbation
reaches a state of maximum modulation on the ha the

x-t plane. After reaching maximum modulation, the pertur-
bation begins to damp and then damps to die out at suffi-
ciently large time as the following formsi) in the regionE

in Fig. 5,

U= ce (k—wt) ing—Qth” M

- . , (69
with
go=1+2e"R" 2%’ cosh 2, cos 77, —i sinh 24, sin 7]
M e27R* e, (70
9,=e??%2[cosp(x— 2kt)
+e"RT24R(L {cosh 2p, cog 7, + p(x— 2kt)+ 6]
—i sinh 2, sin 7, +p(x—2kt)+ 6,1}
+Ly{cosh 2, cog n,— p(x—2kt)+ 65]
—i sinh 2¢, sin 7, — p(x—2kt) + 65]})
+M;L,L,e?"RT414r cod p(x—2kt) + 6, — 6,]],
(71)

fo=1+2e"R cos 7+ M,e2R, (72)

f_1= cosp(x—2kt)+e"{L, cog 7+ p(x—2kt)+ 6]
+L, co§ ,— p(x—2kt)+ 65]}
+M;L;L,e?"r cog p(x— 2kt)+ 6, — 65], (73

R ” 0 ey s .
where' e=2e ®2rRT " 72 t"=t—T"; and (ii) in regionsE,
andE,, the solutions are given by

u=poe' K~ @1+ 2e7R[ (%' ¥R cosh 2p,— 1)cos 7,
—ie??r sinh 2¢, sin 7]
+e(e??2—1)e” 2R cog p(x— 2kt)]} (74)

and
) ) 2 )
u=poe' Kx-et+4idr) 1 4 o€ "R[ (e~ 2'%r cosh 2p,— 1)
1
X cos 7, —ie”?'¥r sinh 24, sin 7,]

+ el Lo(e?%2—1)e™ 2R cog p(x—2kt)+ 6;— 6,] 1.

(79

We can obtain the one-breather ard-growing-and-
decaying modes solution by using the bilinear form. The

very small in Egs.(67) and (68), respectively. Equations solution shows that the growing-and-decaying modes damp
(62), (67), and(68) show that the perturbation of wave num- to die out at sufficiently large time and only the breather
ber p on the breather grows exponentially at initial stageremains finally. The nonlinear development of these unstable
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modes on the breather are described by the solutions thabte that the breather solution to the DNLS equation be-
superpose the one-breather and Khgrowing-and-decaying comes singular. It is also shown that the growing-and-
modes. The linear unstable modes do not destroy the strugecaying mode, stationary breather, and breather solutions
ture of the breather, in other words, the identity of thecan be constructed as the imbricate series of rational
breather is not lost. The effect of the unstable modes on thgrowing-and-decaying modes. In this sense, we can regard
breather is the phase shifts of the plane wave and ththe rational growing-and-decaying mode as the constituent of
breather after enough time passed. recurrent wave solutions on the unstable wave field. Their
periodic solutions are constructed by the products of two
imbricate series, rather than a single imbricate series as in
other applications. The stability character of the breather is
We have shown that the FNLS equation has theinvestigated by using the exact solution. The breather is lin-
N-breather solutions with the boundary conditjof?=p3 as  early unstable. The nonlinear development of unstable
|x|—c. As special cases of the breather solution, we havenodes on the breather is described by the solution consisting
the growing-and-decaying mode, stationary breather, and ra@f the one-breather and growing-and-decaying modes by us-
tional growing-and-decaying mode solutions. The growing-ing the bilinear form. It is shown that the linearly unstable
and-decaying mode solution is obtained by taking the limitmodes are overstabilized and do not destroy the structure of

V. CONCLUSIONS

¢—0, which is localized in space and time. Here, we have tdhe breather.

[1] V. I. Karpman, Zh. Eksp. Teor. Fiz. Pis'ma Re§].829(1967)
[JETP Lett.6, 227 (1967)].

[2] T. Taniuti and H. Washimi, Phys. Rev. Le#tl, 209 (1968.

[3] H. Hasimoto and H. Ono, J. Phys. Soc. JB8, 805(1972.

[4] A. Davey, J. Fluid Mech53, 761(1972.

[5] T. Taniuti and N. Yajima, J. Math. Phy&0, 1369(1969.

[6] V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Bi%.118
(1971 [Sov. Phys. JETRB4, 62 (1972].

[7] R. Hirota, J. Math. Physl4, 805(1973.

[8] R. Hirota, in Backlund Transformationsedited by R. M.
Miura, Lecture Notes in Mathematics Vol. 51Bpringer-
Verlag, New York, 1978

[9] M. J. Ablowitz and B. M. Herbst, SIAM(Soc. Ind. Appl.
Math) J. Appl. Math.50, 339(1990.

[10] A. Korpel and P. P. Banerjee, Phys. Le82A, 113(1981).

[11] J. P. Boyd, J. Math. Phy£5, 3390(1984.

[12] J. P. Boyd, Adv. Appl. Mech27, 1 (1990.

[13] M. Toda, Phys. Rep., Phys. Left8C, 1 (1975.

[14] A. A. Zaitsev, Dokl. Akad. Nauk SSSR72, 583(1983 [Sov.
Phys. Dokl.28, 720(1983].

[15] M. Tajiri and Y. Murakami, J. Math. Phy84, 2400(1993.

[16] M. Tajiri and Y. Murakami, J. Phys. Soc. J@0, 2791(1991).

[17] M. Tajiri and Y. Watanabe, J. Phys. Soc. JB6, 1943(1997.

[18] B. M. Lake, H. C. Yuen, H. Rungaldier, and W. E. Ferguson,
J. Fluid Mech.83, 49 (1977).

[19] B. M. Lake and H. C. Yuen, J. Fluid MecB3, 75 (1977).

[20] H. C. Yuen and B. M. Lake, Phys. Fluids, 956 (1975.

[21] N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, Teor.
Mat. Fiz.72, 183(1987 [Theor. Math. Phys72, 809(1987)].

[22] T. B. Benjamin and J. E. Feir, J. Fluid Mec®?, 417 (1967).



