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Superstructure gratings in the tight-binding approximation

C. Martijn de Sterké
School of Physics, Australia and Australian Photonics Cooperative Research Centre, University of Sydney 2006,
Australian Technology Park, Eveleigh 1430, Australia
(Received 11 August 1997

The reflection properties of gratings, such as those found in the core of an optical fiber, previously have been
interpreted in terms of evanescent or propagating wave behavior in different parts of the grating. According to
this interpretation, nonuniform gratings can thus be understood in a similar way to one-dimensional quantum-
well structures. Here we exploit this similarity to develop an analytic theory for deep Bragg superstructure
gratings. Using a method similar to the tight-binding method from condensed matter physics, we find approxi-
mate analytic expressions for the high- and low-reflectance frequency regions of such gratings.
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I. INTRODUCTION and fiber§2-4,6 and multichannel dispersion compensation
in optical fibers[5]. SSGs also have interesting nonlinear
Superstructure Bragg gratingSSGS3, or optical superlat- optical propertied10,11], though we do not discuss these
tices, are gratings with parameters that vary periodically as here.
function of position1-7]. SSGs thus have two periodicities: ~ Coupled-mode theor}8] is a widely used method to ana-
one at the level of the wavelength of light, indicateddyy lyze gratings. In this method one works with the envelopes
and a superstructure peridd, which is typically 1 mm to 1 of electric field rather than with the field itself. This signifi-
cm. To understand qualitatively the key properties of SSGgantly reduces the complexity of the problem compared to
we consider the Fourier spectrum of the refractive index8olving Maxwell's equations directly. Nonetheless, in gen-
[2,3,7. Since a uniform grating is characterized by a single€ral one cannot find analytic expressions for key SSG param-
periodd, this spectrum consists of a series of frequency com€ters. An exception is shallow SSGs, to which the argument
ponents, the lowest of which is at frequencyr/al. This outllr_1ed in the first paragraph above can be appll_ed. This
leads to a reflection spectrum consisting of a peak at thEourier argument does allow one, for example, to find ana-
Bragg frequency‘=c/2mj wherec is the speed of light in Iytic expressions for the widths of the highly reflective spec-
— ' D i _tral regions. Here we develop the theory for the opposite
vacuum anch is the average _refractlve mdgx in the grating; |imit, that of deep SSGs, for which analytic results can also
reflections associated with higher harmonics occur at mucRe gptained.
higher frequencies. In contrast, the spectrum of a SSG con- o find analytic results for deep SSGs it is important to
sists of contributions at frequensie.. , 2m(1/d—2/A),  note that coupled-mode theory allows one to understand
2m(1/d—1/A), 27/d, 27(1/d+1/A), 2mw(1/d+2/A), ..., SSGs in a way complementary to the Fourier argument de-
with the_amplltudes of the various components depgndmg OBcribed in the first paragraph abofteough the Fourier ar-
the deta"s of the SSG In the ||m|t n -V\./h|Ch the SSGis We.a.k,gument alSO fO”OWS from Coup|ed_m0de thebr&ccording
roughly corresponding to the condition that the SSG is &g coupled-mode theory, the field envelope in a uniform grat-
V\{eak perturbation on a'uniform'grgting, each Fourier coeffiing js evanescent for frequencies closeftp, leading to
cient _of the refrgctlve mdex_dlstrlbutlon now leads to anstrong reflection, whereas it is propagating sufficiently far
associated peak in the reflection spectf@3,7,.9. Thus the  from £, [12]. Thus, for frequencies sufficiently close tg
reflection spectrum of a SSG consists of peaRewland  the grating acts as if it were a potential barrier. A SSG, in
ghosts[9]) at closely spaced frequgues clustered about thghich the grating parameters vary periodically, can be
Bragg frequency [2,3]: fy=c/2n(1/d+N/A), where thought of as a periodic array of potential barriers, separated
N=0,£1,... . Though this simple picture fails when the by potential well§12]. From the physics of crystalline solids
SSG is not shallow7], it nevertheless gives an appealing we know that such periodic arrays lead to bands, separated
intuitive understanding of the qualitative features of the re-by gaps[13]. A SSG can be understood similarly: The peri-
flection spectrum of a SSG. odicity gives rise tdphotonig bands where the reflectivity is
The fact that the reflection spectrum of SSGs consist ofow, separated byRowland ghostgaps, where the reflectiv-
lines that are approximately equally spaced has led to a nunity is high. Here we make use of this interpretation of SSGs
ber of applications, which have been realized in both semiin terms of wells and barriers. In particular, we adapt the
conductor{2,6] and fiber geometrie3—5]. Applications in-  tight-binding method 13], developed to determine the prop-
clude tunable distributed feedback lasers in semiconductorsrties of crystalline solids, to SSGs and use it to find approxi-
mate analytic expressions for the high- and low-reflectivity
spectral regions, as well as analytic expressions for the asso-
*FAX: (612 9351 7726. Electronic address: desterkephysics.usyeiated eigenfields. It should be noted that although these re-
d.edu.au sults are important in their own right, they are also the start-
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ing point for quantitative analyses of SSGs, in both linear L
and nonlinear regimelg]. e
In Sec. Il we review coupled-mode theory and introduce ‘
the concept of well and barrier in this context. In Sec. 11l we
consider a general photonic well and find the transcendental

K |
I
I
equation determining its bound states. Then in Sec. IV we I
I
I
I
I

D> =
o

study three simple well types in some detail. In Sec. V we
use some of these results, in combination with the tight-
binding method, to find the photonic bands of deep SSGs. A
discussion and conclusions follow in Sec. VI. A 0 A A

position ——=

Il. COUPLED-MODE THEORY AND ) ]
SUPER-COUPLED-MODE THEORY FIG. 1. Band c.Ilagram of the SSG defined by Eﬁjand 5=0
Dashed regions indicate values of the detuning for which, as a

As mentioned, coupled-mode thedB] is widely used to  function of position, the field envelopes are evanescent, while in the
calculate the properties of gratings. In its standard form itclear regions they are propagating.
can be used whenever the grating is shallow and it can thus
be applied to all fiber gratings and to most gratings in semiand thus characterize the grating. For a uniform gra#ing
conductord 14]. The key feature of coupled-mode theory is and x are constants, whereas for a SSG they are periodic
that one uses electric-field envelopes rather than the electrfanctions.
field itself. When applied to a uniform grating one can then We now first consider uniform gratings for whi¢hand «
replace the wave equation with a periodic refractive indexare constantg3]. Assuming a harmonic time dependence, so
with a set of coupled-mode equations with constant coeffithat
cient[8,12]. To accomplish this we write the refractive index

n as E.(x,t)y=e eA'F . (x), 5
27X whereA is the detuning, we find that the enveloges sat-
n(x)=ng+ 5n(x)+An(x)cos<T+13(x) , (1) isfy
Wherean(x_), An(x), andd(x) o_IeIine the superstructure and +i i +x(X) F_+[8(X)+A]F, =0,
are periodic functions of position. Hem, is a reference 2
refractive index,én is a small deviation of the average re- (6)
fractive index fromng, An is the grating strengthg is the
qominal grating. period, anﬂ(x) r-epre-sent.s periodic varia- —i JF- +xk(X) FL+[8(X)+A]F_=0.
tions of the period. The electric fieH is written as X
E(x,t)=[E,(x,t)e"!koxt/2) From these it is easy to see that if
+E_(x,he ko ot ce, (2 — 8- k<A< -5+, 7

where E.. are the envelopes of the forward and backwardthe envelope is evanescent, whereas otherwise it is propagat-
propagating modesk,=w/d, and wy is the associated ing [12]. As mentioned, this result is related to the high
(Bragg frequency. It can then be shown that the satisfy  grating reflectivity for frequencies around the Bragg fre-
the coupled-mode equatioh8,12] quency.

To understand how we analyze SSGs we consider as an

OB 1 dE, _ example the simple case whefa=0, &=0, so that by the
i X + a ot +x(x) B-+8(x) E. =0, second of Eqs(4) §=0 as well. Further,
() . L L
— — = —
JE. i JE. if MA— S<x<MA+ 3
—i—+ ———+k(X) EL+8(X) E_=0, K= (8)

X ot

Vg ] L L
ko if MA+§<X$(M+1)A_§ y

whereuv, is the group velocity aty, in the absence of the

grating andx andé are given by whereM=0,=1,+2 ... . This is thus a SSG in which the
AN(X) grating periodically vanishes. Herk is the SSG’s period,
, andL is the width of the “empty” regions. Figure 1 is the
A band diagranj12,15 of the SSGs defined by E@8): The
(4) dashed regions in Fig. 1 show the values of the detuding
for which, as a function of position, the field envelopes are
_ 2mwon(x) 1dd evanescent according to Eg8) and(7), whereas in the clear

N 2 dx regions the envelope is propagating.

Kk(X)=

o(X)
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Since SSGs, such as that in Fig. 1 thus correspond to a —Og+icy
periodic array of regions with evanescent and propagating
wave behavior, they can be interpreted as a periodic array of
wells (clear regions in Fig. }1 and barriergdashed regions _GB% %
SSGs are thus similar to the ScHimger equation with one- 5w+’cw%
dimensional periodic potentiald6]. It is one of the aims — 8Ky
here to exploit this similarity. A B, D e
It is well known that solutions to the Schiimger equa-
tion with periodic potential can be obtained numerically or S P —
sometimes from a simple transcendental equation in the case 1/2  +L/2
of the Kronig-Penney model; these solutions entail the elec-
tronic band structure and the associated Bloch func{id8p position ———=

Analytic results can be obtained in limiting cases. For ex- FIG. 2. Band diagram for a general photonic well. The sub-
\?vrggLe’thv;?: grl tr;?e ep :'Ieocﬂgncgm?;))r(ﬁ;ﬁof thl?aesp[););(]anltrgal IsscriptsB refer to barrier parameters, whig refers to the well. The

' early | . PP capp - dashed regions indicate evanescent behavior of the field envelopes
the opposite limit, regions of lO.W poter_mal are Con_SIdgred toand the clear regions indicate propagating behavior.
be wells, separated by potential barriers. Tight-binding
approximation can be used .'f the Interaction between thethe general type with piecewise constant parameters, as illus-
eigenfields in different wells is small, which occurs when thetrated in the band diagrafi2,15 shown in Fig. 2. The
barriers are sufficiently strorid 3]. It was shown earlier that ' g

. subscriptsW refer to well parameters, where8srefers to
the numerical methof7] and the nearly free electron method P b

barrier parameters. For this structure to act as a potential well
Swith discrete bound states, the envelopes must be propagat-

the case of SSG$7]. Here we adapt the tight-binding - - :
method to SSGs and use it to find approximate analytic 9 for |x| <L/2 and evanescent f¢x|>L/2. From Fig. 2 we

pressions for théphotonig bands and for the Bloch func- see that we thus only consider detuningsuch that

tions for deep SSGE7]. — St kw<A<— 8zt kg. 9
Analytic expressions for the photonic bands and the Row-

land ghost gaps indicate for which values of the detuning A discrete level of the potential well in Fig. 2 must be a

[Eq. (5)] the SSG is reflecting, but the actual level of reflec-gg|ution to the coupled-mode equatiois in which the en-
tance cannot be determined in this way. However, it has bee\ﬂelopesa vanish asx— +=. To find such solutions we

shown that the additional information contained in the Blochfirst use the transfer matrix of Eqe) if « and & are con-
functions can be used to estimate the reflectivity as a funcsiants[7]. It is easy to see that
tion of detuning[7].

F.(x F. (O
lll. PHOTONIC WELLS O _ [ F+©) , (10)
F_(x) F_(0)
Here we derive expressions that determine the positions
of the discrete levels of a single photonic well. We do so forwhere the transfer matrikl is given by
|
O+A K
coshex+i " sinhax |Zsmhax
M —
s sra_ | .
—i—=sinhax coshax—i sinhax
o o
|
where to see that for the envelopes to vanistxas+ o, atx=L/2,
enveloped-.. must be related by
a=+Kk’—(6+A)° (12
. . F.(L/2) 1
In a discrete level there is no net energy transfer and so =F g ion (14
the eigenfield must have the property F_(L/2) e
[F L >=IF_|% (13)  whereF, is a normalization constant and
we note that this is equivalent to the quantum-mechanical St
property that the wave function associated with a bound state el PR= B—aB_ (15)

can be made redll6]. Using transfer matriX11), it is easy KB
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Note that Eq.(14) satisfies condition(13). One can define
F_.. andg, atx=—L/2 similar to Eqs(14) and(15). Now
using transfer matriX11) in the well, one can relate the
envelopes ak==*L/2, leading to a set of transcendental
equations. The result is

apg Ky . __5B+A

COiaWL)+K—BEVSIr(aWL)—+ P ,
(16)

Sw+A  Sz+A k a

N YWbinawl)=F—,

Ay Kg Qw Kp
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both of which must be satisfied simultaneously. We note that FIG. 3. Eigendetunings\ of the eigenstates for a well with

Egs. (16) are consistent in that simultaneous solutions carfw=0 and éw=Jg

always be found. Note also that Eq46) are of the same

general type as the transcendental equations for the level ofg

well in quantum mechaniddl 6].

Since the envelopes can be multiplied by an arbitrary con-

stant phase, we choose the constang in definition (14) to
be real(its magnitude is determined by normalizatiohhen,
if the upper(lower) of the two signs applies, at=—L/2,

(F+(—L/2)>_ (e“PR>
=+F,g 1)

F_(—L/2)
where both signs are allowed.
In Sec. IV we seek solutions to Eg4.6) and the associ-
ated eigenfunctions for three types of wells.

17

IV. EIGENSTATES AND EIGENFIELDS
OF PHOTONIC WELLS

=0, as a function of the well strengthgL
(solid lineg. The short- and long-dashed lines are lower and upper
limits, respectively, given in inequality20); the long-dash—short-
shed line indicates an approximative result discussed in the text.
—A is a solution with the bottom sign. Further, the number
of solutions increases withgL ; this is expected asyL rep-
resents the well's strength. The number of solutions can be
found to be the smallest integer larger than or equal to
koL/7. Hence, as«oL—0, there are two solutions, which
are increasingly poorly bound. Of course this behavior is
similar to that of one-dimensional quantum wells, which al-
ways support at least a single state. In analogy, we refer to
the states that remain bound s — 0 as the well’s ground
states.

The solid lines in Fig. 3 show the positions of the various
eigenstates as a function of the well strenggh.. It is con-
sistent with the properties discussed above. The long-dash—
short-dashed line is given by/ky,=1—(xoL)?/2, which is

We now consider solutions to transcendental equationghe lowest-order approximate solution agL—0 for the
(16) for three special cases. In the first, to be discussed iground-state solution with >0. Additional approximations

Sec. IV A, we takex,=0 andé,,= 8z, leading to the situ-
ation as in Fig. 1; we refer to this as anshifted empty well
The second type, thehifted empty wellis similar to the
previous type in thak,,=0, but is more general sincé
and dg are arbitrary. It is discussed in Sec. IV B. The third

can be obtained from the inequality

(19

special case, discussed in Sec. IV C, is that in whichfor |x|<#/2. With a straightforward generalization to other

kg= Ky and dg# Sy (see Fig. 2, this type is referred to as
having anequal well and barrier The unshifted empty well

is treated in the most detail, as only this type is used to

construct tight-binding solutions for SSGs in Sec. V.

A. Unshifted empty wells

Here we consider the eigenvalues and eigensolutions f
wells for which kg= kg, k=0, anddg= éyy=0; note that

the last of these equalities does not imply any loss of gene

ality, as it simply fixes the frequency for which=0. Equa-
tion (16) now reduce to

A
cofAL)=F—,
Ko

(18

) ka—A?
sin(AL)= L

Note that the number of solutions of Eq4.8) is always
even, since ifA is a solution with the top sign applying, then

arguments, we find from Eq§18) and (19) that

< —

2N+1 A< N+ 1
l+2KOL/’7T\ KO\( )

e 20

KoL +1 ’ ( )
where N=0,£1,+2,... . The short- and long-dashed
gurves indicate, respectively, these lower and upper bounds
or the upper of the two ground states in Fig. 3; clearly the

gonvergence is excellent, especially feyl. = 7.

By direct calculation it can be shown that the eigenfunc-
tions, indicated by, are given by

ier L
\I’W:IC( . )e+a(X+L/2)’ X<_§
ol eREiA(X+L12) L L
V== C( e iA(X+LI2) ) y T SXS5 (22)

1 —a(x—L/2) L
"I’W:C ei‘PR e y X>§,
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A 0.1 y / \ 3 6o/ %0
S <\ /7 = :
AN | / | | 7 FIG. 5. Positions of the discrete eigenstates of a shifted empty
ol o= b b b s well with koL =4. Shown is the eigendetunirdgvs the barrier shift
8'? ' (‘d') T (' VAR 8o, both normalized with respect tq,. As discussed in the text, all
ol /\\ NS g solutions must lie between the two diagonal lines. The horizontal
ol b ™ ‘\\// R and vertical dashed lines follow from Eq&5).
_0:2 _I Il 11 | 11 1 \T>\f 11 | 11 1 I_
-10 -5 0 5 10 Note finally that although the fields and the various Stokes
Ko X parameters are continuous, the derivatives are not. The ex-

ception isS,, but this is a particular property of the simple
FIG. 4. Eigenfields of the four bound states of a well with we|| considered here in which(x) is constant.
koL =4. Results are shown fqe) A=0.8988,(b) A=0.3131,(c)

A=-0.3131, and (d) A=-0.8988. Indicated are '
So=|v,|?+]|w_|? (solid line, S,= . ¢* +y_y* (short-dashed B. Shifted empty wells

lines), andSs=i (¢, ¢* —4_y7) (long-dashed lings The vertical Here we again consider the eigenvalues and eigensolu-

lines indicate the well edges. By showiry/«o versuskox the  tinng for wells for whichiy,,=0, but unlike the wells in Sec.
result does not depend ot IV A, now éy# 8g. Then Eqs(16) reduce to

where the signs correspond to those in E&§). Further, the 8o+ A
constant CogAL)==+ P
% (23
c= 2(alL+1) 22
. _ Qg
is determined by the normalizatigif’,, W "Wdx=1 [7] and sin(AL)= o’

¢or Was defined in Eq(15). By direct calculation it can be
confirmed that the various eigenfunctions are mutually or-

thogonal. where, without loss of generality, we have tak&p=0 and
Figure 4 shows the eigenfunctions for an empty unshiftedVe have setg= o, and similarly forx and a. _
well as a function of position. We take,L=4, so that Since we are interested in bound states only, the solutions

according to our earlier argument, the well has four discret®f interest have detunings such that

eigenstates. Figure(d shows the result foA =0.8988, Fig.

4(b) for A=0.3131, Fig. 4c) for A=—0.3131, and Fig. &) — 80— KoSA<— 5+ Ko, (24
for A=—0.8988. The various line types indicate three of the
Stokes parametergl7] that can be constructed from the
eigenfields. Indicating the components Bf by .., these
can be written as Sy=|,|?+|y_|?> (solid lines,
S,=y Y (short-dashed lings and

Se=i(y = —y_y7) (long-dashed lings Recall that ac-  g5me situation as in Sec. IV A ensues.

cording Zto qu' (13) the fourth Stokes parameter g re 5 shows that the positions of the bound states with

$1=|¢+|"~[¢_[*=0. Note that by showing5 /o VErsus yegpect to extreme@4) vary as a function o8, and that for

KoX In Fig. 4, the results do not depend on the value@f  cetain values of5, a bound state merges with the con-
Many of the features in Fig. 4 are easily understood. Foti, ,um. Hence the number of bound states depends,on

example,S, is constant in the well region becausg=0.  Fqr example, whereas fai, =0 there are four bound states,
Further, from Eq(21) it can also be seen th&, andS; are ¢ 5 —( 4 there are only three. It is easy to show that for a
even under changing the signxofwhereasS; is odd. Next,  given value of«,L states merge with the continuum when
for the two fundamental states At=+0.3131,S, has no

nodes, whereas for the next higher stateA at+0.8988,S,

has a two nodes, similarly to the properties of quantum wells % Nm A N7 (25)

according to the one-dimensional Sctlirger equatioh16]. Ko ! kol Ko KoL’

following the same argument as that leading to B3j. In
Fig. 5, which shows the positions of the eigenstates as a
function of &, for a well with koL =4, inequalities(24) in-
dicate the diagonal lines. Note that f6§=0 in Fig. 5, the
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[ e R LR it BLSLE where the signs are unrelated, aNe=+1,£2,... . The

‘ eigenfields are again similar to those in Fig. 4, but with two
key differences. First, since hekg,# 0, S, in the well is not
constant. Second, singeis constant, wheread is not, the
Stokes parametelS; has a continuous first derivative,
whereas that 05, is discontinuous at the interfaces, as can
be seen directly from Eq$3).

V. TIGHT-BINDING APPROACH TO SSGS

Here we apply the tight-binding approa¢h3] to find
approximations to the properties of SSGs, based upon the

FIG. 6. Positions of the discrete eigenstates for a structure Witﬁesult.s for a single V\./e”.' Asin th_e theory for the_ Satirger
8z=0 and kg= k= kg (solid lineg vs &y /«xg. The dashed lines e.quat'on with a peppdm potential, we expect in a SSG the
indicate the boundaries of regions for which no such states ca igenstates of individual wells to broaden, to form bands
exist. 13]. These bands are separated (Rowland ghost gaps,
where the transmittance is small.

Though the initial derivation is general, it is applied to the
SSG given by Eq(8) and §=0, with the band diagram
andN=—2 and 0) are indicated by the horizontal and Ver_shown in Fig. 1. In the tight-binding approach, such an SSG
tical dashed lines in Fig. 5 is considered to consist of a periodic array of unshifted

o £mpty wells as discussed in Sec. IV A.

The eigenfields associated with the states of a shifted, In deriving the tight-binding results we closely follow the
empty well are similar to those in Fig. 4. The main dlﬁerencederivation of Chap. 9 in the text by Ashcroft and Mermin

is thatdS,/dx is not continuous as in Fig. 4 becau8ds .
discontinuous. Apart from this the number of nodes, dis-[13]' We write Eqgs.(6) for a SSG as

cussed at the end of Sec. IV A, is unchanged. This implies, MF=(My+AM)F=A(K)F (28)
in particular, that if§, is sufficiently large ¢o>1+ /4 in W ’

Fig. 5), then the well does not support a ground state fofwhereF indicates the column vector with componeiits

where the uppeflower) sign refers to the uppdiower) di-
agonal line. A few of theséwith the upper signs applying

which S, has no nodessee Fig. 4. and operatoM follows directly from Eqs.(6); in this prob-
lem it plays a similar role to the potential in the Sctiirger
C. Equal wells and barriers equation. SinceM represents a SSG, it must be periodic

(with periodA). In the spirit of the tight-binding method we
write this operator as the sum &f,,, the operator associ-
ated with a single well, such as those studied in Sec. IV, and
AM=M—-My,. The eigenfieldsl’,, of My , which, in prin-

ag A f:iple, can be calculated straightforwardkee Sec. IV, sat-
cog ayl)+ ZNSIn(aWL)::_’ isfy

Ko
(26) Mw¥yw=AwPy. (29

Here we consider wells for whicky = xg=xy and dyy
# 0g. Without loss of generality we sefz=0. Dispersion
relations(16) then reduce to

Sw ag For an unshifted empty well,, is given by Egs.(21),
Sosin(ayl)=*-—. whereasA,, follow from Egs. (18). Finally, the right-hand

w 0 side of Eq.(28) explicitly indicates that in periodic structures
the eigendetunings are a function of the reduced wave num-
berk [13]. In the subsequent analys$$— M, is considered
small, so that it can be treated perturbatively.

Solutions to Eqs(26) are shown in Fig. 6 for a well with
koL=2. The solid lines show the eigendetuniagvs well

shift &, both normalized with respect ta,. Note that for In the tight-binding scheme the eigenfield for a SSG, in its

ow=0, corresponding to a unlform grating, the Stm(,:turemost general form, is written as a superposition of the eigen-
supports no bound states, as required. However, for fiijjte fields of the individual wells af13]
n

at least a single such state can be found. The dashed lines i
Fig. 6 bound the regions for which bound states can exist. ,
The horizontal dashed lines indicate that for detunings such F=2 > bje*h Wy (x—NA), (30)
that | 8| >k, the field is not evanescent &g —«, whereas N

between the diagonal ~ dashed . lines, ~given bywhere theb; are constant coefficients. Here the summation
Al ko= 6wl kox 1, no bound states exist because the enve

. over N includes all the wells in the SSG and the summation
lope is evanescent everywhere. . . : overj includes all bound states of each well.

From Eqs.(2§) It can alsc_) be derived that discrete eigen- In the calculation below we find that all contributions to
states merge with the continuum when the expressions for the features of the photonic bands and the
5 associated eigenfields contain some positive integer power of
W_N) } 27 the parametee=exp(—aA) roughly corresponding to the
Kol ' decay of the envelope function in the barrier region between

ow
Ko

*

1++/1+
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AM for an unshifted empty well. 0

) FIG. 8. Position of the top and bottom edges of the photonic
two wells [cf. Eq. (21)]. Because of the assumption that the pang associated with the upper ground state of an empty, unshifted
tight-binding approach applies, the barriers can be taken t8sG withx,L =1, as a function ok,A . The solid lines indicate the
be Sufficiently thick so that<1. Here we are interested in tight-binding results using Eqg31) and (32), whereas the dots
the lowest-order results and we thus ignore all second- angpresent exact numerical results.
higher-order contributions ia.

Within the limitation described in the paragraph above,ingly strongly coupled and the level becomes bandlike;
the summation ovey in ansatz(30) can be dropped. This is according to Eq(32), the tight-binding analysis predicts that
so since for a particular well state, the effects of other statethe bandwidth scales with exp@A).
are ignored, as they affect the results only to second and Clearly, the tight-binding results are accuratecifA =5,
higher orders ire. Now by substituting ansat80) into Eq.  but they are unsatisfactory for smallegA. Note that the
(28) and following the procedure described by Ashcroft andmost obvious deviation of the tight-binding result is a shift of

Mermin, which makes use of EqR9), it is found that the average value of the edges, corresponding to a rigid shift
il of the band. Such a shift does come out of the tight-binding
H 2
A(K) = At 2 KA W) AM W(x—A) d analysis, but to ordee“. o .
(k)=Aw+2coskA) A—L/2 (x) (x=A) dx Results such as those in Fig. 8 let one make some predic-

(31) tions about the SSG's reflection spectrum: Within the photo-
. ) ) ~_nic band the envelope has propagating behavior and the
to first order ine. Note that since the average of the cosine ingsG's reflectance is small. In contrast, in a Rowland ghost

result (31) vanishes, to this order the phOtoniC band forms ap the enve|0pe is evanescent and the reflectance ap-
symmetrically about the eigendetuning of the bound state Ogroaches unity if the SSG is sufficiently long.

the isolated well.

To evaluate the integral in E431), reca!l that according VI. DISCUSSION AND CONCLUSIONS
to Eq. (28) operatorAM represents the difference between
the SSG “potential’M and the well “potential”’M,y. This The results from Sec. V allow us to draw some important

is illustrated in Fig. 7, which shows schematically the param-conclusions about Rowland ghost gaps and their spaaing
eter k associated wittM, M,, andAM for an SSG given detuning. Let us first consider the spacing between adjacent
by Eq.(8) and §=0. Rowland ghost gaps. According to inequaligf), the levels
Equation(31) can now be evaluated by substituting ex- of an unshifted, empty well are roughly equally spaced at a
pression(21) for the eigenfield and using the definition of detuning ofz/L if koL>1. Whereas an equal spacing is also
AM, illustrated in Fig. 7. Note that the integration can befound for shallow SSGé¢see the discussion in Seg, the
limited to nearest-neighbor wells, as only these lead to conquantitative differences are notable: in shallow SSGs, adja-

tributions linear ine. This leads to cent Rowland ghost gaps are spacediy. However, in
the tight-binding result it depends on the well width, whereas
A+Li2 a o« for shallow SSGs it depends on the SSG period.
t _ _ = a—a(A-L)
fA_L,Zq’ (AMY (x—A)dx=x————e , It should also be noted that it is, in principle, straightfor-

(32) ward to extend the present analysis to include higher-order
terms ine. In particular, one can identify a number of dif-
which clearly is of first order ire. We note that the choice of ferent contributions at ordes®. These include a contribution
signs in Eq.(32) is the same as in Eq&21). in coskA) as in Eq.(31), as well as a dc shift of the band,
Figure 8 can be used to judge the accuracy of approximaand a contribution at cosk2) that leads to a change in the
tions(31) and(32). Shown are the positions of the lower and band’s shape. In addition, there is also a contribution due to
upper edges of the upper ground state of the empty, unshiftettie presence of other levels in the isolated well. This leads to
SSG withkoL =1, for various different values foggA (see  a set of simultaneous equations rather than to the single
also Fig. 3. In particular, shown are the positions of the equation(31).
lower and upper edges of the upper ground state of the In conclusion, we have developed a tight-binding ap-
empty, unshifted SSG, according to the tight-binding analyproach to describe the properties of deep SSGs. This allows
sis (solid lineg and according to exact numerical calcula- us to find approximate analytic expressions for the highly
tions(dotg. Clearly, with decreasing the wells are increas- reflecting spectral regions of the grating. Although in the
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general case analytic expressions cannot be found, the From Fig. 8 it is clear that for detunings that satisfy in-
Fourier-based theor}§2] and the theory developed here can equality (9), the tight-binding method gives satisfactory re-
give some insight as they are applicable in the two extremeults if the bands are sufficiently narrow. The analysis also
limits in which the superstructures are shallow and deepallows us immediately to draw conclusions about the reflec-
respectively. tivity of the SSG, though at the level considered here these
In using the tight-binding approach the bands and gaps ojre only qualitative. Nonetheless, the photonic band structure
a SSG are considered to be associated with levels of singlgnd the associated eigenfields can be used as inputs in super-
isolated wells. When the wells are sufficiently close togethereoupled-mode theory. This theory lets one find the SSG re-

these levels broaden to give rise to barisise Fig. 8 An  flectivity and can also include, if required, nonlinear effects
intrinsic limitation of the tight-binding method can be seen[7]. This will be the subject of a future work.

from inequality(9), which gives the detunings for which the
outer gratings act as barriers. Only detunings satisfying this
inequality can be considered, even though it is known that
Rowland ghost gaps occur at other values of the detuning as
well. These have to be described using other methods. None- | am grateful to Neil Broderick and Ben Eggleton for
theless, the detunings for which the tight-binding method camany discussions on SSGs. This work was supported by the
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